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ABSTRACT In bulk port supply chains, products move from several source points (storage sheds) to various
destination points (other storage sheds or vessels and trucks’ loading stations). The concern in such ports
is increasing the value of delivering customer-specific products on time by choosing the best transportation
routes among a complex real-world belt-conveyor routes network. This routing problem plays a crucial role in
reducing charges related towaiting and tardiness in loading and stocking operations. In this paper, we propose
a mixed integer linear program that considers jointly: routing constraints and interactions with stocking and
loading operations. We propose a second model with pre-processing and reduction techniques to enhance
computational performance. The two models are tested on 126 generated instances with up to 1590 routes
(the real matrix of routes of a real industrial application). The results reveal a striking difference between the
first and the second models in terms of (i) the number of instances that could be handled (6 versus 111 out
of 126); (ii) the number of instances solved to optimality (5% versus 71%). The models are promising and
respond to the needs regarding integration between the routing, which is the main operation in the fertilizer
and phosphate port supply chain, and other operations, such as stocking and loading. The integration of the
proposed models toward a real-time planning/control integrated system is discussed.

INDEX TERMS Complex transportation routes’ matrix, destination points, problems’ interaction con-
straints, routing constraints, routing problem, source points.

I. INTRODUCTION
Maritime transport is a vital and indispensable sector for the
continued distribution of critical supplies and international
trade. Its importance was underscored in times of crisis [1],
with the benefit accruing solely to more resilient markets.
This redirection in maritime flows, for both container and
bulk ports, resulted in a volume drop, albeit the nascent
recovery in the second half of 2020.

To ensure resilience and efficiency in port operations,
it is crucial to employ a decision-making tool that can
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handle complex optimizations regarding selecting the most
suitable supply chain configurations. These appropriate con-
figurations should enable serving clients on time. Hence,
bottlenecks need to be avoided. Transporting commodities
using a real-world conveyor-routes network can easily cre-
ate multiple bottlenecks if proper decisions are not made.
Thus, selecting appropriate routes for ordered products that
meet industrial-setting constraints can help avoid penalties
and increase total customer service. However, it should be
noted that these industrial world constraints constitute a
significant challenge to computational performance. This is
because these industrial world constraints encompass con-
straints related to different bulk port problems, mainly: the
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routing, loading, and storage spaces problems. The third
problem comprises stocking and scraping problems but can
be seen as one problem as they are carried out inside a storage
shed [2].

The challenge is that these planning operations’ prob-
lems must coordinate and integrate decisions to converge
towards objectives that positively impact the bottom line.
The opposite case would result in conflicting goals leading
to delivering contaminated products on time or the right
products with delays. Therefore, the integration of planning
decisions of all operations making up an integrated opti-
mization plan without contradictory goals, is vital for the
efficient use of these bulk port operations. However, each
of the problems is an NP-hard problem [3], [4], [5]. Con-
sequently, the NP-hardness resulting from integrating them
into one model would be significant. Hence simultaneous
optimization-based integration (modelling all problems in
one mathematical model) is irrelevant. Thus, the importance
of an alternative integration approach would have problems
being solved in separate models while interacting with each
other rather than having one mathematical model to optimize
them at once [6]. In other words, we would consider the
constraints of each problem along with the constraints that
arise from the interaction with other models. In this paper,
we focus on the routing model while also considering the
constraints that arise from the interaction with other bulk port
problems. The reader can refer to our previous work1 [6] to
understand how the models’ results are then consolidated to
make up an integrated optimization plan. A preview of this
integration approach is also described and schematized in
Section III. This alternative approach is way more feasible
regarding computational performance than if all problems are
optimized simultaneously in one mathematical model, i.e.,
in the classical approach.

Furthermore, the alternative integration approach is rel-
evant for its practical application in the industrial world,
especially if real aspects need to be modeled as asked by
the industrial interlocutor in our case study. On the contrary,
due to the complexity of the simultaneous optimization-based
integration, certain real aspects related to each problem are
neglected in the classical approach, as will be demonstrated in
Section II. Thus, in this paper, developing a routing problem
with real routing constraints synchronized with real con-
straints of other problems’ interaction is a first step towards
successfully integrating the problems. We demonstrate in
section IV that the routing model results promise to succeed
in this integration approach.

As a case study, we consider the Jorf Lasfar bulk port,
a Moroccan bulk cargo terminal of the group OCP known
for its second rank worldwide in fertilizers and phosphate
export. The OCP interlocutor confirmed that the routing is the
major problem in this port and needs to be managed to handle

1Whenwemention ‘our previous work,’ it indicates that at least one author
from the current paper was also an author of the cited work. The entire author
list may not overlap between papers.

two types of demands: loading demands, i.e., customers’
demands, and stocking demands, i.e., internal demands to
OCP when moving products from a storage shed to another
storage shed is needed.

The loading demand can be composed of a set of products.
Each product is to be served by a loader that constitutes the
last equipment of a route. This loader refers to a gantry crane
(pouring conveyor) when loading a vessel (a truck) (Fig. 1).
Each destination point is directly connected to a series of
successive conveyors back to the first conveyor into which
the product was a priori poured by a colossal engine called
scraper and located at the storage shed (See Fig. 5). In other
words, the mission of the latter is to pick the product from the
product stockpile and pour it into the conveyor with which
it is directly connected. Then the product gets moved from
one conveyor to another one until reaching the corresponding
loader. For the stocking demand, the destination point is the
stacker of the receiver storage shed (See Fig. 5). For both
loading and stocking demands, each route can transport a
product at a time from the source point (the receiving con-
veyor that is directly connected to the scraper) through a
series of conveyors until reaching the corresponding desti-
nation point: a loader that loads a vessel’s hold or a truck in
case of a loading demand, or a stacker of the receiving storage
shed in case of a stocking demand.

In this paper, the problem is to define (i) the sequence
of transportation service of (vessels and/or trucks) loading
demands and/or stocking demands, (ii) the corresponding
route, and (iii) the transportation service time to transport
each product of each demand. In the remainder, loading and
stocking operations can be referred to as handling operations.
The decisions to assign routes to demands are taken in such
a way as to guarantee the respect of the stocking and loading
plans while reducing the sum of tardiness penalties and wait-
ing costs that might be incurred by the routing of the whole
set of demands, given:

• The set of vessels’ loading, trucks loading, and stocking
demands,

• The precedence between demands that must be
respected,

• The large number of routes with overlap nodes,
• The parallel or successive handling operations,
• The different capacities of equipment and routes (shown
in Fig. 1),

• The time interval between successive products of the
same demand,

• The pre-handling and post-handling durations of each
demand that need to be respected for the safe start and
finish of each handling operation,

• The presence of non-availability periods for vessels.

With such challenging constraints, one should propose a
means to lighten the calculation of the model for reasonable
computational performance. The solution to this issue is given
and detailed in later sections of this paper, whose structure
is as follows. State of the art is described in section II.
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FIGURE 1. Moving products from sources to destination points via a conveyor routes’ matrix in OCP Jorf Lasfar bulk
port.

Section III describes the mathematical contributions to the
routing problem. The computational results are analyzed in
section IV. Section V discusses the managerial insights and
the integration towards a real-time planning and control sys-
tem. Finally, conclusions and perspectives are provided in
section VI.

II. LITERATURE REVIEW
A. DISTINGUISHING THE BULK PORT BELT-CONVEYOR
ROUTING PROBLEM FROM OTHER ROUTING
PROBLEM TYPES
The optimization of bulk port belt-conveyor routing is crucial
for the efficient management of bulk port supply chains. The
slightest mistake in managing the conveyor transportation
operation would prevent serving customers on time. There-
fore, efforts should be deployed to model and optimize the
routing problem harmoniously with other operations plans.
However, in the literature, the routing problem in bulk ports
has not gained enough attention in comparison to other prob-
lems, such as automated guided or load-dependent vehicle
routing in container ports [7], [8], [9], [10], vehicle rout-
ing in multidoor cross-docking terminals [11], [12], vehicle

routing in a general case [13], [14], [15], [16], [17], [18],
and in case of picker routing problem [19], [20]. In most of
thesementioned contributions, the optimal routes are selected
depending on a routes-related parameter that can refer to
the travel distance/time between the source and the destina-
tion and does not depend on parameters of other operations.
Recently, Guo et al. [21] proposed a novel way to shorten
the truck travel distance. However, this is possible within the
context of the container terminal. They solved the coordi-
nated optimization on berth allocation and yard assignment
problem to obtain the optimal berthing and export container
stacking positions in such a way as to minimize the total truck
travel distance.

Nevertheless, in the routing of our research, which lies
in a bulk port context, the product flow runs through con-
veyor routes connected to storage sheds and loaders. Thus,
whatever the decision on loading and stocking problems,
the travel distance cannot change and is always equal to the
conveyor-route distance. Furthermore, the choice of optimal
routes depends not only on the travel time of each route but
also on the handling time (loading service time or stocking
service time). Therefore, the bulk routing problem depends
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on the decisions of other problems as opposed to the refer-
ences [7], [8], [9], [10], [13], [19], [20], [21], where only the
routes-related parameters are considered.

B. COMPARING THE BULK PORT BELT-CONVEYOR
ROUTING PROBLEM WITH CLASSICAL
OPTIMIZATION PROBLEMS
The multi-commodity flow problem (MCFP) [22], [23],
on the other hand, is a classical optimization problem that
resembles the bulk port belt-conveyor routing problem in
that it deals with the transportation of multiple commodities
between various source and destination nodes in a network,
except that the bulk port belt-conveyor routing problem is
more constrained with bulk port context and its dependency
on other bulk port problems, which makes it more com-
plex. The MCFP is a generalization of the minimum cost
flow problem [24], where there is only one source and one
destination. The problem involves finding the optimal flow
of multiple commodities through a network with capacity
constraints. The multi-commodity flow problem is NP-hard,
and therefore different methods were proposed to solve
it, including mixed integer programming, heuristics, and
metaheuristics [22], [23], [25].

C. THE IMPORTANCE OF INTEGRATING THE ROUTING
PROBLEM WITH OTHER BULK PORT PROBLEMS
AND THE DRAWBACKS OF SIMULTANEOUS
OPTIMIZATION-BASED INTEGRATION
In this study, we are interested in modeling the belt-conveyor
routing problem in such a way as to comply with the other
operations’ planning decisions without having to optimize
the problems simultaneously in one mathematical model but
instead by including constraints of interaction with the other
bulk port optimization problems. However, to our knowledge,
no work in the literature tackled the routing problem as we
did. In the literature, the routing problem is viewed as a
part of the whole integrated model, primarily through the
work [26] in which Menezes et al. proposed a simultane-
ous optimization of stocking-related decisions with routing-
related decisions in a bulk port for loading iron ore. However,
certain critical decisions related to these operations are not
covered, such as (i) whether to adopt a horizontal or vertical
scraping strategy [27], as each strategy optimizes one aspect
at the expense of the other. Specifically, the horizontal strat-
egy maximizes the loaded volume, while the vertical strategy
maximizes the storage space. (ii) the parallel or successive
configuration of qualities’ stocking or loading into ships was
not covered either. (iii) The reduction of route complexity
was achieved by classifying routes into subsets. However,
this method is less advanced than the complexity reduction
proposed in our paper (see section III-F). (iv) a sophisticated
routes matrix was not considered (150 routes as a maximum).
The same (apart from (iii)) applies to [28], in which Ago et al.
also dealt with the simultaneous optimization of routing and
stock problems of a bulk port for raw materials unloading for

steel-making plants. Besides, in (ii), the loading is replaced
with unloading, which can also be parallel or successive, but
Ago et al. [28] did not study it.

Thus far, simultaneous optimization-based integration
does not allow modeling all critical aspects of the problems.
However, what is more noticeable is that, to our knowledge,
the scientific literature has only handled the integration of a
maximum of two problems in one mathematical model. For
instance, both works of the last two mentioned references
on bulk ports [26], [28]. In addition, Robenek et al. [29]
modeled the integrated berth allocation and yard assignment
problem in bulk ports. Unloading and stacking operations
were optimized in an integrated fashion by Pratap et al. [30]
as well. Unsal and Oguz [31] added to the scraper scheduling
the stockyard allocation to make up one problem in addition
to the second problem: berth allocation, as one subproblem of
the loading problem without including the routing problem.
In contrast, a scraper scheduling was proposed in [32] with-
out considering the two scraping strategies, horizontal and
vertical. et al. [33] were interested in the integration problem
of unloading and storage space operations’ decisions, namely
the scraping and stocking. Nevertheless, the routing prob-
lem needs to be included in optimization. The work [34] is
around integrating bulk ports’ loading operation subproblems
(multi-quays berth allocation and crane assignment) without
considering the integration of routing and stocking problems.
In most of these works, a further method to a mixed-integer
programming model was needed. For instance, in the last
citedwork, the authors proposed some variants of theVariable
Neighborhood Search (VNS) metaheuristic in order to tackle
large-scale data sets.

All previous research contributions are relevant and sig-
nificantly impacted the bulk port planning state of the art.
However, in most of these contributions, the constraints of
interaction between the problems in non-integrated problems
are not included, and real-world constraints in integrated
problems still need to be addressed. Nevertheless, most of
the proposed models result in a large number of decision vari-
ables and constraints that complicate computation.Moreover,
even if these models could converge in a reasonable time,
they would optimize one or two operations at the expense of
the third one not included in optimization. Furthermore, each
bulk port problem has its own unique scope. For example, if a
problemwere to make a decision related to a second problem,
it would do so at the expense of another constraint related
to the second problem but not apparent to the first problem.
As a result, the problem would be partial in its scope and that
of the second problem, as previously commented on these
contributions.

D. BENEFITS OF THE CHOSEN INTEGRATION APPROACH
In contrast to these works about simultaneous optimization-
based integration, the coupling strategy between bulk port
problems adopted in this paper is the alternative integration
approach mentioned earlier in the introduction section and
which was proposed in a former work [6], implies optimizing
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each problem separately, with each one having interaction
constraints of the other problems. To broadly describe this
coupling strategy, the different optimization problems must
align their decisions with the port’s objective of maximizing
revenue and minimizing costs. This is why, among other
reasons, the loading optimization subsystem is the first to
be launched to initiate the decision-making process of the
coupling strategy. In Fig. 2 of Section III, we illustrate this
coupling strategy by considering that the integrated optimiza-
tion system is composed of optimization subsystems:

1) The loading optimization subsystem generates load-
ing plans with maximum loaded volume and mini-
mum costs and penalties respecting commercial plans
(detailed documents outlining a company’s sales and
customers’ demands and preferences for a specific
period of time given at input). In the resulting loading
plans, loading dates are provided with margins instead
of rigid dates, thereby ensuring more feasibility to
the subsequent optimization subsystem, whose mission
must respect the loading plans.

2) The stocking optimization subsystem generates plans
that respect loading plans and adjusts the latter if a
stocking decision causes a loading date to shift. The
shift would be carried out in the stocking optimiza-
tion subsystem rather than in the loading optimization
subsystem avoiding thereby any infinite loop with the
loading optimization subsystem.

3) The routing optimization subsystem receives the load-
ing and stocking plans with margins. It ensures that the
plans are respected by generating via its first compo-
nent (the routing model) (i) the optimal paths between
the source and the destination points, (ii) the trans-
portation windows respecting stocking and loading
plans. The routing subsystem adjusts the loading and
stocking plans with margins given as input using the
second component (the adjustment block). As previ-
ously mentioned, the concept of margins is vital to
confer flexibility on the returned plans and increase
feasibility from one subsystem to the next.

4) The production optimization subsystem receives the
resulting loading/stocking/routing plans to ensure the
production on time of the requested products while
meeting the time windows of routing, stocking, and
loading plans.

Overall, this coupling strategy will allow the routing model to
have, automatically, some constraints relaxed, given that the
decisions specific to stocking and loading are made within
the stocking and loading models, respectively. For instance,
the stocking decision concerning the choice of the storage
shed (the source point) fromwhich an ordered product will be
supplied to a given customer. In addition to the loading deci-
sion, which pertains to the specification of the gantry crane
(i.e., the destination point) that will supply the customer with
the product. Hence, the routing problem focuses on the com-
plexity of its perimeter, mainly in terms of a sophisticated,

real-world conveyor routes matrix, while considering the
interaction constraints and parameters that would allow the
routing problem to synchronize with the other problems for a
smooth and successful service.

E. AN ANALYSIS OF SIMILARITIES AND DIFFERENCES
BETWEEN THE CHOSEN INTEGRATION APPROACH AND A
SIMILAR APPROACH FROM THE LITERATURE
Conversely, the literature is rich in a roughly similar
approach, commonly known as the bi-level optimization
approach. The two approaches are similar since the latter
is also used when dealing with problems that involve mul-
tiple interconnected decision-making levels [35], with one
decision-maker (upper-level problem) influencing the deci-
sions of another decision-maker (the lower-level problem).
The lower-level problem’s optimal decisions, in turn, affect
the upper-level problem [36], [37]. The only difference that
makes our integration approach more favorable regarding
computational performance, especially within the industrial
context, is manifested in how the lower-level problem’s opti-
mal decisions affect the upper-level problem. In the bi-level
optimization approach, the optimal solution of the lower-level
problem feeds back into the upper-level problem so that
the latter can adjust its decision for another cycle of the
hierarchical decision-making process. Indeed, the relation-
ship between the upper-level and the lower-level problems is
hierarchical. The former is called the leader, and the latter
is called the follower, making the approach computationally
expensive to solve, especially when the lower-level problem
is complex and needs to be solved repeatedly [36]. In other
words, a typical scenario of a bi-level optimization problem
may be described as the following (1) the upper-level problem
(the leader) generates an optimal solution, (2) the lower-level
problem (the follower) reacts to the returned optimal solu-
tion by generating, in turn, an optimal solution that respects
the optimal solution of the leader, (3) the optimal solution
generated by the lower-level problem at (2) feeds back into
the upper-level problem so that the latter can evaluate it
(4) The leader adjusts its decisions based on the feedback
from the follower’s response. (5) Steps 2-4 are repeated until
an equilibrium is reached, where no solution in the decision
space of the follower is available. However, in our integration
approach, there is no such hierarchical relationship between
the problems. As the coupling strategy was described, the
lower-level problem generates solutions (plans) that respect
the upper-level problem’s solutions (plans) and adjusts the
latter if a decision of the lower-level problem causes the date
of the solution of the upper-level problem to shift. The shift
would be carried out in the lower-level problem rather than in
the upper-level problem avoiding thereby any infinite loop
with the upper-level problem. Still, the bi-level optimiza-
tion approach resembles our adopted integration approach
in many ways, namely (i) allowing a clear separation of
decision levels by clearly distinguishing between the leader’s
and the follower’s objectives and constraints and by capturing
the interdependencies between the decisions, allowing for
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more structured analysis and understanding of the interac-
tions between the two decision-making levels. This structure
makes it suitable for modeling complex real-world problems
where decisions are made at different levels leading thereby
to better solutions [35], which enables realistic modeling
as it allows for the natural modeling of situations where
one decision-maker (the leader) affects the decision space
of another decision-maker (the follower); (ii) allowing flex-
ibility by being a framework that can accommodate various
types of decision-making problems and objectives, making
it adaptable to various application areas, including trans-
portation, energy, and supply chain management; (iii) being
challenging to solve, particularly when dealing with combi-
natorial objectives and constraints due to the interdependence
between the leader’s and the follower’s decisions. Advanced
solution techniques, such as metaheuristics, decomposition
methods, or specialized exact algorithms, may be required
to tackle these problems [38] efficiently; (iv) being difficult
to apply to real-world problems, as it requires a clear under-
standing of the decision-making process and the relationships
between the upper and lower levels of decision-making [37].
Overall, the bi-level optimization approach is a powerful
tool for solving complex real-life optimization problems that
involve multiple levels of decision-making, such as trans-
portation planning, supply chain management to optimize
both strategic and tactical decisions in the supply chain
network design [39], [40], and energy systems [41]. In trans-
portation planning, for example, the upper-level decision-
maker may decide on the number of buses to purchase, while
the lower-level decision-maker may decide on the optimal
bus routes [38]. However, in terms of solution techniques,
developing efficient and effective solution techniques for
bi-level optimization problems remains an ongoing research
challenge. While some specialized exact algorithms and
decomposition methods have been proposed, many bi-level
problems require the use of heuristics or metaheuristics to
find good solutions within reasonable computational times
for large-scale data sets [42], [43], [44], [45], [46]. Finally,
solving the bulk port problems using the bi-level optimization
approach is legitimate. Still, whether we opt for it or for
the integration approach we proposed, the lower-level prob-
lem remains crucial. This problem, specifically the bulk port
belt-conveyor routing issue, represents the main contribution
of our paper, and it should be addressed in such a way as to
minimize changes to the decisions of the upper-level problem.

Compared with the literature, the study of this paper
is motivated by the alternative integration approach to
overcome the shortcomings of the classical integration
approach, ‘‘simultaneous optimization-based integration’’,
and the shortcoming of the ‘‘bi-level’’ optimization approach.
Our study is particularly interested in developing the bulk port
belt-conveyor routing model (as architected in Fig. 2) while
including real-world constraints of conveyor routes trans-
portation and while considering interaction constraints with
the other problems, namely loading and stocking problems.
The routing model established aims to minimize the sum of

waiting costs and tardiness penalties according to loading
and stocking demands or plans, which include dates with
margins. Owing to the challenge the constraints above can
make, reducing the complexity of routes’ configuration is
addressed to improve the computational performance. The
way of doing so is compared to the literature in Section III.

III. PROBLEM FORMULATION
Fig. 1 shows the combinatorial problem of routing conveyor
paths, which involves various itineraries with different capac-
ities from three sets of fertilizer storage sheds and one set of
phosphate sheds, connecting to four quays with two gantry
cranes each, as well as a truck loading station with a pouring
conveyor as a loader. Additionally, transportation is required
to move fertilizer products from storage sheds in set 1 to those
in set 2. The phosphate and fertilizers products both comprise
different qualities.

The routing model under study receives the planning
of demands from the loading and stocking subsystems,
as detailed in Fig. 2. These plans consist of stocking and load-
ing decisions, such as specifying the source and destination
points, respectively. The loading and stocking constraints,
which are expressed in terms of interaction problems-based
parameters, work in harmony with the routing constraints
expressed in terms of routing parameters. This synchroniza-
tion ensures that transportation operations align with loading
and stocking operations, as required in industrial scenarios.
The notation for the general routing parameters is provided
in Section III-C1, while the notation for the interaction
problems-based parameters is explained in Section III-C2.
However, before delving into the notation, it is worth provid-
ing more details about some of these parameters, particularly
the configuration of qualities (see Section III-A) and time
parameters (see Section III-B).

The scope of this paper covers the routing model, whose
mission is to program the transportation of loading and
stocking demands in such a way as to minimize the total
waiting costs and tardiness penalties according to loading and
stocking dates. Updating the latter after the routing model
decisions is to be carried out by another block of the routing
optimization subsystem, as was discussed in Fig. 2. Only
then, can the production optimization subsystem handle load-
ing, stocking, and routing demands.

A. QUALITIES-BASED SPECIFICATIONS
Each demand is characterized by a list of qualities that should
be transported to a destination. These qualities are set to be
handled (loaded or stocked) in a specific configuration. The
latter is parallel if the number of handling equipment is more
than one. It is successive if the number of qualities to be
handled by each handling equipment is greater than or equal
to one. There can be a mixture of the two configurations to
end up having as many lists of successive qualities as there
are handling equipment. In any case, the total number of
qualities cannot exceed the number of the existing container
spaces, be they holds of a vessel, truck container, or storage

87714 VOLUME 11, 2023



S. Mallah et al.: Modeling the Bulk Port Belt-Conveyor Routing Problem Considering Interactions

FIGURE 2. Interactions between integrated bulk port problems’ models.

spaces of a storage shed. Some examples of these demands’
configurations are illustrated in Fig. 3 and Fig. 4.

Fig. 3 illustrates two vessels’ demands. The first demand
is served by only one handling equipment, a gantry crane to
load successively three qualities in the three holds existing for
vessel 1. For the second demand, two gantry cranes load two
successive lists of qualities in parallel. The first successive list
includes two qualities q1 and q2. The second list includes one
quality q3. Therefore, q1 and q3 are loaded at the same time,
while q2 is to be loaded after the end of loading q1 and q3.
Fig. 4 illustrates a truck demand (demand 3) and a stocking

demand (demand 4). The truck is endowed with only one
container. So, it can be loaded with only one product by only
one pouring conveyor at a time. Conversely, in demand 4,
a storage shed can have a couple of storage spaces. However,
it is equipped with only one stacker. So, the parallel configu-
ration is not possible for the stocking demands either, but the
number of successive qualities can be greater than or equal to
one. There can be as many successive qualities as there are
vacant storage spaces in a storage shed.

B. TIME PARAMETERS
1) TRANSFER, HANDLING AND TRANSPORT TIMES
The three routes represented in Fig. 5 are for stocking,
truck loading, and vessel loading demands. For each of these
demands, a corresponding conveyors’ route moves a quality
from the source (scraper) to the destination (stacker, gantry
crane, or pouring conveyor of the truck station). The amount
of time needed for the first seed of the product to travel this
distance from the source to the destination is the travel time
or the transfer time. At precisely the end of the latter, can the
handling operation (stocking or loading) begin. The handling
operation ends if and only if we finish (stocking or loading)

the total quantity requested. Therefore, the transport time that
consists of transporting the whole quantity of a quality is
the sum of the transfer time and the handling time. Fig. 5
illustrates this formula.

2) EARLIEST AND LATEST DATES
Due to the concept of margins mentioned earlier, the
optimization stocking and loading subsystems generate
loading-stocking plans with time windows rather than rigid
dates to give the routing model flexibility upon transport’s
start and end dates. This implies time parameters such as
earliest start date, earliest and latest end dates.
• Earliest end date = earliest start date + handling time
• Latest end date = earliest end date + total margins’
duration

• Time window = [earliest start date; latest end date]
To better understand these time parameters, the reader

might refer to Fig. 6. It illustrates these time parameters
for vessels and trucks’ loading as examples of handling
operations.

For the routing problem, rather than handling (stocking/
loading) parameters, we are interested in transport time
parameters which can be deducted from the formula that
links transport time and handling time. The handling time is
generated by the loading/stocking suboptimizers, while the
transfer time is a fixed parameter related to each route.

Further time parameters pinpointed in Fig. 6 are the pre-
handling and post-handling durations. They are necessary to
perform port-related tasks before and after a handling service.

The precedence notion is paramount for demands to which
the same resource (space or handling equipment) is assigned
during overlapping time periods. It sets the predecessor
demand of a demand and the time interval between them. For
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FIGURE 3. Products (qualities’) configurations in vessels’ demands.

FIGURE 4. Qualities’ configurations in stocks and trucks’ demands.

instance, in Fig. 6, vessels 1 and 2 are allocated to be served
at the same quay space using a common gantry crane. The
same thing applies to vessels 1 and 3.

3) WAITING TIME AND TARDINESS
Despite the margins-related flexibility to start and end when-
ever possible within the transport time window, the ultimate
decision for the routing problem consists of selecting, for
demands, routes with shorter transport time, minimizing the
sum of tardiness penalties and waiting costs regarding trans-
port, loading and stocking time-windows and constraints.
Given that:

• The tardiness of a service is the positive value of its real
end date minus its expected end date [47].

Hence:
Tardiness of transport = max(0, real end date of trans-
port - latest end date of transport) = max(0, real start
date of transport + real transfer time + handling time -
latest end date of transport)

• The waiting time of a service is the positive value of its
real start date minus its expected start date.
Hence:
Waiting time of transport = max(0, real start date of
transport - earliest start date of transport).

The model is proposed considering the following
hypotheses:

• The transport of a demand must be continuous, i.e.,
no suspension is authorized between the transport of
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FIGURE 5. Transfer, handling and transport times.

FIGURE 6. Margins-related time parameters.

the qualities requested, except the time needed between
successive ones.

• The maximum number of handling equipment used to
satisfy a demand at a time is two

• The number of successive qualities served by the first
handling equipment is greater than or equal to the num-
ber of successive qualities served by the second handling
equipment.

• The real transfer time is less than or equal to 1.

C. NOTATION
1) ROUTING GENERAL PARAMETERS’ NOTATION
R The set of routes
E The set of equipment
Re The set of routes that share the same equipment,

such as Re ⊆ R
ttr The real transfer-time
tte The expected transfer-time
Cr The capacity (in tons/hour) of each route r ∈ R
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eer 1 if an equipment e ∈ E belongs to the route r ,
0 otherwise

2) INTERACTION PROBLEMS’-BASED PARAMETERS
NOTATION
D The set of demands
γd The number of handling equipment used to satisfy

the demand d (d ∈ D)
Qd = Q1

d ∪ Q2
d . Set of sets of successive quali-

ties. If γd = 1, Qd is composed of one set
of successive qualities of the demand d . Q1

d =

{1, . . . , nQ1
d }, Q

2
d = ∅. If γd = 2, Qd is com-

posed of two sets of successive qualities of the
demand d . Q1

d = {1, . . . , nQ
1
d }, Q

2
d = {nQ

1
d +

1, . . . , nQ1
d + nQ

2
d }

P A set of demand pairs (d, d ′) ∈ P
1dd ′ The time needed between transporting the

demands d and d ′

sd The earliest start date of the transportation service
of the demand d

fd The latest end time of the transportation service of
the demand d

H The time horizon [0,Hmax − 1]
Hmax The total number of time steps in the time horizon
Hd = [sd ,Hmax − 1]. Transportation horizon of the

demand d
hdq The handling time to satisfy the quality q of the

demand d
bdq The extra period that the parallel quality, to q of a

demand d , needs to end its handling if and only if
γd = 2, 0 otherwise

δ The time needed between the transport of two
successive qualities of the same demand

odq The source point of the quality q of the demand d
gdq The destination point of the quality q of the

demand d
αd Tardiness penalty for the demand d
βd Waiting cost for the demand d
ldq The handling flowrate (in tons/hour) of the quality

q of the demand d
Ad Set of available periods for the demand d
adsp The start date of the available period p ∈ Ad
adfp The end date of the available period p ∈ Ad
pred The pre-handling duration of the demand d
postd The post-handling duration of the demand d

D. VARIABLES
Td Tardiness of the demand d
Wd Waiting time of the demand d
xdqrt Equals to 1 if the route r starts trans-

porting the quality q of the demand
d at the period t and equals to 0
otherwise

ydp Equals to 1 if the demand d is trans-
ported during the available period
p ∈ Ad

E. MATHEMATICAL MODEL: R-ROUTING

min
∑
d∈D

αd · Td + βd ·Wd (1)

∑
r∈R

∑
t∈Hd

t · xdqrt − sd + Hmax ·
(
1−

∑
r∈R

∑
t∈Hd

xdqrt

)
≤ Wd ∀d ∈ D, q = 1 (2)∑
r∈R

∑
t∈Hd

(t + ttr + hdqi ) · xdqirt − fd+(
1−

∑
r∈R

∑
t∈Hd

xdqirt

)
·

(
Hmax + δ · (nQid − 1)+

qi∑
k=q′i

tte + hdk

)
≤ Td

∀d ∈ D, i = 1 if γd = 1 ; i ∈ {1, 2} if γd = 2,

(q′i, qi) =

{
(1, nQ1

d ), i = 1
(nQ1

d + 1, nQ1
d + nQ

2
d ), i = 2

(3)∑
r∈R

∑
t∈Hd

xdqrt ≤ 1 ∀d ∈ D, ∀q ∈ Qd (4)

∑
d∈D

∑
q∈Qd

∑
r∈R

sd−1∑
t=0

xdqrt = 0 (5)

∑
r∈R

∑
t∈Hd

(t + ⌈ttr⌉ + hdq + δ + bdq) · xdqrt

=

∑
r∈R

∑
t∈Hd

t · xdq′rt ∀d ∈ D,

∀q ∈ Qd\{nQ1
d } if γd = 1,

∀q ∈ Qd\{nQ1
d , nQ

1
d + nQ

2
d } if γd = 2,

q′ = q+ 1 (6)∑
r∈R

∑
t∈Hd

(
t + ⌈ttr⌉

)
· xdqrt

∀d ∈ D, γd = 2,

=

∑
r∈R

∑
t∈Hd

(
t + ⌈ttr⌉

)
· xdq′rtq = 1,

q′ = nQ1
d + 1 (7)∑

r∈R

∑
t∈Hd

(t + ttr + hdq + bdq +1dd ′ ) · xdqrt

≤

∑
r∈R

∑
t∈Hd ′

t · xd ′q′rt + Hmax ·(
1−

∑
r∈R

∑
t∈Hd ′

xd ′q′rt

)
∀(d, d ′) ∈ P,

q = nQ1
d , q
′
= 1 (8)∑

r∈R

∑
t∈Hd

ldq · xdqrt ≤
∑
r∈R

∑
t∈Hd

Cr · xdqrt
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∀d ∈ D, ∀q ∈ Qd (9)∑
d ′∈D

∑
q′∈Qd ′

q′ ̸=q if d ′=d

∑
r ′∈Re

ρ∑
t ′=σ

xd ′q′r ′t ′ ∀d ∈ D,

≤

(∑
d∈D

| Qd |
)
· (1− xdqrt ) ∀q ∈ Qd ,

∀e ∈ E, ∀r ∈ Re, ∀t ∈ Hd ,

σ = ⌈max(0, t − hd ′q′ − ttr ′ )⌉,

ρ = ⌊min(Hmax − 1, t + ttr + hdq)⌋ (10)∑
t∈Hd

xdqrt ≤ eodqr · egdqr ∀d ∈ D,

∀q ∈ Qd , ∀r ∈ R (11)∑
p∈Ad

ydp ≤ 1 ∀d ∈ D (12)

∑
p∈Ad

(adsp + pred − ⌈tte⌉) · ydp ∀d ∈ D,

≤

∑
r∈R

∑
t∈Hd

t · xdqrtq = 1 (13)

∑
r∈R

∑
t∈Hd

(t + ttr + hdq + bdq) · xdqrt

≤

∑
p∈Ad

(adfp − postd ) · ydp ∀d ∈ D, q = nQ1
d (14)

Td ≥ 0 ∀d ∈ D (15)

Wd ≥ 0 ∀d ∈ D (16)

xdqrt ∈ {0, 1}

∀d ∈ D, ∀q ∈ Qd , ∀r ∈ R, ∀t ∈ H (17)

ydp ∈ {0, 1}

∀d ∈ D, ∀p ∈ Ad (18)

The objective function (1) seeks to minimize the total
penalty tardiness and waiting costs. The waiting time and
the tardiness of each demand d are calculated by the set of
constraints (2) and (3), respectively. Constraints (4, 5) ensure
that the transport operation of each demand quality starts at
the most one time in the given horizon. In contrast, each
demand can only be transported after the earliest start date
of transport set for it. Constraints (6) establish the order in
transporting the successive qualities of each demand with or
without the parallel configuration.Whereas constraints (7) set
the parallel condition that implies handling parallel qualities
should start simultaneously. Constraints (8), on the other
hand, set the order for each demand d′ and its predecessor d.
Constraints (9) ensure that the chosen route has the capacity
needed to transfer the requested quality. Constraints (10)
avoid time overlap between overlapping routes with the same
equipment. It is important to note that any equipment within

a route, including the source, destination, or any equipment
in between, can potentially be an overlap node if it is shared
with another route or multiple routes. Constraints (11) set for
each demand quality, routes with the source and destination
points specified. Constraints (11) work with constraints (10)
to avoid overlapping problems. The constraints (12-14) are
used to schedule a demand within an available period consid-
ering the pre-handling and post-handling durations in which
no operation should run. Constraints (15, 16) and (17, 18)
set the continuous variables for each demand and the binary
ones, respectively. In the model, we consider the whole set of
routes R. Hence the name R-routing model.

In terms of big O, the R-routing model has O(|D| · |Q| ·
|R| · |H |) variables and O(|D|2 · |Q|2 · |E| · |Remax|

2
· |H |)

constraints, where |D| is the number of demands, |Q| is the
maximum number of qualities for all demands, |R| is the
maximum number of routes R, |H | is the maximum time peri-
ods for all demands, and |Remax| is the maximum number of
routes Re for all equipment checked throughout the iterations.

F. MATHEMATICAL MODEL IMPROVEMENT: Rdq-ROUTING
The initial model proposed in this study aimed to select,
for each quality of each demand, a route from the complete
set of total routes R. This posed some computational chal-
lenges because the R-routing model had to select the most
time-efficient route while also considering the adequacy of
the route for a specific demand quality. However, in an effort
to refine our model and enhance its computational perfor-
mance, we developed an improvement. This improvement,
implemented through Algorithm 2, curates specific routes
for each quality q of a demand d : Rdq, a priori, leaving up
the selection of the most time-efficient routes to the model.
Consequently, the model now considers a subset of routes Rdq
instead of the entire set R.
Taking this preprocessing work-based refinement a step

further, we introduced Rdqe, representing the intersection of
Rdq and Re, which will be utilized in overlapping constraints.
This change aims to reduce complexity during routing plan
generation, potentially boosting the model’s performance.
Therefore, we are introducing new notation into the model,
believing that these improvements will significantly enhance
the model’s efficiency and computational performance.

Rdq A subset of R, contains all the routes that link the
source from where the quality q of the demand
d is transported to its destination. It also refers
to the subset of routes with the same source and
destination.

Rdqe is a subset of routes obtained from the intersection
of Rdq and Re. The latter, as mentioned earlier,
is the set of routes that share the same equipment
e. Rdqe = Rdq ∩ Re

In order to obtain the set Rdq, we utilize the set of routes
R, where each route is defined by its source o (for origin),
destination g (for goal), and capacity Cr . The latter is already
specified in notation. We then proceed to create a set S that
contains, for each source o, a set Ro containing all the routes
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Algorithm 1 Prepare S (set of Routes by source)
Input: Set of all routes R

1 for r ∈ R do
2 o← r .source
3 g← r .destination
4 if o /∈ S then
5 Ro← ∅
6 Rog← ∅
7 Rog← Rog ∪ {r}
8 Ro.append(g,Rog)
9 S.append(o,Ro)

10 else
11 if g /∈ Ro then
12 Rog← ∅
13 Rog← Rog ∪ {r}
14 Ro← Ro ∪ Rog
15 else
16 Rog← Rog ∪ {r}
17 end
18 end
19 end
20 return S

originating from that particular source o. The set Ro is further
characterized by destination g. In fact, for each destination g,
we have a set Rog comprising of all routes that share the same
destination g and that originate from a particular source o.
To construct the set S, we propose Algorithm 1. The for

loop iterates through all the routes in R, which takes O(|R|)
time. The subsequent steps, particularly the search operations
carried out in line 4 and line 11 of the algorithm, each have a
time complexity of O(1). This is because these searches are
performed within a C++ set, a data structure which indeed
allows for constant time operations. Furthermore, given the
non-nested structure of these two steps within the algorithm,
their complexities are additive. Hence, in the worst-case
scenario, the time complexity of the algorithm is accurately
represented as Hence, in the worst case, the time complexity
of the algorithm is O(|R|).
After the set S is constructed, we proceed to prepare the set

Rdq routes using Algorithm 2. The set Rdq is formed by routes
that have a specific source o and destination g, and belong to
a specific quality q of a demand d , and whose capacity Cr
is the maximum of the handling flowrate ldq of the demand
quality in question. The time complexity of the algorithm is
O(|D| · |Q| · α), where |D| is the number of demands, |Q| is
the maximum number of qualities for all demands, and α is a
value through which Rog can be upper bounded.
The Rdq-routing model is obtained by replacing, in the

R-routing model, R with Rdq but also by considering two
additional changes:

• In the constraints (10): ∀r ∈ Re and r ′ ∈ Re should
be replaced by ∀r ∈ Rdqe and r ′ ∈ Rd ′q′e respectively.
Therefore, the constraints (10) in the Rdq-routing model

Algorithm 2 Prepare Rdq Routes
Input: Set of routes by source S, Set of all demands D

1 for d in D do
2 for q in d .qualities do
3 Rdq← ∅
4 o← odq, g← gdq
5 for r in S[o].Ro[g].Rog do
6 if ldq ≤ Cr then
7 Rdq← Rdq ∪ {r}
8 end
9 end

10 end
11 end
12 return Rdq

become:

∑
d ′∈D

∑
q′∈Qd ′

q′ ̸=q if d ′=d

∑
r ′∈Rd ′q′e

ρ∑
t ′=σ

xd ′q′r ′t ′

≤

(∑
d∈D

| Qd |
)
· (1− xdqrt ) ∀d ∈ D,

∀q ∈ Qd ,∀e ∈ E,∀r ∈ Rdqe,∀t ∈ Hd ,

σ = ⌈max(0, t − hd ′q′ − ttr ′ )⌉,

ρ = ⌊min(Hmax − 1, t + ttr + hdq)⌋

• An additional set of constraints (19) for the Rdq-routing
model:∑

r∈R\{Rdq}

H∑
t=0

xdqrt = 0 ∀d ∈ D,∀q ∈ Qd (19)

Constraints (19) prohibit routes that do not belong to Rdq.
In terms of big O, the Rdq-routing model has

O(|D||Q||Rdqmax||H |) variables andO(|D|2|Q|2|E||Rdqemax|
2

|H |) and constraints, where |Rdqmax| is the maximum number
of routes Rdq for all demands and qualities, and |Rdqemax|

is the maximum number of routes Rdqe|H | is the maximum
number of routes Rdqe for all equipment checked throughout
the iterations. Therefore, the difference between theR-routing
model and the Rdq-routing model in terms of complexity lies
in the number of routes checked through all iterations from
|R| to |Rdqmax| and from |Remax| to |Rdqemax|.
To the best of our knowledge, only Menezes et al. [26]

proposed a way to reduce the complexity of a transportation
matrix of routes. They suggested an idea that we managed
to try to see the difference with ours (Rdq). They propose
dividing the whole set of routes into three subsets of routes.
Where each one of them transports products from a sources’
set to a destinations’ set. Following this example, we ended
up with nine subsets of routes as the numbers of sources’ sets
and destinations’ sets, in our case, are more significant and as
they have different maximal capacities. We denote Rk , with
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TABLE 1. Comparison of Rk and Rdq as sub-sets of the whole routes’
set R.

k = {x, y, z′, z′′, v′, v′′,w, s, t}. Table 1 shows that for each
set of routes R, Rdq reduces the number of routes into fewer
routes than Rk does with a sharp difference. This finding
is rational as Rk depends on the type of routes indepen-
dently of the demand. At the same time, Rdq is more specific
and divides routes into subsets depending on each demand’s
quality.

The computational results of the Rk model, proposed
in [26], cannot be compared with the Rdq/R-models as the
former includes routing and stocking decisions in one model.
In contrast, the latter models include routing decisions only.

G. A HYPOTHESIS RELAXATION
The contribution we propose in this section is in order to relax
the hypothesis of having a real transfer time that is less than
or equal to a time unit (ttr ≤ 1) and thus have a flexible
model that represents all real-world bulk ports’ cases, albeit
most bulk ports, generally speaking, are constructed in such
a way that the transfer time does not exceed 1 hour. While
trying to relax this hypothesis, we had a quadratic expression.
However, to convert the nonlinear resulted program into a
linear program, we introduced two additional parameters:
M , as a sufficiently large constant. In our case, M is the
maximum transfer time. The second parameter is λd which is
the difference between nQ1

d and nQ2
d . In addition to the two

following variables:
vdq Takes themaximum integer value from the transfer

time to transport the quality q of the demand d and
the transfer time to transfer the parallel quality to
q of the same demand d .

ydq Equals 1 if the time to transfer the quality q of the
demand d is less than the time needed to transfer
its parallel quality of the same demand d ; equals
0 otherwise.

Thus, the model’s set of constraints (6) is replaced by
constraints (20-26). The constraints (7) of the model are
replaced by constraints (27). The latter constraints ensure the
same loading start for every two parallel qualities.∑

r∈Rdq

∑
t∈Hd

(t + ⌈ttr⌉ + hdq + δ + bdq) · xdqrt

=

∑
r∈Rdq′

∑
t∈Hd

t · xdq′rt

∀d ∈ D,∀q ∈ {1, . . . , nQ1
d − 1} if γd = 1,

∀q ∈ {nQ1
d − λd , . . . , nQ1

d − 1} if λd > 0

and γd = 2, q′ = q+ 1 (20)

∑
r∈Rdq

∑
t∈Hd

(t + ⌈ttr⌉ + hdq + δ + bdq) · xdqrt

=

∑
r∈Rdq′

∑
t∈Hd

(t + ⌈ttr⌉) · xdq′rt − vdq′

∀d ∈ {d | d ∈ D and γd = 2},

∀q ∈ {1, . . . , nQ1
d − λd − 1}, q′ = q+ 1 (21)

vdq ≥
∑
r∈Rdq

∑
t∈Hd

⌈ttr⌉ · xdqrt

∀d ∈ {d | d ∈ D and γd = 2},

∀q ∈ {2, . . . , nQ1
d − λd } (22)

vdq ≥
∑
r∈Rdq′

∑
t∈Hd

⌈ttr⌉ · xdq′rt

∀d ∈ {d | d ∈ D and γd = 2},

∀q ∈ {2, . . . , nQ1
d − λd }, q′ = q+ nQ1

d (23)

vdq ≤
∑
r∈Rdq

∑
t∈Hd

⌈ttr⌉ · xdqrt + (1− ydq) ·M

∀d ∈ {d | d ∈ D and γd = 2},

∀q ∈ {2, . . . , nQ1
d − λd } (24)

vdq ≤
∑
r∈Rdq′

∑
t∈Hd

⌈ttr⌉ · xdq′rt + (1− ydq′ ) ·M

∀d ∈ {d | d ∈ D and γd = 2},

∀q ∈ {2, . . . , nQ1
d − λd }, q′ = q+ nQ1

d (25)

ydq + ydq′ = 1

∀d ∈ {d | d ∈ D and γd = 2},

∀q ∈ {2, . . . , nQ1
d − λd }, q′ = q+ nQ1

d (26)∑
r∈Rdq

∑
t∈Hd

(t + ⌈ttr⌉) · xdqrt

=

∑
r∈Rdq′

∑
t∈Hd

(t + ⌈ttr⌉) · xdq′rt

∀d ∈ {d | d ∈ D and γd = 2},

∀q ∈ {2, . . . , nQ1
d − λd }, q′ = q+ nQ1

d (27)

vdq ≥ 0 ∀d ∈ D,∀q ∈ Qd (28)

ydq ∈ {0, 1} ∀d ∈ D,∀q ∈ Qd (29)

In terms of big O, this version of Rdq-routing model with a
hypothesis relaxation hasO(|D| · |Q| · |Rdqmax| · |H |) variables
and O(|D|2 · |Q|2 · |E | · |Rdqemax|

2
· |H |) constraints. The

changes made with the relaxation of the hypothesis in this
section did not alter the complexity of the Rdq-routing model
of Section III-F as the complexity of the extra variables and
constraints proposed in this section was dominated by the
complexity of the variables and constraints of the Rdq-routing
model before the relaxation of the hypothesis.

IV. COMPUTATIONAL RESULTS
In this section, we comment on the results of the com-
putational experiments we carried out on a wide range of
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instances. We run the program in C++ on Visual Studio 2019
(v142) editor using the CPLEX solver (version 20.1.0) on an
Intel(R) Xeon(R) W-2123 CPU 3.60GHz 3.60 GHz with a
32GB RAM.

A. TEST INSTANCES
We tested the model with instances covering two types of
data: the source and destination points’ routes’ matrix and the
loading and stock models’ plans. In the latter, all demands,
as required by the industrial interlocutor, are planned for a
planning time horizon of 15 days divided into units of 1-hour
Hmax = 360 hours.

The data relating to the routes’ matrix include three sets
of routes whose numbers of routes amount to 55, 105, and
1590 routes, respectively.

The data relating to the loading and stockmodels constitute
plans generated by the loading and stock suboptimizers and
must be met by the routingmodel. The data used are extracted
from loading/stocking suboptimizers.

The main data include:
• The available periods within the 15-day planning hori-
zon. All vessels’ demands have three available periods:
from hour 1 to hour 25, from hour 55 to hour 140, and
from hour 200 to hour 360, respectively. The demands
of trucks and stocks have all one available period: the
15-day interval.

• The handling time for vessels’ loading depends on the
length of the vessel to be served. It follows the uni-
form distribution U[12,24] hours and U[19,40] hours for
small and large vessels, respectively. The handling time
of trucks loading and stock varies from 10 to 20 hours
and 10 to 40, respectively, as collected from the studied
case.

• The total number of qualities of a demand is the sum of
the number of successive qualities served by all handling
equipment at a time. It is also the maximal number of
recipient spaces to house the product. It amounts to 5 in
large vessels and stocks’ demands, 2 in small vessels,
and 1 in trucks’ demands.

• Six sets of demands’ instances. Three have a num-
ber of demands totaling 8, 16, and 24, respectively,
for vessels’ demands. The remaining three sets have
a number of demands amounting to 14, 26, and 38,
respectively, for the combination of vessels, trucks, and
stocks’ demands. 16 demands, including a mix of ves-
sels, trucks, and stocks’ demands over the 15-day plan-
ning period, presents the real max number of demands.

• The transfer time is at most 1 hour. Hence, in later
sections, we report the computational experiments of the
R-routing and Rdq-routing models. For the paper’s sake,
the computational results of the relaxed Rdq-routing
model are not reported.

For each set of demands, a set of seven types of instances
are considered for testing the different combinations of par-
allel and successive qualities handling for small and large
vessels:

1) γd = 1, nQ1
d = 1 (small and big vessels)

2) γd ≤ 2, nQ1
d = 1, (nQ2

d = 1 iff γd = 2) (small and big
vessels)

3) γd = 2, nQ1
d = 1, nQ2

d = 1 (small and big vessels)

4) γd = 1, nQ1
d > 1 (small vessels)

5) γd ≤ 2,

{
nQ1

d = 2, γd = 1
nQ1

d = 2, nQ2
d = 1, γd = 2

(small

vessels)
6) γd = 1, nQ1

d > 1 (large vessels)
7) γd = 2, 2 ≤ nQ1

d ≤ 3, 1 ≤ nQ2
d ≤ 2 (large vessels)

For demands’ instances of vessels, stocks, and trucks, all
seven instances remain the same for vessels. All trucks’
demands added are featured with γd = 1, nQ1

d = 1 in
all seven instances. The stocks’ demands added have γd =

1, nQ1
d = 1 only in instances (1), (2), (3) and have γd =

1, 2 ≤ nQ1
d ≤ 5 in instances (4), (5), (6) and (7).

It is worth noting that (1) represents the extremely easy
type of instances while (7) represents the extremely difficult
type of instances that are unlikely to occur in reality.

All tested instances along with their results are reported in
an online data set whose link is given in Section VI.

B. ILLUSTRATIVE EXAMPLE
In this section, we run the routing model on the seventh
instance (I7-14-55) of 14 demands (including vessels, stocks,
and trucks) over the 15-day planning period. The result is
supposed to present a routing program of these 14 demands
while assigning to them routes from the set of 55 routes.
Table 2 presents the main data used in the instance, including
the earliest transport start date and the latest end date of each
demand. The model is set to compute the adequate transport
start and end dates according to the chosen routes while
satisfying the model’s constraints. Table 3 presents fixed
parameters for vessels, stocks, and trucks’ demands given
in the instance under illustration. For instance, the number
of handling equipment for each vessel demand equals two.
In contrast, it is set to one for stocks and trucks’ demands.
The whole [1, 360] time interval represents the available
period for stocks and trucks. At the same time, there are
three available periods for vessels, namely [1 - 25], [55 -140],
and [200 - 360]. The pre-handling duration equals 10 and 1,
respectively, for vessels’ demands and stocks’ and trucks’
demands. Fig. 7 shows the optimal transportation plan of
instance I7-14-55 after running the routing model.

The legend in Fig.7 describes unavailability periods for
vessels in red-hatched zones. The demands are supposed to
be presented in such a way that no demand starts before the
time value (start hour flag) obtained out of the sum of the start
of its available period plus its pre-handling duration minus
the ceil of the expected transfer time, nor finishes by the time
value (end hour flag) obtained out of the difference between
the end of its available period and the post-handling duration.
The vessels’ start and end hour flags are illustrated in Fig.7 in
yellow and purple, respectively. At the same time, the stocks
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and trucks’ values are not presented as they equal the ends
of the planning horizon (1 and 360, respectively). Each blue
and pink (if any) rectangle refers to the transport time slot of
a quality served by the first and the second (if any) handling
equipment, respectively. The subsequent rectangles denote
the time slots of successive qualities. For each demand, the
start of the first time slot marks its earliest transport start date.
In comparison, the end of the last time slot marks its earliest
transport end date. Besides, the red dots mark the latest end
date, which, if exceeded, the demand gets tardiness.

However, the risk for tardiness is minimal if the total
margin (difference between the latest transport end date and
earliest transport start date) is significant, as in the case of
the demand of truck 3 in Table 2. The model can choose to
keep the start date of transport of a demand as reported in
Table 2 or to postpone it to a later date. If this postponement
does cause the rectangles (time slots) to exceed the red mark
(latest end time), then only waiting time is generated. The
time slots are cross-hatched in this case, as illustrated in the
legend. However, if they exceed the latest end date, tardiness
and waiting time are generated. In this case, the rectangles are
dashed. In the legend, we can also find the notation xnQ1,2

d ,
which denotes how many successive qualities are transported
from a source to a destination. This destination is none other
than the handling equipment. If two handling equipment are
assigned to a demand, two routes are assigned to transport
xnQ1

d qualities, denoted in blue, and xnQ2
d qualities, denoted

in pink. Finally, the precedence table is also presented in
the legend. It informs about the precedence between two
demands, distinguishes between the predecessor and the suc-
cessor demand, and the time interval between them 1dd ′ .
As already mentioned, any forward displacing in the time

axis means a waiting time was generated, thereby leading
to some waiting costs being incurred. This is the case for
four vessels 1, 2, 5, and 6. The waiting time in vessel 6,
in particular, led the transportation service to exceed the
latest end time, which brought about a tardiness duration and
consequently entailed a tardiness penalty in addition to its
waiting cost. The sum of these costs made up an objective
value of 667.5. The details of this calculation are given in
Table 4.

The time slots of vessel 2 got shifted because of vessel 3.
Both vessels have overlapping routes during overlapping time
slots. The decision to delay the transportation service for
vessel 2 rather than that for vessel 3 is relevant for two rea-
sons. First, the opposite would end up having routes and time
overlap of vessel 3 with vessel 1, whose time slots are near
three critical time thresholds: the latest end date, the end hour
flag (in purple), and the end of the planning horizon, which
would prevent either vessel 1 or 3 from being served during
the same planning horizon. Second, the tardiness penalty is
500 units for vessel 3 against 50 units for vessel 2. As a result,
Vessel 1 got a waiting time mainly because of the 1-hour
of vessel 2 precedence. Almost the same scenario happened
with vessels 5 and 6. Both got delayed in the interest of
vessel 7 because of routes overlaps between vessels 5 and

TABLE 2. Main data used in instance I7-14-55 to transport 14 demands
on 55 routes.

TABLE 3. Fixed parameters for vessels and for stocks and
trucks’demands used in I7-14-55 to transport 14 demands on 55 routes.

TABLE 4. Objective value computation of I7-14-55.

7 and between vessels 6 and 7 during overlapping time slots
(Table 2). These overlap problems were overcome by the
decision made (Fig. 7). If vessel 7 were delayed rather than
vessel 6, the time slots of vessel 7 would be hugely overlap-
ping with the time slots of vessel 5, which are nonetheless
near the next unavailable period. Thus, either vessel 7 or
vessel 5 would exceed the latest end time and incur tardiness
penalties.

For the sake of the paper, the solutions on the 105 and
1590 routes’ instances could not be illustrated. However,
as reported in Table 6 and Table7, their objective values are
smaller than those of the illustrative example of 55 routes.
This reduction is due to the decrease of possible routes’
overlap as the number of possible routes to choose from
increases.

The R-routing model could not generate a solution for the
illustrative example instance, even for 55 routes, because of
insufficient memory (Table 8). Thanks to the Rdq-routing
model, we can propose routes that respect routing constraints

VOLUME 11, 2023 87723



S. Mallah et al.: Modeling the Bulk Port Belt-Conveyor Routing Problem Considering Interactions

FIGURE 7. Transport plan of 14 demands after running the Rdq-routing model on 55 routes.

for different demands considering the conditions set by the
loading and stock constraints. Finally, as the number of routes
increases, the model is unlikely to find routes overlapping,
or it may have access to routes with shorter transfer times.

C. EVALUATION OF THE MODELS
In this section, we assess the computational performance of
the proposed models by verifying three objectives of interest.
First, to check whether the models can be solved in a rea-
sonable time using commercial software. Second, to observe
how some parameters (the number of demands, the number
of routes, and the combination of the number of handling
equipment used at a time with the number of successive
qualities) affect the computation time. Finally, to explore
ways to accelerate the computation time.

For each model, we considered different groups of
instances regarding the number of routes, the number of
demands, and the nature of demands (vessels only or a
combination of vessels, stocks, and trucks’ demands). Each
group of demands has a set of 7 instances to test the parallel
and successive configurations for small and large vessels,
as described in the previous section. As a result, we had
126 scenarios to test for each model (7 combinations of suc-
cessive and parallel qualities× 3 sets of demands’ number×
2 kinds of demands’ nature × 3 routes’ instances).

1) EVALUATION OF THE Rdq-ROUTING MODEL
The results obtained for the Rdq-routing model with a time
limit of 6 hours are reported in Table 5, Table 6, and Table7
for the 55-route, 105-route, and 1590-route instances, respec-
tively. They all have two main columns referring to vessels’
demands only and vessels, stocks, and trucks’ demands,
respectively. Each of these two main columns has three main
sets of rows referring to the number of demands treated.
In each row of each rows’ set, the instance is presented as
Ii-d-routes’ number, such as ‘‘i’’ is the i-th combination
of successive and parallel configurations among the seven
existing combinations. Considering the three rows’ sets
of demands, i ranges from 1 to 21. ‘‘d’’ is the number
of demands in question, (8, 16, 24) demands for vessels’
demands only, and (14, 26, 38) demands for vessels, stocks
and trucks’ demands. Finally, the routes’ number refers to
the routes’ set instance in question. The results given for
each instance are shown in the following four columns rep-
resenting the objective value, the execution time in minutes,
and the gap in percentages provided by CPLEX. The aver-
age gap is also reported in the fifth column for a whole
set of demands. The average gap equals the sum of the
individual gap values divided by the number of solved
instances, with the unsolved instances not included in the
calculation. The results’ fields with the (-) character indicate
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insufficient memory. The results unfold many observations,
such as:

The increase in demands’ number leads to an increase
in the computation time for all scenarios. Besides, raising
the number of routes for a fixed number of demands also
increases computation time for all scenarios. It can even
be seen that the increase of the computation time is shaper
when we increase both the number of demands along with
the number of routes, especially with instances where the
parallel configuration is used in all vessels’ demands (see
for instances I3, I7, I10, I14, I17, and I21). Therefore, the
computation time is directly impacted by high congestion in
terms of demands to be satisfied and the complexity of the
routes’ matrix of the port. Notably, if any of these routes
operate simultaneously, i.e., in a parallel configuration of a
vessel, that causes two routes to be operating simultaneously.
If the parallel configuration is applied to all vessels, there will
be a need for vessels’ number to the power of two as a total of
routes to handle, in addition to routes transporting for stocks
and trucks, if any.

Another observation is that the generated routing solutions
are optimal using the real routes’ matrix (1590) and up to
the real max number of demands (16). For instance, for
8 demands, all given solutions are optimal with a maximal
computation time of about 2 hours. For 14 demands, all
instances are solved to optimality with a maximal computa-
tion time of 4 hours. For 16 demands, 6 out of 7 solutions are
optimal, while the 7th is not generated because of memory
insufficiency. This type of instance is very complex, where all
the demands have parallel and successive configurations at a
time. As one can notice, in Table 5 and Table 6, all instances
with a number of demands smaller than or equal to 16 are
found with null gaps, unless the instance I14-16 has a gap
of 45.29% and 76.72%, respectively. This shows the diffi-
culty of this particular instance compared to other instances.
Thus, when expanding the matrix of routes, it is evident that
the complexity increases accordingly. As mentioned earlier,
this type of instance has a feeble possibility of occurrence
as it is improbable to have for each demand of the whole
demands, parallel and successive configurations at a time.
Apart from this particular instance, all other instances with up
to the maximum expected number of demands were solved
optimally in a reasonable time. Regarding higher demands
(24, 26, and 38), gaps start to appear in 55 routes’ set (with
a maximum gap of 83.04%) and increase in 105 routes’ set
(with a maximum gap of 99.33%) to end up in the real set
of routes with non-generated solutions. The results show that
most of the solutions obtained are optimal (71%), knowing
that higher demands were tested to reach the limit of the
model.

We also observe that the objective values increase, which
means the port incurs more costs as the number of demands
increases and as the number of routes decreases. In fact, the
more demands, the more routes overlap can occur between
demands. However, the more possible routes the model can
choose from, (i) the less overlap can appear so that most

demands can occur simultaneously without incurring conse-
quent costs, and/or (ii) the less transfer time can be obtained
for a better solution. The most significant objective values
in the three routes’ sets are in instances where we assign the
parallel configuration in all vessels’ demands (Instances I3,
I7, I10, I14, I17, I21), especially if all vessels are large and
undergo successive qualities configuration as well (I7, I14,
I21) independently of the number of demands.

On the other hand, one can observe that the increase in
objective values (waiting and tardiness costs) with a grow-
ing number of demands and descending number of routes
has another vital insight. An insight that we find promising
regarding integration with the other operations’ optimizers.
In fact, in Table 7, where solutions using the real matrix of
routes are reported (1590), the first set of rows show objective
functions with null costs, unless in two instances where only
small waiting costs are detected while tardiness penalties
were not incurred. This means that the industrial manager
can use the routing suboptimizer for up to 16 demands (a
mix or vessels only) while conserving the solutions given by
the loading/stocking suboptimizers. It is worth noting that the
waiting costs (contrary to tardiness penalties) are artificial
expenses that do not exist in the real case study but were
added to avoid any unnecessary changes in the start demand
dates specified by the loading/stocking plan. For the second
set of rows, null costs are still observed in all instances
the solver can handle. When the demands get higher than
expected, tardiness costs appear in the few instances solved.
This means that the plan given by the other suboptimizers is
no longer preserved completely.

In summary, the proposed Rdq-routing model can be solved
optimally in a reasonable time using an average set of
demands while conserving the overall plan suggested by the
loading/stocking suboptimizers. The thing that will set the
base for integrating our model into the whole system without
extra costs.

2) EVALUATION OF THE R-ROUTING MODEL
We could not obtain solutions for all instances with the
Rrouting model. Only six among 126 instances were solved
to optimality (5%) (see Table 8). All remaining instances
constituted a memory problem for the model. As Table 8
shows, not only could the Rdq-routing model solve way more
complex instances, but these six instances are also solved
optimally by the Rdq-routing model in an execution time that
does not attain a tenth of a minute (0.1). In contrast, the
R-routing model takes an execution time that ranges from
37 min to 327 min. Hence, the importance of the Rdq-routing
model.

V. MANAGERIAL INSIGHTS AND RESEARCH
OPPORTUNITIES TOWARDS REAL-TIME
PLANNING/CONTROL INTEGRATION
What is interesting about studying the problems in an
integrated fashion, whether by formulating a simultaneous
optimization or by adopting the coupling strategy between
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TABLE 5. Solving the Rdq-routing model on 55 routes over a 15-day period with a time limit of 6 hours.

TABLE 6. Solving the Rdq-routing model on 105 routes over a 15-day period with a time limit of 6 hours.

separate problems’ optimizers, namely the routing optimizer
of this paper with constraints of interaction with other prob-
lems, is that even managerial insights are derived considering
the concordance and consistency between the different bulk
port problems. In fact, the planning operations’ problems
need to be aligned around the port supply-chain objective,
ensuring a positive impact on the bottom line not only on
an operational or tactical level but also on a strategic level.
Because if efforts are being carried out on the strategic level
without looking for optimal supply-chain design decisions,
the operational or tactical optimization would be difficult to

reach and unable to adhere to the strategic planning without
hindering the group’s ultimate mission; maximizing loaded
volume and minimizing time penalties. And this scenario
would compel the group to reconsider strategic planning for
correction and adaption.

With that being said, one can note, from the routing mod-
els’ results, that the transportation routes’ facility is better off
with many routes as this improves the objective value even if
the computation time may increase. The latter is acceptable
for tactical decisions made for more than a week (15 days in
our case). The increase in routes’ number is beneficial for
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TABLE 7. Solving the Rdq-routing model on 1590 routes over a 15-day period with a time limit of 6 hours.

TABLE 8. Obtained results with the R-routing model in comparison to their equivalent obtained with the Rdq-routing model.

the routing and the other bulk port optimization problems
as there will be more optional routes to operate in parallel
without any problem, thus serving a more significant number
of demands and transporting a greater volume of product.
However, it is legitimate to devote an in-depth reflection to
whether the increase of the number of routes should be done
by adding routes between the existing number of sources
and destinations (if we keep the reasonable maximal number
of demands as 16 ) or by adding the number of sources
and/or destinations, thus creating additional routes. It is rea-
sonable to think that adding sources or/and destinations will
be helpful whether we keep the same number of demands or
increase it.

Nonetheless, one must pay attention to how the number
of sources or/and destinations should be increased. This is
because adding a source may refer to adding a whole stor-
age shed with all its equipment (stacker and scraper) or to
adding only a scraper to the existing scraper and stacker of
the existing storage shed. Option one may incur costs, but
option two may bring infeasibility, obstruction, or (at best)
low performance in port logistics operations. There are two
reasons why adding a scraper inside an existing storage shed

may hinder port operations; (i) Within a storage shed, the
stacker and the scraper cannot operate close to each other.
Therefore, adding a second scraper may further constrain
the scraping or stocking operations. At best, the scraping
strategy would be vertical, which entails a low performance
of scraping flow rate. But in many scenarios, either stocking
or one scraping operation among the two scraping operations
would be blocked. (ii) A scraper is better off not making
many direction changes as this would play against the max-
imization of throughput. Indeed, by changing the direction
of the scraper each time, there is a risk of losing the pace
of the cadence. As to adding a destination, it depends on
stocking or loading demands. For stocking demands, adding
a destination may refer to adding a whole storage shed with
all its equipment (stacker and scraper) or to adding only a
stacker to the existing stacker of the existing storage shed.
As a result, the same points reported in adding a source also
apply here. For loading demands, adding a destination may
refer to adding a whole quay with an additional number of
loaders or to adding only the equipment (gantry cranes) for
vessels’ loading. Fortunately, this time building a whole new
quay is not necessary because increasing the number of gantry
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cranes in a quay does not constrain the functioning of any
port equipment in any way, neither in terms of its availability
nor in terms of its performance, apart from aminimal security
distance needed between two consecutive gantry cranes. Thus
far, adding routes can be carried out depending on the number
of demands the group aims to satisfy in a 15-day horizon;
adding routes between existing sources and destinations if the
number of demands does not exceed 16. The objective would
be to ensure a maximal performance in terms of minimal
tardiness and waiting times. But if the number of demands
must increase, adding routes between additional sources and
destinations would be salutary by taking into account the
measures and risks of doing so (already reported in this
section). We could draw insights on problems and operations
other than routing because of the takeaway ideas we could get
from the integration architecture we proposed in our former
work [6].

In discussing the aimed integration approach, we proposed
that OCP managers start optimization of the loading problem
(See Fig. 2). It is the first problem launched because the
maximal loaded volume and minimal time penalties are the
strategic objectives of OCP. Then, the other operations follow.
So that the loading operation could be carried out on time,
products’ stockpiles must be stocked, cooled, and equalized,
which is a necessary condition for the scraping to begin,
thus transportation as well. And so that the product can be
stocked on time, it must be produced on time. Hence, OCP
would launch production following this strategy to avoid
over-production and produce only what is needed and what
was ordered. In this paper, we developed the routing problem
by considering this vision of planning problems integration.

However, the debate is not settled here because the
resilience needed to use port operations efficiently requires
the integration of planning problems with the control system
so that the optimization result serves as setpoints for the real
industrial setting to execute the optimization plan on physical
equipment. Another reason behind the integration with the
control system is that disturbances, feedback cycles, and
dynamics such as equipment breakdowns and performance
degradation are considered because an industrial setting is not
an ideal environment [6]. However, it is prone to perturbations
that must be corrected and trigger re-planning if necessary.
Overall, integrating the optimization tool within the control
system should be a must and a high-priority requirement. The
same need was expressed in [48], in which it is reported that
continuous feedback and re-planning in case of production
deviations is compulsory for a planning tool to be set up
in autonomous industrial plants. The latter is becoming a
necessity that must be achieved rather than a luxury. The
architecture presented in Fig. 8 is none other than the archi-
tecture of integration of the operations’ optimization tool with
the control system using some extra enabler functionalities
that we propose as future research opportunities:

• The prediction tool predicts the equipment state (flow
rate and availability) to help the planning tool decide

on a better-quality solution. These data feed a com-
mon database that, in turn, feeds an internal unit to the
planning tool, which is a preprocessing unit. The latter
prepares data for each loading, stocking, routing, and
production subsystem, providing them with information
performance and parameters of available equipment and
routes.

• The digital twin helps the user choose the most suit-
able plan from the plans offered by the planning tool,
as the planning generates a set of integrated optimal or
near-optimal plans because of the multi-objective aspect
of the loading suboptimizer.

• The recovery tool that deals with disturbances and coor-
dinates with the control system and planning tool for
complete command of the industrial setting. In fact,
in case of disturbances, it has to decide whether a
re-planning request should be sent to the planning tool
for replanning or it only adjusts the plan without solic-
iting the planning tool but sends the adjusted plan
to the control system for execution. Since re-planning
each time, a disturbance occurs can be time-consuming.
As a result, the control system would never execute the
plan as the latter keeps getting updated. But again, not
re-planning would lead the port operations in significant
drifts.

• The unit of re-planning test compares the re-planned
plan of the planning subsystems with the adjusted plan
returned by the recovery and decides upon the best
solution. This is an internal unit of the optimization tool
(not illustrated in Fig. 8).

• Tactical-operational interface to process or interpret data
of optimization tool (tactical level) for the control sys-
tem (operational level). This is because, in the tactical
level plan, data are aggregated. While the control system
and the digital twin need more detailed data to execute
the plan at the operational level.

The architecture of Fig. 8 incorporates a high degree
of intelligence and autonomy required to respond to envi-
ronmental changes, ensuring multidisciplinary integration,
which is undervalued in optimization tools, but also in tra-
ditional mechatronic systems. The investment in such archi-
tecture is relevant because the integration of planning and
control systems is not feasible if we rely on the traditional
mechatronic systems as they are independent and consider
humans outside the loop, nor if we rely on optimization
tools with state-of-the-art algorithms that are developed in
isolation of the real industrial world and its disturbances and
dynamics. We could go as far as to say that before the advent
of industry 4.0 concepts, the integration problem was more
a theoretical issue than a practice. The integration could not
become a reality because of the challenges that emerge from
the heterogeneity, concurrency, and timing responsiveness
aspects of the whole integrated system. In the two levels
of integration; (i) the integration of optimization problems
and (ii) the integration of the integrated optimization tool
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FIGURE 8. Integrated planning (optimization) and control system from [6].

with the control system, we dealt with complexity that had
to be mastered and controlled with the help of the Systems
Engineering approach [49], [50]. The latter is a scientific
approach from Systems theory [51] to master complexity
during the design phase and an ultimate approach for world-
wide critical industries that enabled the integration in both
levels in a smart fashion. To fulfill the Systems Engineering
phases successfully, we had a collaboration with different
stakeholders of OCP Jorf Lasfar bulk port in order to elicit and
analyze all requirements for planning/control integration and
for planning problems’ integration and in order to validate the
functional architectures, we proposed as a result of working
through the elicited requirements, in our former paper [6].

VI. CONCLUSION
In this study, we advanced the field of bulk port opti-
mization by offering a unique approach to solve the
complex belt-conveyor routing problem within bulk ports.
The problem presented numerous complexities due to inter-
dependencies within the routing perimeter and interactions
with other port operations, primarily loading and stocking.

Our novel approach towards modeling the routing problem
was focused on optimization, considering both the constraints
of routing and interactions, as well as parameters of other bulk
port problems. Adopting this view in modeling allowed (i)
a real-world synchronization of the transportation operation
with other bulk port operations, which mirrored actual oper-
ations, and (ii) a successful first step towards the objective of
integrating the bulk port problems.

Contrary to the conventional method of simultaneous opti-
mization in a single mathematical model, our aimed inte-
gration approach involves optimizing bulk port problems
separately, maintaining a coupling strategy to avoid con-
tradictions and quasi-infinite loops between the problems’
optimizers, and ensuring concordance. This groundbreaking

method surpasses the previously achieved integration of a
maximum of two problems without including critical deci-
sions, as highlighted in our literature review.

Based on the scenario of the aimed integration approach,
We proposed two distinct routing models: The R-routing and
Rdq-routing models. These models optimally select routes
with shorter transport time from either the complete set R
or the subset Rdq, respectively, minimizing waiting costs and
tardiness penalties. Notably, the Rdq-routing model showed
significantly improved results compared to the R-routing
model. These satisfactory results promise for a successful
integration as found out in the experiments. The Rdq-routing
model was further enhanced to provide a more general appli-
cation to the model.

Despite the promising results, the bulk port belt-conveyor
routing problem remains a complex optimization problem
that requires a more sophisticated, hybrid approach. In the
face of challenging instances, we suggest approximation
methods, refining themathematical model, and improving the
solution using constraint programming (CP). This CP-MIP
hybrid approach can further benefit from the integration of AI
methods, enhancing control of computational performance
and memory usage.
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Data supporting these findings’ study, including instances
and results, are reported in the following online Data set
(https://data.mendeley.com/datasets/m69nbt37tz/1).
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