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ABSTRACT In response to the problem of fixed time intervals for short-term traffic flow prediction, which
fails to meet the requirements of traffic signal control based on traffic cycle signals, this paper proposes
an improved long short-term memory-based method for periodic traffic volume prediction. The method
presented in this study involves improvements to the Long Short-Term Memory (iLSTM) and Bidirectional
Long Short-Term Memory (iBiLSTM) models, leading to the construction of the iBiLSTM-iLSTM-NN
model. This model incorporates spatial data from surrounding intersections and employs data fitting
techniques to establish the correlation between periodic queue length and traffic volume. Subsequently,
a predictive model for periodic traffic volume is developed based on this correlation, enabling reliable
forecasting of future traffic volumes within a given cycle. Additionally, actual intersection data is collected
for simulation analysis. The results indicate that the prediction error of periodic traffic volume is influenced
by different traffic flow characteristics such as peak, off-peak, and normal periods, as well as different
inbound lanes. Different model parameters have a noticeable impact on the model’s performance, with
smaller batch sizes leading to more stable models. By comparing the performance of different prediction
models using various error evaluation metrics, this study finds that the proposed model exhibits the most
stable performance. The research findings can be applied to rapidly predict future traffic volumes for several
periods based on the instantaneous queue length at the end of the red signal phase, providing reliable,
accurate, and timely data for urban traffic signal control.

INDEX TERMS Traffic flow prediction, cycle queue length, cycle traffic volume, improved long short-term
memory (iLSTM), improved bidirectional long short-term memory (iBiLSTM), deep learning.

I. INTRODUCTION
Short-term traffic flow prediction plays a crucial role in the
research and application of intelligent transportation systems,
as intelligent signal timing based on short-term traffic flow
prediction can effectively alleviate traffic congestion con-
ditions [1]. Traffic flow prediction has long been a focus
and hot research topic in the field of traffic control. Tradi-
tional research mostly relies on statistical methods [2], but
in recent years, with the rise of machine learning, new break-
throughs andmethods have emerged in short-term traffic flow
prediction. Deep learning, an important branch of machine
learning, enables in-depth exploration of data characteris-
tics and modeling, reducing the incompleteness of manually

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu .

designed models [3], [4]. With the continuous improvement
of hardware conditions and big data processing capabilities,
traffic prediction based on deep learning has made signif-
icant progress. Deep learning has been widely applied to
various domains [5], including classification, text, image, and
video processing. Some commonly used methods include
Support Vector Machines (SVM) [6], K-Nearest Neighbors
(KNN) [7], and neural networks [8].
Representative studies in traffic flow prediction include

Zhang et al. [9] applied an improved wavelet packet analysis
and deep neural network with LSTM to short-term traf-
fic flow prediction, reducing the dependence on historical
data and achieving better prediction accuracy compared to
LSTM, GRU [10], and other models; Zhang et al. [11] pro-
posed a short-term traffic flow prediction model based on an
improved grey wolf algorithm and BP neural network, which
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exhibited faster convergence compared to the standard grey
wolf algorithm [12], [13]; Ma et al. [14] developed a new
LSTM NN model for speed prediction, which outperformed
other algorithms such as Elman NN in time series forecast-
ing [15]; Lee et al. [16] used a fusion model of CNN [17]
and LSTM to predict short-term arrival flow and long-term
traffic demand trends; Comert et al. [18] proposed a grey
model that outperformed more complex models (LSTM
and NN models); Luo et al. [19] proposed a hybrid predic-
tion algorithm that combines Convolutional Neural Network
(CNN) with Support Vector Regression (SVR). Compared
to the traditional SVR algorithm [20], this combined predic-
tion algorithm demonstrates superior predictive capabilities.
Zhang et al. [21] established a spatiotemporal Markov model
to predict traffic flow after an accident.

In signalized intersections, the queue length of vehicles
can also have a certain impact on traffic flow prediction.
To express the relationship between the signal timing and the
traffic queue length,Wang et al. [22] developed static and lin-
ear dynamic stochastic distribution models. Yang et al. [23]
developed a platoon cooperation strategy based on the for-
mation process from single vehicle to coordination platoon,
and observed a clear increase in road capacity under the
platoon scenario. Zeng et al. [24] proves the equivalent queue
length prediction models can quantitatively describe the exis-
tence of stochastic traffic fluid in roads. Rahman et al. [25]
utilizes the queue lengths at two upstream intersections and
the current intersection to conduct real-time prediction of the
queue length.The aforementioned studies indicate that deep
learning can be applied to short-term traffic flow prediction
and has achieved certain results. However, there are still some
shortcomings or limitations present, including:1) On the one
hand, existing traffic data prediction operates on periodic time
scales, typically ranging from 5 to 60 minutes, resulting in
significant time spans. As the collection of traffic volume
data itself takes some time, there is inevitably a lag in the
data. On the other hand, in practical traffic signal control,
changes in control strategies and timing parameters occur at
the level of cycles. Since the duration of road signal control
does not align with the time scale of data prediction, it intro-
duces substantial errors into the forecasting process. 2) In
urban road signalized intersections, due to the influence of
upstream roads on downstream roads, queue lengths can have
a significant impact on traffic volume.

These limitations severely restrict the practical applica-
tion of theoretical research achievements in short-term traffic
flow prediction. Additionally, the existing LSTM models
suffer from the inability to obtain the previous time step’s
cell state and the need to separately determine which infor-
mation to forget and which information to add. Therefore,
this paper proposes an improved long short-term memory
(LSTM) model based on queue length for periodic traffic
volume prediction. Queue length represents the road length
occupied by vehicles queuing or traveling at low speeds
at traffic intersections. Traffic volume is closely related to
inbound queue length at intersections, and the queue length

FIGURE 1. LSTM unit structure diagram.

indicator has instantaneous measurability. By utilizing the
historical periodic queue length at signalized intersections
and related upstream intersections, the proposed improved
LSTM neural network achieves timely and reliable prediction
of periodic traffic volumes.

II. MODEL INTRODUCTION
A. LSTM MODEL
Recurrent Neural Networks (RNNs) suffer from issues such
as vanishing and exploding gradients during backpropaga-
tion, making it difficult to optimize the neural network [26]
The Long Short-Term Memory (LSTM) neural network,
which is an improved version of RNN, effectively addresses
these problems and is capable of analyzing time series
data [27]. Therefore, an LSTM-basedmodel can be employed
to fit time series data.

LSTM consists of individual cells, where each cell can
effectively store and update unit information for utilization.
The LSTM cell comprises three gate structures: an input
gate, an output gate, and a forget gate. These gate structures,
particularly the forget gate, make LSTM an efficient neural
network model for handling time series data. The structure of
an LSTM cell is illustrated in Figure 1.

LSTM passes linear information and utilizes a hidden layer
structure to process and output information. The specific
formulas are as follows:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (1)

ht = ot ⊙ tanh(Ct ) (2)
C̃t
ot
it
ft

 =


tanh
σ

σ

σ

 (W
[

xt
ht−1

]
+ b) (3)

In the equations, ft represents the forget gate, it represents the
input gate, C̃t represents the cell input state, Ct represents the
cell state update, ot represents the output gate structure, and
ht represents the cell output.

The final output of LSTM should include all the cell
outputs, represented by YT .

YT = [hT−n, hT−n+1, . . . , hT−1] (4)
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In this case, only the last output vector, hT−1 is the desired
prediction value. Therefore, the prediction value for the next
time step, denoted as x̂T = hT−1, can be obtained using the
last output vector.

B. iLSTM MODEL
The Improved Long Short-Term Memory (iLSTM) [28] unit,
as illustrated in Figure 2, introduces modifications to the for-
get gate and the cell input state, as shown in Equations (5) and
(6). This improvement allows the computation to involve the
previous time step’s cell state as well, enabling simultaneous
determination of forgetting and adding information.

Ct = ftCt−1 + (1 − ft )C̃t (5)

ft = σ (Wf

Ct−1
ht−1
xt

 + bf ) (6)

FIGURE 2. Improved LSTM unit structure diagram.

C. iBiLSTM MODEL
The iBiLSTM (Improved Bidirectional Long Short-Term
Memory) model is built on the foundation of the iLSTM
model and is inspired by biRNN [29], [30]. The biLSTM
model incorporates two independent propagation directions,
allowing for separate processing of forward and backward
sequence data. It has been demonstrated in various domains,
such as speech recognition [31], that biLSTM performs better
than LSTM. In this paper, we establish an improved bidirec-
tional Long Short-TermMemory (iBiLSTM) model based on
the iLSTM model.

The structure of the iBiLSTM model is depicted in
Figure 3. It consists of two hidden layers of iLSTM cells
connected to the same output layer. The iBiLSTM model
includes a forward iLSTM hidden layer and a backward
iLSTM hidden layer. The forward hidden layer, denoted as
forward, performs forward computation, processing the for-
ward sequence data from time T – n to time T – 1. On the
other hand, the backward hidden layer, denoted as backward,
performs backward computation, processing the backward
sequence data from time T – 1 to time T – n. Each hidden
layer utilizes the iLSTM model for computation.

FIGURE 3. Improved BiLSTM structure diagram.

D. THE MODEL FOR THE RELATIONSHIP BETWEEN
PERIODIC QUEUE LENGTH AND TRAFFIC VOLUME
The model for the relationship between periodic queue length
and traffic volume can be established based on the collected
data from a specific intersection area in Kunming City [32],
[33], [34]. The analysis conducted using Python indicated a
high correlation coefficient of 0.95 between periodic queue
length and traffic volume.

The regression model provides a good fit for the data,
as shown in Figure 4. The statistical analysis yielded the
following results:

• F-value: 4.358 × 104
• P-value: 0.00
• Coefficient of determination (R^2): 0.911
• Adjusted coefficient of determination: 0.911

These results indicate that the model is highly significant
and has strong explanatory power. The regression equation,
as denoted by equation (7), captures the relationship between
periodic traffic volume and queue length. The specific regres-
sion equations and the detailed parametric analyses are
provided (as described in Table 1).

VC = −0.0003L2C + 0.2012LC + 0.4724 (7)

FIGURE 4. Queue length-period flow regression fitting diagram.

E. iBiLSTM-iLSTM-NN PREDICTION MODEL
The iBiLSTM-iLSTM-NN prediction model is proposed to
predict periodic queue length based on its close positive
correlation with periodic traffic volume, both measured in
the unit of traffic signal control cycles. The periodic traf-
fic volume represents the volume of traffic passing through
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TABLE 1. Model parameter test table.

the entrance lane within one signal cycle, while the peri-
odic queue length refers to the maximum queue length
observed in the entrance lane during one signal cycle. In this
study, the LSTM model is improved and combined with
spatial data from surrounding intersections. By utilizing
historical data of periodic queue lengths [35], [36], [37],
the iBiLSTM-iLSTM-NN model is constructed to predict
the queue length for each cycle. Subsequently, a prediction
method for periodic traffic volume based on queue length is
developed. The specific workflow of the model is illustrated
in Figure 5.

FIGURE 5. IBiLSTM-iLSTM-NN model prediction process.

By incorporating the improved LSTM model, spatial data,
and historical queue length information, this approach aims
to provide an effective method for predicting periodic queue
length and, consequently, the periodic traffic volume. This
model takes advantage of the convenience and high data qual-
ity of periodic queue length surveys to enhance the accuracy
of traffic flow predictions.

The first step is to collect and preprocess the data by
gathering queue length and traffic volume for each cycle. The
historical sequence data of periodic queue lengths from the
surrounding intersections are normalized for further process-
ing. A queue length prediction model is constructed using the
normalized data and trained to capture the temporal patterns
present in the data, enabling the prediction of future queue
lengths for the target intersection.

Next, the historical periodic queue lengths and traffic vol-
umes are used to establish a relationship between the queue
length and traffic volume. Based on this relationship, a model
is developed to predict traffic volume on a periodic basis.
By fitting the historical data, the model can estimate the
traffic volume for future cycles.

By following this approach, it is possible to predict the
periodic traffic volume by leveraging the historical queue
length and traffic volume data. The process involves col-
lecting and preprocessing the data, training a queue length
prediction model, and establishing a relationship between
queue length and traffic volume to enable traffic volume
prediction.

III. EXPERIMENTAL SETUP
A. EXPERIMENTAL SETTINGS
To evaluate the effectiveness of the periodic traffic volume
prediction method, road traffic data from a specific intersec-
tion area in Kunming City were collected. The data included
traffic volume, turning ratios, queue lengths, and signal tim-
ing. A VISSIM simulation model was established based on
the intersection area, and a prediction model was developed
using Python for analysis and validation.

Based on the collected real-world traffic data, VISSIM,
traffic simulation software, was used for simulation anal-
ysis. To simulate road conditions during different periods
of time, three different traffic states were modeled: peak,
off-peak, and low-traffic periods [38]. In order to facilitate
data collection, coordinated signal control was implemented
for the key intersection in the area. The signal timings for
the peak, off-peak, and low-traffic periods are presented in
Table 2. To improve the accuracy of the prediction results, the
model incorporates road conditions and traffic volume data
from surrounding intersections. By considering the overall
traffic dynamics in the vicinity, including the interactions
between upstream and downstream roads, the prediction sys-
tem can capture a more comprehensive understanding of
traffic flow patterns. To compare the road conditions of dif-
ferent approach lanes, data from each inbound lane at every
intersection is separately collected and analyzed. To ensure
consistency between road signal control and data prediction
time scales, data is aggregated based on the intersection’s
signal cycle. Specifically, queue lengths and traffic volumes
are recorded once per signal cycle of each intersection.
To mitigate the impact of random errors, the simulations
were repeated five times for each traffic state with different
random seeds, and the average values were calculated. The
detector sampling interval was set to the corresponding cycle
length, and detector data were updated once per cycle. The
simulation road network structure is illustrated in Figure 6.

TABLE 2. Signal control parameters.

Using Python for analysis and validation. A total of
9,072 experiments were designed, including 27 combinations
of prediction models based on LSTM, BiLSTM, iLSTM,
iBiLSTM, RNN, and neural networks (NN). A comparison
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FIGURE 6. VISSIM simulation road network structure diagram.

was made among 14 different model parameters, including
2 batch sizes and 7 training lengths. The comparison was
conducted for three different periods of time: peak, off-peak,
and low-traffic periods, and for eight entrance lanes in four
directions.

Through comparative analysis of different models and
parameters, the most accurate prediction models and model
parameters were selected for different types of data.

B. EXPERIMENTAL PROCEDURE
Taking into account the relationship between periodic traffic
volume and periodic queue length at urban road intersections,
the prediction models were constructed using the PyTorch
deep learning library in Python. The training steps were as
follows:

Phase 1: Data acquisition

Step 1: Obtain the queue length and traffic volume for
each entrance lane of the intersection during peak,
off-peak, and low-traffic periods usingVISSIM sim-
ulation based on the collected data from a specific
intersection area in Kunming City. Repeat the exper-
iment five times with different random seeds and
take the average. Conduct a correlation test between
periodic queue length and traffic volume, resulting
in a correlation coefficient of 0.95, indicating a
strong positive correlation.

Phase 2: Initialization

Step 2: Define the relationship between the entrance lanes
of the intersection and the surrounding intersections.

Step 3: Initialize the network structure hyperparameters and
data parameters in the prediction model. The net-
work model hyperparameters are shown in Table 3.

Phase 3: Construction of prediction models

Step 4: Construct LSTM, BiLSTM, RNN, and NN models.
Step 5: Construct iLSTM and iBiLSTM models.
Step 6: Combine different models for comparison.

Phase 4: Training of prediction models

Step 7: Normalize the periodic traffic volume and queue
length using min-max normalization.

Step 8: Select the prediction model and relevant model
parameters for training, with a decaying learning

rate α. After model training, validate the data and
save the validation results.

Step 9: Repeat Step 8 until all prediction models and related
parameters have been trained.

Step 10: Analyze and compare the effects of different pre-
diction models and related model parameters on the
prediction results, and identify the prediction model
with the highest accuracy and the corresponding
model parameters.

TABLE 3. Hyperparameters of deep learning network model.

C. EVALUATION METRICS
To train the neural networks and evaluate the prediction
errors of periodic queue length and traffic volume, the fol-
lowing evaluation metrics are selected: Smooth L1 loss [39],
Root Mean Square Error (RMSE) [40], Mean Squared Error
(MSE) [41], and Mean Absolute Error (MAE) [42]. Measur-
ing prediction performance is done using these metrics.

Smooth L1 loss is a combination of MSE andMAE, which
smooths the error near zero and is less sensitive to out-
liers. It helps prevent the exploding gradient problem during
training and provides stronger robustness. The formula is as
follows:

smoothL1(ŷi, yi) =

{
0.5(ŷi − yi)2 |ŷi − yi| < 1
|ŷi − yi| − 0.5 otherwise

(8)

RMSE measures the deviation between the predicted values
and the true values. It is sensitive to outliers in the data. The
formula is:

RMSE(ŷi, yi) =

√√√√ 1
N

N∑
i=1

(ŷi − yi)2 (9)

MSE is the most commonly used error in regression loss
functions. It calculates the mean of the squared differences
between the predicted values and the target values. It is
sensitive to outliers. The formula is:

MSE(ŷi, yi) =
1
n

n∑
i=1

(ŷi − yi)2 (10)

MAE is a linear score where all individual differences have
equal weight around the mean. The formula is:

MAE(ŷi, yi) =
1
N

N∑
i=1

|ŷi − yi| (11)

These evaluation metrics will help assess the accuracy and
performance of the prediction models in terms of periodic
queue length and traffic volume.
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FIGURE 7. Prediction error of different prediction models for periodic
traffic volume. (The model parameters are batch size and training length,
respectively.)

IV. PERFORMANCE EVALUATION
A. COMPARISON AND ANALYSIS OF PREDICTION
MODELS AND MODEL PARAMETERS
Since the prediction of future periodic traffic volume is based
on the prediction of historical periodic queue length and
regression fitting to construct a prediction model for peri-
odic traffic volume [43], [44], there is a general correlation
between the prediction errors of periodic queue length and
traffic volume. To visually understand the impact of different
variables on prediction errors, a controlled variable analysis
method is used to compare and analyze the influence of dif-
ferent parameters on the accuracy of prediction models [45].

Different prediction models are constructed to predict peri-
odic traffic volume, and the prediction results are shown in
Figure 7. It can be observed that the prediction errors vary
among different models and model parameters [46]. When
the prediction model is iBiLSTM, the average prediction
error is the lowest at 9.78%.When all prediction models have
the same model parameters with Batch size = 4 and training
length = 7, the average training error for all models is the
lowest at 17.33%. When the model is iBiLSTM-iLSTM-NN
and the model parameters are Batch size = 2 and training
length = 4, the minimum prediction error is 2.72%.
Figure 8 shows the box plot of prediction errors with

different Batch sizes under the same prediction model. It can
be observed that the prediction model has the smallest data
fluctuation when Batch size = 2. As the Batch size gradually
increases, the fluctuation effect also increases. Therefore, the
best performance is achieved when Batch size = 2. This
observation suggests that a smaller batch size leads to more
stable and accurate predictions in this particular prediction
model.

In summary, the comparison and analysis of different
prediction models and model parameters provide insights
into the factors that influence the accuracy of the prediction
models for periodic traffic volume.

FIGURE 8. Box plot of prediction error data under different batch sizes.

FIGURE 9. Comparison chart of prediction errors for different data
periods.

B. DATA TYPE COMPARISON ANALYSIS
When the prediction model is iBiLSTM-iLSTM-NN and the
model parameters are Batch size = 2, predictions are made
for different types of data, and the results are shown in
Figure 9. It can be observed that the prediction errors are
relatively larger during peak periods compared to off-peak
and normal periods. During peak periods, the prediction error
is 19.9%. During off-peak periods, the prediction error is
2.7%. During the normal periods, the prediction error is 2.3%.
This indicates that this model is more accurate to predict in
non-congested conditions.

When the prediction model is in the normal period, the
prediction errors for different entrance roads are shown in
Figure 10. The prediction errors for various straight-through
inbound lanes are relatively close to each other, indicating
that the model performs consistently and provides stable
predictions for these lanes. On the other hand, the prediction
errors for left-turn inbound lanes show significant variations,
implying that the model’s performance is less stable and less
accurate when predicting traffic conditions for left-turn lanes.

This observation suggests that the model might be more
proficient in capturing and predicting traffic patterns for
straight-through movements, while facing challenges in
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FIGURE 10. Box plot of prediction error data under different batch sizes.

FIGURE 11. Model prediction error chart for different error evaluation
metrics.

accurately forecasting traffic flow for left-turn movements.
Possible reasons for this disparity could be differences in
traffic behavior, signal control strategies, or data availability
between straight-through and left-turn lanes, requiring further
investigation and potential model refinements to improve
prediction accuracy for all types of inbound lanes.

C. MODEL EVALUATION
To demonstrate the effectiveness of the selected models in the
experiment, six models (LSTM, BiLSTM, RNN, iBiLSTM,
iBiLSTM-NN, iBiLSTM-iLSTM-NN) were used and four
error evaluation metrics (MAE, RMSE, smooth L1 loss,
MSE) were compared and analyzed. The results are shown
in Figure 11.

From Figure 11, it can be observed that the proposed
iBiLSTM-based prediction model outperforms the LSTM
and BiLSTM models in all four error evaluation met-
rics. Among them, iBiLSTM-NN and iBiLSTM-iLSTM-NN
show relatively stable performance across different error

evaluation metrics. Both models have smaller prediction
errors than iBiLSTM in MAE and smooth L1 loss metrics,
and the prediction errors of both models are very close to each
other. Due to the additional layer of iLSTM in iBiLSTM-
iLSTM-NN compared to iBiLSTM-NN, the computational
cost of iBiLSTM-iLSTM-NN is higher, but it is more accu-
rate. This indicates that the iBiLSTM-iLSTM-NN prediction
model performs best and canmore accurately predict periodic
traffic volume.

In conclusion, for the selection of prediction models, the
iBiLSTM-iLSTM-NN model with Batch size = 2 and train-
ing length = 4 has the smallest prediction error and the
most effective performance. In terms of data prediction, the
accuracy is higher during off-peak and normal periods, and
the prediction errors for through movements are relatively
stable.

V. DISCUSSION AND CONCLUSION
This paper proposes a method for predicting periodic traffic
volume based on queue length, and the results demonstrate
the following:

1) The prediction error is significantly influenced by
different traffic flow characteristics, including peak,
off-peak, and normal periods, as well as different
entrance lanes. During normal and off-peak periods
when the number of vehicles is low, the prediction error
is small. However, during peak periods when the num-
ber of vehicles is high, the error is large. The prediction
error for straight-through entrance lanes is relatively
stable due to the high volume, fast, and consistent flow.

2) Different prediction models exhibit significant differ-
ences in prediction error. The prediction models based
on improved Long Short-Term Memory (iLSTM)
and improved Bidirectional Long Short-Term Memory
(iBiLSTM) techniques have smaller prediction errors
compared to the non-improved models.

3) The model parameters have a noticeable impact on the
model performance, with smaller batch sizes leading to
more stable models.

4) By comparing the performance of various prediction
models using different error evaluation metrics, the
iBiLSTM-iLSTM-NN model proves to be the most
optimal.

In conclusion, the most effective prediction model is the
iBiLSTM-iLSTM-NN model with the model parameters set
to Batch size = 2 and training length = 4. Further analysis
will be conducted to explore the prediction patterns of traffic
volume for future n cycles.
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