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ABSTRACT This paper introduces a new data-driven MPC structure based on two offline and online parts
to achieve the robust and constrained performance in an optimal scheme. In the first step, according to the
model matching condition, an offline data-driven controller is designed to reach the tracking performance.
In addition, to reduce the effects of the external disturbance, a data-driven-based disturbance observer is
presented to estimate the external disturbance. Therefore, the robustness against the external disturbances is
achieved in an offline procedure. Then, a data-drivenmodel predictive control (MPC) is structured based on a
data-driven-based model of a stabilized system. In other words, the overall controller is configured such that
the limitations of the system states and control input are considered in the control design process. Moreover,
by employing the move blocking strategy, the online computational burden of the suggested controller is
greatly reduced. To further improve of the feasibility problem, an ellipsoidal terminal (ET) constraint is
considered. The rows number of the blocking matrix influences on the ET set which leads to feasibility
enhancement. So, the main contributions of the presented data-driven controller are feasibility improvement
and reducing online computational burden in an optimal and constrained scheme which are illustrated in the
simulation section.

INDEX TERMS Data-driven method, model predictive control, model matching condition, disturbance
observer, move blocking strategy.

I. INTRODUCTION
Control of practical and industrial systems has always been
an inevitable part of studies [1], [2], [3]. Recently, several
control methods have been investigated based on the mea-
sured data with lack of the dynamic model [4], [5]. The
main approaches to design the data-driven-based controller
are usually called indirect data-driven and direct data-driven
methods [6]. In the indirect data-driven method, a model is
first estimated (or identified) based on the measured data.
Then, the control input is developed using the estimated
dynamic model. Hence, the measured data is not employed in
the designing process of the control law [6]. To decrease the
identifying complexity of the indirect data-driven method,
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the direct data-driven-based controllers have been signifi-
cantly considered. The controller is directly designed based
on the data collected from the real system [6].
In [7], it is shown that persistently exciting (PE) data can

parametrize all trajectories of a linear time invariant (LTI)
system. According to this result, various studies have been
presented to design the direct data-driven controller. For
example, several methods are developed for system anal-
ysis in [8], [9], [10], and [11], designing the output/state
feedback control in [4], [12], [13], [14], and [15], optimal
controller design in [16], internal model control and model
reduction in [17] and [18]. In addition, the advantages of
model predictive control (MPC) have led to many studies in
the data-driven-based MPC field [19], [20], [21], [22], [23].

In [22], a data-driven MPC is developed to control an
unknown LTI systems based on the noisy data. The recursive
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feasibility and closed loop stability of the system is guaran-
teed with constraint satisfaction. By considering a constraint
tightening which ensures the constrained output tracking per-
formance, the output constraint is considered in the control
design procedure. A data-driven MPC with the satisfaction
closed-loop stability is presented for controlling unknown
LTI systems in [24]. In addition, it can be used to control
the nonlinear systems by repeatedly updating data and uti-
lizing the local linear approximations. The simulation and
experimental results of the nonlinear four-tank system show
the advantages of the proposed data-driven MPC. Moreover,
a data-driven MPC scheme with terminal equality constraint
is suggested in [21] to control the LTI systems. First, this
approach is developed for the nominal data with no measure-
ment noise. Then, by considering the measurement noise of
data, a robust data-driven MPC is presented with guarantee-
ing the closed-loop stability, recursive feasibility, and con-
straint satisfaction. However, due to the prediction process
during the online optimization problem, the number of deci-
sion variables of the proposed approaches ( [21], [22], [24])
is increased. As a result, the online computation burden
of [21], [22], and [24] is high which can be a major challenge
in real implementation. Moreover, the robustness against the
external disturbances is not considered in [21], [22], and [24].
Some other data-driven controllers have been provided

in [13], [25], [26], and [27] to reach the robust perfor-
mance. In [13], a robust state-feedback data-driven con-
troller is designed for discrete-time LTI systems. First,
an exact parametrization of the closed-loop LTI system
with a fixed state-feedback is proposed. Then, by utiliz-
ing this exact parametrization, an H∞ robust state-feedback
controller is developed. However, the optimality and con-
straint satisfaction are not considered during the designing
the controller. A data-driven robust controller is designed
in [25] for discrete- and continuous-time LTI systems in
the presence of multi-model uncertainty and measurement
noise. The controller is provided based on a convex–concave
optimization problem. Then, the concave part is con-
vexified by linearization around the initial controller.
Although, the iterative solving increases the computational
complexity.

Motivated by the existing restrictions and challenges,
in this article, a new disturbance observer-based move block-
ing data driven model predictive controller is developed for
discrete-time LTI systems. The proposed controller includes
two online and offline parts. In the first part, the controller
is designed based on the model matching condition in an
offline procedure. Moreover, a data-driven-based disturbance
observer is provided to estimate the external disturbance
which is employed to reduce the effects of the disturbance.
In other words, to reach the robust tracking performance
against the external disturbance, an offline data-driven con-
troller is designed based on the model matching condition
and the estimation of the disturbance. A data-driven MPC
is configured in second part to satisfy the states and control
input constraints and guarantee the optimal performance.

To do this, the data-driven MPC is structured based on the
data of a stabilized system. Moreover, to reduce the number
of decision variables, a move blocking method is utilized
and consequently, the computational complexity of solving
online optimization problem is greatly reduced. The number
of rows of the blocking matrix influences on the considered
ellipsoidal terminal (ET) constraint which leads to feasibility
enhancement. In summary, the contributions of the proposed
data-driven controller in comparisonwith the exitingmethods
are as follows:
- Developing a new configuration of data-driven MPC
based on two offline and online parts to reach the
robust and optimal tracking performance and constraints
satisfaction.

- Compared with [25] and [27], the robustness against the
external disturbance is obtained in an offline process
which leads to reducing the conservatism of the online
optimization problem.

- Compared with the terminal equality-based MPC [21],
by employing themove blocking strategy and the ET con-
straint, the feasibility of the online optimization problem
is improved.

- Structuring the MPC problem based on a stabilized sys-
tems is also decreased the computational complexity of
the online optimization problem against the [21], [22],
and [24].

The reminder of the paper is: The problem formulation
is presented in Section II. The main results of the proposed
data-driven controller, Simulation examples, and Conclusion
and Future works are illustrated in Sections III, IV, and V,
respectively.
Notation: ∥·∥ and (�)† are the Euclidean norm, the

pseudo-inverse of � which satisfies ��†� = �. Im is a
(m×m) identity matrix and 0n is a (n×1) zeros vector. x(k) is
the real state and xt = x(t|k) is the predicted state at step t at
time step k . (⋆) shows the transpose element of the symmetric
matrix.

II. PROBLEM FORMULATION
In this section, problem formulation and preliminary lem-
mas are explained. First, a model-based tracking controller
and disturbance observer are introduced for a discrete-time
LTI system. Then, the data driven-based representation of
LTI systems is presented according to [12]. To do this,
by considering Rouche-Capelli theorem, the controller gains
is expressed to reach the tracking performance based on
model matching condition. The nomenclature of the symbols
is shown in Table 1.

A. MODEL-BASED NOMINAL TRACKING CONTROLLER
Consider the following nominal observable and controllable
discrete-time LTI system:

x (k + 1) = Ax (k) + Bu (k) , (1)

where x(k) ∈ Rn, u(k) ∈ Rm, A ∈ Rn×n, and B ∈ Rn×m

are system states, control input, known constant matrix, and

88598 VOLUME 11, 2023



M. Farbood et al.: Disturbance Observer-Based Data Driven Model Predictive Tracking Control

TABLE 1. The nomenclature of the symbols.

a full ranked input matrix, respectively. The design purpose is
that the stabilizing controller that conforms to a pre-defined
reference model, dictates the states of the closed-loop system
to a prescribed adjustable set point. The pre-defined reference
model is as follows:

x̄ (k + 1) = Āx̄ (k) + B̄r (k) , (2)

where x̄ (k) ∈ Rn is the desired state of the pre-defined
reference model at instant k ∈ N and r (k) ∈ Rn is the
prescribed adjustable set point. The dynamic model (2) is
supposed to be stable, thus the matrices Ā (which is Hurwitz)
and B̄ are known and constant.

Moreover, to reach the tracking performance, the control
signal is structured as follows:

u (k) = K1x (k) + K2r (k) , (3)

where K1 ∈ Rm×n obligates the closed-loop stability and
K2 ∈ Rm×n is a feed-forward term which guarantees the
tracking performance. The control law (3) is employed to
guarantee the matching problem as in the following lemma.
Lemma 1 (Matching Condition [28]): Consider the LTI

system (1), the pre-defined reference model (2) and the con-
trol law (3). If there exist matrices K1 and K2 such that the
following conditions are hold,

A+ BK1 = Ā, (4a)

BK2 = B̄, (4b)

then, one can say the matching problem is satisfied. ■
To design the control signal based on Lemma 1, the matri-

ces of the system must be known. In the next subsection
the design process of the disturbance observer based on the
system model (1) is introduced.

B. MODEL-BASED LINEAR DISTURBANCE OBSERVER
Consider the LTI system (1) in presence of the external
disturbance ω(k) ∈ Rm as follows:

x (k + 1) = Ax (k) + B (u (k) + ω (k)) , (5)

where the external disturbance ω(k) is supposed to be
unknown and slowly time-varying in the following.
Assumption 1 [29]: The external disturbance ω(k) is

considered as a slowly time-varying so that, for positive
constant α,

|1ω (k)| ≤ α,

where 1ω (k) = ω (k)−ω(k − 1). The design process of the
model-based disturbance observer is presented in Lemma 2.
Lemma 2 [29]: For the LTI system (5), the estimation of

the external disturbance ω (k) can be obtained as follows:

ω̂ (k) = Kωx (k) − s (k) , (6a)

s (k + 1) = s (k) + Kω (Ax (k) + B (u (k)+ω̂ (k)) − x (k)) ,

(6b)

where ω̂ (k) ∈ Rm and s (k) ∈ Rm are the disturbance esti-
mate and the variable state. The stability of the disturbance
observer has been proved in [29]. ■
According to Lemma 1 of [29],the matrix Kω ∈ Rm×n is

chosen as follows:

Kω = (Im − D) (MB)†M , (7)

where D = diag(δ1, δ2, . . . , δm) with |δi| < 1 for i =

1, 2, . . . ,m and matrix M satisfying (MB)†MB = Im.
By selecting the matrix Kω as in (7), the exponential sta-
bility of the estimation error eω (k) = ω (k) − ω̂ (k) is
achieved [30], [31].
Lemmas 1 and 2 have been developed based on the

dynamicmodel of the system and require the systemmatrices.
Since, the proposed control method is developed based on the
available data of the system, so, the data driven-based repre-
sentation of LTI systems is introduced in the next subsection.

C. DATA DRIVEN-BASED REPRESENTATION OF LINEAR
SYSTEMS
Consider the following available data of the LTI system (1)
with length T :

U[0 T−1] =
[
u (0) u (1) . . . u (T − 1)

]
, (8a)

X[0 T−1] =
[
x (0) x (1) . . . x (T − 1)

]
, (8b)

U[1 T ] =
[
u (1) u (2) . . . u (T )

]
, (8c)

X[1 T ] =
[
x (1) x (2) . . . x (T )

]
, (8d)

The following assumption is necessary in the design pro-
cess of the data-based control methods.
Assumption 2 ([7], [12]): Consider the PE input data

sequence (8a), the following rank condition must be satisfied.

rank
[

U[0 T−1]
X[0 T−1]

]
= m+ n. (9)

In other words, by satisfying condition (9), it is ensured
that the data matrices (8) include all the information of the
LTI system (1) with the controller (3). The only necessary
condition for T is T ≥ (m+ 1) n+ m. For more details, one
can see [7] and [12].
Proposition 1 [12]: By validating Assumption 2, the LTI

system (1) with control law (3) can be equivalently repre-
sented in terms of data matrices as follows:

x (k + 1) = Ax (k) + Br (k) , (10)
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where A = X[1 T ]G1 and B = X[1 T ]G2. The matrices G1 ∈

RT×n and G2 ∈ RT×n must satisfy the following conditions:[
K1
In

]
=

[
U[0 T−1]
X[0 T−1]

]
G1, (11a)[

K2
0n

]
=

[
U[0 T−1]
X[0 T−1]

]
G2. (11b)

Proof:By substituting (3) in (1), the closed-loop system
is obtained as follows:

x (k + 1) = (A+ BK1) x (k) + BK2r(k)

= [B A]
([

K1
In

]
x (k) +

[
K2
0n

]
r(k)

)
. (12)

According to Rouche-Capelli theorem, there exist two
matrices G1 and G2 so that (11a) and (11b) are fulfilled.
Consequently, one can say:

[B A]
[
K1
In

]
= [B A]

[
U[0 T−1]
X[0 T−1]

]
G1, (13a)

[B A]
[
K2
0n

]
= [B A]

[
U[0 T−1]
X[0 T−1]

]
G2. (13b)

Based on the dynamics in (1), it straightforwardly satisfies
the following condition [12]:

[B A]
[

U[0 T−1]
X[0 T−1]

]
= X[1 T ]. (14)

According to (13) and (14), (10) is obtained and the proof
is complete. ■
In the next section, the design process of the disturbance

observer-based data driven model predictive tracking control
of LTI systems with move blocking structure is presented.

III. MAIN RESULTS
This section presents the design steps of the proposed move
blocking data driven MPC of LTI discrete-time systems.
The controller consists of two components that are acquired
through offline and online procedures, utilizing data-driven
approaches. The tracking performance is firstly guaranteed in
the presence of external disturbance by an offline controller
based on the model matching condition. The data-driven-
based estimation of the external disturbance is utilized to
reduce the effects of the external disturbance. In addition,
to constraint satisfaction and optimality, an online part is also
designed. The data-driven MPC is configured based on the
stabilized nominal system in a move blocking scheme. The
move blocking matrix influences on the considered ET set in
such a way that the recursive feasibility of the optimization
problem and closed-loop stability of system are guaranteed.

The overall control signal is provided as follows:

(k) = u (k) + c(k), (15a)

u (k) = K1x (k) + K2r (k) + u1(k), (15b)

u1 (k) = −B†Bω̂ (k) , (15c)

where u (k) is obtained based on the data matrices and esti-
mation of the external disturbance in an offline scheme. The

part c(k) is also calculated in an online scheme based on the
data driven move blocking MPC. To do this, the design pro-
cedure of the suggested controller is presented in two steps.
In the first step, an offline data driven tracking controller
is designed. Then, to reach the optimality and constrained
performance, the data driven MPC based on the stabilized
system is provided in a move blocking structure.

Here, the disturbance observer (DO) is designed based on
the data driven representation (10).

A. DATA DRIVEN-BASED DISTURBANCE OBSERVER
DESIGN
Consider the estimation of the external disturbance ω (k) in
(6) and the data driven representation (10), one can say:

ω̂ (k) = Kωx (k) − s (k) , (16a)

s (k + 1) = s (k) + Kω (Ax (k) + Br(k) + Bω̂ (k) − x (k)) .

(16b)

The DO gain Kω is chosen as stated in Lemma 2 to reach the
stability of the estimation error eω (k).
Remark 1: To obtain the estimation of the ω (k) based

on the available data matrices, matrix B must be known.
Therefore, it is assumed that the input matrix B is known in
the proposed method. If the input matrix B was not available,
one can obtain the estimation of it based on the following
least-squares optimization problem [32]:[̂

B Â
]

= argmin
B,A

∥∥∥∥X[1 T ] − [B A]
[

U[0 T−1]
X[0 T−1]

]∥∥∥∥ . (17)

B. DESIGNING THE DO-BASED MOVE BLOCKING DATA
DRIVEN MPC
According to the data driven-based DO (16), the control
signal (k) will be designed in the next subsection. The
designing process includes two offline and online steps. In the
first step, the tracking performance is guaranteed due to
the external disturbance. Then, to reach the optimal and con-
strained performance, the move blocking data driven MPC is
developed based on the stabilized system.

1) FIRST STEP: DATA DRIVEN-BASED OFFLINE TRACKING
CONTROLLER DESIGN
To reach the tracking performance in the presence of external
disturbance, the data driven-based offline tracking controller
is developed. By considering the LTI system (5) and the
control signal u (k) (15b), we have:

x (k + 1)

= Ax (k) + B
(
K1x (k) + K2r (k) − B†Bω̂ (k)

)
+ Bω (k)

= Ax (k) + BK1x (k) + BK2r (k) − Bω̂ (k) + Bω (k)

= (A+ BK1) x (k) + BK2r (k) + Beω (k) . (18)

By choosing the Kω =
(
Ip − D

)
(MB)†M , the estimation

error eω (k) is stabilized. In addition, based on proposition 1,

88600 VOLUME 11, 2023



M. Farbood et al.: Disturbance Observer-Based Data Driven Model Predictive Tracking Control

the data driven representation of (18) is obtained as follows:

x (k+1)=X[1 T ]G1x (k)+X[1 T ]G2r (k)+Beω (k) . (19)

Due to matching condition (Lemma 1), the tracking perfor-
mance is guaranteed if the following conditions satisfy:

X[1 T ]G1 = Ā, (20a)

X[1 T ]G2 = B̄, (20b)

X[0 T−1]G1 = In, (20c)

X[0 T−1]G2 = 0n. (20d)

By satisfying the feasibility of the matching problem, the
controller gains K1 and K2 are obtained as follows:

K1 = U[0 T−1]G1, (21a)

K2 = U[0 T−1]G2. (21b)

To reduce the conservatism of the equality constraints
(20a) and (20b), we can solve the following optimization
problem (with γ > 0) to obtain the matrices G1 and G1:

min
∥∥X[1 T ]G1 − Ā

∥∥ + γ
∥∥X[1 T ]G2 − B̄

∥∥
Subject to : X[0 T−1]G1 = In,

X[0 T−1]G2 = 0n. (22)

Remark 2: The feasibility of the minimization problem
(22) guarantees that the stabilizing control gain K1 exists
when the matching problem satisfied. Therefore, to decrease
the conservatism of the minimization problem (22), we can
incorporate a stability condition to (22) even the match-
ing problem is not completely satisfied [28]. To do this,
by considering the proposition 1 and the Lyapunov inequality,
we have:

min
∥∥X[1 T ]Q1 − ĀP

∥∥ + γ
∥∥X[1 T ]Q2 − B̄P

∥∥
Subject to :

[
P X[1 T ]Q1
⋆ P

]
> 0,

X[0 T−1]Q1 = P,

X[0 T−1]Q2 = 0n, (23)

whereP > 0,Q1 = G1P andQ2 = G2P. The obtained results
are summarized in the following theorem.
Theorem 1: Consider LTI system (5), the pre-defined ref-

erence model (2) and the controller u (k) (15b). By satisfying
the optimization problem (23), the controller gains K1 and K2
guarantee the closed-loop stability and tracking performance.

Proof: According to matching condition (Lemma 1),
the tracking performance for LTI system (5) is obtained
when the conditions (20a)-(20d) be satisfied. Moreover,
to reduce the conservatism of the presented controller, the
controller gains can be obtained based on the minimiza-
tion problem (23) as K1 = U[0 T−1]Q1P−1 and K2 =

U[0 T−1]Q2P−1. Therefore, the closed-loop stability of sys-
tem (5) with tracking performance is guaranteed. ■
The obtained results based on Theorem 1 only guarantee

the tracking performance in the presence of external dis-
turbance. Therefore, in the next step, the online part of the

suggested controller c(k) is designed based on the move
blocking approach to reach the constrained and optimal per-
formance of the overall control law (k).

2) SECOND STEP: DATA DRIVEN-BASED MOVE BLOCKING
MPC DESIGN
Considering the limitations of the control signal and the
system states are very essential in practical applications.
The designed controller u (k) only guarantees the tracking
performance and also the optimality is not considered in the
design process. Consequently, this step develops the over-
all control law which includes the offline controller u (k)
and is calculated based on a stabilized closed-loop system.
Moreover, to reduce the computational complexity of the
online optimization problem, the move blocking method is
employed.

Here, the structure of the proposed data driven-based opti-
mization problem in a move blocking scheme is considered
as follows:

J∗ (x̃, L)

= min
c̄0,...c̄ℓ−1

x̃TNPx̃N +

N−1∑
t=0

x̃Tt c1x̃t +
T
t R2 t , (24a)

s.t : xt+1 = X[1 T ]G1xt + X[1 T ]G2rt + Bct , (24b)

t = ut + ct , ∀t ∈ {0, . . . ,N − 1} , (24c)

x̃m ∈ ς , (24d)

xt ∈ X , (24e)

t ∈ U, ∀t ∈ {0, . . . ,N − 1} , (24f) c0
...

cm−1

 = (L ⊗ Im)

 c̄0
...

c̄ℓ−1

 , (24f)

ct = 0, ∀t ∈ {m, . . . ,N − 1} , (24g)

where x̃t = x (t|k) − xr (t|k), t = (t|k) − r (t|k). N ,
L ∈ Rm×ℓ, xr (k) = x̄(k) and ur (k) are the prediction
horizon, blocking matrix, desired value, and desired input,
respectively. R1 > 0, and R2 ≥ 0 are the constant weighting
matrices and⊗ denotesKronecker product. x̃TNPx̃N and ς are
the terminal cost and ET set. The Lyapunov function of data
driven-based offline tracking controller is chosen as the termi-
nal cost for minimization problem (24a) to reach the recursive
feasibility and closed-loop stability of the controlled system.

Moreover, the following ET constraint (25) is considered
in the solving process of the optimization problem (24a).
The ET constraint leads to feasibility improvement against
the terminal equality-based data driven MPC [21]. Remark 3
demonstrates how to obtain the ET set ς .

ς =

{
x̃ (k) ∈ Rn | x̃T (k)Px̃ (k) ≤ ς

}
. (25)

Remark 3 (Calculating Ellipsoidal Set): By calculating
the maximum value of ς , the largest possible set ς can
be obtained. This means the maximum value of ς must be
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Algorithm 1 The Steps of Computing ς

Define variables o, r as the center and radius of Chebyshev ball
Define variable ε
Calculate P due to Theorem 1
sP =

√
P

iP = P−1

Objective = max r
Constraints = [η == r ∗ iP, �1 (o+ η ∗ ε) ≤ �2] ;
Solve the maximization problem
ς = max r

calculated such that all constraints of the system be satisfied.
So, consider the following maximization problem:

ς = {max r | r ⊂ 9} . (26)

where the feasible set 9 is as follows:

9 = {c̄(k)|(24a), (24d) and (24e) are satisfied}. (27)

To obtain the maximum value of r, we can reform problem
(26) to the Chebyshev ball problem. Therefore, the largest
possible ball which can be placed in feasible set 9 can
be determined. In the following algorithm the procedure of
computing ς is presented.
where �1 and �2 are the matrices of the limitations on the

control inputs and the system states.
Remark 4 (Calculating Blocking Matrix): [33]: To obtain

the blocking matrix L = L(0), the following conditions must
be satisfied: a) the number of the matrix row m should be:
ℓ ≤ m < N , b) in each row of the matrix, only one element
should be equal to one and the other should be zero, c) there
should be no completely zero rows or columns, and d) the
structure of matrix elements should be upper staircase.
Remark 5: In the first step, the data driven-based offline

controller is developed to reach the robust tracking perfor-
mance. Then, the provided controller u (k) is considered as a
known term in optimization problem. The effects of the exter-
nal disturbance are decreased by u1 (k) which is designed
based on the estimation of the external disturbance. There-
fore, in the design process of the online part, the optimization
problem is structured based on the nominal stabilized system.
Moreover, the value of u (k) is considered in constraint (24e)
to satisfy the limitations of the total control signal. In fact, the
online part of the suggested controller confirms the optimal
and constrained performance of the total control signal. Also,
to reach the recursive feasibility and closed-loop stability,
the Lyapunov function of data driven-based offline controller
and the ellipsoidal set (24d) are considered as the terminal
cost and terminal constraint of the optimization problem.
Furthermore, to decrease the computational complexity of the
online optimization problem, the control process is structured
based on the move blocking schemewhich leads to reduce the
number of the decision variables.

Theorem 2 presents the process of the recursive feasibility
and closed-loop stability proofs of the system (24b). The
structure of the blocking matrix L at time step k + 1 divides
the proof procedure into two separate cases.

Theorem 2: Consider the optimization problem (24a), the
ET set (25) and an admissible blocking matrix L(k). Let
the optimization problem (24a) is feasible with solution
c̄∗(x (k) , L(k)) at time k . Then, the feasible set 9 ̸= ∅,∀k ∈

(k + 1, k + 2, . . .) and the closed-loop stability of the system
(24b) is guaranteed.

Proof: The terminal constraint (24d) is affected by the
number of rows of matrix L(k + 1). Therefore, we have:
If (Number of Rows of L (k + 1) = N ): Consider the

following feasible solution at time step k:

c̄∗ (x (k) , L (k))

=
{
c̄∗0 (x (k) , L (k)) , . . . , c̄∗ℓ−1 (x (k) , L (k))

}
. (28)

Based on the receding horizon control (RHC) approach
and the ET constraint (24d), the control input sequence (29)
satisfies the optimization problem (24) with all constraints at
time step (k + 1).

c̄ (x (k + 1) , L (k + 1))

=
{
c̄∗1 (x (k) , L (k)) , . . . , c̄∗ℓ−1 (x (k + 1) , L (k + 1)) , c̄r

}
.

(29)

where c̄r is the desired value.
If (1 ≤ number of rows of L (k + 1) ≤ N − 1): In this

case, (number of rows of L (k + 1)) = (number of rows of
L (k))− 1. This means, by eliminating the first row of L (k),
L (k + 1) will be obtained. As a result, compared with time
step k , the ET set is shifted forward at the time step k + 1.
Consequently, c̄ (x (k + 1) , L (k + 1)) will be obtained as a
non-shifted sequence of c̄∗(x (k) , L(k)) as follows:

c̄ (x (k + 1) , L (k + 1))

=
{
c̄∗0 (x (k) , L (k)) , . . . , c̄∗ℓ−1 (x (k) , L (k))

}
. (30)

Accordingly, the recursive feasibility of the optimization
problem (24) is proved. Now, to prove the closed-loop sta-
bility of the system, it will be illustrated that the cost function
of the optimization problem (24) is decreased from time step
k to k + 1 based on the standard method [34]. Consider the
following shifted sequence of c∗(k) based on RHC policy:

c̃ (x (k+1) , L (k+1))=
{
c∗1 (x (k) , L (k)) , . . . , cr

}
. (31)

According to the sub-optimal solution c̃(x (k + 1) ,

L (k + 1)), we have the following sub-optimal cost function:

J̃ (x̃ (k + 1) , L (k + 1))

= x̃TN+1Px̃N+1 +

N∑
t=1

x̃Tt R1x̃t +
T
t R2 t

= x̃TN+1Px̃N+1 + J∗ (x̃(k), L(k)) − x̃T0 R1x̃0 −
T
0 R2 0

+ x̃TNR1x̃N +
T
NR2 N − x̃TNPx̃N (32)

According to the lack of re-optimization, the optimal value
of cost function is less than its suboptimal at time step k + 1,
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therefore, we have:

J∗ (x̃(k + 1), L(k + 1))

≤ J̃ (x̃ (k + 1) , L (k + 1))

= x̃TN+1Px̃N+1 +

N∑
t=1

x̃Tt R1x̃t +
T
t R2 t

= x̃TN+1Px̃N+1 + J∗ (x̃(k), L(k)) − x̃T0 R1x̃0 −
T
0 R2 0

+ x̃TNR1x̃N +
T
NR2 N − x̃TNPx̃N (33)

The cost function is decaying sequence if the following
condition is satisfied:

x̃TN+1Px̃N+1 − x̃TNPx̃N + x̃TNR1x̃N +
T
NR2 N ≤ 0 (34)

Based on the obtained results from Theorem 1, the term
x̃TNPx̃N is as a Lyapunov function and the control law u (k) =

K1x (k) + K2r (k) + u1(k) is feasible for system (24b) in ς .
Therefore, the condition (34) is satisfied and the cost function
is a decaying sequence from time step k + 1 to k which
concludes the proof.

The steps of the design process of the provided data-driven
controller are illustrated in Algorithm 2.
Remark 6: The main advantages of the suggested robust

data-driven MPC can be summarized as follows:

1) Development of a novel data-driven MPC comprising
both offline and online components to ensure optimal,
constrained, and robust tracking performance.

2) The online optimization problem is formulated for a
pre-stabilized system with an ellipsoidal terminal con-
straint, leading to a significant improvement in MPC
feasibility.

3) The proposed MPC scheme incorporates a move block-
ing method, which reduces the degree of freedom of
decision variables and ensures robustness in an offline
process. Consequently, the computational complexity of
the data-driven MPC is substantially reduced.

Remark 7: According to the fact that the proposed
approach consists of two parts, offline and online, it has
advantages in both aspects. These advantages include guar-
anteeing the stability of the closed-loop system, achieving
robust and optimal performance, and the ability to con-
sider physical constraints, along with low computational
complexity.

IV. SIMULATION RESULTS
The performance of the proposed data-driven controller is
evaluated in this section. Two scenarios are considered. In the
first scenario, the feasibility of the optimization problem and
the computational complexity are compared with the existing
data-drivenMPC [21].Moreover, the optimal and constrained
performance of the presented controller is compared with the
data-driven state-feedback controller [13] in the presence of
external disturbance.

Algorithm 2 The Design Process of the Robust Data-Driven
MPC

O
ffl
in
e
st
ep
s

xy

Step 0: Initializing the following parameters:
L (0) ,N , R1 > 0, R2 ≥ 0, T ≥ (m+ 1) n+ m.

Step 1: Calculate the matrices P > 0, Q1 = G1P and
Q2 = G2P based on the minimization problem (23)
(Theorem 1). Obtain the offline controller gains
K1 = U[0 T−1]G1 and K2 = U[0 T−1]G2.
Step 2: Calculate the disturbance observer gain
Kω =

(
Ip − D

)
(MB)†M .

Obtain the maximum value of ς by Algorithm 1 to
obtain the ET set ς .

For all k:

O
nl
in
e
st
ep
s

xy

Step 3: Calculating the estimation of external
disturbance, ω̂ (k) according to (16).
Step 4: Solve the optimization problem (24) to
obtain c(k).
Step 5: Calculating the overall constrained control
signal (k) = K1x (k) + K2r (k) + c(k) − B†Bω̂ (k)
based on (15).
Step 6: Applying the control signal (k) to the
considered system (5) and go to step 3.

End for

A. FIRST SCENARIO (FEASIBILITY AND COMPUTATIONAL
COMPLEXITY COMPARISON)
In this scenario, the feasibility and the computational com-
plexity of the online optimization problem are considered to
compare the performance of the proposed approach and the
data-driven MPC [21] with ω (k) = 0.
Suppose the following discrete-time LTI system [28]:

x (k + 1) = Ax (k) + B (u (k) + ω (k))

where

A =

 a 0.215 −0.108
0.458 0.079 0.085
−0.564 −0.326 0.894

 ,

B =

 0.929 0.914 −0.716
−0.684 −0.029 −0.156
0.941 0.600 b

 .

To compare the feasibility problem, the parameters −2 ≤

a ≤ 3, −0.8 ≤ b ≤ 1 with initial condition x (0) =

[0.1 0.05 0.2] are considered. Figure 1 illustrates the feasi-
bility reign of the online optimization problem (24) under the
proposed data-driven controller and data-driven MPC [21].
The feasibility issue is greatly enhanced with the suggested
data-driven controller due to the following factors: 1) config-
uration of the online optimization problem using a stabilized
system, 2) consideration of an ET constraint during the solv-
ing the online optimization problem, and 3) a reduced number
of decision variables compared to the data-driven MPC [21].
Moreover, the tracking performances of the proposed

data-driven MPC and the designed data-driven MPC in [21]
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FIGURE 1. The feasibility regions of the proposed data-driven method (◦)
and the data-driven MPC (∗) [21].

are also evaluated with a = 0.134, b = 0.793. To do this,
the matrices of reference model are considered as Ā = 0.2I3
and B̄ = 0.8I3. The trajectories of x1(t), x2(t), and x3(t)
under the suggested method and the data-driven MPC in [21]
are illustrated in Figure 2. Reducing the conservatism of
the online optimization problem of the designed controller
against the data-driven MPC in [21] leads to an improvement
in the system response.

Figure 3 displays the controller signals obtained from the
proposed method and the data-driven MPC [21]. The feasi-
bility enhancement of the data-driven controller leads to a
decreased conservatism in the online optimization problem.
As a result, the calculated control signals using the proposed
approach are notably more favorable compared to [21], par-
ticularly in terms of transient response. The zoomed sections
in Figure 3 highlight this improvement. Indeed, based on
Theorem 1, the offline controller gainsK1 andK2 are obtained
as follows:

K1 =

 0.592 −0.281 0.294
−0.374 0.385 −0.689
0.236 0.435 −0.658

 ,

K1 =

 0.068 −1.289 −0.178
0.456 1.589 0.695
−0.418 0.329 0.671

 .

The tuning parameters of the proposed controller are
selected as follows:

L (0) =


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

N = 7, R1 = 8I3, R2 = 0.1I3, T = 30.

Moreover, the value of ς = 0.8634 is obtained by
Algorithm 1. To show the computational complexity of two
data-driven controllers, the average and total CPU time are
calculated and compared in Table 2. The performance of

FIGURE 2. The trajectories of (a) : x1(t), (b): x2(t), and (c): x3(t).

TABLE 2. The obtained average and total CPU time.

the suggested controller is enhanced through the reduc-
tion of decision variables, implementation of the move
blocking scheme, and utilization of a stabilized system in
the online optimization problem. These actions effectively
reduce the computational burden, leading to improved con-
troller performance.

B. SECOND SCENARIO (CONSTRAINED PERFORMANCE
AND OPTIMALITY COMPARISON)
In this scenario, the performance of the suggested data-driven
MPC is evaluated in the presence of external disturbance
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FIGURE 3. The applied data-driven MPC signals.

FIGURE 4. The estimation of the external disturbance.

and is compared with the data-driven state-feedback con-
troller [13]. The following discrete-time LTI system is

FIGURE 5. The trajectories of (a): x1
(
t
)
, (b): x2

(
t
)
, (c): x3

(
t
)
, and

(d): x4
(
t
)
.

considered:

x (k + 1) = Ax (k) + B (u (k) + ω (k)) ,
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where

A =


1.178 0.001 0.511 −0.403
−0.051 0.661 −0.011 0.061
0.076 0.0335 0.0560 0.0382
0 0.0335 0.089 0.0849

 ,

B =


0.004 −0.087
0.467 0.001
0.213 −0.235
0.213 −0.016

 ,

ω1 (k) = ω2(k) =

 0.1 sin
(
k
10

)
k < 100

0.2 k ≥ 100

The tuning parameters of the suggested data-driven MPC
are chosen as follows:

L (0) =


1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

N = 7, R1 = 5I4, R2 = 1I2, T = 15.

Due to Algorithm 1, the value of ς = 0.1676 is obtained.
Moreover, the offline controller gain K1, and matrix P are
calculated based on Theorem 1, as follows:

K1 =

[
−1.5514 1.1163 −1.6862 0.6403
4.0694 −0.5412 3.6088 −1.6283

]
,

P =


0.1982 0.1052 −0.1489 −0.0021
0.1052 0.5246 0.1705 −0.0326
−0.1489 0.1705 0.5954 0.4648
−0.0021 −0.0326 0.4648 0.7823

 .

According to (16), the estimation of the external distur-
bance is obtained and shown in Figure 4. Therefore, the
disturbance estimation-based controller part u1 (k) in (15c)
can be obtained. Then, according to the offline part (15b),
the overall controller (k) in (15a) is calculated and applied
to the considered system. With the proposed controller and
the data-driven state-feedback controller [13], the trajectories
of the states are obtained and illustrated in Figure 5. Com-
pared with the data-driven state-feedback controller [13],
the performance of the proposed data-driven MPC is opti-
mal. Therefore, the system states convergence to zero in
less time which are zoomed in Figure 5. As a results, the
system response is improved under the proposed data-driven
controller.

By configuring the online optimization problem of the
proposed approach based on a stabilized system, the con-
servatism of the controller is significantly reduced. In other
words, the online component is designed to achieve optimal-
ity and ensure satisfaction of constraints.

Furthermore, the physical limitations of the system states
and the control input are satisfied during the design procedure
of the proposed approach. In this simulation, the limitations

FIGURE 6. The applied data-driven control signals.

are considered as follows:

[−0.5 − 0.6 − 0.8 − 0.1]T ≤x (k)≤ [0.3 0.7 1.5 0.6]T ,

[−0.5 − 3.2]T ≤u (k) ≤ [1.8 1.5]T .

As shown in Figure 6, the control input constraints are
satisfied with the proposed data-driven MPC. The zoomed
parts of the control inputs demonstrate that the data-driven
state-feedback controller [13] fails to satisfy the specified
controller limitations. As a result, the proposed data-driven
MPC, which ensures optimality and constraints satisfaction,
leads to improved performance and reduced convergence
time.

V. CONCLUSION AND FUTURE WORKS
In this article, a new data-driven MPC strategy was presented
to robustly control the discrete-time LTI systems. The design
process of the proposed data-driven controller was based
on two offline and online schemes. To decrease the conser-
vatism of the existing robust MPC methods, the robustness
against the external disturbance was guaranteed based on
the offline data-driven controller with tracking performance.
More precisely, the offline part of the overall controller was
designed based on the model matching problem and the
data-driven-based estimation of the external disturbance to
reach the robustly tracking of the predefined reference. Then,
to satisfy the limitations of the system states and the control
inputs, a data-driven MPC was provided according to the
stabilized system. To do this, the optimization problem of
the MPC was configured based on the stabilized system with
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the move blocking strategy. By considering an ET set which
was affected by the proposed move blocking strategy, the
feasibility enhancement resulted. In summary, the major con-
tributions of the provided robust data-driven MPC compared
with the existing data-driven MPC methods [21], [22], [24]
and the data-driven state-feedback controller [13] were
1) decreasing the online computational complexity, 2) impro-
vement of feasibility problem of the MPC, and 3) achiev-
ing to robust, constrained and optimal tracking performance.
However, to design the presented controller, the input matrix
must be known or estimated and the measurement noise of
the used data are not considered. Therefore, for future works
we consider the following topics:
1) Developing a robust data-drivenMPCbased on themove

blocking approach and disturbance observer with noisy
data.

2) Designing a move blocking robust data-driven MPC
without the employing the input matrix.

3) Developing an event-triggered robust data-driven MPC
based on themove blocking approach to further decrease
the online computational burden and the control updates.

4) Considering the robustness against the parameter uncer-
tainties during the design process of the data-driven
MPC.
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