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ABSTRACT A fine-grained detection of posture problems for action assessment has a wide range of
applications for health care, sports, and rehabilitation. However, there exist many design challenges, e.g.,
the difficulty of detecting subtle deviations in actions from standard ones, lack of annotated datasets, and
even multiple posture problems that may be present in a single action. In this paper, we propose a contrastive
learning framework leveraging graph convolutional networks to address these challenges. We introduce
Augmented Virtual Joint which is a learned position in space where its associated graphs provide a holistic
view of spatio-temporal dynamics of body joints, offering a flexible and generalized representation of
actions. Next, we propose Degraded Negative Contrasting, which judiciously contrasts incorrect action
samples for effective discrimination of incorrect actions from correct ones. We also propose Frame-Selective
Pooling which provides a simple yet effective selection of important frames from action clips. Experiments
show that, as compared with the state-of-the-art architectures, the proposed model consistently achieves the
best performance under a lack of training data and in the presence of multiple posture problems, which
demonstrates its efficacy for fine-grained evaluation of actions.

INDEX TERMS Graph convolutional networks, augmented virtual joints, contrastive learning, pooling,
fine-grained action classification.

I. INTRODUCTION
The task of action assessment concerns evaluating how well
an action is performed. Typically, action assessment focuses
on automatically judging or scoring a given action [1], [2],
[3], [4], [5], however, in daily actions/exercises, detecting
problemswould bemore practical instead of assigning scores.
In this work, we consider classification-type action assess-
ment, and focus on physical exercise/workout, e.g., squat,
push-up, so as to detect incorrect postures, e.g., ‘‘inward
knees’’ or ‘‘upwards head’’ in a squat. The problem is also
related to fine-grained action recognition [6], [7], [8], [9],
[10]; however, our problem has even finer, almost down to
joint-level, granularity. Fine-grained action recognition clas-
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sifies different kinds of actions, whereas we detect posture
problems in the same kind of action with lower inter-class
variance.

However, the detection of fine-grained posture problems
faces several challenges. It is hard to create a large-scale
dataset due to the difficulty of annotation. To our knowledge,
Squat [11] and AI-Hub Fitness [12] are the only publicly
available datasets of exercise videos with detailed annota-
tions. Moreover, multiple posture problems may exist in a
single action. For example, a push-up action may exhibit both
‘‘bad elbow’’ and ‘‘bad neck’’ problems [12], i.e., incorrect
angles of both elbow and neck, each of which are separate
classes of posture problems. Multiple posture problems exac-
erbate the dataset scarcity because it is extremely hard to
create annotated datasets covering all the combinations.
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In this paper, we propose contrastive learning associated
with a new type of skeleton-based GCN for fine-grained
action classification. In order to capture subtle discrepancies
in joint trajectories during action execution, we introduce
the concept of Augmented Virtual Joints (AVJ). Virtual
Joints (VJ) are learnable locations augmented in space, not
restricted to the human body, which are virtually connected
to body joints. We consider two kinds of graphs of VJs
representing global and local connectivity, to which separate
graph convolutional layers are applied.

A typical contrastive approach simply pulls and repels
positive and negative samples. Instead, we propose Degraded
Negative Contrasting which judiciously performs negative
contrasting; a relatively strong contrasting is applied for cor-
rect and incorrect actions as compared to the contrasting
among different types of incorrect actions, and contrastive
network and classifier are jointly trained in order to boost
classification performance.We show that a carefully designed
contrastive network in combination with action classifiers
is effective in distinguishing between correct and incorrect
actions, which is the key task in our action assessment.

In addition, we propose Frame Selective Pooling (FSP)
which is a temporal pooling module aimed at attending to
important frames, so that only the frames containing signifi-
cant changes in motions are reflected in the network.

Our contributions are summarized as follows: 1) We pro-
pose a GCN with Augmented Virtual Joints which provides
a global and flexible view on human actions. 2) We propose
Degraded Negative Contrasting for effective classification of
posture problems relative to standard actions. 3) We propose
Frame Selective Pooling for simple and effective temporal
filtering of frames. 4) Experiments show that our model
achieves the best performance on detecting single-posture
and multiple-posture problems on Squat [11] and AI-Hub
Fitness [12] datasets as compared to state-of-the-art
architectures.

II. RELATED WORK
1) ACTION RECOGNITION AND ASSESSMENT
Recently, skeleton-based action recognition has been actively
studied using GCNs [13]. ST-GCN [14], the first work to
apply GCN to skeleton-based action recognition, proposed
to extract the spatio-temporal features of action using graph
structure induced from the human body. 2s-AGCN [15] pro-
posed adaptive graph convolution to overcome the limitations
of fixed graph structures and introduced an additional infor-
mation stream called bone stream obtained from a differential
of joint coordinates. AS-GCN [16] introduces actional and
structural links which capture action-specific and skeletal
dependencies respectively, and uses the stacked layers of
actional-structural and temporal graph convolutions. Shift-
GCN [17] proposed spatial and temporal shift graph con-
volution motivated by shift CNNs [18] so as to flexibly
extend the range of receptive fields. Shift-GCN also has
low computational complexity by utilizing non-local shift

graph operations. Most of existing GCNmodels rely on body
joints to learn motion dynamics. However, our method com-
bines body joints with learnable augmented virtual joints and
provides a flexible representation to capturemotion dynamics
from diverse perspectives.

Another line of work explores innovations in the graph
representation of human actions. DDGCN [19] proposes to
extract spatial-temporal correlations between different parts
of skeleton and uses directed graphs to capture hierarchical
and sequential structures in human actions. CTR-GCN [20]
proposed to learn and refines channel-wise topologies of the
action graphs. CTR-GCN first learns the shared topology
over channels, and refine it for each channel with channel-
specific correlation. In this paper, we also seek for effective
graph representation and propose GCN based on augmented
virtual joints to provide amacroscopic as well as flexible view
of the spatio-temporal action features. Some of the recent
works which address skeleton-based action recognition with
CNN approaches are PoseConv3D [21] and Ta-CNN [22].
PoseConv3D uses a 3D heatmap as input to the network, and
Ta-CNN proposes to map joint coordinates to latent features.

Our work is also related to Action Quality Assessment
(AQA)which evaluates the quality of execution of actions [1],
[4], [5], [23]. AQA is applicable for automatic scoring of
athletes’ performance [1], [5] and also for improving surgical
skills [24], [25], [26]. Existing works, however, mostly study
estimating the AQA scores, whereas we focus on the assess-
ment through fine-grained classification of postures.

2) CONTRASTIVE LEARNING
Contrastive learning aims at measuring the similarity among
samples. The basic framework was established by Siamese
networks [27], [28], [29] with shared weights and the loss
function which ‘‘pulls’’ positive and ‘‘repels’’ negative sam-
ple pairs depending on whether the pair is from the same
class. Recently, contrastive methods for self-supervised or
semi-supervised learning have received much attention [30],
[31], [32], [33]. SimCLR [30] leverages a large number of
positive pairs for training using image augmentation. Sup-
Con [34] uses not only augmented samples but also those in
the same class as positive pairs.

Recent attempts on contrastive learning for video and
action tasks include TCL [32] which is a semi-supervised
contrastive learning and creates positive pairs through vary-
ing speeds of the same action video. CVRL [35] proposed
self-supervised learning for videos by applying temporally
consistent spatial augmentation to videos to produce positive
pairs. Recent approaches to contrastive learning methods
focus on handling noises in data for robust representations.
For example, RINCE [36] and Sel-CL [37] propose learning
methods under noisy views and labels, respectively. In our
work, we judiciously apply contrastive learning depending
on the correctness of actions so as to boost the discrimination
between correct and incorrect postures with small inter-class
variance.
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FIGURE 1. Illustration of the proposed architecture. (a) Overall architecture. Our model takes input of either (Bad , Good ) or (Good , Good ) action pair for
contrastive learning. (Bad , Bad ) action pairs are not used. (b) Examples of Intra-VJ and Inter-VJ graphs with 3 virtual joints. Only a subset of edges is
shown for the Intra-VJ graph. (c) Structure of a VJ-GCN block. The input and output have the shape of (channels, frames, joints).

III. METHOD
The entire pipeline of the proposed network is illustrated in
Fig. 1. An action clip is input to the network which has K
binary outputs where there are K categories of incorrectly
performed actions. Each output represents the existence of
incorrectness in the given clip. For example, if the input action
of squat contains both ‘‘upwards head’’ and ‘‘shallowness’’
problems, the outputs corresponding to classes of those incor-
rect actions are set to 1. An action is considered ‘‘correct’’ if
none of K posture problems exist; otherwise, the action is
considered ‘‘incorrect’’.

A. AUGMENTED VIRTUAL JOINTS
A challenging aspect of action assessment is that the model
evaluates a single type of action, e.g., a squat, but should be
able to detect subtle discrepancies in the action compared to
correct ones. Thus, the model should fully capture complex
interactions among the body joints. In skeleton-based action
classification/assessment using graphs [14], [15], [17], [20],
the graph is naturally induced from the local connectivity of
human anatomy, i.e., vertices are joints and edges are skeletal
connections. However, the question is, are there better graph
representations for fine-grained classification of actions?

We propose a more general and flexible graph representa-
tion for skeleton-based action data. We introduce graphs with
Augmented Virtual Joints (AVJ) as follows. A virtual joint

(VJ) is a learnable location in space such that it is connected
to all the body joints. Thus a VJ provides a holistic or global
view of body joints from outside the body. The location of
a VJ is not restricted to the human body, e.g., it may be even
located far from and above the body, providing a ‘‘birds-eye’’
view of actions.

We augment multiple VJs, where each VJ provides a
view from a different angle, and encodes the spatio-temporal
dynamics of the associated body joints. The number of
VJs is denoted by N which is a hyperparameter. We con-
sider two graphs associated with VJs: Intra-VJ and Inter-VJ
graphs. Intra-VJ graph has body joints and VJs as vertices,
where there exist edges from each VJ to all the body joints.
Inter-VJ graph is the complete graph of VJs only, e.g.,
see Fig. 1. A macroscopic view on actions is captured by
Intra-VJ graphs, whereas Inter-VJ graphs capture the local
connectivity among VJs. In addition, all the body joints are
inter-connected through VJs within two hops, facilitating the
exchange of node features across the GCN layers. Thus the
combination of Intra-VJ and Inter-VJ graphs is able to capture
local and global perspectives on body joints.

1) GRAPHS OF VIRTUAL JOINTS
Let us define the adjacency matrices for Intra-VJ and Inter-
VJ graphs. Let J denote the number of body joints. There are
J+N nodes, and the node indices 1, . . . , J and J+1, . . . , J+
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FIGURE 2. VJ-Generator. The module augments the input with virtual
joints by adding k virtual joints to the original joints. The shape of the
input changes from (channels, frames, n joints) to (channels, frames,
n + k joints).

N denote the body joints and VJs respectively. The adjacency
matrices for intra- and inter-VJ graphs are given as follows:

Aintra(i, j) =

{
1 (i, j) is a body joint–VJ pair
0 otherwise

Ainter(i, j) =

{
1, (i, j) is a pair of VJs
0, otherwise

In Intra-VJ graphs, a VJ is connected to all the body joints
and should capture their spatio-temporal dynamics. Since the
body joints change locations over time, their trajectories can
be reflected in VJ locations by ‘‘calibrating’’ the VJ locations
to the trajectory of body joints over time. Specifically, the
location of i-th VJ at frame t (t = 0, 1, 2, . . . ), or vi(t) ∈ R3 is
defined as follows. Let xj(t) denote the location of j-th body
joint at t-th frame.

vi(t) := v0i +

J∑
j=1

βi,j

[
t∑

τ=0

αt−τ xj(τ )

]
(1)

v0i ∈ R3 is called the ‘‘default location’’ of the i-th virtual
joint, and is a parameter to be learned through backproga-
pation. The input to our network is a concatenated tensor
representing the positions of body joints and VJs, where the
trajectory of VJs is defined by (1) (VJ generator in Fig. 1c and
Fig. 2). The second term of (1) represents the calibration of
location of virtual joints over time. βi,j are adjustable param-
eters determining howmuch the change in body joints should
be reflected. The body joint trajectories are exponentially
averaged over time with a discount factor α ∈ [0, 1], as in
the term in the brackets of (1), in order to take the history of
joint trajectories into account.

For example, if we let βi,j = 1/J , the VJ calibrates itself
according to the center of mass of body joints averaged over
time. If weights are set to small numbers, then VJ effectively
has a fixed location, providing a fixed camera view of the
body joints. Note βi,j can be either set as hyperparameters or
as a learnable parameter. Below we summarize the benefits
of VJs.
AVJs enable flexible design: The number of VJs, N ,

is a hyperparameter by which one can control the model

complexity. The number of edges of a complete graph of body
joints is always fixed toO(J2). However, the number of edges
in Intra-VJ and Inter-VJ graphs combined is O(NJ + N 2).
We can adjust N , e.g., we can make N large for complex and
refined models, or make N small if the number of training
samples is severely limited and under the risk of overfitting.
AVJs allow more general representation: An arbitrary

graph on body joints can be represented using a graph on
VJs. For example, suppose we set the number of VJs equal
to J , the number of body joints, and place each VJ at the same
location as each body joint. If, v0i = (0, 0, 0) and βi,i = 1 and
βi,j = 0 for j ̸= i and α = 0, from (1), either Intra- or Inter-
VJ graph represents a complete graph on body joints. Thus
any graph of body joints can be represented as a graph on
VJs by properly setting edge weights in adjacency matrices.

2) GCN OF VIRTUAL JOINTS
VJ-GCN has separate GCN layers for intra-VJ and inter-
VJ graphs, see Fig. 1c. The outputs from the streams are
later concatenated, and fed to the temporal convolution layer.
We apply the standard form of the GCN layer as follows.
Let Mi ∈ R(J+N )×(J+N ) denote the learnable matrix of edge
weights, Wi denotes the convolutional weight matrix. 3i ∈

R(J+N )×(J+N ) is diagonal matrix for i = {intra, inter}, and
3i(j, j) :=

∑
n {Ai(j, n) + I (j, n)} as in [13] where A(j, n)

denotes (j, n) element of matrix A. Let fin denote the input
at the GCN layer. We have that

Âi := 3
−

1
2

i (Ai + I )3
−

1
2

i , i = intra, inter (2)

fout, i := (Âi ⊗Mi)finWi, i = intra, inter (3)

fout := [σ (fout,intra); σ (fout,inter)] (4)

where σ (·) denotes the ReLU activation, and [x; y] represents
the concatenation of x and y along the channel axis. Our
network uses two separate layers of GCN for Intra-VJ and
Inter-VJ graphs in order to perform a separate encoding of
global and local connectivity information.

The outputs from each GCN are concatenated. In order to
learn temporal features, the concatenated output is input to
the temporal convolutional layer as proposed in [14]. We use
2D convolution with kernel size 1× k , where 1 and k are the
kernel size along the joint and time axis, respectively.

B. CONTRASTIVE LEARNING
1) DEGRADED NEGATIVE CONTRASTING
In typical contrastive learning with supervision [34], the sam-
ples in the same classes are considered positive pairs, and
those in different classes as negative pairs. Given a sample,
the model is trained to ‘‘pull’’ positives and ‘‘repel’’ nega-
tives. In problems detecting incorrect postures, the correct
actions serve as a reference, i.e., the incorrectness is measured
by how much the given action deviates from the reference.
Thus, it is clear that correct and incorrect action samples
should be strongly repelled.

But what about repelling two different incorrect actions? In
fine-grained action classification, incorrect actions may share

88898 VOLUME 11, 2023



C.-I. Joung et al.: Contrastive Learning for Action Assessment Using Graph Convolutional Networks With AVJ

similar posture problems even though they are labeled differ-
ently. For example, in push-up, there are ‘‘bad elbows’’ and
‘‘bad hands’’ classes. ‘‘bad elbows’’ means the elbow angle is
incorrect, while ‘‘bad hands’’ means the wrong positions of
hands. However, ‘‘bad hands’’ typically accompanies prob-
lems in the elbow angle as well, because the hand positions
significantly affect loads on the elbow joints in push-ups [38].
Such a common problem in the elbow may not be learned as
an incorrect posture by the model, if the ‘‘bad elbows’’ and
‘‘bad hands’’ classes are strongly repelled and are moved far
away from each other in the embedding space.

To address such problems, we propose Degraded Negative
Contrasting (DNC). In DNC, positive pairs are mutually
pulled as usual; however, negative pairs belonging to dif-
ferent classes of incorrect actions are set to repel weaker,
so that the representations for incorrect actions sharing com-
mon problems are not excessively far apart. The idea is
to use a contrastive loss function such that, the degree
of repulsion is ‘‘degraded’’ for certain types of negative
contrasting.

Wewill use the following loss functionmodified from [34].
Let z(·) denote a normalized vector of embeddings. Let I
denote the set of indices of the current minibatch.

Lctr =

∑
i∈I

Lctr,i

=

∑
i∈I

 −1
|P(i)|

∑
p∈P(i)

exp(zTi zp/τ )∑
a∈A(i)

exp
{
(zTi za − C · g(i, a))/τ

}

(5)

where sample i is the anchor; A(i) := I \ {i}; P(i) is the set
of positives, i.e., the samples in A(i) whose labels are the
same as an anchor; function g(i, a) is 1 if (i) both samples
i and a are incorrect actions, (ii) i and a belongs to different
classes; otherwise g(i, a) = 0. Thus, when contrasting anchor
in an incorrect action class with negatives which are also in
an incorrect action class, the strength of repulsion will be
degraded due to C > 0.
C is a hyperparameter representing the ‘‘bias’’ subtracted

from the normalized similarity zTi za. Since the similarity
is guaranteed to be in [−1, 1], C can be adjusted within
a fixed range to a impose penalty on contrasting negative
samples belonging to different classes of incorrect actions.
Our experiments show that, in some cases, the optimal C can
be effectively infinite, i.e., not repelling negatives of incorrect
action classes at all yields the best performance.

2) JOINT TRAINING WITH CONTRASTIVE AND
CLASSIFICATION LOSSES
To promote contrasting correct and incorrect action classes,
we propose to jointly train the contrastive network and the
classifier. Typically these networks are trained separately,
e.g., the contrastive network is first trained, and then the
classifier is fine-tuned in a two-stage approach, or the back-
propagation from classifiers is blocked at the contrastive

networks [30], [34], [39]. By contrast, we train the networks
simultaneously, so that the gradients from classifiers flow to
contrastive networks. In this way, the embeddings for con-
trast are learned jointly with the classification logits, so that
the classification performance can be boosted. In addition,
since data augmentation is seldom used for skeleton-based
datasets [14], [15], [17], the augmented positive pairs may
not be available for training contrastive networks, which
potentially makes the separate training ineffective. Thus the
contrastive network and classifier can have synergistic effects
in discriminating incorrect actions from standard actions by
joint training. A similar attempt was made for face recogni-
tion using Siamese networks [40].

The network output consists of K binary classification
outputs representing the existence of each of K incorrect
actions for the input clip. Thus we consider binary cross-
entropy (BCE) loss per action class. Let us denote the ground
truth label and prediction for i-th clip for class k by yi,k and
ŷi,k respectively. The BCE loss is given by

Lbce, i = −
1
K

K∑
k=1

(yi,k log(ŷi,k ) + (1 − yi,k ) log(1 − ŷi,k ))

Lbce =
1
|I |

∑
i∈I

Lbce,i

Thus, the final loss function is the combination of Lbce and
Lctr with hyperparameter λ > 0:

L = Lctr + λ · Lbce. (6)

C. FRAME SELECTIVE POOLING
Action video sequences can be quite long. However, not all
the frames are equally important for action assessment. For
example, there are frames in which the subject makes transi-
tions to another posture, providing important hints on action
assessment, while in some frames the subject may stay in a
neutral position. One can utilize the attention modules [41],
[42], [43], [44], [45] which learn to assign higher weights
to important frames. However such modules require extra
training, and the convergence can be an issue if the video
sequence is very long.

We take a simpler approach and propose Frame-Selective
Pooling (FSP) as follows. FSP performs the following tempo-
ral pooling: for each joint, the feature values are sorted over
the temporal dimension, andm largest values are selected and
averaged. That is, m most significant values are chosen from
the feature map for each joint. FSP is aimed at focusing on
the frames in which the target action is actively carried out.
As shown in Fig 3, the network is in turn trained towards
assigning high feature values to the important frame, as we
observe from the patterns in the feature maps, i.e., the frames
with pose transitions have higher values. FSP does not require
additional training; the only hyperparameter we choose is m,
the number of selected frames.
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FIGURE 3. Frame Selective Pooling (FSP). First, the input tensors are sorted over the temporal dimension (horizontal
direction). Second, m frames are selected and averaged. The red box represents the frames that contain dynamic
movements of body joints whereas the yellow box represents the frames in which the subject is in a static pose.

TABLE 1. Dataset Configuration.

D. NETWORK ARCHITECTURE: SUMMARY
In summary, there are three key components in the pro-
posed architecture: VJ-GCN provides multiple viewpoints of
actions from various angles and locations to spot subtle prob-
lems in the action execution; DNC penalizes negative pairs
of incorrect actions in the contrastive training to enhance con-
trasting between good and bad actions; FSP selects important
action frames, which reduces feature dimension and noises.
Although each component can be individually applied to
action assessment tasks, they can be harmoniously combined
for enhancing the fine-grained detection of erroneous actions,
as we propose in this paper.

IV. EXPERIMENTS
A. DATASETS
Detailed configurations of datasets used in the experiments
are provided in Table 1-5.

1) SQUAT
In Squat Dataset [11] released at CVPR 2019, we consider
Single Individual Dataset containing 7 classes of incorrect
squat postures. We used VideoPose3D [46] for pose esti-
mation which outputs 17 joints in 3D coordinates. Two
classes of warped back and frontal knee were not used in our

experiments, because a precise pose estimation was difficult
due to self-occlusion, and the difference from the correct
postures was too small. The original dataset did not contain
videos with multiple posture problems. Thus, we created
a dataset of 107 squat video clips with 4 combinations of
multiple posture problems: round back+shallowness, inward
knees+round back, inward knees+shallowness, and upwards
head+shallowness based on classes specified in [11]. We fol-
lowed a similar protocol as [11] for the dataset construction,
e.g., the subject looks at various directions, and each video
has 300 frames.

2) AI-HUB FITNESS
AI-Hub [12] is an integrated AI platform maintained by the
Korean Government (Ministry of Science and ICT, National
Information Society Agency) which provides various AI
infrastructures including datasets on vision, audio, health-
care, and autonomous driving, etc. The entire Fitness dataset
contains 200K clips, each of which is 16–48 frames long,
on personal exercise including videos of single posture prob-
lems as well as multiple posture problems (combination
of single posture problems). In our experiments, we chose
3 types of exercises: standing side crunch, push up, and knee
push up.

B. EXPERIMENTAL SETTINGS
We would like to address two important questions in our
experiments: (1) how does a model perform under data
scarcity? (2) does the model generalize well to the detection
of multiple posture problems? The goal is to address data
scarcity problems for fine-grained action evaluation, where
the problemworsens for collecting and annotating action data
with multiple posture problems.

The models are trained under varying sizes of training
datasets: the training set sizes for squat data vary as 100,
200, 300 to 813, whereas 813 is the entire size of the dataset.
For standing side crunch, the training dataset only contained
240 samples, thus we used the training sets of sizes 120
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FIGURE 4. Squat Dataset [11]. (a) :Inward knees, (b):Round back, (c):Warped Back, (d):Upwards Head, (e):Shallowness, (f):Frontal knee,
(g):Good.

FIGURE 5. AI-Hub Fitness Dataset [12]. (a)–(d): Standing side crunch, (e)–(h): Push up, (i)–(l): Knee Push up.

TABLE 2. Configuration of Squat Dataset.

and 240. For push-up and knee push-up, the total number
of training samples was already limited to 114, thus we
used the full training set. The training sets contain a roughly
equal number of samples per class, e.g., the dataset of size
100 contains 5 classes with 20 video clips each. The models
are trained only by the datasets with a single posture problem,
and the datasets with multiple posture problems were used
only for testing. To goal is to evaluate whether the model
generalizes well for detecting unseen combinations of posture
problems.

Our model has K binary outputs, each for detecting the
presence of the corresponding incorrect actions. Recall that

TABLE 3. Dataset configuration of Standing side crunch.

TABLE 4. Dataset configuration of Push up.

binary classification for each class is necessary for detect-
ing multiple posture problems. For the evaluation metric,
we use the F1-score of binary classifications averaged over
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TABLE 5. Dataset configuration of Knee push up.

the classes of incorrect actions. When evaluating F1-score,
we assume that the ‘‘positive’’ outcome for a given class is
the existence of the incorrect posture in the input action. Also,
F1-score is suitable for dealing with the label imbalance.
For example, in the Squat dataset containing 5 classes, only
roughly 20% of the dataset contains positives for a given
class which is well below 50%. The results for other metrics
for classification such as accuracy, precision, and recall are
presented in Supplementary Materials.

1) TRAINING SETTINGS
In both experiments with Squat and AI-Hub Fitness, we train
networks for 150 epochs with batch size 64 using SGD opti-
mizer with 0.9 momentum and 0.0001 of weight decay but
0.01 and 0.05 learning rate for each dataset respectively with
cosine annealing scheduler. We used 5-fold cross-validation
for AI-Hub Fitness.

We performed hyperparameter tuning for batch size,m, and
the number of VJs. The batch sizes are set to either 8 or 16.
The number of VJs is set to either 8 or 16which is comparable
to the number of body joints. For the squat dataset, the length
of video clips is 300 frames, and that of the AI-Hub dataset
is 16 frames. For m, we chose either 100 or 200 as m for the
squat dataset, and 8 or 16 for AI-Hub dataset.

C. PERFORMANCE COMPARISON
1) BASELINES
We make comparisons with state-of-the-art architectures for
action classification: ST-GCN [14], 2S-AGCN [15], Shift-
GCN [17], and CTR-GCN [20]. For fair comparison using
joint coordinates only, we used the ‘‘joint stream’’ mode of
the models using multiple streams: 2S-AGCN, Shift-GCN,
and CTR-GCN. We considered two versions of our network:
VJ-GCN is the proposed network without contrastive train-
ing, i.e., classifier only. VJ-GCN + DNC is the model with
contrastive training using Degraded Negative Contrasting.
Through hyperparameter search, the number of VJs is set to
8 and 16 for Squat and AI-Hub Fitness datasets, respectively.

2) SINGLE- AND MULTIPLE-POSTURE PROBLEMS
As shown in Table 6, either VJ-GCN or VJ-GCN+DNC con-
sistently achieves the best F1-score in all the configurations of

training dataset sizes. For example, in the Squat dataset, when
the training set has only 100 samples, the performance gains
obtained by the proposed schemes are relatively higher than
the other cases of dataset sizes, in both datasets for single- and
multiple-posture problems. The results show that our scheme
can be relatively robust under data scarcity.

We also observe that VJ-GCN performs well even without
contrastive training. In Table 6, 5J-GCN shows performances
comparable to other state-of-the-art architectures. Thus, the
macroscopic view of human actions captured by the graphs
of virtual joints seems to be important in fine-grained action
classification.

We also observe that our scheme is effective in detecting
multiple posture problems which are unseen combinations
of single posture problems. The results show that, although
trained only on datasets with single-posture problems, our
model can generalize well to the detection of multiple posture
problems, and ease the laborious task of annotating combined
posture problems in action datasets.

3) CONTRASTIVE TRAINING
We show that simply adding contrastive network to classifiers
does not necessarily result in a good performance. Table. 6
shows the results of applying SupCon [34] to ST-GCN [14]
where both methods are widely used. For ‘‘ST-GCN, Sup-
Con’’, we took the conventional two-stage approach for
contrastive training: an instance of ST-GCN network is
contrastively pre-trained and a classifier is appended for
fine-tuning.

As shown in Table 6, the addition of contrastive train-
ing can even hamper performance: in all cases, ‘‘ST-GCN,
SupCon’’ underperforms the original ST-GCN. In particu-
lar, data augmentation is mostly avoided for skeleton-based
datasets [14], [15], [17], thus the contrastive learning rela-
tively lacks positive pairs compared to image classification
problems. An implication of the results is that, when the
data availability is limited, the conventional approaches using
contrastive learning can be harmful.

By contrast, simultaneous training for BCE and contrastive
losses combined with DNC helps improving the performance
of the original VJ-GCN. We found that the optimal penalty
parameter C for DNC was mostly about 0.1–0.2; however,
in 25% of the total cases, we have C = 20 which is a
significantly high (practically infinite) penalty. Thus, one
can be often advised not to perform negative contrasting at
all for negative sample pairs from differing classes, which
demonstrates the effectiveness of DNC.

V. ABLATION STUDY
In this section, we conduct an ablation study of the pro-
posed method with respect to VJs, Frame Selective Pooling,
and Degraded Negative Contrasting. Note that the ablation
study for VJ-GCN + FSP without DNC in comparison to
prior methods has been provided in Table. 6 (see the row
‘‘VJ-GCN’’). In the ablation study, we use full-sized training
dataset.
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TABLE 6. Performances comparison on Squat [11] and AI-hub Fitness dataset [12].

FIGURE 6. Sample feature maps in Squat actions from the experiments in Table. 7.

1) VIRTUAL JOINTS (VJs)
To evaluate the effectiveness of Virtual Joints, we compared
VJ-GCN and a GCN with body joints only, which uses the
adjacency graph based on body joints derived from human
anatomy. As shown in Table 7, our methods outperformed
GCN with body joints in most cases. We also present a qual-
itative evaluation of VJs. Fig. 6 shows examples of feature
values at joints over the action frames. The darker color
represents the features with higher activation values, and
the brighter blue pattern represents the frames where the
subject is in neutral postures. The figure shows how good the
proposed VJ-GCN is at understanding body joint dynamics
because feature outputs are highly activated across all the
joints at important action frames. However, in case of GCN
which uses only body joints, some dynamics do not stand
out clearly whereas in case of ‘VJ-GCN‘ all the body joints
are activated well during exercise. VJ-GCN shows more reg-
ular patterns of emphasis across frames. Thus, VJ-GCN is
consistently better at ‘‘attending’’ to important frames for
discriminating good and bad actions, which leads to improved
classification results.

2) FRAME SELECTIVE POOLING (FSP)
Table 8 shows the results for VJ-GCN with and without FSP.
The ranges of hyperparameter m are 1–300 for Squat and
1–16 for the AI hub dataset. Whenm is equal to the maximum
frame length, FSP is equivalent to average pooling (denoted
as VJ-GCN without FSP in Table. 8). In most cases, FSP
provides additional performance gains in spite of too short
frame length, especially in the AI hub dataset.

3) DEGRADED NEGATIVE CONTRASTING (DNC)
For the ablation study associated with the proposed scheme
which is DNC combined with 1-stage contrastive training,
i.e., a joint training of contrastive networks and classifiers,
we consider two cases: (1) VJ-GCN combined with DNC
in 2-stage contrastive training, i.e., a separate training of
contrastive networks and classifiers; (2) VJ-GCN and 1-stage
contrastive training without DNC.

For Case (1), we first contrastively train the network,
and later fine-tune the classifier. The results are shown in
row ‘‘VJ-GCN, DNC’’ of Table 9. The performance is poor
as expected, because the number of samples to pre-train
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TABLE 7. Ablation study on VJs (F1-score).

TABLE 8. Ablation study for Frame Selective Pooling. Hyperparameter m is specified for each experiment.

TABLE 9. Ablation study for Degraded Negative Contrasting.

VJ-GCN is limited. We have presented a similar result
in Table. 6, e.g., see row ‘‘STGCN, SupCon’’. In 2-stage
training, we first train the contrastive network for 100 and
50 epochs with contrastive loss on Squat and AI-hub datasets
respectively, and fine-tuned the classifier for 100 more
epochs.

For Case (2), we consider jointly training contrastive net-
work and classifier, however, do not use DNC. Note if, in the
DNC loss function, we can control penalty parameter C > 0.
By making C sufficiently small, the loss function reduces
to that of SupCon [34]. Thus, the loss function in SupCon
is a special case of DNC. For that reason, we have chosen
another type of contrastive loss function instead of SupCon-
type losses. We consider multi-class N-pair loss (N-pair-
mc) [47]. The results in Table 9 show that VJ-GCN+DNC still
outperforms VJ-GCN, N-pair-mc. This shows that applying
contrastive loss judiciously based on correct/incorrect action
classes indeed helps the fine-grained classification for action
evaluation.

VI. VISUALIZATION OF VIRTUAL JOINTS AND SKELETON
In this section, we provide a qualitative analysis of the effec-
tiveness of virtual joints. We visualized some examples of

FIGURE 7. Visualization examples of virtual joints and skeletons of a
good squat motion at frame t = 30. Some of the edges in Intra-VJ graphs
are shown, where the thickness of edges represents the relative edge
weights, e.g., thicker edges have larger weights. On the left, the edges
with the three largest weights incident on the Left Hip joint are shown.
On the right, the edges associated with the three largest weights incident
on the Right Hip joint are shown. Different sets of VJs were connected to
Left and Right Hip joints through those edges. Edge weights encode the
relative importance of neighbors in determining the feature of a node;
thus, diverse groups of VJs contributed to learning body joint features
from various angles and distances.

virtual joints and skeletons in Fig 7, 8. The body joints are
represented by blue dots, whereas virtual joints are marked
by red dots. Only a subset of virtual joints are shown for
each case. We observe that virtual joints are scattered around
the body, providing diverse perspectives on the action from
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FIGURE 8. Visualization examples of virtual joints and skeletons where row 1–3 are Good, Round back, and Inward knees from the squat dataset
respectively. Orange and green line segments represent edges with the three largest weights in the Intra-VJ graphs.

various angles. The learned locations of virtual joints are
more or less evenly distributed over space.

We also observe that the locations of virtual joints change
over time, which results from the ‘‘calibration’’ of the loca-
tions of virtual joints over time according to Eq. (1) of the
main paper. The virtual joints appear to move at different
velocities, because the learnable calibration parameter, βi,j in
Eq. (1) of the main paper, depends on the locations of both
virtual joint i and body joint j. Overall, the results show that
virtual joints are able to provide macroscopic viewpoints on
the spatio-temporal dynamics of human actions.

Fig. 7 depicts examples of VJs and the skeleton of body
joints and the associated intra-VJ graphs. The figure shows
the intra-VJ graph of a squat motion at frame t = 30, and
the left and right figures depict some of the edges connecting
VJs and body joints from the identical frame. The thickness
of edges represents the relative size of edge weights in matrix
Mi in Eq. (3) of the main paper. As in [14], [15], and [16],Mi
represents the learned importance of edges, e.g., the strength
of the connection between VJs and body joints where thicker
edges represent larger weights. On the left (resp. right) of
Fig. 7, the edges with the three largest weights connected to
Left Hip (resp. Right Hip) joint are shown.

As shown in Fig. 7, different groups of VJs are deemed to
be ‘‘important’’ for determining features of Left and Right
Hip joints. This implies that diverse groups of VJs contribute
to the body joint features from various locations and angles.
Such diverse viewpoints provided by VJs appear to be the
main reason behind the effectiveness of virtual joints in
the fine-grained classification of actions through VJ-GCN.
Similar observations can be made for different actions and
body parts. Fig. 8 shows similar figures for good and bad

squat actions where the edges for various joints are shown.
We observe that VJs at diverse locations and angles partici-
pate in the encoding of joint features depending on the action
types, body parts, and frame number.

VII. CONCLUSION AND LIMITATIONS
We proposed a contrastive learning framework with graph
convolutions based on Augmented Virtual Joints. A new
graph representation based on virtual joints which can pro-
vide a macroscopic view of actions was developed. Consid-
ering that incorrect actions have common posture problems,
we proposed Degraded Negative Contrasting for judicious
repelling of negative sample pairs in the contrastive train-
ing. Experiments have shown that our model achieved good
performance in detecting both single and multiple posture
problems even with insufficient training samples.

A practical application of the proposed algorithm will be a
self-directed rehabilitation or an automated personal training
system that can give detailed advice on proper poses for
exercise. In that application, users can take videos of their
rehabilitation or routine exercises and upload the video to a
server that can automatically provide feedback on the proper
poses. In the future, we plan to design a lightweight algorithm
so that the automated assessment can be done in an on-device
manner in real-time.

A limitation of our study is the lack of datasets: to our
knowledge, Squat [11] and AI-Hub Fitness [12], are the
only publicly available datasets that fit our needs. We used
contrastive learning to alleviate the problem. By contrasting
O(N 2) sample pairs, the discriminative power of the classifier
could be improved as compared to simple supervision using
N samples. However, we believe our ideas are applicable to
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other problems of fine-grained action evaluation. Moreover,
considering the importance of the topic, more datasets are
expected to be available in the near future.
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