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ABSTRACT As we advance towards 6G communication systems, the number of network devices continues
to increase resulting in spectrum scarcity. With the help of Spectrum Sensing (SS), Cognitive Radio (CR)
exploits the frequency spectrum dynamically by detecting and transmitting in underutilized bands. The
performance of 6G networks can be enhanced by utilizing Deep Neural Networks (DNNs) to perform SS.
This paper provides a detailed survey of several Deep Learning (DL) algorithms used for SS by classifying
them asMultilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), Long Short-TermMemory
(LSTM) networks, combined CNN-LSTM architectures and Autoencoders (AEs). The works are discussed
in terms of the input provided to the DL algorithm, data acquisition technique used, data pre-processing
technique used, architecture of each algorithm, evaluation metrics used, results obtained, and comparison
with standard SS detectors. This survey further provides an overview of traditional Machine Learning (ML)
algorithms and simple Artificial Neural Networks (ANNs) while highlighting the drawbacks of conventional
SS approaches for completeness. A description of some publicly available Radio Frequency (RF) datasets is
included and the need for comprehensive RF datasets and Transfer Learning (TL) is discussed. Furthermore,
the research challenges related to the use of DL for SS are highlighted along with potential solutions.

INDEX TERMS Autoencoders, cognitive radio, convolutional neural networks (CNNs), deep learning (DL),
deep neural networks (DNNs), machine learning (ML), multilayer perceptrons (MLPs), long short-term
memory (LSTM) networks, spectrum sensing, 6G.

I. INTRODUCTION
The global network traffic continues to rise exponentially
due to the growing popularity and ease of accessing wireless
devices [1], [2], [3], [4]. As per a forecast by Ericsson [5],
the number of mobile subscriptions will rise from about
8.4 billion in 2022 to around 9.2 billion by the end of 2028.
The heterogeneous demands of the emerging applications like
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Internet of Everything, Holographic Telepresence, Extended
Reality, Industry 5.0, and Intelligent Healthcare have moti-
vated the development of 6G technology [6]. The possibility
of finding a new vacant spectrum to accommodate these
service requirements has become an increasingly difficult
and expensive process [7]. The problem of spectrum scarcity
can be attributed to the traditional fixed spectrum allocation
policies which allocated a large part of the radio spectrum to
licensed Primary Users (PUs) and left a smaller portion of
the spectrum for unlicensed Secondary Users (SUs) [8], [9].

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 89591

https://orcid.org/0000-0002-6966-1275
https://orcid.org/0000-0001-5091-2567
https://orcid.org/0000-0002-7491-8776
https://orcid.org/0000-0002-3957-5341
https://orcid.org/0000-0001-5529-098X
https://orcid.org/0000-0003-3226-5639
https://orcid.org/0000-0002-4548-282X
https://orcid.org/0000-0002-7221-6279


S. N. Syed et al.: Deep Neural Networks for Spectrum Sensing: A Review

These allocation techniques permitted only the PUs to utilize
the spectrum despite the resources being idle [10]. Since a
considerable portion of the expensive frequency resources
provided by wireless systems are not always utilized in many
regions, the static spectrum assignment of most current and
legacy networks is quite inefficient [11]. These techniques
inherently protect the PUs from interference but can deny
critical radio requirements of SUs even when multiple bands
of PU are unused. With the massive rise in the number
of network devices, static allocation techniques will rapidly
exhaust the radio resources.

Dynamic Spectrum Management (DSM) is a flexible
spectrum allocation technique that allows the SUs to access
the PU spectrum if it is idle, or to even share the PU spectrum
if the transmission of PU is protected from interference [12].
Cognitive Radio (CR) is the principal enabler of DSM [13]
and ensures that the spectrum is utilized in an efficient
manner by allowing the SUs to opportunistically access the
idle frequency bands of the PUs [14]. The term ‘CR’ was
first proposed by Joseph Mitola [15] and Simon Haykin
introduced the basic cognitive cycle in [16].Wireless regional
area network (IEEE 802.22) is the first international standard
based on CR, and the CR technology is now being used
in several standards, including Zigbee (IEEE 802.15.4) and
Wi-Fi (IEEE 802.11) [17]. Spectrum Sensing (SS) is one of
the most crucial techniques of CR which provides real-time
occupancy information of frequency bands that are available
for SUs without interfering with PUs’ operations [18].
An accurate detection of the occupancy of spectrum bands
is critical in CR operation, since all secondary transmission
strategies are based on it [19].
The PU spectrum has been traditionally sensed with

popular SS techniques like Energy Detection (ED), Matched
Filter Detection (MFD) and Cyclostationary-based Detection
(CBD). These conventional techniques result in inefficient
use of radio resources due to missed detection of the PU and
false alarms [20]. Due to the drawbacks of conventional SS
techniques and increasing popularity of Artificial Intelligence
(AI), many recent works have used traditional Machine
Learning (ML) algorithms like Support Vector Machines
(SVMs) and K-Nearest Neighbor (KNN) for SS. However,
the manual feature extraction process involved in traditional
ML algorithms requires expert knowledge and is a time-
consuming process. Deep Learning (DL) is a data-driven
approach and also a subset of ML that can automatically
capture complex patterns and features from input data [21].
Deep Neural Network (DNN) techniques being quickly
adaptable are robust to uncertain radio environment. The
main objective of this article is to survey the latest research
efforts towards the application of DL for the important task
of sensing the PU spectrum.

A. INTRODUCTION TO SPECTRUM SENSING
The radio spectrum is inefficiently exploited because of the
fixed allocation policies and the growth in user needs [22].

TABLE 1. List of acronyms in alphabetical order.

In CR-based DSM, SS is a crucial step to learn the radio
environment [12] and help increase spectrum utilization.
SS is used to continuously sense the licensed user spectrum
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TABLE 1. (Continued.) List of acronyms in alphabetical order.

by the SUs to detect PU activity and spectrum holes
in terms of duration, frequency, and location [23]. SS is
modelled as a binary hypothesis testing problem with the two
hypotheses being the presence or absence of the PU [24].
The functions of spectrum sharing, decision making, and
resource allocation are implemented if the spectrum is
available for transmission [17]. Fig. 1 depicts a block diagram
representing sensing of the PU spectrum by an SU. The
received radio signals at the SU are first passed through any
signal processing, feature extraction and data pre-processing
steps before being provided as input to an SS detector. The SS

detector receives and utilizes a priori information if required
and generates a decision about PU presence or absence.

SS techniques can be grouped based on the number of users
as multi-user or Cooperative Spectrum Sensing (CSS) and
single user or local or non-CSS [25]. In CSS, a group of SUs
share their sensed data (soft fusion) or decisions (hard fusion)
with fusion center to improve the sensing accuracy. Local
sensing results are different for SUs due to the differences
in sensing capabilities [26]. The SS performance of a CR
system is determined by the global decision combination rule
of fusion center along with other factors like the number
of SUs, the environment for SS, and the capabilities of
SUs [27]. The combination of soft decisions results in an
optimal detection performance but needs an infinite amount
of bandwidth in theory [28]. Hard fusion on the other
hand produces inferior results while saving bandwidth [29].
Performance and bandwidth efficiency can be balanced by
using a combination of hard and soft decisions from the
SUs [27].
Non-CSS techniques suffer from the hidden PU prob-

lem [30]. By using CSS, the performance gain of a CR
system can be increased by the cooperation ofmultiple SUs to
detect spectrum holes [27]. CSS can overcome problems like
multipath fading and shadowing, ensuring that PU constraints
are met for SS [31], [32].

B. RELATED SURVEYS
There are several survey papers that have reviewed the
various types of SS algorithms and have discussed the
research challenges and future directions associated with it.
For instance, [33] emphasizes the need of exploring the code
and angle dimensions along with frequency, time, and space
dimensions for obtaining complete spectrum awareness.
SS approaches of ED, waveform-based sensing, CBD, radio
identification-based sensing and MFD are presented. The
work further discusses the challenges involved in sensing
the PU spectrum and the concept of CSS and its types.
The survey [34] reviews SS techniques by categorizing
them into three classes based on whether they need both
source signal and noise power information, only noise power
information (semi-blind detection) or no prior information
(totally blind detection), with a particular focus on semi-
blind and blind techniques. An analysis on detection
threshold and test statistics distribution is provided and the
challenges in developing a practical SS device are discussed.
Axell et al. [35] provide the fundamentals of signal detection
and conventional narrowband and wideband SS detectors.
The work describes CSS in detail and discusses energy
efficiency in CSS.

Sharma et al. [36] discuss the enablers of CR along with
the practical imperfections in a CR system. In addition,
the work provides a classification of popular SS techniques
based on the signal processing techniques used, signal
bandwidth, coordination between SUs and number of RF
chains. Another survey [37] provides a detailed review of
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FIGURE 1. Block diagram representing sensing of the PU spectrum by an SU.

traditional SS techniques by categorizing them on the basis
of bandwidth as narrowband and wideband SS approaches.
Besides describing narrowband sensing techniques like ED,
MFD and Eigenvalue-based Detection (EBD) and wideband
sensing techniques like multiband sensing, wavelet-based
sensing and compressive sensing, the paper discusses the
practical implementation aspects for various sensing tech-
niques. Work [19] first describes the different access modes
for CR and then summarizes four common SS methods:
ED, MFD, Covariance Absolute Value (CAV) detector and
Hadamard ratio-based detector. The concept of Signal-to-
Noise Ratio (SNR) wall is explained and the performance of
the four SS detectors is analyzed and compared under various
conditions.

The survey in [25] groups the SS techniques on the basis
of bandwidth as narrowband and wideband, on the basis of
number of users as non- cooperative and cooperative, on the
basis of detection as transmitter and receiver detection, and
finally on the basis of need of prior knowledge as blind,
semi-blind and non-blind detection. In addition, a detailed
comparison of popular SS techniques: ED, MFD, feature
detection, Waveform Detection (WD) and EBD is provided.
The work also discusses the system modelling methods
for SS, the challenges associated with sensing the PU
spectrum and CR standards. The work in [17] summarizes the
fundamentals of CR and SS. SS techniques are described, and
mathematical models are provided by classifying the schemes
into conventional methods, such as ED and MFD and recent
advanced sensing schemes such as wideband compressive
and adaptive compressive techniques. The survey further
discusses the challenges involved in sensing the PU spectrum
and various applications of Cognitive Radio Networks
(CRNs).

A review in [38] provides a classification of SS techniques
based on bandwidth. The narrowband sensing techniques:
ED, CBD, MFD, covariance-based detection and traditional
ML-based SS are discussed. Works based on traditional ML
techniques like K-means clustering, SVM and KNN are
surveyed. Wideband sensing techniques are further grouped
into Nyquist-based and compressive sensing techniques.

A study in [11] reviews probabilistic SS approaches by
grouping them on the basis of what features they extract
from the samples of received signals. ED, CBD, EBD,
MFD and blind detection techniques and their sub-categories
are described in detail along with a discussion on the
implementation challenges. Based on the applications and
technologies already envisioned for 6G, the role of SS is
conceptualized for use in future networks.

The survey in [23] is based on the applications of ML
for CSS and dynamic spectrum sharing by focusing on the
feature vector extracted from the received signal, the type of
ML algorithm and evaluation metrics. TheML-based sensing
techniques are categorized as supervised, unsupervised and
reinforcement learning techniques, and are analyzed based
on the features, type of SUs, and performance metrics used.
The work further classifies the spectrum sharing techniques
and summarizes the use of ML algorithms for spectrum
sharing. Although numerous survey papers exist in the field
of SS, there is a lack of literature on the latest DL-based
developments for sensing the spectrum. ML-based SS has
been covered in some surveys, but the papers mainly focus on
traditional ML algorithms and not on the emerging research
efforts using DL. Table 2 summarizes the key focus of the
surveys discussed in this sub-section.

C. CONTRIBUTION
In contrast to the existing research, this paper provides a
detailed survey of the recent works that have used DNN
algorithms for SS. The key contributions of this paper are as
follows:

• After introducing the concept of SS, this work sum-
marizes the contribution of several fundamental review
papers in the field of SS. The survey then discusses
about conventional SS algorithms and their drawbacks.
This will provide a comprehensive guide for readers to
develop an understanding of the SS research.

• We then provide an overview of some works that
are based on traditional ML algorithms and simple
Artificial Neural Networks (ANNs) before discussing
DNNs for completeness. Summarizing the early works
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FIGURE 2. Summary of ML-based SS algorithms discussed in this paper.

that used ML for SS helps create a timeline and
understanding of research efforts towards adopting AI
for SS.

• The major portion of this paper is dedicated to
surveying the latest works using DL algorithms for
SS by categorizing them into five types of DL
algorithms: Multilayer Perceptrons (MLPs), Convo-
lutional Neural Networks (CNNs), Long Short-Term
Memory (LSTM) networks, combined CNN-LSTM
architectures and Autoencoders (AEs). A detailed
analysis of various DL approaches in terms of the
input provided to the DL algorithm, method of
data acquisition, data pre-processing technique used,
architecture of each algorithm, evaluation metrics used,
results obtained and comparison with standard SS
detectors is presented. This discussion will create
awareness about using DL techniques for SS. For
instance, which pre-processing technique and DNN
architecture should be selected for a high detection
performance.

• We describe some publicly available Radio Frequency
(RF) datasets and discuss the need for comprehensive
RF datasets and the concept of Transfer Learning (TL).

• The work further highlights the research challenges
related to the use of DL for SS along with potential
solutions.

D. PAPER ORGANIZATION
Fig. 2 provides a summary of the ML-based SS algorithms
discussed in this paper along with their years of publication.
The figure also highlights if a particular work is based
on CSS or non-CSS scenario. Fig. 3 summarizes the
paper organization. We introduced the concept of DSM
and the problem of spectrum scarcity in Section I. This
section further covers the related surveys and highlights our
contribution. Section II describes conventional andML-based
SS approaches. Section III reviews various DL-based SS
techniques. Section IV provides information about various
RF signal datasets, the concept of TL and software used.
Section V includes research challenges of applying DL for
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FIGURE 3. Survey paper organization.

TABLE 2. Related surveys.

SS along with potential solutions while section VI concludes
this paper.

II. SPECTRUM SENSING APPROACHES
A. CONVENTIONAL SPECTRUM SENSING
The PU spectrum has traditionally been sensed using popular
sensing techniques like ED, MFD, EBD, CBD, and WD.
These conventional SS algorithms have been extensively
reviewed in several research works, as summarized in
section I. However, these techniques result in an inefficient
utilization of radio resources due to the problem of missed
detection of the licensed user and false alarms [20]. For
instance, there is no need for prior information about the
PU signal before using ED, but it has a high false alarm
rate and is inefficient in environments with low SNRs [38].
The MFD technique becomes impractical to implement
because it requires prior knowledge of the PU signals [25].
EBD technique has high computational complexity [37].
SS using CBD involves high power consumption, processing
complexity and sensing time [17]. There is a possibility of
synchronization errors with WD [25]. SS techniques must
ensure a low Probability of False Alarm (PFA) and a high
Probability of Detection (PoD) to lower the impact of harmful
interference [38]. Due to the drawbacks of conventional SS
techniques and growing popularity of the field of AI, a lot
of recent works have adopted ML algorithms for sensing the
spectrum accurately.

B. MACHINE LEARNING (ML)-BASED SPECTRUM
SENSING
ML-based SS algorithms are based on extracting feature
vectors from patterns and classifying them into either
null hypothesis (absence of PU) or alternative hypothesis
(presence of PU) [27]. These techniques are more adaptive
than conventional sensing techniques due to their learning
ability and when adopted for CSS can achieve a better
detection performance due to their capacity to describe more
optimized decision region on the feature space [39]. ML can
help address the problem of spectrum scarcity by increasing
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spectrum utilization [40]. ML techniques treat SS as a binary
classification problem and use energy or probability vectors
to predict the status of RF channel [38]. The ML algorithms
can be broadly classified into three classes [41]:

• Supervised Learning: where model is trained using input
samples and the corresponding labels.

• Unsupervised Learning: where input samples are distin-
guished by the model without any output labels.

• Reinforcement Learning: where an agent learns to map
input to actions by communicating with an environment.

A review of the three types of ML algorithms used for
CSS is provided in a recent survey [23]. Out of the three
categories, supervised and unsupervised ML techniques are
popular among researchers in the context of SS. In this work
ML techniques for SS are analyzed by dividing them into two
classes: traditional ML and ANNs. The literature on ANN-
based sensing is scarce, and this survey aims to provide a
detailed review of various ANN algorithms with a particular
focus on DL techniques by describing their architectures,
input provided to algorithms, outputs produced, evaluation
metrics and comparison with standard models.

1) TRADITIONAL MACHINE LEARNING-BASED SPECTRUM
SENSING
In this work, traditional ML refers to ML algorithms that
are not based on neural networks. The use of traditional ML
for sensing of radio spectrum has been widely adopted in
several works. For example, to utilize ML algorithms for
CSS, [42] explored the use of Fisher Linear Discriminant
Analysis (FLDA) for fusing the sensing results from SUs.
FLDA can be considered as a supervised ML technique
and is used to separate two or more classes by determining
a linear combination of features [43]. The PU network is
modelled as a random geometric network and the SUs sense
the spectrum using ED to determine spectrum availability.
The sensing performance is made accurate by incorporating
location information and reliability of the decision of each
SUwith the help of a linear fusion rule whose coefficients are
determined by FLDA. The Receiver Operating Characteristic
(ROC) plots of the proposed scheme are compared with
equal coefficient model, AND rule, OR rule and Maximum
Likelihood Detector (MLD)-based rule by considering two
circular detection areas.

In equal coefficient model, the sensing results are com-
bined in a linear manner like the proposed model but with
same linear coefficients for all SUs without considering the
SU network topology. The OR and AND rules are hard fusion
rules. The OR rule determines the presence of PU if at least
one SU reports the presence of PU whereas in AND rule the
presence of PU is confirmed when all SUs detect the PU.
TheMLD following Neyman-Pearson criterion is the optimal
detector for the problem of random PU network detection.
The detection performance for all models improves with
the increase in radius of detection and the proposed model
outperforms the equal coefficient, AND and OR rules-based
models for both circular detection areas.

Work [39] proposes unsupervised ML techniques:
K-means clustering and Gaussian Mixture Model (GMM)
along with supervised ML techniques: SVM and weighted
KNN. The energy levels received at SUs are considered
as feature vectors and fed into ML models to predict the
channel availability. K-means clustering works by dividing
the features into ‘K’ clusters and mapping the clusters
to the status of PU based on the centroids of clusters.
GMM is a probabilistic approach which models feature
vectors as a gaussian mixture distribution so that each
gaussian distribution corresponds to a cluster. For using
SVM, the training energy vectors are made linearly separable
by mapping them to a higher dimensional feature space
by means of a non-linear mapping function. The SVM
algorithm then finds a hyperplane which is at the maximum
distance from data points of the two classes corresponding
to availability of PU. In weighted KNN technique the nearest
‘K’ points are assignedweights inversely proportional to their
distances and classes are predicted based on the majority
voting of neighbors.

The system model consists of multiple PUs and the
channel is considered available only if all PUs are inactive.
Multiple SUs estimate the energy levels of received baseband
complex signal samples and report it to the fusion center
which generates the energy vector. The ML models are
evaluated by comparing their training times, classification
delays and ROC curves by modelling a system with 25 SUs
and 2 PUs. KNN classifier takes the least training time while
SVM needs the highest training duration. On comparing
the average classification delay for various classifiers, it is
observed that the classification time remains constant even
on increasing the number of training samples for Fisher linear
discriminant [42], K-means clustering, andGMM techniques.
On comparing the ROC curves of various CSS schemes
by varying the number of SUs it is found that a greater
number of SUs results in better performance for the proposed
classifiers. SVM with linear kernel outperforms SVM with
polynomial kernel, K-means clustering, KNNwith Euclidean
and Cityblock distances, GMM as well as the other CSS
schemes like Fisher linear discriminant, OR rule, and AND
rule.

Following a similar approach, Lu et al. [44] proposed
the use of two-dimensional probability vectors in place of
high-dimensional energy vectors for K-means clustering and
SVM-based CSS. The high dimensional feature vector is
transformed into a low dimensional probability vector to
achieve smaller training time and classification delay. The
performance of K-means clustering, SVM with linear kernel
and SVM with polynomial kernel techniques with energy
vector and probability vector is compared to determine their
probabilities of detection, training durations and classifica-
tion delays. When considering a CRN of one PU and 2 SUs,
the ML techniques report higher detection probabilities than
OR and AND fusion rules while SVMwith probability vector
outperforms all other sensing techniques. In a CRN with
one PU and 9 SUs, SVM with linear kernel and probability
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vector has the highest detection accuracy. While the training
duration of K-means clustering is the longest, it has the
least classification delay. Due to the low dimension of the
probability vector-based ML algorithms, they report lower
training duration and classification delay than energy vector-
based ML algorithms.

In [27], the ED of received signals is viewed as an analogy
to feature vectors for training a KNN classifier [45] for
CSS. The KNN algorithm considers the sensing classes from
training phase and current sensing report as neighbors and
the Smith-Waterman algorithm [46] calculates the distance
between the neighbors. Posterior probability is used to
determine the nearest neighbor and KNN determines the
prior and conditional probabilities. Multiple SUs are used
to provide spatial diversity and the sensing slot is divided
into mini slots to add temporal diversity. At each mini
slot, the energy signal is quantized into discrete zones and
multiple bits corresponding to the zones are transmitted
instead of transmitting soft or hard decisions. The local
sensing reports from SUs are combined by the fusion center
with the help of a weight-based decision combination rule in
which SUs are assigned weights based on their effectiveness.
The performance of the scheme with training sizes of
330 and 100 is evaluated in Additive White Gaussian Noise
(AWGN) as well as fading channels and compared with the
conventional OR rule.

In AWGN channel, the proposed technique with 330 train-
ing size reports the highest PoD while the scheme with
100 training size has comparable performance with the
conventional OR method for low SNR values. When
comparing the Probability of Error (PoE), the proposed
model with higher training size reports low PoE for low
SNR values. For high SNR ranges, both proposed schemes
have similar performance, confirming that the model gives
more reliable performance than conventional SS even with a
smaller training phase. It was concluded that for low SNR
values, a higher number of training samples is needed to
accurately predict the status of the PU. When considering a
fading environment, the proposedmethod with larger training
size reports a better detection performance and a lower PoE
than the OR scheme.

In a recent work, Tian et al. [47] formulated the SS
problem as an SNR-based multi-class classification problem
to adapt to SNR variations. A Naïve Bayes Classifier (NBC)
is trained for the SS of Orthogonal Frequency Division
Multiplexing (OFDM) signals. NBC is a supervised ML
algorithm which performs classification based on Bayesian
decision theorem [48]. The work also proposed a class-
reduction assisted prediction method to reduce the time
needed for SS. On comparing the PoD versus SNR curves and
the ROC curves, the NBC-based detection outperforms ED,
Cyclic Prefix (CP)-based detector [49], asymptotic simple
hypothesis test-based detector [50] and a neural network with
two hidden layers. Furthermore, the performance bounds of
the SS error rates are calculated, and the performance of
NBC-based detector is found within the bounds.

Table 3 summarizes the traditional ML-based research
works discussed in this subsection by providing a descrip-
tion of the input to the traditional ML algorithm, any
pre-processing technique used, the ML algorithm used,
key evaluation metrics used and performance of the SS
model. Several studies have used both supervised and
unsupervised traditional ML techniques to sense the PU
spectrum. Unsupervised learning is practically easier to
implement than supervised learning as it does not require
information about the PU availability, but supervised learning
techniques demonstrate better sensing performance as they
have additional information about the status of PU [39].
Despite their popularity, the manual feature extraction in
traditional ML techniques requires the knowledge of field
experts and is a time-consuming process. Additionally, the
accuracy of the selection of input features influences the
detection results [23]. Moreover, most of the works based
on traditional ML are limited to CSS scenario and rely
on features extracted from conventional SS techniques to
provide input to the sensing algorithms. These disadvantages
of traditional ML algorithms have accelerated the research
towards adopting neural networks for SS.

2) ARTIFICIAL NEURAL NETWORK (ANN)-BASED
SPECTRUM SENSING
ANNs are inspired by the structure and functioning of a
human brain and are widely used to model complex real-
world problems in many disciplines [51]. These networks
primarily consist of an input layer, hidden layers, and an
output layer. Neural networks are efficient in learning non-
linear functions and adapting the non-linear features of PU
signals [52]. In this paper the ANN-based SS is grouped into
simple ANN techniques which include neural networks with
a single hidden layer and DL which is covered in detail in the
next section.

In an early attempt to utilize simple ANN for SS, [53]
proposed a joint detection method which combined ED and
Cyclostationary Feature Detection (CFD) with ANN. The
PU signal is assumed to be an amplitude modulated signal
in AWGN. Four features are extracted to provide input to
the ANN, one of which is energy and the other three are
cyclostationary feature values. These features form the input
of a neural network having one hidden layer and determines
the status of the PU.

Vyas et al. [52] proposed a hybrid SS scheme by utilizing
energy from traditional ED and Zhang test statistics from like-
lihood ratio test statistic [54] as features for training a simple
ANN with a single hidden layer. The model is evaluated with
the help of real-world PU signals obtained with an experi-
mental test setup inspired from [55]. The hardware part of the
platform consists of a Universal Software Radio Peripheral
(USRP-N210), WBX daughter board, RF-Explorer and
D3000N Super Discone antenna. GNU Radio and MATLAB
form the software part of the measurement setup.

The combined features and labels from four radio
technologies are utilized for training four different ANN

89598 VOLUME 11, 2023



S. N. Syed et al.: Deep Neural Networks for Spectrum Sensing: A Review

TABLE 3. Summary of traditional ML-based approaches for spectrum sensing.

architectures and the best ANN model is identified with
the help of a cross-validation set. The model is evaluated
for the four radio technologies by considering different sets
of features: only energy of current sample, only Zhang
statistics of current sample, energy and Zhang statistics of
current sample, and energy and Zhang statistics of current
and previous samples. For all radio technologies, using only
the current sensing event gives the worst sensing performance
while using energy and Zhang statistics of current and
previous sample achieves the best accuracy. The proposed
technique achieves a better detection performance than the
Improved Energy Detection (IED) [56] and Classical Energy
Detection (CED) [55] approaches for all radio technologies.
Table 4 summarizes the simple ANN-based research works

discussed in this subsection. Even though simple ANN
methods improve sensing performance, their detection results
depend directly on the accuracy of the input features obtained
from the received signals [57]. The extraction of specific
features from the original received signal is limited to
obtaining partial information, which inevitably leaves out
implicitly hidden but helpful features. As simple ANNs
do not have multiple layers, they cannot perfectly capture
complex data features and non-linearity. To overcome these
shortcomings of simple ANN algorithms, DL algorithms
have been widely adopted for the task of SS.

III. DEEP LEARNING (DL)-BASED SPECTRUM SENSING
DL is a subset of ML that can automatically capture
complex patterns and features from input data [21]. As these
algorithms are quickly adaptable, they are robust to uncertain

radio environments. DL enhances model performance by
utilizing the non-linear relationship in training data opti-
mally [58]. The multiple hidden layers enable the DNN to
learn patterns from datasets layer by layer. Low-level data
features are transformed into high-level abstract features as
the output from a lower layer serves as input for a higher
layer [59].

Fig. 4 depicts a generalized representation of DNN-based
SS in a non-CSS scenario.With DL, the SS problem is treated
as a binary classification or hypothesis testing problem
with the two classes representing absence of PU or null
hypothesis (H0) and presence of PU or alternative hypothesis
(H1). Firstly, either real-world data is acquired, or samples
are synthetically generated to represent spectrum data. This
data can be collected in the format of In-phase/Quadrature
(I/Q) samples, spectrograms, Covariance Matrices (CMs),
etc., or various features like energy and cyclostationary
features can be derived from this data. Secondly, the acquired
spectrum data can be pre-processed by techniques like
data standardization, data normalization, filtering, matrix
manipulation, etc., to be in an appropriate form and increase
the detection performance of the DNN. The pre-processed
data is split into training, validation, and test sets. The model
is trained by the training set and then tuned by the validation
data in an offline process. Next, the well-trained model with
its hyperparameters optimized is used to classify the test data
into either H0 or H1 in an online detection process.
Fig. 5 represents the generalized use of a DNN for decision

fusion in a CSS scenario involvingmultiple SUs. For CSS, the
DNN is used to combine the sensing results obtained from
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TABLE 4. Summary of simple ANN-based approaches for spectrum sensing.

FIGURE 4. Generalized representation of DNN-based spectrum sensing in a non-CSS scenario.

individual SUs. The dataset formed of the sensing results can
be pre-processed and is then divided into training, validation,
and test sets. The DL model acts as a fusion center and
generates prediction about the status of the PU by combining
sensing information from multiple SUs.

DL algorithms are data-driven and can efficiently capture
the non-linearities of input data. With data-driven methods,
the model has the advantage of being trained by extracting
inherent patterns from data and not relying on signal and
noise assumptions, thus ensuring reliable performance when
used in practical with real signals [60]. In this paper,
the DNN architectures used for SS have been classified
as MLPs, CNNs, LSTM networks, combined CNN-LSTM
architectures, and AEs, as shown in Fig. 6. As a result of
their simple architecture, MLPs are easy to implement and
are preferred for the task of CSS for fusion of the sensing
data frommultiple SUs. CNNs are also preferred for fusion of
sensing results in CSS as the sensing outcomes are correlated.
To efficiently capture the spatial and temporal details of
sensing data, CNNs and LSTMs are popularly used with
diverse and complex radio data in non-CSS scenarios. AEs
being an unsupervised ML approach are suitable when only
a limited amount of labeled data is available.

A. MULTILAYER PERCEPTRONS (MLPs)
An MLP is a feedforward ANN having one or more hidden
layers. When the number of hidden layers is higher than one,
an MLP is considered as a DNN. The number of neurons in
the input layer is determined by the dimensions of dataset.
The neurons in output layer are equal to the number of output
labels or classes. The number of hidden layers and the count
of neurons in each hidden layer are determined with the aim
of optimizing the MLP accuracy. The architecture of a simple
MLP having multiple hidden layers is depicted in Fig. 7.

Du et al. [61] proposed an MLP with 3 hidden layers
for the centralized CSS of the PU spectrum by combining
information geometry with DL. Input to this method called
‘IG-DNN’ is a dataset consisting of geodesic distances
derived from covariance matrices of sensing signals and
noise. The energy values of noise and signal mixed with noise
in a range of SNR values are sensed by multiple SUs to form
the input for theMLP. The experiments were performed using
multiple signals and by fixing the PFA it was concluded that
a greater number of SUs and a higher SNR result in better
sensing performance. IG-DNN outperformed IG-FCM [62]
andMME-K-means [63] algorithmswhen their performances
were compared under various simulation settings.
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FIGURE 5. Representation of decision fusion using a DNN in CSS scenario.

TABLE 5. Summary of MLP-based approaches for spectrum sensing.

FIGURE 6. Deep Learning-based architectures used for SS.

In another work [64], an MLP with two hidden layers
is designed after optimizing the number of hidden layers,
the neurons in each hidden layer, optimization algorithm,
activation function and learning rate for SS. The PU data
is formed by four different radio technologies captured
using an empirical setup similar to that in work [52]. The
signals were filtered, the transient peaks were removed
and AWGN was added to obtain desired SNR levels. The

FIGURE 7. An MLP having multiple hidden layers.

input to the MLP are four features: the energy values
of the current and previous sensing event and the Zhang
statistics of current and previous sensing event while the
output is the status of PU channel. A total of four ANN
architectures are utilized, each assigned to a particular radio
technology. The proposed approach is comparedwith a neural
network without hyperparameter tuning, CED, IED and with
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NBC-based sensing [47]. On comparing the PoD versus SNR
curves, it is found that the proposed scheme has similar
performance to NBC at low SNRs. CED and IED techniques
are computationally simple, but the MLP reports a better
PoD. On averaging the detection performance of the model
over four radio technologies, it reports a 63% performance
improvement over CED and IED.

Nasser et al. [65] proposed a hybrid SS scheme wherein
the test statistics of six detectors were combined to train an
MLP having 2 hidden layers. By considering 16- Quadrature
Amplitude Modulation (16QAM) signals and AWGN, the
data pertaining to the test statistics of ED, autocorrelation
detector [66], maximum eigenvalue detector [67], cumulative
power spectral density detector [68], maximum–minimum
eigenvalue detector [67], and goodness-of-fit detector [69]
and the SNR values were used as features to train the MLP.
The performance of the DNN is evaluated with metrics PoD
and False Alarm Rate (FAR). It is observed that increasing
the number of detectors used for training the MLP increases
PoD, while decreasing the FAR. More than three detectors
result in an average PoD of 0.93 and an almost zero FAR.

Table 5 summarizes the research works discussed in this
subsection by providing details about the dataset used, key
pre-processing technique used, key features of the MLP
architecture, key evaluation metrics used and performance
notes on the SS model.

B. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
CNNs are DNNs popularly deployed in the areas of computer
vision and natural language processing. Besides input and
output layers, a simple CNN network consists of convolution,
pooling and fully connected (fc) layers [70]. Features are
extracted automatically from input samples with the help of
kernels or filters in convolutional layers and are called feature
maps. Pooling layers perform down-sampling to decrease the
complexity for further layers in the network and to avoid
overfitting [71]. Fully connected layers are further used to
classify the input data with the help of features extracted from
previous layers. Fig. 8 shows the architecture of a basic CNN
model.

There are some standard CNN architectures most of
which have been trained on a large image database called
ImageNet [72]. By utilizing these models, a different task can
be recognized without the need to train from scratch, making
these models particularly useful in cases where limited
training data is available [73]. This is the process of TL, and
the pre-trained weights of these models can be accessed with
the help of various DL libraries like Keras and PyTorch. For
instance, the GoogLeNet/Inception-V1 architecture proposed
in [74] consists of 22 layers having a total of 9 inception
blocks. The work defines inception modules as blocks that
facilitate better computation and deeper networks by reducing
the dimensionality through stacked 1 × 1 convolutions.
By using these modules, the dimensions are reduced thus
lowering the computational costs and addressing the issue

of overfitting. MobileNetV2 [75] was proposed for mobile
devices and has 19 residual bottleneck layers following the
initial fully convolutional layer of 32 filters. Its architecture
is inverted residual with bottleneck layers having residual
connections between them.

VGG-16 and VGG-19 [76] are classical CNN architectures
designed by exploring the impact of architecture depth on
model performance. VGG-16 has 16 layers out of which
13 layers are convolutional layers and 3 layers are fc layers.
VGG-19 has 19 layers among which 16 are convolutional
layers and 3 layers are dense layers. ResNet-18 and ResNet-
50 [77] were proposed to facilitate the training of deep
networks with the help of a deep residual learning framework.
In deeper networks, as the network depth increases, accuracy
becomes saturated and then rapidly degrades due to a higher
training error. In ResNet-18 there are 17 convolutional layers
while ResNet-50 has 49 convolutional layers [78]. As the
network becomes deeper, it suffers from the problem of
vanishing gradients. To address this, in DenseNet-121 [79]
all layers are interconnected and the feature maps of all
preceding layers form inputs for each layer. DenseNet-121
has a total of 120 convolutional layers.

The similarity between images and signal covariance
matrices makes CNNs widely suitable for SS problems [21].
Another reason for their popularity is that the operation of
a CNN filter or kernel is similar to the filtering operations
at communications receivers [80]. In an early attempt to use
CNN architecture for SS, [81] proposed a CNN-based SS
algorithm having a single convolutional layer to sense the
presence of PU signal in environments having low SNRs. The
energy and cyclostationary features of signals are extracted,
standardized, and provided as input to the CNN model.
Based on [82], it is considered that the PU signals are
cyclostationary signals while noise is stationary and hence,
they can be distinguished on the basis of cyclostationary
features. The proposed model is evaluated by using Binary
Phase-Shift Keying (BPSK) signals in an AWGN channel.
The CNNwith standardized input (S-CNN) is compared with
CNNmodel trained without standardizing the input (N-CNN)
and CFD models by varying the SNR between -20 dB and
-5 dB. While S-CNN has a better detection performance
than N-CNN, both S-CNN and N-CNN outperform the
conventional CFD algorithm at all SNRs.

In [60], a CNN-based algorithm called Activity Pattern
Aware SS (APASS) is proposed which learns the PU activity
pattern to perform SS. The input to the algorithm includes
CM of current frame and a matrix formed by stacking CMs
from past frames to enable the CNN model to exploit the PU
activity pattern and improve detection accuracy. The model
architecture is inspired from the standard CNN architecture
called LeNet [83] and consists of a total of seven layers,
including 2 convolutional layers and 2 dense layers. Both
correlated and uncorrelated signal models are adopted, and
PU signal vector is considered Gaussian with zero mean. The
work analyzes the convergence behavior of loss function at
different SNR levels, and it is observed that at high SNR
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FIGURE 8. Architecture of a basic CNN model.

levels the loss function quickly converges to zero due to
a large difference in CMs of the two hypotheses. APASS
detector is compared with optimal Estimator-Correlator (EC)
detector and Hidden Markov Model (HMM) with the help of
PoD versus SNR curves. When considering the uncorrelated
signal model, the APASS detector with both deterministic
and random PU activity model outperforms the EC and
HMM models. The detection performance of all algorithms
improves with the increase in the number of receiving
antennae. On adopting a correlated signal model, similar
trends are observed with an improvement in performance of
all three detectors.

Liu et al. [84] designed DNN-based Likelihood Ratio
Test (DNN-LRT) and proposed the CM-aware CNN (CM-
CNN) model for SS. Sample CMs form the input of the
DNN which is based on LeNet-5 [83] architecture and
consists of 2 convolutional layers. The PU signals are
generated by simulation using independent and identically
distributed (i.i.d.) and exponential correlation models. Noise
samples either follow a Gaussian distribution or are real
sea clutter samples [85]. The performance of CM-CNN is
compared with EC, ED [86], Maximum Eigenvalue Detector
(MED) [87], blindly combined energy detector [88] and
CAV-based detector [89] with the help of ROC and PoD
versus SNR curves. Under Gaussian noise, CM-CNN obtains
a comparable performance with the optimal EC detector
for both i.i.d. and exponential correlation models. When
considering sea clutter and exponential correlation model,
CM-CNN has a satisfactory detection performance while EC
detector cannot be implemented as sea clutter lacks statistical
model. CM-CNN is robust in conditions of low SNR and
outperforms EC detector when noise uncertainty is 1 dB.

Lees et al. [78] compared the narrowband and wideband
detection performance of 13 different models for detection of
SPN-43 air traffic control radar. With the help of 3.5 GHz
band low-resolution spectrograms [90], [91], the perfor-
mance of conventional algorithms: ED and Sweep-Integrated
Energy Detection (SI-ED) [92], traditional ML algorithms:
SVM, KNN and GMM, standard CNN architectures:
ResNet-18, ResNet-50, Inception-V1, VGG-16, VGG-19 and

DenseNet-121, along with CNN and LSTMmodels proposed
in this work is evaluated. Two test sets, i.e., Test A and
Test B, were defined. Test A had an equal proportion of
spectrograms in categories: SPN-43, Radar 3 Out-Of-Band
Emissions (OOBE), both SPN-43 and Radar 3 OOBE and
neither. Test B was a subset of Test A without Radar 3 OOBE.

For the proposed LSTM architecture, the 10 MHz channel
is divided into sequential slices along the time axis. The
outputs of LSTM cells are passed to dropout cells with a
50% probability. An fc layer with 50 neurons receives the
output of the last cell after all the time slices have been
provided to the LSTM. Next a layer with a single neuron and
sigmoid activation generates a prediction between 0 and 1.
The proposed CNN architecture is called CNN-3 and consists
of a convolutional layer, a dense layer with 150 neurons and
a layer with a single neuron which generates output between
0 and 1. After the convolutional layer, the work uses a novel
averaging step for activation maps which is equivalent to
single filter 1∗1 convolutional layer.

For narrowband detection, all 13 models are evaluated and
compared based on their ROC curves. Out of all the models,
CNN-3 has the best performance for Test A set while it
closely follows the performance of the Inception-V1 model
for Test B set. For both sets A and B, the best performing
model amongst standard CNN models is Inception-V1,
traditional ML models is SVM with linear kernel and full
input, conventional models is SI-ED and proposed models
is CNN-3. The best performing models from the single
channel evaluation for each model category are compared
for wideband detection of SPN-43 across multiple channels
observed simultaneously with a single receiver by using
Free-response ROC (FROC) curves. For set A, CNN-3
outperforms the other 3 models while for set B Inception-V1
reports the best area under the curve value followed by SVM
and then CNN-3. It is further observed that the CNN-3 has the
fastest detection time among ML models. CNN-3 is further
used for the classification of the complete set of spectrograms
following which a spectrum occupancy estimate for SPN-
43 is provided, and the power of non-SPN-43 emissions is
characterized.
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By presenting SS as a binary classification problem,
Zheng et al. [24] proposed a CNN architecture which in
addition to 2 basic convolution layers consists of 6 resid-
ual blocks in cascade. The model was made robust to
noise power uncertainty by normalizing the received signal
power. Signal data for eight modulation techniques is
simulated, including 32QAM, 16QAM, 8- Pulse Ampli-
tude Modulation (8PAM), 4PAM, Quadrature Phase-Shift
Keying (QPSK), 4-Frequency-Shift Keying (4FSK), 2FSK
and BPSK. An equal number of AWGN or colored noise
samples are simulated and used for training the DL model.
An accuracy of 90.55% was achieved on the test data.
The model outperformed two conventional SS models,
frequency domain entropy-based method and maximum-
minimum eigenvalue ratio-based method by reporting a
higher PoD.

To test the performance of the model with untrained data,
the work also simulated test samples having modulation
types 8- Phase-Shift Keying (8PSK), 8FSK and 64QAM.
After fixing the PFA at 0.01 it was observed that the signals
were sensed with high probability. To observe the model’s
performance with real-world signals it was tested against
Aircraft Communications Addressing and Reporting System
(ACARS) signals. The ACARS samples when used to fine
tune themodel by adopting a TL-based approach outperforms
the two conventional techniques. The model is robust to
pink noise in contrast to the conventional approaches whose
performance degrades with pink noise proving that DL can
automatically extract noise characteristics from data.

The ‘Deep Sensing’ CNN introduced in work [80]
comprises of 2 convolutional and 2 dense layers. The received
radio signals are filtered to limit noise using a rectangular
band limited filter and sampled in MATLAB to produce
a discrete time sequence. The work detects narrowband
Gaussian-distributed signal in AWGN to compare the perfor-
mance of Deep Sensing with an optimal sensing algorithm
whose analytical expression is available in accordance with
log-likelihood ratio. Deep Sensing outperforms ED and
has a performance close to the optimal sensing algorithm
when compared by using PoD and PFA. The authors
further examined the robustness of Deep Sensing using
narrowband Gaussian signals with zero mean in AWGN
and QPSK signals. Since Deep Sensing was not effective
on communication scenarios that differed from the training
set, experiments with TL without labels and fine tuning
were conducted. When a limited amount of labelled data is
available, the model has proven to be robust across various
domains.

Ahmed et al. [45] proposed a CNN-based approach
called ‘Deep-CRNet’ which consists of 85 layers in total
and has 5 convolution blocks coupled with 2 intermediate
residual- inception blocks. In a communication network
comprising of Internet of Things (IoT) and Unmanned
Aerial Vehicles (UAVs), the model performs opportunistic
spectrum access-based SS for SUs. Complex waveforms of
PU and noise signals are generated artificially. The authors

generate complex signal frames using eight different mod-
ulation techniques: 64-QAM, 16-QAM, Continuous Phase
Frequency Shift-Keying (CPFSK), Gaussian Frequency-Shift
Keying (GFSK), BPSK, 8-PSK, QPSK and PAM4 and each
of these frames is separately impacted by an independent
Rayleigh multipath fading channel, clock offset, and AWGN.
The SNR range is kept between −20 dB to +25 dB,
in increments of 5 dB. Equal number of AWGN samples
are generated by changing the noise power in a range
of −100 dBm to −5 dBm in steps of 5 dB.

The model achieves an accuracy of 99.74% in differentiat-
ing between the signal and noise frames. The performance of
Deep-CRNet for over the air signals is assessed by using sig-
nal frames from RadioML [93], [94], [95], [96], [97] dataset
having the modulation techniques of 64-QAM, 16-QAM,
8-PSK, BPSK andQPSK. Themodel outperforms other state-
of-the-art pre-trained DNN architectures of GoogLeNet [74]
and MobileNetV2 [75]. Deep-CRNet demonstrates superior
detection performance when compared with other benchmark
traditional and DL-based SS schemes.

In [22], 2000 FSK and Amplitude-Shift Keying (ASK)
modulated signals are synthetically generated by using
an Arduino Uno microcontroller board and a 433 MHz
transmitter. The signals are received by an RTL-SDR receiver
which is connected to MATLAB. The received signals are
transformed into time-frequency representations and are
classified as PU signals or noise by a CNN classifier having
two convolutional layers. If an SU is positioned closer to
PU it can sense the spectrum more reliably therefore the
authors generate their data by varying the distances between
the sender and receiver. CNN surpasses the performance of
ED, ANN, and SVM models.

CNNs are also suitable for CSS as just like the adjacent
pixels in an image are correlated, the sensing outcomes from
nearby SUs and adjacent bands have spectral and spatial
correlations [98]. Lee et al. [98] used a CNN structure having
three convolutional and two dense layers, ‘Deep Cooperative
Sensing’ (DCS) in a CSS scenario to combine the sensing
decisions from multiple mobile SUs. It was assumed that
the PU can simultaneously occupy multiple bands and that
SUs do not transmit when sensing is performed. Each
SU senses the spectrum using ED and DCS combines
the decisions regardless of if they are Hard Decisions
(HDs) or Soft Decisions (SDs). DCS is evaluated with a
parameter ‘sensing error’ which is determined by averaging
the probabilities of missed detection and false alarm. The
performance of DCS is compared with the conventional
sensing methods: K-out-of-N and SVM with linear kernel
and it is found that DCS with SD shows the lowest sensing
error followed by DCS with HD. DCS is robust in the
conditions of high noise power densities and lower count of
training samples or SUs but takes the highest computation
time.

In another example of CNN-based CSS, [32] used a CNN
with one convolutional layer for performing data fusion with
five SUs and amobile PU. BPSKmodulated random bits with
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FIGURE 9. Architecture of a simple LSTM model with an LSTM cell [102].

Rayleigh andNakagami-m fading are transmitted and raw I/Q
samples for SUs are generated and split into training and test
sets. The performance of the proposedmodel is analyzed with
the help of classification accuracy and is compared with CSS
with ED-based HD fusion rules: ANDmajority rules and OR.
CNN-based CSS scheme outperforms ED-based AND and
majority rules. It is observed that for all models, performance
under Rayleigh fading is superior to Nakagami-m fading.

Table 6 provides a comprehensive summary of the CNN-
based SS algorithms surveyed in this work.

C. LONG SHORT-TERM MEMORY (LSTM) NETWORKS
Recurrent Neural Networks (RNNs) are a class of ANNs used
with time series data in which output of a layer is provided as
feedback to the input to determine the output of that layer.
LSTMs are a type of RNNs which can capture long term
time dependencies and can exploit correlation from the time-
series spectrum data. Fig. 9 depicts the architecture of a
simple LSTMmodel and an LSTMcell. The LSTMalgorithm
proposed in [78] was summarized in the previous subsection
on CNNs.

In another work, Soni et al. [99] analyzed the temporal
correlation within the spectrum data captured through an
empirical setup with the help of an LSTM network. To make
the LSTM unbiased, data at very low SNR values is
included. An LSTM with a single hidden unit has the best
validation accuracy. LSTM-based SS (LSTM-SS) which can
capture the temporal correlation from the input data and PU
Activity Statistics-based SS (PAS-SS) models are introduced
in this work. PU activity statistics and occupancy patterns
can be estimated using the sequence of sensing decisions

and in a CR network, this statistical information will be
helpful in predicting spectrum occupancy trends, planning
SS, selecting the right spectrum band and channel for CR
system, maximizing system performance, and improving
spectral efficiency [29]. PAS-SS consists of an LSTM model
with 3 hidden layers for prediction and an ANN with a
single hidden layer for classification. For acquiring data for
experiments with LSTM-SS and PAS-SS, two empirical bed
setups are used with a USRP and a digital spectrum analyzer
respectively. When LSTM-SS is compared with CNN and
ANN with the help of PoD versus SNR curves, LSTM-
SS achieves the best detection performance. On comparing
the classification accuracy versus SNR curves, training and
execution times of LSTM-SS with the ML techniques ANN,
Gaussian Naïve Bayes, and Random Forest it is observed
that LSTM-SS achieves the best classification accuracy but
reports longer training and execution times.

A summary of research works utilizing LSTM networks
for SS has been provided in Table 7.

D. COMBINED CNN-LSTM ARCHITECTURES
A CNN can extract spatial features from the input data while
an LSTM network captures temporal variations. The CNN
and LSTM techniques can be combined to extract complex
features from data. A simple CNN-LSTM model is shown
in Fig. 10. In the presence of noise uncertainty, when the
SNR value falls below a threshold called the SNR-wall, an SS
detector will fail to perform. The problem of SNR-wall can
be solved by utilizing the structure of the PU signal, adding
diversity, and reducing the noise uncertainty [100].

As an alternative to conventional energy detectors that
suffer from the SNR-wall problem, work [101] uses DL
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TABLE 6. Summary of CNN-based approaches for spectrum sensing.

TABLE 7. Summary of LSTM-based approaches for spectrum sensing.

to extract the hidden structures of the PU signals and
propose ‘DetectNet’ which consists of convolutional, LSTM,
and fc layers. The signal samples are generated using the

RadioML2016.10a dataset [93], [94], [95], [96], [97] in eight
modulation types: 8PSK, BPSK, QPSK, GFSK, CPFSK,
QAM64, QAM16 and PAM4. The negative samples are
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FIGURE 10. Architecture of a simple CNN-LSTM model.

additive noises having zeromeanCircularly Symmetric Com-
plex Gaussian (CSCG) distribution. Energy normalization is
performed on the training samples as the simulation results
are minimally impacted by energy. Furthermore, the signal
modulation structure can be better exploited, and detector
model can have better generalization ability. The paper uses
a customized two-stage training strategy based on constant
false alarm rate detector to control the performance of the DL
detector. The first stage of the model involves early stopping
at 6 epochs while in the second step the model observes
metrics trade-off characteristic where the validation loss and
accuracy are both kept stable while PFA and PoD at different
SNRs vary with each epoch.

The authors further propose and optimize other DNN
models which are an MLP with four fc layers, a CNN with
two convolutional and one fc layer and an LSTM with two
LSTM layers. The detection performance of these models
is compared with that of DetectNet by considering QAM16
modulated signals. It is found that DetectNet and CNN have
superior performance than MLP and LSTM and DetectNet
outperforms CNNby achieving a low value of PFA for similar
PoD. For a fixed sample length, DetectNet gives the best
performance for FSK modulated signals. While evaluating
the generalization ability of DetectNet it is found that
when the training and testing data have similar modulation
schemes, the model has good generalization power, and the
performance deteriorates when the training and test sets have
different modulation types. For a higher sample length of
data, the performance of DetectNet improves. The work
further proposes ‘SoftCombinationNet’ for a CSS scenario
which provides a global decision by combining the soft
information from sensing nodes. DetectNet is deployed at
each sensing node and the probability vectors from these
nodes are processed by a neural network having three fc
layers to make the final decision about the status of the PU.

Xie et al. [103] proposed a CNN-LSTM-based model
which first extracts energy correlation features from covari-
ance matrices generated by sensing data with the help of
CNN layers and then inputs the series of energy correlation
features corresponding to multiple sensing periods into an
LSTM network to learn PU activity patterns. This DNN
architecture consists of two convolutional layers followed by
an LSTM layer and a dense layer. The work mentions that
DL-based SS architectures are not susceptible to the signal-
noise model assumptions since they learn directly from the

sensing data. The PU signals are QPSK modulated signals
having unit energy while the noise signals are simulated by
following Gaussian and Laplace distributions. For the PU
activity pattern, the work considers lognormal state sojourn
time model where state transitions are represented by a
semi-Markov process [104], [105] and the real state sojourn
time model for which real sensing data is collected using
the USRP-2922. The CNN-LSTM detector outperforms the
detectors MED [87], Signal Subspace Eigenvalues (SSE)
detector [106], Arithmetic to Geometric Mean (AGM)
detector [106] and the DL-based APASS detector [60] in
scenarios with and without noise uncertainty.

In [20] ‘DLSenseNet’ which is based on combined
CNN-LSTM architecture is used to capture both spatial
and temporal details of data and for sensing the spec-
trum. DLSenseNet is made of a modified inception block,
LSTM layers and fc layers. Samples of eight different
types of digital modulation from the RadioML2016.10b
dataset [93], [94], [95], [96], [97] are used to represent PU
signals and the absence of PU is represented by CSCG
noise vector with zero mean. I/Q components of these
signals form input to the model which then predicts the
status of the PU. The signals are energy normalized to
make DLSenseNet independent of energy and have greater
generalization capacity in environments where background
noise changes. The work analyzed the effect of various
modulation schemes and length of data samples and com-
pared the performance of DLSenseNet with other DNN
models: CNN, residual network (ResNet), LeNet, inception
module, LSTM, Convolutional Long short-term Deep Neural
Network (CLDNN) and previously reported SS techniques of
DetectNet [101] and CNN-LSTM [103]. DLSenseNet out-
performs other models because it integrates the advantages
of CNN, LSTM, and inception models. The performance of
DLSenseNet is compared by using eight different modulation
schemes and there is very little difference in detection
performance between various modulated signals, suggesting
that DLSenseNet is insensitive to the order of modulation.

Xing et al. [21] proposed a BiLSTM-based DNN by
combining convolutional, concatenated, BiLSTM, Self-
Attention (SA) layers and fc layers. The model utilizes the
hidden states by simultaneously scanning data in opposite
directions. The PU signals in eight modulation schemes:
BPSK, QPSK, 8PSK, CPFSK, GFSK, QAM16, QAM64
and PAM4 are generated using GNU radio while complex
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AWGN signals are used as noise signals. In an ablation
study, the impact of BiLSTM, SA, and concatenated layers is
observed on sensing error by comparing five models: CNN,
CNN-LSTM, CNN-BiLSTM, CNN-BiLSTM-SA, and CNN-
BiLSTM-SA-CONCAT by using QAM 16 signals. The CNN
model comprises of two convolutional blocks each having
a one-dimensional convolutional layer which helps extract
sufficient local features, especially in environments with low
SNR [80]. The features lost during transmission by the one-
dimensional CNN are compensated by the concatenated layer
which is denoted by CONCAT and combines the input and
output from the CNN. BiLSTM layers help capture the long-
and short-term time dependencies from the input data in
opposite directions and with the help of the SA layer, the
model highlights the most important features obtained by the
BiLSTM layers. It is found that for SNR values of less than
−5 dB, there is a significant difference in the performance of
the five models. CNN-BiLSTM-SA-CONCAT achieves the
best sensing performance followed by CNN-BiLSTM-SA,
CNN-BiLSTM, CNN-LSTM and CNN. The models achieve
comparable sensing results in an SNR range above −5 dB.
The CNN-BiLSTM-SA-CONCAT model is compared

against the CNN architecture used in [80], the ResNet model
in [24], the LSTM network in [99] and the CLDNN proposed
in [101] with their default hyperparameter settings using
QAM 16 signals. It is observed that the models using LSTM
take more time for both training and detection as unlike
CNNs, LSTM operations cannot be parallelized by a GPU.
The CNN-BiLSTM-SA-CONCAT model takes the longest
training and detection times but reports the least sensing error
under all SNR conditions. The authors further observed the
results of the model under eight modulation schemes and
different SNR values by keeping a fixed sample length of 128.
The model has comparable performance for all modulation
schemes, but the GFSK modulated signals have the lowest
sensing error in the SNR range of −12 dB to −5 dB.
The robustness of CNN-BiLSTM-SA-CONCAT is studied
by training it with QAM16 modulated signals and testing
it individually with signals having a different modulation
scheme (BPSK, QAM64, PAM4 and GFSK). The classifier
achieves good detection results with minimal deterioration
in performance. When the model is trained individually with
QAM16 signals having sample lengths of 64, 128, 256 and
512, it is established that the sample length of 512 reports the
least sensing error as longer signal sample consists of more
temporal information.

Table 8 provides a summary of CNN-LSTM-based
approaches discussed for SS by describing the input to the
CNN-LSTM algorithm, the data pre-processing technique
used, key features of the CNN-LSTM architecture, main
evaluation metrics and performance of the SS model.

E. AUTOENCODERS (AEs)
An AE neural network is an unsupervised learning algorithm
that reduces the dimensionality of input data and reconstructs

FIGURE 11. Structure of a conventional autoencoder.

the original data [107]. An AE has three layers: input, hidden,
and output or reconstruction layers. Each AE undergoes an
encoding-decoding process during training. The encoding
process maps the input data into a hidden representation,
and the decoding process reconstructs input data from the
hidden representation [108]. Fig. 11 shows the structure of
a conventional AE. AE architectures having two or more
hidden layers in both encoder and decoder have been utilized
for SS.

Cheng et al. [57] proposed two novel Stacked Autoencoder
(SAE) frameworks having two hidden layers for sensing
of OFDM signals. To create the trained SAE model, the
input and hidden layers of all the trained AEs are stacked
together layer by layer. The first framework is termed
Stacked Autoencoder-based SS (SAE-SS). SAE-SS is first
pre-trained wherein the features of the PU are extracted
in an unsupervised manner following which a Logistic
Regression classifier is used to fine tune the model. As the
sensing accuracy of SAE-SS degrades for low SNR values,
another model, Stacked Autoencoder-based SS using Time-
Frequency domain signals (SAE-TF) is proposed. With SAE-
TF, both time and frequency domain signals are used as input
which allows the model to extract more hidden features and
perform better in conditions of low SNR. The received signals
in time domain are transformed to frequency domain with
the help of Fast Fourier Transform and then manipulated
to provide input to the SAE-TF model along with the time
domain input.

SAE-TF has a better sensing performance than SAE-SS
but has twice as many input units as SAE-SS resulting in a
higher training complexity. The OFDM system is generated
with BPSK modulation. For training of SAE-SS and SAE-
TF models, the training data is divided according to the
SNR values for training different SAE architectures for a
higher detection performance. The performance of SAE-SS
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TABLE 8. Summary of CNN-LSTM-based approaches for spectrum sensing.

and SAE-TF models are compared with conventional OFDM
signal sensing techniques: ED, CP [109] andCM [110] -based
SS and with neural network-based techniques: ANN model
in [52] and CNN model in [81] under various conditions.
When comparing the Probability of Miss detection (PM)
while varying the SNR values, it is observed that the
proposed SAE models have the least PM values, with SAE-
TF outperforming SAE-SS.

In work [111], a Variational Autoencoder (VAE) and
unsupervised DL-based detector termed Unsupervised Deep
SS (UDSS) is designed to limit the amount of labelled
data required for training the SS model. The VAE proposed
in [112] has a probabilistic model parameter layer after
the hidden layer as opposed to a conventional AE [113].
A VAE- GMM-based approach having three hidden layers
each in encoder and decoder is used to separate data into
two clusters and a small amount of labeled noise data is
then used to identify the clusters representing PU signals
and noise. PU signals are represented by unit energy QPSK
modulated symbols while noise samples are either Gaussian
or Laplacian. CMs are calculated and vectorized before being
input to the neural network. The sensing performance of
UDSS is compared to MED, SSE detector, AGM detector,
CNN [84] and Kernel K-Means [114] with the help of ROC
curves. Under all simulation settings, the performance of
UDSS is close to that of CNN even with limited labelled data
and it outperforms all other detectors.

Subray et al. [107] classified LTE andWi-Fi signals for SS
with three types of AE neural networks: Deep, Variational
and LSTM AEs. Both encoders and decoders of the deep AE
and VAE consist of two hidden layers. In LSTM AE, the
input data is encoded and decoded using LSTM cells. The

LSTMAE consists of three hidden layers both in encoder and
decoder. USRP B210 and GNU Radio were used to capture
the LTE signals while MATLAB was used to generate Wi-
Fi signals. The signal strength of LTE signals was matched to
that of Wi-Fi signals by addition of 20 dB. Four features were
provided as inputs for all AEs: I/Q samples and the phase
and amplitude values derived from the I/Q samples. The AEs
were evaluated by taking different combinations of signals
from 802.11ax and 802.11ac Wi-Fi protocols. With the main
evaluation metrics being precision and recall, the Deep AE
using exponential linear unit activation was found to be most
efficient for the classification task.

The AE-based SS algorithms discussed in this subsection
are summarized in Table 9.

IV. RADIO FREQUENCY (RF) SIGNAL DATASETS,
TRANSFER LEARNING (TL) AND SOFTWARE USED
The application of ML algorithms, especially DL algo-
rithms is becoming increasingly popular in the field of
SS. The training, validation, and testing of these models
requires huge amounts of data. There are a few pub-
licly available RF datasets having a collection of var-
ious modulations with ‘RadioML’ released by DeepSig
Inc. [93], [94], [95], [96], [97] being the most popular.
RadioML datasets have been widely used by researchers
for addressing modulation classification and SS prob-
lems [20], [45], [101] with the help of ML. The latest
version is ‘RadioML 2018.01A’ which comprises of synthetic
simulated channel effects and over-the-air recordings of
24 digital and analog modulation techniques. This data is
available in hdf5 format as complex floating-point values,
with 2 million examples, each having a sample length
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TABLE 9. Summary of AE-based approaches for spectrum sensing.

TABLE 10. Description of some publicly available RF datasets.

of 1024. A previous version of this dataset, ‘RadioML
2016.10A’ consists of 8 digital modulated and 3 analog
modulated signals in varying SNRs and is available as a
pickle file.

Apart from RadioML datasets, there are some other RF
datasets that can be explored by researchers for testing the
robustness of their SS models. For example, an RF dataset
by Panoradio SDR [115] was generated synthetically by
the application of Gaussian noise, Watterson fading and
with random frequency and phase offsets to speech, music,
and text signals. It is designed for signal and modulation
classification tasks using novel ML algorithms and has
signals from 18 different transmission modes. It consists of
172,800 signal vectors with each vector having 2048 I/Q
samples. Another dataset, MIGOU-MOD [116], [117] is
a dataset acquired from a low-power IoT platform called
‘MIGOU’ and has over-the-air measurements of real radio
signals modulated with 11 modulation types. The signals
were generated with the help of a USRP and GNU Radio
software and recorded using the MIGOU platform in an
office environment. The main properties of these datasets are
summarized in Table 10.

In addition to these published RF datasets, many works
have generated data specific to their experiments using
MATLAB and Python. Some works have captured real-world
data for their experiments with the help of a USRP and GNU
Radio Software. However, the wireless communications and
RF signals domain lacks robust and comprehensive datasets
comparable to those in domains like speech, handwriting, and
object recognition [40]. The use of TL can be an effective
strategy when a limited amount of training data is available.
ImageNet [72] is a large database of images that has been
used to train many standard CNN architectures such as
VGG-16 [76] and ResNet-50 [77]. With the help of TL,
the knowledge gained by these standard models to classify
the ImageNet dataset can be transferred to RF datasets
for SS. Works [45] and [78] have explored some standard
CNN models and have evaluated their performances for SS.
Table 11 provides a description of the architectures of the
standard CNN models used in these works.

V. RESEARCH CHALLENGES RELATED TO THE USE OF
DL FOR SS
A. REQUIREMENT OF LARGE AMOUNTS OF DATA AND
LACK OF COMPREHENSIVE RF DATASETS
Although DL-based approaches are becoming increasingly
popular in SS, the lack of comprehensive RF datasets poses
a major challenge to the deployment of DL algorithms [40].
DL techniques are data-hungry and require huge amounts of
data for training, validating, and testing their models. The
concept of TL can be explored to utilize the model weights
of pre-trained DL architectures to enhance the sensing
performance. In addition, data augmentation could be used
to increase the amount and quality of data and add diversity
to the dataset [118]. By augmenting the dataset with relevant
data, the trained model can be made more robust, improving
its overall performance significantly [119]. Furthermore, the
use of unsupervised DNN architectures which require only
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TABLE 11. Description of the architectures of standard CNN models.

a limited amount of labelled data like in work [111] is a
potential solution for this research problem.

B. LACK OF VALIDATION OF RESULTS ON
REAL-WORLD DATA
Just as in the case of modulation classification, most of
the literature on ML-based SS is based on simulations
or theoretical results, so it is unclear how well a model
performs in real-life settings [120]. To add to it, the
algorithms are often trained for specific modulation and noise
considerations and their performance cannot be generalized.
To ensure the robustness of DL algorithms in practical
environments, real-world datasets should be used to validate
their performance [23].

C. HIGHER OFFLINE TRAINING TIME
Even though DNN techniques result in enhanced detec-
tion performance, these models have high computational
complexity. DNN-based models require huge amounts of
data for training which results in higher offline training
times. Consequently, more research should be conducted on
enhancing detection performance through limited training
data to decrease training time. This issue can also bemitigated
by the use of specialized hardware with high processing
capabilities like GPUs which can significantly cut down the
training time [57]. Moreover, the training is usually required
only occasionally when the sensing conditions change, and
the well-trained model can then generate fast predictions.

D. POOR PERFORMANCE AT LOW SNR
DNN-based SS algorithms generally perform well in con-
ditions of high SNR, but their performance drastically falls
at low SNRs. The SNR for SS is usually low, and the
received signal energy and noise levels at the SU fluctuate
over time [111]. Work [57] addressed this issue by training

different SAE architectures with data in different SNR
conditions. Along with it, the SAE-TF model used both
time and frequency domain samples as input to ensure
robust performance in regions of low SNRs. The focus of
future DL-based SS research should be to ensure robust
performance at low SNRs as a model that performs better
at low SNRs also performs well in conditions of high
SNR [20]. It is also important for researchers to explore the
interpretability of radio signal data for achieving a higher
detection performance.

VI. CONCLUSION
As a principal enabler of DSM, CR technology helps
SUs access the unutilized bands of the PUs and improves
spectrum utilization. The SS capability of CR determines
the availability of radio resources of PUs in order for the
SUs to utilize the vacant frequency bands. The use of
DL algorithms for SS can enhance the performance of 6G
networks. This paper surveyed various DNNs used for the
task of SS by classifying them as MLPs, CNNs, LSTM
networks, combined CNN-LSTM architectures, and AEs.
The DL algorithms are compared based on the dataset
used, data acquisition technique, data pre-processing method,
algorithm architecture, evaluation metrics, obtained results
and comparison of results with standard SS detectors. DNNs
are increasingly being used to sense the PU spectrum due
to their automated feature extraction capabilities and their
ability to adapt to changing radio environments. This work
also highlighted the shortcomings of conventional SS and
traditional ML approaches while presenting an overview of
traditional ML algorithms and simple ANNs. Traditional
ML techniques involve manual feature extraction, while
conventional sensing techniques suffer frommissed detection
of PUs and generate false alarms. In addition, this paper
summarized some publicly available RF signal datasets, the
concept of TL and the need to have diverse RF signal datasets.
Finally, the research challenges associated with the use of DL
techniques to identify vacant frequency bands were discussed
along with potential solutions.
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