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ABSTRACT Radio Frequency (RF) fingerprinting is a novel solution for identifying a unique radio from
a large pool of devices by analyzing the subtle characteristics that are inherent in the radio waveform.
Deep convolutional neural networks have been widely used to handle the RF fingerprinting task because
of their exceptional capacity for representation learning. However, there are still challenges in employing
deep convolutional neural networks, such as how to enable the model learn more robust and discriminative
RF fingerprints. This paper aims to explore new model architectures to learn robust RF fingerprints. Hence
we proposes a novel Dual Attention Convolution module that simultaneously learns channel attention and
spatial attention to tune the RF fingerprints, enhancing the convolutional layers’ potential for representation
learning. Our proposed module is lightweight and plug-and-play. A number of convolutional neural networks
can be equipped with our module, which enables them to extract robust and discriminative RF fingerprints.
Our approach has been extensively tested through experimental trials, and the results have demonstrated its
effectiveness. It is shown that the performance of convolutional neural networks on RF fingerprinting can
be improved 1.5% on average, and DAConv-ResNet50 which combined ResNet50 and our Dual Attention
Convolution module can achieve 95.6% recognition accuracy on 10 USRP X310. Our source code is available

at https://github.com/zhangweifeng1218/Adaptive_RF_Fingerprinting.

INDEX TERMS RF fingerprinting, channel attention, spatial attention, deep neural networks.

I. INTRODUCTION

Due to its low cost and flexible installation, smart wireless
Internet of Things (IoT) devices are now widely employed
in smart cities, internet of vehicles, and other industries [1].
However, it is important to note that since information
is transferred through electromagnetic waves, wireless IoT
networks are more vulnerable to passive attacks such as
unauthorized listening, as well as active attacks such as
information manipulation and denial of service attacks. These
types of attacks can compromise the security and integrity of
the network, potentially leading to serious consequences [2].
Therefore, it is crucial to implement robust security measures
to protect wireless IoT networks from these types of threats.
Access authentication and encrypted protocols are typically
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used as the network security mechanism in traditional
wireless IoT networks. Recent studies, however, demonstrate
that nefarious users can still access the network by stealing or
fabricating identifying information [3].

Hence, RF fingerprinting as a new and efficient identifica-
tion method for wireless IoT networks follows. The primary
objective of RF fingerprinting is to identify transmitters by
analyzing the subtle characteristics that are inherent in the
radio waveform due to flaws in hardware circuits, which
are commonly referred to as RF fingerprints. By leveraging
these unique characteristics, RF fingerprinting can provide
a highly accurate and reliable method for identifying
and authenticating devices within a wireless IoT network.
These fingerprints are challenging for malevolent users to
imitate [4]. RF fingerprinting mainly has the following
steps: the first step is to receive and preprocess the radio
waveform, the second step is to extract and fuse subtle
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FIGURE 1. Architecture of the proposed Dual Attention Convolution (DAConv). Our DAConv
module is composed of four components: Spatial Attention Branch in yellow dashed box,

Channel Attention Branch in green dashed box, Feature Convolution Branch in grey dashed
box, and the Fusion block in purple dashed box. The dimensions of the key tensors are also

marked in the diagram.

characteristics from the received waveform, and the final
step is to tell which device sends the radio waveform. Thus,
RF fingerprinting is a typical classification task, in which how
to extract the features that can reflect the subtle hardware
differences or defects from the signal waveform is the
key and difficult. Traditional RF fingerprinting approaches
need manually design complex feature engineering according
to specific communication system [5], [6]. For instance,
Berik et al. [5] extracts frequency offset, instantaneous
frequency, and higher-order moments as RF fingerprints to
identify radio devices. However, such artificially designed
fingerprints are susceptible to electromagnetic interference
and is not universal. Since deep neural networks have the
ability to learn features from the data automatically and
has shown its outstanding representation learning ability in
computer vision field, recent RF fingerprinting approaches
have adopted deep convolutional neural networks to extract
RF fingerprints. The research results demonstrate that,
compared with traditional artificial feature engineering,
deep convolutional neural network can automatically learn
more effective and universal RF fingerprints [7], [8], [9],
[10]. ORACLE [8], as a milestone research work on RF
fingerprinting based on deep learning, has analyzed the
physical mechanism of RF fingerprints and proposed a
baseline convolutional neural network for RF fingerprinting.
Since then, a large number of RF fingerprinting works based
on deep convolutional neural networks have emerged [7],
[9], [10], [11], [12], [13], [14], [15]. Deep learning has
opened up new possibilities for enhancing the security
and performance of wireless IoT networks. For example,
literature [13] designed a modified VGG16 network to
achieve RF fingerprinting under imapaired channels, while
Tan et al. [14] proposed to combine RF and geomagnetic
fingerprints to mine complementary information for realizing
stable and reliable device identification. Yu et al. [9]
proposed a multi-sampling network whose architecture is
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similar to AlexNet [16], to fingerprint devices using signals
with different sampling rates. The above research shows
that dynamic environment has great adverse effects on RF
fingerprinting. They generally adopt signal preprocessing,
such as denoising, channel estimation, data augmentation
and other methods, to reduce the adverse effects. How to
optimize the structure of neural networks to extract more
discriminative and robust RF fingerprints is still a difficulty
and blank in the research.

However, the convolutional networks adopted by them
are relatively simple, and most of them are directly derived
from the field of image recognition. Each convolution kernel
in the network can be regarded as an adaptive feature
learner, with different kernels learning different features
that are important for recognition tasks. Unfortunately, the
above simple networks ignore this point, and they only fuse
multiple convolutional features by simple pooling operations.
Researches in the field of computer vision have demonstrated
that attention mechanism can effectively enhance the feature
learning ability of deep neural networks [17], [18]. Thus,
in this paper, we explore a novel RF fingerprinting method
based on attention mechanism. To better understand the sig-
nificance of RF fingerprints learned by convolution kernels,
we have developed a flexible Dual Attention Convolution
(DAConv) module. This module includes two branches: the
Channel Attention Branch (CAB) and the Spatial Attention
Branch (SAB). The CAB is designed to modulate the
channels of RF fingerprints, while the SAB is designed to
modulate the spatial dimensions of RF fingerprints. By using
attention mechanisms in both branches, the DAConv module
is able to enhance important features and weaken useless
features, leading to more accurate and robust identification
of transmitters within a wireless IoT network. Our DAConv
module can be plugged into various convolutional neural
networks, endowing them the ability to learn more discrimi-
native and robust RF fingerprints.

87317



IEEE Access

H. Gu et al.: Attention is Needed for RF Fingerprinting

The contributions of this paper can be summarized as

follows:

« We propose an attention module named Dual Attention
Convolution module, which helps the convolution
operation to pay more attention to the significant parts
of the input signal and suppress unnecessary information
through channel and spatial attention, so as to enhance
the representation learning ability of the convolutional
layer.

e The proposed DAConv module can be directly
used to replace the convolutional layer in tradi-
tional CNNs, such as AlexNet and ResNet, and
effectively improve their performances in RF fin-
gerprinting task under the premise of increasing a
small amount of model parameters and computational
consumption.

o We carry out extensive experiments on the actual col-
lected RF fingerprinting datasets, which demonstrates
that our DAConv has the potential to significantly
improve the performance and effectiveness of deep
convolutional neural networks for RF fingerprinting.
In addition, we have published our experimental code
and data to provide a basis for further research in the
community.!

The rest of this paper is organized as follows: Firstly, the
recent research progress in RF fingerprinting and attention
mechanism is briefly reviewed in section II. Then our
DAConv module is proposed in section III. We also introduce
how to plug this block into traditional CNNs in this section.
The signal collection and preprocessing method is also
introduced. Then, the experimental setting is introduced in
Section IV, whereby the experimental results and analysis
are also presented. Finally, we summarizes this paper in
section V.

Il. RELATED WORK

A. RF FINGERPRINTING

RF fingerprinting is a form of signal intelligence that involves
extracting features that are inherent to the hardware of a
transmitter and inadvertently embedded in the transmitting
waveform. These features are then used to help a passive
receiver identify the transmitter. RF fingerprinting has
received extensive attention from both industry and scholars
in recent years, due to its potential to enhance the security and
performance of wireless IoT networks. For an comprehensive
survey paper on this task, please refer to [12].

Most of the traditional works have applied the feature
extraction technique which is carefully customized at the
physical layer to fingerprint wireless devices [5], [19], [20],
[21]. For example, literature [19] extracted device-dependent
radio features and designed a non-parametric Bayesian model
to predict the number of radios, although their experiment
was limited to only four ZigBee devices. Brik et al. [5]

lOur code can be downloaded from
zhangweifeng1218/Adaptive_RF_Fingerprinting

https://github.com/
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extracted several RF features, including frequency offset and
constellation errors, as fingerprints to classify 130 Wi-Fi
cards, achieving an impressive accuracy of 99%. However,
their experiment was conducted in an ideal environment
without dynamic signal-to-noise ratios (SNRs) and channel
states, making their method impractical for real-world
applications. Similarly, frequency offset and transients were
also adopted in [21], but they only achieved about 47%
accuracy in a non-controlled environment. More recently,
Peng et al. [20] extracted modulation-specific features to
fingerprint ZigBee devices and achieved about 95% accuracy
on a 54-radio testbed. While these traditional approaches
have shown promise, they are often limited by their reliance
on carefully crafted feature extraction techniques and their
inability to perform well in dynamic or non-controlled
environments.

Existing feature-based fingerprinting techniques have a
major flaw in that they are fundamentally designed for a
particular wireless device, which restricts their usefulness
in IoT settings where devices run under diverse standards.
Recently, deep learning has been applied to several wireless
communication problems, such as modulation classifica-
tion [22], channel state estimation [23]. It has also been
introduced into RF fingerprinting task. ORACLE [8], as a
milestone in this direction, builded a baseline to solve RF
fingerprinting using deep convolutional neural networks.
In literature [10], extensive comparative experiments have
been conducted to systematically analyze the influence of
environmental factors such as signal-to-noise ratio (SNR),
dynamic channel conditions, and the number of targets.
By carefully controlling these factors and evaluating the
performance of different algorithms under various conditions,
researchers have been able to gain valuable insights into
the strengths and limitations of different approaches to
RF fingerprinting. Yu et al. [9] proposed a multi-sampling
network to fingerprint devices using signals with different
sampling rates. The above research shows that dynamic
environment has great adverse effects on RF fingerprinting.
They generally adopt signal preprocessing, such as denoising,
channel estimation, data augmentation and other methods,
to reduce the adverse effects. How to optimize the structure
of neural networks to extract more discriminative and robust
RF fingerprints is still a difficulty and blank in the research.
In this paper, we present a novel model architecture for RF
fingerprinting that leverages attention mechanisms, which
have been widely used in computer vision. Specifically,
we propose a Dual Attention Convolution module that can be
integrated into any convolutional neural network to enhance
its ability to learn discriminative and robust RF fingerprints.

B. ATTENTION MECHANISM IN NEURAL NETWORKS

The attention mechanism in neural networks is inspired
by the human cognitive system and imitates the human
cognitive process, mining and enhancing the key information
in the input signals [24]. Attention mechanism can effectively
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enhance the feature learning ability of neural networks,
and has been widely and successfully applied in the fields
of machine translation [25], visual understanding [17],
[18], content generation [26], multi-agent system [27], efc.
As the content of this paper is mainly inspired by the
attention mechanism in the field of computer vision, so we
briefly review the research status of attention mechanism
in this field, which can be roughly divided into the
following three categories: (1) Channel attention, which
is designed to analyze the significance of each feature
map channel. As a typical study, Squeeze and Excitation
Attention (SEAttention) [28] proposed a general module for
channel-wise feature recalibration. Their experimental results
show that this module can be combined with ResNet [29]
and other networks to improve the performance of image
classification task. Subsequently, literature [30] improved the
computational efficiency of the attention module to address
the shortcomings of SEAftention. (2) Spatial attention, which
focuses on evaluating attention scores from spatial patches
of the feature maps rather than the channels. CBAM [31]
used spatial attention to mine the correlation between spatial
blocks of input image and compensate channel attention.
PiCANet [32] evaluated the attention score for each pixel
using its contextual information to enhance the visual
representation of the image. (3) Self attention is an attention
mechanism that encodes the relationships between all the
input entities. Its main method is to first copy the input
into three copies, called key, query and value, then calculate
the similarity between key and query. And finally the value
is adjusted based on the similarity. Transformer [33] is
the representative model of the self attention and it is the
cornerstone of current large scale Al models [34]. Most
recently, attention has been introduced into deep networks
for RF fingerprinting of real-world Bluetooth [35]. However,
in their approach, the attention module and the convolution
operation are completely separated. Inspired by the above
studies, this paper introduces the attention mechanism into
the task of RF fingerprinting, and designs an efficient dual
attention block for this task. This block is able to selectively
enhance important features and suppress irrelevant or noisy
features, thus effectively improving the performance of deep
convolutional neural networks in RF fingerprinting.

lll. METHODOLOGY

In this section, we first revisit the channel attention and
spatial attention in neural networks. Then we introduce
our proposed dual attention convolution which combines
channel attention, spatial attention and convolution operation.
We also detail how to plug our module into existing CNNs.
Finally, we introduce the dataset and its preprocessing and
augmentation methods which will be used in our experiments.

A. PRELIMINARY
Let the input and output of one Convld block which
has C,, convolution kernels be x € RCnxLin apd
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x € RCouxLou respectively. In the field of deep learning, the
Cin and C,,; are usually called channel?® dimension of the
feature maps, and L;, and L,,; are named spatial dimension.
Extensive computer vision studies [36] have demonstrated
the representation learning ability of convolutional neural
networks fundamentally lies in their convolution kernels,
each of which can be considered as a feature learner. These
convolution kernels can be learned driven by the training
data. However, traditional convolutional neural networks
treat all convolution kernels in the same layer equally,
assuming that features learned by different kernels are equally
important for recognition. This approach is at odds with
the way humans process information during recognition,
where certain features may be more salient or relevant than
others. Thus channel attention [28] emerged to evaluate the
importance of different feature channels and modulate the
features learned by different convolution kernels. Similarly,
spatial attention [31] focuses on evaluating attention scores
from spatial patches of the feature maps. The attention
mechanism can be implemented in a variety of ways.
At present, most of the attention modules in neural networks
are implemented by neural networks. For instance, the
channel attention score A, € RCwx1 and spatial attention

score A; € RLow can be calculated based on the
input:
Ac = Fyp(Xin) (D
As = Fo(xin) (2)

where F is the neural network with parameter ¢ to estimate
channel attention score, while Fy is the neural network with
parameter 6 to calculate spatial attention score.

B. DUAL ATTENTION CONVOLUTION

Results from previous studies have demonstrated that man-
ually extracting and combining various RF fingerprints for
particular radios can significantly boost performance [37].
Motivated by the fact that the attention mechanism can
automatically perform feature selection, boosting the rep-
resentation learning ability of convolutional networks [17],
[18], we design a novel and flexible Dual Attention
Convolution (DAConv) module to boost convolutional mod-
els for RF fingerprinting. Figure 1 shows the architec-
ture of the proposed module. It contains the following
components:

1) FEATURE CONVOLUTION BRANCH (FCB)

Since we extract features from raw IQ samples, the input of
FCB is two-dimensional, denoted as x € RCn*Lin_ Thus we
adopt one-dimensional convolution (ConvId) in this branch,
to learn a set of filters that capture important temporal
patterns and variations in the signal. FCB is composed of
Cou: convolution kernels to extract RF features X € IR Cour X Lou

2The “channel” here has nothing to do with the concept of “channel”
models in wireless communication.
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FIGURE 2. Building blocks: (a) BasicBlock. (b) Bottleneck.
(c) DAConv-BasicBlock. (d) DAConv-Bottleneck. K denotes the kernel size,

while C; and C, are the number of kernels. The Conv1d in grey box is
optional.

from input, where L, is the dimension of each output feature
channel.

2) CHANNEL ATTENTION BRANCH (CAB)

It is designed to learn the attention map over channel
dimension. Thus feature maps extracted by FCB will be
assigned different weights. As shown in the green dashed
box of Figure 1, CAB is composed of fully connected layers
and several activation layers. The sigmoid layer transforms
the output of the second fully connected layer into channel
attention map A, = {a, ..., ac,, )} € RC«*1 in which:

o =0 (W-Tanh(x - UT))i,i=1,..., Cou (3)

where o(-) denotes sigmoid function, U € RCou*Lin and
W e R!*Cin are the weights of the fully connected layers
respectively.

3) SPATIAL ATTENTION BRANCH (SAB)

Aiming to predict the spatial attention map, this branch
incorporates a downsampling - upsampling structure. Convild
- ReLu -Maxpool is the cascaded operation for downsam-
pling, while the upsampling is composed of deconv - ReLu
- upsample. This enables us to recover the original length of
input signal while analyzing the spatial correlations. Then, a
sigmoid activation layer is used to predict the spatial attention
map As = {B1,..., B} € R*Lout shared by each channel
of feature map.
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4) FUSION

As shown in the purple dashed box of Figure 1, the feature
maps learned by FCB are modulated by channel attention and
spatial attention as follows:

X <X+ x 0O Ac.repeat(l, Lyy) + x © Ag.repeat(Cpyz, 1)
“4)

where the first term is the feature maps learned by FCB,
the second term denotes the features modulated by channel
attention while the last term denotes the features modulated
by spatial attention. ® denotes element-wise multiplication.
Ac.repeat(1, L,,;) means copying tensor A, along its second
dimension L,,,; times which can be easily implemented using
PyTorch [38] function torch.Tensor.repeat ().

C. DEEP ATTENTION CONVOLUTIONAL NEURAL
NETWORKS

From equation 4, we can see that the attention branches
do not change the size of the extracted feature map.
This characteristic allows our DAConv module to replace
the convolutional layers in various types of convolutional
neural networks and transform them into deep attention
networks with little effort. For instance, our DAConv module
can be plugged into ResNet [29] and transforms it to
be DAConv-ResNet. Table 1 illustrates the architectures
of ResNet34, ResNet50, DAConv-ResNet34 and DAConv-
ResNet50. We can see that the overall architecture is
not changed. Only the Convid module and build blocks
are replaced or reformed with our DAConv modules.
Figure 2 gives the detailed architectures of BasicBlock,
Bottleneck, DAConv-BasicBlock and DAConv-Bottleneck
which are the cornerstones of ResNet and DAConv-ResNet.
Similarly, other deep convolutional neural networks, such as
AlexNet [39], can also be transformed into deep attention
networks by our DAConv. We will give their performance in
section IV.

D. DATA COLLECTION

1) USRP OFDM

10 USRP X310 SDRs are used as transmitters and 1 USRP
X310 SDR is used as receiver to sample IQ data. All
transmitters, as depicted in Figure 3 (a), employ the
“gr-IEEE802-11"3 module based on GNURadio to produce
baseband signals compliant with the IEEE 802.11a standard.
The OFDM frames of the 10 transmitters have the same Short
Training Sequence and Long Training Sequence. All the data
in payload is random. Therefore, there is no field in the signal
frame that can indicate the transmitter’s identity. As shown in
Figure 3 (b), the receiver is fixed, and each transmitter can be
placed at location A or B. Thus we can collect IQ data from
the same transmitter under different channel states. Finally,
we collect 100 transmissions from each transmitter. Table 2
gives more details of the collected USRP OFDM dataset

3The source code of “gr-IEEE802-11" is available at: https://github.com/
bastibl/gr-ieee802-11
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FIGURE 3. (a) Schematic diagram of signal collection. We generate baseband waveform using GNURadio
software and transmit it using USRP X310 device. We also use another USRP X310 to receive the radio
signals and store them in laptop. (b) Layout of signal acquisition experimental enviroment. The receiver is
fixed at the left-bottom corner, while the transmitter can be located at location A or B to simulate different
channel states.

TABLE 1. Architectures of our ResNet. Building blocks including BasicBlock, Bottleneck, DAConv-BasicBlock and DAConv-Bottleneck are shown in Figure 2.
C is the number of kernels in conv1 layer while K denotes the kernel size. C; and C, are the number of kernels in the building blocks. Block x N denotes
N same blocks are stacked. With the raw 1Q data x € R2*512 as input, we give the output size of each convolution stage in the “output size’ column.

layer output
name size ResNet34 ResNet50 DAConv-ResNet34 DAConv-ResNet50
convl 64 x 256 K=7, C'=64, stride=2, Convld K=7, C=64, stride=2, DAConv
1 X 3 max pool, stride=2
conv2 x | C2 X128 \—r—rr—g C1 =064,C2 =256 Ci=Cs=64 C1 =064,C2 =256
BasicBlock x3 Bottleneck X3 DAConv-BasicBlock x 3 DAConv-Bottleneck x 3
ChL=Cy =128 Ch = 128,C3 =512 C1 =Cy =128 C1 =128,C3 =512
conv3_x Cy x 64 BasicBlock x4 Bottleneck x4 DAConv-BasicBlock x 4 DAConv-Bottleneck x4
C1 = Cy =256 C1 =256,C = 1024 C1 = Cy =256 C1 =256,C = 1024
conv4_x Ca x 32 BasicBlock X6 Bottleneck x6 | DAConv-BasicBlock x 6 DAConv-Bottleneck X6
C1 =Cq =512 C1 =512,C2 = 2048 C1 =Cy =512 C1 =512,Cy = 2048
convy_x Cy x 16 BasicBlock %3 Bottleneck x3 | DAConv-BasicBlock x3 DAConv-Bottleneck x3
classes average pool, 512-d fc, softmax

TABLE 2. Summary of collected USRP OFDM signals.

Subset  Location Date Transmissions ~ Samples
1 A Jan 6, 2021 10100 87594
2 B Jan 25, 2021 10x100 83860

and we also display several signal samples of two SDR
transmitters at different location in Figure 4. The sampling
rate is 5 M/s.

E. DATA PREPROCESSING AND AUGMENTATION
Numerous studies have shown that data augmentation
is a successful method for enhancing the generalization
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capacity of deep learning models. The task of RF
fingerprinting can also use this idea. We have devel-
oped the following data augmentation techniques for this
study:

1) NORMALIZATION

As shown in Figure 4, signal samples from the same
target that are gathered at different distances have varying
amplitudes. Such amplitude characteristics should not be
used as a basis for RF fingerprinting. Thus it is required to
normalize the amplitude and the DC component is also need
to be removed.
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FIGURE 4. Visualization of USPR OFDM signals: (a) Signal of USRP X310 #1 collected at location A. (b) Signal of USRP X310
#1 collected at location B. (c) Signal of USRP X310 #2 collected at location A. (d) Signal of USRP X310 #2 collected at location B.

The sampling rate is 5 M/s.

2) RANDOM SEGMENTATION

Since the collected transmission’s length is not fixed. Thus,
we need segment these transmissions into samples with
fixed size to satisfy the specific requirements of the neural
networks. To obtain samples s € R?*3!2, a window of length
512 is used to slide on the transmission, and its sliding step is
a random value drawn from uniform distribution U(1, 256).

3) RANDOM NOISE

In the practical RF fingerprinting, it is impossible to collect
signal samples with all possible SNRs to train the model. And
the SNR of the signal to be identified is often changed. This
variation of SNRs will degrade model’s performance [10].
Therefore, in every training iteration, Gaussian white noises
with random intensity are superimposed on the training
samples. To be Specific, let X = {x1,x2,..., XN},
x; € RZ*1Z denotes the segmented samples. We add
Gaussian white noises with random intensity to each x;:

X <= {xi+ny,xi+na, ..., x; +np} (5)
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where n; is the Gaussian white noise. In our following
expenments we set the SNR; = 20 x log(x’) € [0, 30] and
=35.

IV. EXPERIMENTS

A. IMPLEMENTATION DETAILS

Since we have collected and preprocessed all the signal sam-
ples, now they can be used to train our models. We partition
all signal transmissions in each dataset into a training set and
a test set, with a ratio of 6:4. The transmissions in training set
are normalized and random noise are added, thus increasing
the diversity of training samples. The MAX_EPOCH in
Algorithm 1 is set to 20 for all the models. We set the
training batch size to 512, that is, 512 segmented samples
are randomly selected and superimposed with Gaussian
white noises with random intensities. We use Kaiming
initialization [40] before training begins. This initialization
method is designed to set the initial values of the model’s
parameters in a way that promotes learning efficiency during
training. Then we use Adam optimizer [41] to optimize
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models’ parameters. The learning rate is initialized to
2 x 107*, and warm-up trick is also adopted. To prevent
overfitting during training, we add a Dropout layer (with
a rate of 0.5) [42] after each fully connected layer in our
model. Additionally, we apply L2 regularization to all of
the network’s learnable parameters. These techniques help
to prevent the model from memorizing the training data and
instead encourage it to learn more generalizable features that
can be applied to new and unseen data. In training stage,
the networks are optimized to minimize the following cross
entropy loss function:

B

L(O) = —[Ai/[ ;yilog@i) + (1 = yplog(1 —3)]  (6)
where M denotes the batch size, ® is the set of learnable
parameters. y; is the ground-truth label of sample x;, while
y; is the neural network’s prediction. We have implemented
our models using PyTorch.* We give the details about training
and inferring of deep attention networks in Algorithm 1. It is
worth to note that we do not add noise to test samples in
inferring stage. All the following experiments are conducted
on a computer with Intel Core i9 CPU and one single Nvidia
RTX 3090 GPU.

Algorithm 1 Training and Inferring of Deep Atten-
tion Convolutional Neural Networks
Training of deep attention convolutional neural
networks:
Randomly Initialize network weights ®
for epoch = 1 to MAX_EPOCHS do
for iteration = 1 to STEPS do
Sample a batch of signal segments
X = {x1,x2, ..., xg} and add random noise:
xi < {xi+ny,xi+no,...,x; +np}
Input batch into the network and Compute
loss:
L(®)[standard forward pass]
Compute gradients V.L(®)
Update weights using Adam:
O* = Adam(V L(®))

Inferring using deep attention convolutional
neural networks:

Freeze the networks with learned weights ©*

Get a testing signal

Normalize the signal and input it into the network
Predict the fingerprint type of the testing signal using
trained networks

B. EVALUATION METRICS
To fairly compare our work with existing approaches, we use
the identification accuracy which is widely adopted as the

4Our code can be downloaded from
zhangweifeng1218/Adaptive_RF_Fingerprinting

https://github.com/
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evaluation protocol. Recognition accuracy is the most com-
monly used criterion in classification tasks, which represents
the proportion of correctly identified test samples to the
total test samples. In addition, since the RF fingerprinting
models discussed in this paper are all based on deep
neural networks, the model size and computational cost of
deep neural networks are important criteria to measure the
practicality of the models. Therefore, we introduced several
common protocols including floating-point operations per
second (FLOPs), number of model parameters, training time
for one iteration to compare the performance of different
models.

C. COMPARISON WITH STATE-OF-THE-ARTS
Since our proposed attention module is specific for RF

fingerprinting models based on CNNs, we adopt several

State-Of-The-Art (SOTA) networks as baselines, including:
o« ORACLE [8] is the milestone of RF fingerprinting

using CNN. ORACLE is a simple convolutioanal neural
network which has only two convolutional layers and
two fully-connected layers.

o AlexNet in RF fingerprinting is modified from
AlexNet [39] which is the first convolutional neural
network to make a breakthrough in image recognition,
thus exploding the craze of deep learning. This model is
composed of 5 convolutional layers, three map pooling
layers and several fully-connected layers. For more
details about AlexNet in RF fingerprinting, please refer
to [10] which takes this model as baseline and gives
detailed architecture.

« ResNet in RF fingerprinting is a model family modified
from popular residual network named ResNet [29].
By adding shortcut between the convolutional layers,
the residual network optimizes the gradient flow in
the network, thus effectively alleviating the gradient
instability problem in deep network training, making
it possible to train very deep networks. According
to the number of layers, ResNet has several variants
including ResNet34, ResNet50. Literature [16] adopts
the ResNet50 while Literature [43] use ResNet34 to
fingerprint Lora devices. We have demonstrated their
detailed architectures in Table 1.

We can see that all the above models are inspired by
popular computer vision models after proper modification.
It is worth noting that since image data generally contains
three channels and each channel is a W x H matrix,
Conv2d is generally adopted by CNN models for image
recognition. However, the signal IQ data only contains two
channels, and each channel is a L-length vector. Therefore,
Convld 1is usually required for CNN model used for RF
fingerprinting, except that ORACLE uses Conv2d since it
views the IQ data as a tensor with one channel and each
channel is a 2 x L matrix. In order to verify the effectiveness
of our proposed DAConv module, we have implemented
DAConv-ResNet34, DAConv-ResNet50 which have been
described in section III-C, and we also have implemented
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TABLE 3. Comparison of our models’ performance with SOTA models.
We show the mean testing accuracy, number of models’ learnable
parameters and training time cost per iteration.

Accuracy FLOPs Parameters Iraining time

Model (%) (G) M) (ms)
ORACLE [8] 75.3 0.0104 0.292 453
AlexNet [16] 79.6 0.0506 0.302 49.5
ResNet34 [43] 92.0 0.1793 7.229 89.7
ResNet50 [10] 94.2 0.3869 16.000 115.8

DAConv-AlexNet (ours) 81.5 0.0643 0.280 53.6
DAConv-ResNet34(ours) 934 0.2439 7.551 93.5
DAConv-ResNet50(ours) 95.6 0.4201 16.130 117.9

DAConv-AlexNet. We carry out a comprehensive comparison
experiment to compare the performances of these State-Of-
The-Art (SOTA) models with our models. The experimental
results, including testing accuracy, model size, FLoating
point OPerations (FLOPs) and training time per iteration,
are summarized in Table 3. We also show the classification
confusion matrix of each model in Figure 5.

From the results, we can see that: (1) DAConv-ResNet50,
which is based on our proposed DAConv module and ResNet,
achieves the best recognition accuracy with proper model
size and training time cost. (2) Big models which have
more learnable parameters have better performance than
small models. The reason is that more learnable parameters
means big models have larger capacity, thus then can better
fit the RF fingerprinting space. For example, the smallest
model ORACLE only achieves 75.3% accuracy with 0.292 M
parameters, while ResNet34 achieves 92.0% with 7.229 M
parameters. (3) All the existing RF fingerprinting models
based on convolutional neural networks can be boosted by
inserting our DAConv module into them. For instance, the
best existing model ResNet50’s performance can be signif-
icantly improved from 94.2% to 95.6% by using DAConv
module. The comparison study mentioned above demon-
strates how the DAConv method suggested in this research
may aid standard deep convolutional neural networks in
learning RF fingerprints more effectively. Figure 6 shows
the RF fingerprints obtained by ResNet50 and DAConv-
ResNet50 to illustratively demonstrate our claim. For ease
of observation, we utilize the well-known t-Distributed
Stochastic Neighbor Embedding (t-SNE) tool [44] to map
the RF fingerprints into three dimensions. We can see that
the RF fingerprints obtained by DAConv-ResNet50 clearly
exhibit an intra-class compact and inter-class separation
feature, which explains why DAConv-ResNet50 has better
performance than ResNet50.

D. IMPACT OF ATTENTION

In this section, we try to explore the advantage of each
component in our attention module. First, we analyze the
impact of channel attention and spatial attention on the
performance. We design two variant blocks: (1) ResNet50-w
spatial attention: which has only the spatial attention branch.
(2) ResNet50-w channel attention: in which only the channel
attention branch is reserved. We compare their performances
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TABLE 4. Effectiveness of attention branches: Accuracies of the
DAConv-ResNet50 and its variants.

Accuracy  Parameters  Iraining time
Model (%) ™M) (ms)
ResNet50 94.2 16.000 115.8
ResNet50 -w spatial attention 94.7 16.018 116.3
ResNet50 -w channel attention 94.9 16.112 117.1
DAConv-ResNet50 95.6 16.130 117.9

with DAConv-ResNet50 and ResNet50. The results are
reported in Table 4. We can see that DAConv-ResNet50
degenerates into ResNet50 if the two attention branches are
removed, and the accuracy on USRP OFDM drops from
95.6% to 94.2%. After the spatial attention branch is added
to ResNet50, its accuracy slightly increases from 94.2%
to 94.7%. Channel attention can provide more significant
performance gains, which improve the accuracy from 94.2%
to 94.9%. This experiment proves that channel attention and
spatial attention are beneficial to improve the accuracy of
ResNet in RF fingerprinting.

E. IMPACT OF DYNAMIC CHANNEL STATE

Recent studies in RF fingerprinting have shown that the
dynamic channel has a great negative impact on the models’
performance, which is one of the key problems facing RF
fingerprint urgently. And most existing approaches adopt
kinds of signal preprocessing tricks to mitigate this negative
impact [10], [11], [12], [16], [45]. How to improve the
robustness of the algorithms to dynamic channel through
model architecture optimization is still an open problem.
Are the attention modules we proposed helpful in alleviating
this problem? Thus we conduct the following experiment
in this section. As shown in Figure 3, we collect signals at
location A to obtain subset 1 in Table 2, while the samples in
subset 2 is collected at location B. Thus, the channel states
are different in these two subsets. We design two scenarios:
(1) Simple training: we use the samples of subset 1 to train
the models, and test them using the sample of subset 2. In this
scenario, test samples and training samples are drawn from
different subset and they have different channel states. It is
challenging for models to fingerprinting. (2) Hybrid training:
similar to the experiment in section IV-C, we concatenate
subset 1 and subset 2, shuffle the samples before using 60%
of them to train the models and the remaining 40% to evaluate
them. The distribution of training and test data have different
disstributions and we visualize their distributions by utilizing
the t-SNE tool in Figure 7. We can see that training and
test data have similar distribution in hybrid training scenario
while Figure 7b indicates different distributions in simple
training scenario. The RF fingerprinting results are shown
in Figure 8. From the experimental results, two observations
can be made: (1) Hybrid training is an effective training
method to enhance models’ robustness to dynamic channel.
That is because hybrid training means the models can observe
samples collected under different channel states during the
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FIGURE 5. Confusion matrix of models. (a) Result of AlexNet. (b) Result of DAConv-AlexNet. (c) Result of ResNet34. (d) Result
of DAConv-ResNet34. (e) Result of ResNet50. (f) Result of DAConv-ResNet50.

training period. However, the application scope of this
training method is limited, because in practical engineering,
it is difficult for us to collect the target signal under different
channel states in advance. (2) The dynamic channel has
brought challenges to all of the models, and their recognition
accuracy has decreased significantly to varying degrees. For
the traditional models such as AlexNet and VGG, when the
training method is switched from the hybrid mode to the
simple mode, their performances show an average decline
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of 12.25%. But for the models enhanced by DAConv, this
decline is effectively controlled, and the performance decline
is about 9.12%. This shows that the method proposed in this
paper can alleviate the negative consequences of dynamic
channel to a certain extent.

F. IMPACT OF SNR
Variation of signals’ SNRs will degrade models’ perfor-
mance. Although we have randomly added Gaussian white
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FIGURE 6. (a) RF fingerprints extracted by ResNet50. (b) RF fingerprints extracted by DAConv-ResNet50. The
output feature maps of the last convolutional layer are mapped into 3-dimensional space using t-SNE.

Different colors represent different categories.
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FIGURE 8. Impact of dynamic channel. The orange bars represent the
results of simple training, while the blue bars represent the results of
hybrid training.

noise to training samples in training stage to enhance the
models’ robustness to noise, the adverse effects of uncertain
SNRs cannot be completely eliminated. Thus, we conduct a
comparative experiment to explore the impact the SNR on
our models and SOTA models in this section. In particular,
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we use the subset 1 in Table 2 to train the models in Table 3.
Then in the testing stage, we collect new testing samples with
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FIGURE 10. Visualization of attention weights in different convolution layers of DAConv-ResNet50. CAM_i_j and SAM_i_j respectively indicate the
channel and spatial attention maps in j-th convolution block of i-th stage respectively. The top row is the weights of channel attentions and the bottom

row represents the weights of spatial attentions.

various SNRs by adjusting the power amplifier in Figure 3.
The testing results are shown in Figure 9. We can see that, for
all models, the testing samples with higher SNR have higher
recognition accuracies. Moreover, after the insertion of our
DAConv module, all the models’ ability of against noise has
been effectively improved. Hence, our proposed convolution
with attention can help models learn more discriminative and
robust RF fingerprints.

G. VISUALIZATION

The previous sections demonstrate the effectiveness of our
proposed attention module via comparative and ablation
experiments. Although experiments have shown that deep
networks such as AlexNet or ResNet can effectively improve
the accuracy of RF fingerprinting by introducing our pro-
posed attention module, due to the black box characteristics
of neural networks, we do not know what knowledge the
attention module has learned. The interpretability of deep
neural networks is still an unsolved problem, but we can at
least explore which convolutional features are strengthened
or weakened by the attention module through visualizing
the estimated attention weights of each attention module in
the network. Hence, we select 500 signal segments from
5 devices (each device has 100 signal segments) and using
the trained DAConv-ResNet50 to extract RF fingerprints.
We compute the channel and spatial attention weights on
average. Figure 10 visualizes the channel attention weights
and spatial attention weights, denoted as CAM_i_j and
SAM_i_j where i indicates i stage and j is the j convolution
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block in i stage. It is demonstrated that (1) The learned
distributions of channel and spatial attention weights for
different classes are very similar at the earlier layers. This
may be caused by the fact that the earlier convolutional layers
learn basic signal features which are almost similar for differ-
ent classes. Such phenomenon is also observed in computer
vision task [39]. (2) By focusing on CAM_5_3, we find
that the learned weights are clearly different across various
channels and classes, because convolution blocks in 5 stage
prefer to learn high-level class-specific semantic information.
Thus our DACony block can help CNN pay different attention
to various channels in latter convolutional layers, resulting in
obtaining more discriminative RF fingerprints.

V. CONCLUSION

We proposed a Dual Attention Convolution (DAConv)
module, which is motivated by the popular attention
mechanism used in computer vision. Our DAConv module
combines spatial attention, channel attention and convolution
operation. We show that DAConv module can help the
convolutional layer to automatically evaluate and modulate
feature maps extracted by different convolution kernels.
By plugging our DAConv into deep convolutional neural
networks such as AlexNet, ResNet, we construct DAConv-
AlexNet, DAConv-ResNet34, and DAConv-ResNet50. The
RF fingerprinting performance of all the CNNs can
be improved by about 1.5 percentage points, while the
increase in computation is negligible. And DAConv-
ResNet50 which combined ResNet50 and our Dual Attention
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Convolution module can achieve 95.6% recognition accuracy
on 10 USRP X310.

Since our proposed attention module can replace the
convolutional layer in CNNs, in future work, we will combine
this module with other classical CNNs to verify the wide
applicability of our DAConv module. At present, the CNNs
designed in our experiment have a fixed limit on the length
of the input signal segments. In our future work, we will
also explore new CNN architecture which can take signal
segments with any length as input.
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