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ABSTRACT The visual information complexity of automotive head-up displays (HUDs) may affect
cognitive load and reduce driver performance in critical situations. This study investigated whether phys-
iological indicators of cognitive load can predict the type of HUD while driving. Physiological signals
of heart rate variability (HRV), electrodermal activity (EDA), skin temperature, and pupil dilation were
recorded from 28 participants using a motion-based driving simulator. Two types of HUD with different
information complexities were compared: baseline HUD and augmented reality HUD. Heart rate and EDA
were processed to create standardized biomedical features. Time-series analysis and basic statistics generated
two sets of features for pupil dilation and skin temperature. The effect of signal combinations on classification
performance was tested using signal fusion. Three gradient boosting classifiers (LGBM, HGBC, and XGB)
were trained on physiological signals to predict HUD type. The fusion of HRV, EDA, and time-series features
for skin temperature and pupil dilation yielded moderate performance, with average AUC ROC scores of
XGB = 0.67, LGBM = 0.69, and HGBC = 0.70. Combining HRV, EDA, and basic statistical features for
skin temperature and pupil dilation, the classifiers achieved an improved average AUC ROC score of 0.76.
The best scores were 0.96 (LGBM and XGB) and 0.98 (HGBC). These results demonstrate the potential of
physiological signals for modeling HUD-induced cognitive load and dynamically regulating its effects in
real-time.

INDEX TERMS Advanced driver assistance system (ADAS), augmented reality, automotive head-up
display, autonomous vehicles, classification, conditionally automated driving, human—machine interaction,
machine learning, physiological signals.

I. INTRODUCTION of the driver. The HUD is an essential part of the advanced

Automotive head-up display (HUD) allows the driver to view
a variety of information as visual cues on a windshield in front
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driver assistance system (ADAS), which provides enhanced
visual and environmental monitoring of a vehicle, such as
lane and distance keeping, dynamic cruise control, and vehic-
ular communication, to reduce road accidents [1]. The main
advantage of HUDs is that they provide a “‘eyes-on- road”
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that keeps the driver’s situational awareness on the road
while conveying driving-critical information [2]. By reduc-
ing the time drivers take their eyes off the road, HUDs
can increase safety, reduce driver distraction, and improve
decision-making on the road [3]. At the same time, visual
information in HUDs is becoming increasingly complex and
includes advanced longitudinal and lateral visual guidance
aids, in addition to standard information such as speed, vehi-
cle diagnostics, and navigation.

Recent developments advocate the use of augmented real-
ity in HUDs (AR-HUDs) to display complex driving and
safety-related information [3], [4], [5]. The increased visual
complexity of HUDs can negatively affect driver responses,
which can be detrimental in safety-critical driving situa-
tions [5], [6], [7]. One of the key challenges is how and
where to display information on HUD to provide an appro-
priate level of information complexity and to accommo-
date specific contexts, especially in safety-critical driving
situations [3], [5], [6], [8]. Another key challenge is to pro-
vide this information to drivers without inducing excessive
cognitive load [4], [9].

Much research has been conducted in driving simulators
to investigate the safety issues of using HUDs in conditional
automation, particularly in the event of a takeover (e.g. [4],
[9], [10], [11]. However, there is limited work on the phys-
iological effects of HUD on drivers. Existing studies have
focused on physiological signals as indicators of cognitive
load in takeover situations [12], classification of cognitive
load in conditional automation [13], [14], or differences in
cognitive load when switching between automated and man-
ual driving [15].

Little is known about the effects of the cognitive load
exerted on drivers by HUD. This study aimed to investigate
the potential of physiological signals in assessing the cogni-
tive load caused by HUDs while driving. The main research
question was whether differences in drivers’ physiological
responses to cognitive load could predict HUD type. If such
differences are measurable and predictable, physiological
signals can be used to regulate the cognitive load induced by
HUDs continuously and in real-time.

To this end, two types of HUD with different complex-
ities of visual information were tested: baseline HUD and
augmented reality HUD (AR-HUD). Physiological signals of
heart rate, electrodermal activity (EDA), skin temperature,
and pupil dilation were recorded in a motion-based driving
simulator under conditional automation. Machine learning
classifiers were trained using physiological signals, and sig-
nal fusion was performed to optimize the prediction of HUD
type.

The present study makes a valuable contribution as it
attempts to fill the gap in the current state-of-the-art in
understanding physiological responses to cognitive load from
different types of HUD. Its main contribution is the use of
machine learning to uncover the potential of physiological
signals as reliable predictors of the cognitive load. In addi-
tion, the study highlights the importance of signal fusion
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in improving the classification performance. The application
of physiological signals as objective measures of workload
has tremendous potential to shape the future of automated
driving because there is an opportunity to dynamically reg-
ulate cognitive load to enhance driver performance and
safety.

Related work on automotive HUDs and their effects,
as well as human factors, is presented in Section II, along
with research on physiological measures related to driver
performance and cognitive load. The materials and methods
used in this study are presented in Section III. The driving
simulator and the two HUDs are presented along with the
instruments and procedures used in the driving experiment
and subsequent analyses. The results of the statistical analysis
and machine learning are presented in Section IV. The article
concludes with a discussion of the results of the research and
potential for future work in Section V.

Il. RELATED WORK

A. AUTOMOTIVE HEAD-UP DISPLAYS: DRIVER BEHAVIOR
AND SAFETY

Several studies have reported the benefits of HUDs in
improving driver behavior and safety compared to traditional
head-down displays and, with recent technological advances,
the further benefits of augmented reality HUDs (AR-HUDs).
For example, [6] examined the interface designs of HUDs
for conveying safety-related information from 13 major auto-
motive manufacturers. Their results indicate that drivers’
information-processing abilities should be considered when
designing HUDs. They also reported that all commercial
HUDs studied had a traditional design. The limited availabil-
ity of commercial AR HUDs forces researchers to conduct
experiments using driving simulators or virtual reality (for
a review, see [3], [16]). Although both environments have
several advantages over field studies, for example, they allow
for controlled, reproducible, and safe experiments and data
collection is easier to manage, validation in the real world is
required [17].

The study by [18] showed that both visual attention and
driving performance were improved with AR-HUD com-
pared to traditional HDDs. The authors found differences
in lateral and longitudinal vehicle control between the two
displays, with drivers using HUD showing better driving
performance and longer visual attention. Different gazes and
driving performances were associated with each display, with
the latter being influenced by the driving environment.

Similar results have been reported in [4], [11], and [19].
Blissing et al. compared driver behavior in mixed and vir-
tual reality and found that driving behavior was differ-
ent in each mode, with transverse and longitudinal driving
behavior changing when transitioning between modes [19].
Park and Im investigated the effects of visual enhancements
in AR-HUDs on driver performance and cognitive load,
and found that visual enhancements both improve driver
decision-making and reduce subjective cognitive load [4].
Jing et al. compared the effects of three different HUDs
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(AR-HUD with arrow cues, AR-HUD with virtual shadows,
and without AR-HUD) on driver behavior and acquisition
efficiency [11]. Their results showed that both AR-HUDs per-
formed better than AR-HUD: visual distraction was reduced
and takeover efficiency was improved [11].

However, it is important to note that the effect of AR-HUDs
visual enhancements depends on the type, complexity, and
visual partitioning of the graphical elements in the inter-
face. Poorly designed AR-HUD can negatively affect both
driving performance and safety. Because of the increased
information complexity of AR-HUDs, attentional alloca-
tion and switching challenges are common when using
AR-HUDs (see also [3]). Several studies have shown that
cognitive capture and inattentional blindness in AR-HUDs
are symptoms of overused attentional resources, as is
often the case in situations with complex and frequently
changing information, which generates a higher cognitive
load [8], [20], [21], [22], [23], [24].

To this end, [24] examined how different graphical lay-
outs of AR-HUD affect driving performance. Three scenarios
were compared: driving without AR-HUD, AR-HUD with
a dispersed graphical layout, and AR-HUD with a dense
graphical layout. While both AR-HUDs showed improved
driving performance compared to driving without AR-HUD,
the graphical layout in AR-HUDs also had an impact. The
AR-HUD with the dispersed layout, which conformed to
human-computer interaction principles and visual design
rules and provided better distribution of visual information,
showed better driving performance than the AR-HUD with a
dense layout.

Kim and Gabbard evaluated the visual and cognitive dis-
traction potential of AR-HUDs by comparing drivers’ gaze
behavior, situational awareness, confidence, and cognitive
load with and without the use of AR-HUDs [8]. They
report several important findings. First, the results show that
AR-HUDs have an impact on drivers’ visual attention allo-
cation and that the perceptual forms of graphical elements
on AR-HUD determine whether the interface is informative
or distracting. The AR-HUD cuing of pedestrians and other
critical objects with a bounding box and a virtual shadow
were compared. Negative side effects, such as the cogni-
tive capture effect and inattentional blindness, have been
observed for AR-HUD using bounding boxes to identify
pedestrians, resulting in reduced driver attention to pedestri-
ans and other critical road elements [8]. Pedestrian perception
was reduced by a larger number of bounding boxes, which
drivers perceived as clutter, and obscured perceptual infor-
mation that could predict pedestrian movement intentions.
Consequently, the bounding box AR-HUD produces a higher
cognitive load, leading to inattentional blindness. On the
other hand, AR-HUD with virtual shadows had positive
effects on visual attention and situational awareness, as more
attentional resources were available for other critical objects
and situations. Overall, situational awareness proved to be an
important indicator of both visual and cognitive distractions
to properly quantify the effects of using AR-HUD (8], [25].
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Currano et al. examined the effects of using AR-HUD with
different levels of visual complexity on drivers’ situational
awareness and perception [7]. The experiment was conducted
by showing participants videos of driving situations. Two
driving environments were tested with three variations of
AR-HUD complexity: no HUD display, minimal information
HUD (with cues to pedestrians and other critical road objects
and signs), and complex information HUD (the most relevant
information in the environment, including navigation and
vehicle status). Although HUD complexity has a negative
effect on situational awareness, the factors constituting the
complexity of a scene may have a greater effect on situational
awareness than the complexity of HUD design [7].

B. HUMAN FACTORS IN AUTOMOTIVE HUDs

A review of research on human factors in automated driving
shows that most studies on HUDs focus on aspects related
to safety and takeover performance rather than on user expe-
rience [3], [16], [26], [27], [28]. For a holistic understanding
of AR-HUDs and their real-world applications, it is necessary
to understand ““how to design the automotive HUD system to
best serve the driver” [2, p. 1936].

A user survey conducted by Beck et al. examined several
issues related to user experience and user-perceived design
improvement points for existing commercial HUDs [2]. Par-
ticipants with extensive HUD experience participated in
this survey. Eleven high-level HUD information items were
assessed:1) speed control, 2) highway driving, 3) engine/
transmission control, 4) wayfinding, 5) sign/warning recog-
nition, 6) audio player control, 7) accuracy of HUD infor-
mation, 8) individual and context-specific HUD information
needs, 9) visibility of HUD images, 10) visual aesthetics of
HUD interfaces, and 11) HUD location and layout issues. The
results show that safety-related information (speed, speed
limit, cruise control, and traffic signs) and navigation infor-
mation displayed in the HUD are helpful for driving and
complying with speed limits. However, the information needs
of HUD users vary considerably depending on the driving
environment. For example, some participants preferred a
more realistic interface design, whereas others preferred a
more appealing visual aesthetic. There are also different pref-
erences regarding the amount of information and how/where
it should be displayed [2].

Most of the studies discussed above were self-
reports. Self-reports are susceptible to respondent bias
(such as social desirability and agreeing responses),
which may call into question the validity of these
studies [29], [30], [31], [32], [33]. For example, [34] used
physiological signals (cardiac, respiratory, and electrodermal
signals) and facial features from 36 drivers as objective
UX measures of driver emotions (measured as valence
and arousal). The computerized estimates of drivers’ emo-
tional states were then compared with their self-reports on
UX questions. The authors found ‘“‘a discrepancy between
the self-ratings and the algorithmic scores — drivers who
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answered the UX questions more positively experienced
higher levels of stress, as evidenced by higher arousal scores
and lower algorithmic scores for valence” [34, p. 80].

One solution to respondent bias is to supplement
self-reports with objective measures of driver physiology
data [35].

C. PHYSIOLOGICAL MEASURES OF COGNITIVE LOAD

A major advantage of psychophysiological measures ““is the
continuous availability of bodily data that allow strain to be
measured at a high rate and with a high degree of sensitivity,
even in situations in which overt behavior is relatively rare.”
[36, p. 270].

Therefore, physiological signals have been studied in detail
as potential indicators of driver performance, particularly
in relation to the cognitive load. Signals such as electroen-
cephalography (EEG), cardiac (heart rate and heart rate
variability), electrodermal (EDA indices of tonic and phasic
skin conductance, skin temperature), respiratory activity, and
eye-tracking measurements (e.g., gaze, pupil dilation, eye
blinks) are all potential indicators of cognitive load [37], [38],
[39], [40], [41].

For example, in a study by [39], several classification
models were developed to predict cognitive load (low vs.
high) based on several features extracted from the EEG, heart
rate, HRV, EDA, respiration, pupil size, and eyeblinks of
14 participants. The EEG-based model performed the best
(86% accuracy), followed by eye tracking measures (pupil
size and blink rate) and EDA [39].

Several studies have shown that heart rate and skin con-
ductance are robust indicators of cognitive load in several
studies [37], [40], [42]. In addition, indices of heart rate vari-
ability (HRV), particularly the root mean square of successive
differences in normal heartbeats (RMSSD), have proven to be
reliable predictors of cognitive load [40], [42], [43], although
not as robust as heart rate and skin conductance [42]. Another
important indicator of cognitive load is pupil dilation, and
several studies have found that pupil size increases with
increasing cognitive load [39], [44], [45], [46]. A practical
advantage of eye-tracking devices is that they are unobtrusive
compared with devices that require a physical connection to
the subject (e.g., EEG).

These physiological measurements are particularly impor-
tant for understanding driver performance, particularly as
indicators of the driver cognitive load. This topic has received
increasing attention in studies of conditional automation [12],
[14], [24], [42], [47], [48], [49], [50] because understand-
ing driver cognitive load is critical to developing systems
with efficient management of cognitive load that can reduce
driver errors and thereby increase safety in critical situations.
An overview of the selected studies is presented in Table 1,
and the most relevant studies are discussed below.

To this end, [12] investigated how different driving situ-
ations affect driver cognitive load, using ECG and EDA as
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objective indicators of cognitive load along with self-reported
cognitive load ratings. The study was conducted using a driv-
ing simulator, with 32 drivers divided into two equal groups.
One group performed secondary tasks during automation
(SAE Level 3), whereas the other group performed supervised
driving (SAE Level 2). Their results showed that driver cog-
nitive load was significantly higher during secondary tasks,
with both physiological signals responding to variations in the
cognitive load [12]. However, apart from a higher respiratory
rate in the manual driving mode, likely owing to the sensitiv-
ity to the physical activity of vehicle control, no significant
differences were found in the physiological measures and
cognitive load between the manual and supervised driving
modes. Other studies have also reported no significant dif-
ferences in driver physical measures when switching driving
modes [15], [51], [52].

A driving simulator study by [13] analyzed the cognitive
load of 90 participants using physiological signals (ECG,
EDA, and respiration) who drove in the conditionally auto-
mated mode for 25 min. The participants were divided into
two groups: those who performed a secondary task and those
who observed the environment of the vehicle. The study
showed that the drivers’ cognitive load was higher in the
secondary task. The results also show that cognitive load
can be accurately detected using machine learning classifiers
(Random Forest Classifier, Support Vector Classifier, Multi-
Layer Perceptron Classifier) based on physiological signals
and their combinations. The lowest performance, with an
accuracy between 6973% and 73%, was obtained for EDA
alone, and the best accuracy of 92-94% was obtained by com-
bining respiration and ECG, depending on the classifier [13].

Another application of machine learning to physiologi-
cal data (ECG, EDA, and respiration) was conducted in a
conditional automation study [14]. Participants (n = 80)
were asked to perform a cognitive task unrelated to driv-
ing 15 times for 90 s while driving. The performance of
the three machine learning models (Random Forest, Neural
Network, and k-Nearest Neighbors) was evaluated by classi-
fying the driver cognitive load as a function of task difficulty
(no task vs. low vs. high) and task modality (visual cogni-
tive task vs. auditory cognitive task). The authors reported
the performance of the task difficulty classification mod-
els, with a weighted F1 score ranging from 0.51 to 0.71,
depending on the model and feature combination. The best
F1 score for task difficulty prediction was obtained using
the EDA and respiration signals as inputs to a Random
Forest classifier. The results also showed that the mod-
els had difficulty predicting the task modality (visual vs.
auditory), with the best model achieving a weighted F1
score of 0.61 when ECG and RESP were used as signals.
On average, the classifiers achieved weighted F1 scores with
approximately 50% accuracy in predicting task modality. The
authors suggested complementing physiological data with
other data sources to support and improve the task modality
prediction [14].
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TABLE 1. Overview of selected studies investigating drivers’ physiological responses to cognitive load.

References

Description

Measurements

Results

Mehler et al. [42]

Yan et al. [47]

McDonnell et al. [48]

Ma et al. [24]

Radhakrishnan et al. [12]

Gomaa et al. [49]

Meteier et al. [14]

A comparison of heart rate and
heart rate variability indices in dis-
tinguishing single-task driving and
driving under secondary cognitive
workload (26 participants)

The driver mental workload pre-
diction model was based on phys-
iological indices, focusing on new
drivers and high, medium and low
levels of driving task complexities
(26 participants).

Neural indices of driver workload
and engagement during partial ve-
hicle automation (71 participants).

A preliminary study on driving per-
formance through a VR-simulated
eye movement analysis of HDD and
AR-HUDs and how different AR-
HUD layouts affect driving perfor-
mance (12 participants).

Physiological indices of driver
workload during car-following
scenarios and takeovers in highly
automated driving (n = 32).

Physiological indices of the mental
workload and perceptual load from
a dual task scenario for in-vehicle
interaction, using machine learning
(45 participants).

Physiological indicators for assess-
ing workload (induced by a non-
driving cognitive task (N-back)) in
conditionally automated driving in
a simulator (80 participants).

Heart rate, HRV, skin conductance.

Eye-tracking signals (pupil dilation,
blink rate and duration, fixations),
heart rate, HRV SDNN, nr. of er-
rors, NASA TLX.

The EEG was recorded while driv-
ing on the roadway, with partial ve-
hicle automation engaged and dis-
engaged.

Obtained directly from the head-
mounted device (HMD) were the
pupil diameter, eye-opening size,
and relative location of the eyes.
Obtained outside the HMD were
the windshield gaze point and gaze
point distance, as well as pedaling
information and steering wheel an-
gle.

HRYV and EDA based physiological
metrics were used as objective indi-
cators of workload, along with self-
reported workload ratings on a scale
of 1-10 (lowest to highest).

Mean, minimum, maximum, stan-
dard deviation of heart rate, HRV-
RMSSD, pupillary activity index,
and average deviation during lane
switching.

The EDA, ECG, RESP signals, and
subjective workload (on a 0-20
scale).

A repeated-measures general linear
model was used. Heart rate and skin
conductance were robust indicators
of driving with and without a task.

A regression model based on physi-
ology was used to predict the work-
load represented by NASA TLX,
with R2=0.745. No significant dif-
ference was found in pupil dilation,
whereas mean HR and SDNN in-
creased with task complexity.

The EEG showed no change in
mental workload between manual
driving and conditional automated
driving.

ANOVA statistics showed that the
average blink frequency was sig-
nificantly lower with the AR-HUD
than without it, indicating that
drivers were more relaxed with the
assistance of the AR-HUD. The to-
tal gaze time was shorter with the
AR-HUD than without it.

Repeated  measures ~ ANOVA
showed that the ECG and EDA
signals were sensitive to variations
in the workload.

Mental  workload  influenced
some psychophysiological
dimensions, whereas perceptual
load has little effect. The best-
performing classifiers were k-
Nearest Neighbors (KNN), Linear
Discriminant Analysis (LDA), and
AdaBoost, using 5-fold nested
cross-validation. The results for
the binary classification (low load
vs. medium load) showed eye
features performed at a random
chance level, whereas the heart rate
data had an average classification
accuracy of 72.2\%, up to 89\%
for a single fold.

Three-class classification of work-
load using sensor fusion. The fusion
of the signals yielded the best re-
sults. The best F1-score=0.713, us-
ing skin conductance and respira-
tion signals as inputs of a random
forest classifier.

D. PHYSIOLOGICAL MEASUREMENTS OF HUD AND ITS
EFFECTS ON A DRIVER

Available literature on the physiological effects of HUDs on
drivers is limited. A driving simulator study by [53] exam-
ined the effects of different display configurations (HDD vs.
HUD) on adriver (n = 19). Driving performance, gaze behav-
ior, physiological measures (heart rate, EDA, and tempera-
ture), and task completion times were measured repeatedly
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for both display configurations in two driving situations
(driving only and driving with a task) on rural roads and in
the city. The physiological measures showed no significant
differences between the two display configurations or driving
tasks [53].

[54] examined the effect of different cueing strategies on
the cognitive load to provide guidelines for designing an opti-
mal AR-HUD interface [54]. Three cueing strategies were
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used: none (vehicle speed and direction), partial (in addition,
relevant traffic signs, traffic lights, and road users relevant
to the driver’s path were highlighted), and all (in addition
to partial cueing, all traffic signs, traffic lights, and road
users were highlighted using different colors for different
objects) [54]. The participants (n = 36) were tested for
situational awareness and cognitive load using a driving simu-
lator (six trips). Physiological signals (gaze and electrodermal
activity (EDA)) were recorded along with subjective mea-
sures of cognitive load (NASA TLX) and trust in automation
(Trust Score). The authors reported only the results of sub-
jective measures, which showed that cueing strategies affect
driver cognitive load, with partial cueing being the most
helpful [54].

A VR-based driving simulator study was conducted by [24]
to evaluate the utility of AR-HUD and how different
AR-HUD layouts affect the driving performance and safety.
The drivers (n = 12) were tested under three scenarios:
without an AR-HUD, with a distributed layout, and with
a dense layout. Each driver completed the three scenarios
in an urban environment. The driver’s eye movement data
(pupil size, blink rate, eye aperture size, relative eye posi-
tion, and gaze point), speed, and brake use were recorded
to determine driving performance in the three driving sce-
narios. A significant difference in driving performance with
and without AR-HUD was found for the average accelerator
pedal amplitude, blink frequency, horizontal gaze angle, and
vehicle speed. The results also show that the difference in
AR-HUD interface displays affected the driver’s allocation
of cognitive resources, which was altered in AR-HUDs com-
pared to normal driving [24].

To the best of our knowledge, none of the current studies
has used machine learning to develop physiological models of
the cognitive load induced by HUDs with varying information
complexity.

Ill. MATERIALS AND METHODS
A. PARTICIPANTS
28 (14 males and 14 females) participated in the study.
The ages of the drivers ranged from 21 to 57 years (M =
30.17 years, SD = 10.60 years) and they held a valid driver’s
license for an average of 11.77 years (SD = 10.12 years). 20%
of the drivers had no experience with vehicles with automated
features (any advanced driver assistance system (ADAS)),
whereas 6.66% had driven a vehicle with multiple ADAS
systems once, 13.3% a few times, and 60% several times.
The experiment was designed and conducted in accordance
with the Code of Ethics for Researchers and the Guidelines
for Ethical Conduct in Research with Human Subjects at
the University of Ljubljana. Informed consent was obtained
from all the participants. Participation in the study was vol-
untary. The participants were informed that they could stop
the experiment at any time without providing a reason. Each
participant received a gift voucher of 10 euros to participate
in the study.
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FIGURE 1. Nervtech motion-based driving simulator with a physical
dashboard and 145A° field of view of the driving environment.

B. DRIVING SIMULATOR

The study was conducted in a simulated driving environment
consisting of a motion-based driving simulator [55] with real
car parts (seat, steering wheel, and pedals) and a physical
dashboard (see Figure 1). The dashboard was not designed
as part of this study but mimicked the dashboard of a typical
manually operated personal vehicle with an HDD. It displays
the vehicle speed, engine rpm, fuel level, and status of the
indicators and lights. The visuals were displayed on three
49-inch curved TVs that provided a 145A° field of view of
the driving environment.

The driving simulation scenario was 13 km long and lasted
approximately 16 min (given speed limits). The scenario took
place in an urban environment during the day with a low to
moderate traffic density. During the driving scenario, several
intersections with crosswalks and other road users formed the
driving environment to create an object-rich test environment.
During the driving scenario, the driver received four prompts
to turn on the automated driving system to start automated
driving and four prompts to take over control of the vehicle
to continue driving manually.

C. AUTOMOTIVE HUDs

The baseline trial included a simple HUD along with a phys-
ical dashboard that was part of the driving simulator (the
dashboard is shown in Figure 1). In the basic HUD, only
two types of information are displayed: navigation instruc-
tions and takeover prompts. The navigation cues were simple
bird’s-eye view replicas of the cross-sections with arrows
indicating the route. The takeover prompt was displayed
as a visual notification consisting of the text “Take over!”
and as a numeric countdown notification indicating the time
remaining before automation was turned off. The takeover
notification was displayed along with an audible notification
in the form of a pure 4000 Hz tone at 65 dB.

The AR-HUD trial included multiple information and
visual elements presented in two dimensions (2D) and
using augmented reality. A preview of AR-HUD is shown
in Figure 2.

The information displayed on the AR-HUD includes
the vehicle speed, current speed limit, available ADAS
features, and bounding boxes to indicate relevant objects
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FIGURE 2. AR-HUD: visual elements presented during the drive.

(see Figure 3 for details). During the takeover request,
AR-HUD displayed the same takeover notification as that
used in the baseline HUD, along with the vehicle speed, cur-
rent speed limit, and AR, highlighting the relevant road users
that could affect the takeover maneuver. The information
features of AR-HUD, which were displayed throughout the
trip, and those that were displayed only during the takeover
are shown in Figure 3.

D. INSTRUMENTS AND MEASURES

A Tobii Pro Glasses 2 eye tracker with a sampling fre-
quency of 50 Hz was used to record pupillometry data [56].
Electrodermal activity (EDA), skin temperature, and heart
rate variability (HRV) were recorded using the Empatica E4
wristband [57], which records data on galvanic skin response
(EDA at 4 Hz), skin temperature (4 Hz), blood volume pulse
(BVP, at 64 Hz), and interbeat interval (IBI, obtained by
processing the BVP signal).

The physiological signals used in the analysis were the
HRYV, EDA, skin temperature, and pupil size. The physio-
logical characteristics of these indicators are presented in
Section IV. Physiological signals were used as inputs to
machine learning classifiers to predict cognitive load as a
function of HUD type: baseline HUD vs. AR-HUD.

The dependent variables for the subjective measures were
driver user experience, system usability, and the acceptance
of advanced traffic telematics.

User experience was assessed using the User Experi-
ence Questionnaire (UEQ), which consists of 26 questions
designed to evaluate six aspects of perceived user expe-
rience: Attractiveness, Understandability, Efficiency, Reli-
ability, Stimulation, and Novelty. The UEQ scores were
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FIGURE 3. Information shown in AR-HUD during driving and takeover.

calculated using the UEQ Data Analysis Tool available on the
UEQ website. The UEQ rating scale ranges from -3 (terribly
bad) to 3 (extremely good). The perceived usability of the
system was assessed using the System Usability Scale (SUS),
which consists of 10 usability questions. Responses were then
used to calculate a score on a scale of 0-100, with a score of
68 set as a discriminatory cutoff: a score below 68 indicates
below-average perceived ease of use, while a score above
68 indicates above-average perceived ease of use. Finally,
system acceptance was assessed using the Acceptance of
Advanced Transportation Telematics (AATT) questionnaire,
which consists of nine questions. Two aspects were calculated
based on the results of all AATT questions, representing the
perceived usefulness and user satisfaction with the evaluated
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solution. The statistical analysis of these values is presented
in Section IV-A.

E. PROCEDURE
The study had a 2 (driving mode: manual vs. auto) x 2
(display configuration: baseline HUD vs. AR-HUD) factorial
design, with repeated measures for the first factor. All par-
ticipants completed two trials: 1) a baseline trial in which
test participants drove without the HUD and 2) a trial with
the HUD, in which the HUD was displayed in addition to
the dashboard, which was also used in the baseline trial. The
order of the trials was randomized.

The study protocol was as follows.

Pre-trial:

1) Introduction: Instructions were provided in written
form to ensure that each participant received the same
amount of information.

2) Informed consent: The participants were asked to sign
an informed consent form before the start of the study.

3) Demographic Questionnaire: The participants were
asked to provide information on their age, sex, and
driving experience. No personal data were collected for
the study.

4) Test drive: The participants completed a test drive to
familiarize themselves with the simulator and the study
tasks. Biometric sensors were attached and calibrated
before the test drive began.

Trial:

1) Drive 1: Complete the Baseline or AR-HUD trial
(depending on the randomized order).

2) Self-Assessment: Completion of the UEQ, SUS, and
AATT questionnaires regarding the first drive.

3) Drive 2: Complete the baseline or HUD trial (depend-
ing on the randomized order).

4) Self-Assessment: Complete the UEQ, SUS, and AATT
questionnaires regarding the second drive.

F. STATISTICS AND MACHINE LEARNING

Data preprocessing and analyses were performed in Python
v.3.10 [58] using pinguoun v.0.5.3 [59] for statistical analysis
and mlxtend [60] and scikit-learn [61] libraries for machine
learning.

1) STATISTICAL ANALYSIS

The nonparametric Mann-Whitney U and Kruskal-Wallis
tests were used when the data were not normally distributed,
and Welch’s t-test was used when the data were normally
distributed but had unequal variances. The significance level
was set at « = 0.05. Cronbach’s alpha was used to test the
reliability of self-reports from the UEQ, SUS, and AATT.

2) MACHINE LEARNING

Raw physiological data were preprocessed and normalized
(z-score normalization) before further steps were performed
to determine the features. All data were normalized and
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features were calculated per driver, driving interval, driv-
ing mode (manual vs. auto ), and HUD type (baseline vs.
AR-HUD).

Basic statistics and pycatch22 [62] were used to gener-
ate features from the skin temperature and pupil dilation
signals. The basic statistical features include mean, stan-
dard deviation, minimum, maximum, skewness, and kurto-
sis. Pycatch22 is a widely used time-series characterization
library with a collection of 22 time-series specific features
describing symbolic, temporal, and frequency ranges, includ-
ing the distribution shape, timing of extreme events, lin-
ear and nonlinear autocorrelation, incremental differences,
and self-affine scaling (for an overview and feature defini-
tions, see [62]). The effects of the two feature-generation
approaches were compared later when evaluating classifier
performance. NeuroKit2 v.0.2.1 [63], a Python library for
biomedical signal processing, was used to process the data,
generate features for heart rate variability (HRV), and extract
tonic and phasic features from EDA signals. The mean and
standard deviation of tonic and phasic EDA were used as
features.

The physiological signal features were first tested for
multicollinearity and variance, and all features with collinear-
ity > 95% and/or zero variance were removed. Further
analysis and selection were performed by recursive feature
elimination (RFE) with 5-fold cross-validation and the Light-
GBM (LGBM) classifier. The most important features of each
signal were retained.

The effects of signal fusion on classifier performance were
analyzed using an exhaustive feature selector [60] by select-
ing and evaluating all possible signal combinations (n = 15)
using 5-fold cross-validation and LGBM.

The gradient-boosting machine classifiers LGBM, Hist-
GradientBoostingClassifier (HGBC), and XGBoost (XGB)
from scikit-learn were used as machine learning mod-
els [61]. The advantage of these ensemble models is
that they can handle missing data and are insensitive to
scale differences in data. Repeated stratified k-fold cross-
validation (n_splits = 10, n_repeats = 5) was used to
evaluate classifier performance, with the ROC AUC serv-
ing as a measure of model performance. The optimization
configurations for all classifiers were left at the default
values.

SHapley Additive exPlanations (SHAP) analysis [64]
was conducted to improve the interpretability of the
best-performing model and to show how the cognitive
load associated with the HUD type affects physiological
responses.

IV. RESULTS

A. SELF-REPORT MEASURES

The self-reported results of 28 drivers for the UEQ, SUS, and
AATT were analyzed. Good internal consistency was found
for all three questionnaires, with Cronbach’s alphas for the
SUS (@ = 0.79), AATT (@ = 0.81), and UEQ (o = 0.71).
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TABLE 2. Definition of HRV and EDA features along with basic statistical features for pupil dilation and skin temperature.

Selected features

Description

HRV_RMSSD
HRV_SDSD
HRV_MeanNN
HRV_SDNN
temp_mean
temp_std
temp_min
temp_max
pupil_mean
pupil_min
pupil_max
pupil_skew
EDA_Tonic_mean
EDA_Tonic_std

The square root of the mean of the squared successive differences between adjacent RR intervals.
The standard deviation of the successive differences between RR intervals.

The mean of the RR intervals.

The standard deviation of the RR intervals.

average skin temperature

standard deviation of skin temperature

minimum skin temperature

maximum skin temperature

average pupil size

minimum pupil size

maximum pupil size

skewness of pupil dilation.

average tonic component of the signal, or the Tonic Skin Conductance Level (SCL).
standard deviation of the tonic component of the signal.

EDA_Phasic_mean average phasic component of the signal, or the Phasic Skin Conductance Response (SCR).

EDA _Phasic_std

standard deviation of the phasic component of the signal.

TABLE 3. Definition of catch22 time-series specific features for pupil dilation and skin temperature.

Selected features

Description

temp_SC_FluctAnal_2_rsrangefit_50_1_logi_prop_rl
temp_SC_FluctAnal_2_dfa_50_1_2_logi_prop_rl

Rescaled range fluctuation analysis
Rescaled range fluctuation analysis

temp_CO_trev_1_num
temp_DN_OutlierInclude_n_001_mdrmd
pupil_CO_HistogramAMI_even_2_5

pupil_CO_Embed2_Dist_tau_d_expfit_meandiff

pupil_FC_LocalSimple_mean]_tauresrat
pupil_CO_flecac

pupil_CO_trev_1_num
pupil_DN_OutlierInclude_n_001_mdrmd

Nonlinear autocorrelation
Negative outlier timing

5-bin histogram mode
Embedding distance distribution
Change in autocorrelation
Nonlinear autocorrelation
Nonlinear autocorrelation
Negative outlier timing

The Mann-Whitney U test revealed no significant dif-
ference in the SUS scores between the two HUD types.
However, the mean SUS scores were significantly higher for
AR-HUD: HUD (M = 83.50, SD = 11.47) vs. AR-HUD
(M = 87.47, SD = 9.87). No significant differences were
found in AATT scores (Usefulness and Satisfaction) between
the two HUD types. The average AATT scores for both HUDs
differed only slightly in terms of Usefulness (baseline HUD
(M =1.20,SD =0.70) vs. AR-HUD (M = 1.29, SD = 0.51))
and Satisfaction (baseline HUD (M = 0.95, SD = 0.54) vs.
AR-HUD (M = 1.03, SD = 0.50)).

For the UEQ, a Welch’s t-test showed a significant effect
for Novelty, t(27) = -2.14, p = .004, with scores for AR-HUD
(M = 1.23, SD = 0.80) significantly higher than for baseline
HUD (M = 0.63, SD = 1.26). No significant effects were
found for the other five dimensions of the UEQ (Attractive-
ness, Clarity, Efficiency, Reliability, and Stimulation).

B. PHYSIOLOGICAL SIGNAL ANALYSIS AND FEATURE
SELECTION

This section investigates the physiological responses to the
cognitive load induced by the type of HUD ( baseline vs.
AR-HUD). Kruskal-Wallis analysis of variance revealed no
significant differences in the physiological responses to
the two HUD types or between manual and conditionally
automated driving.
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Machine learning was employed to investigate physiolog-
ical responses to the cognitive load induced by the HUD
type. Two different feature generation approaches were com-
pared, as mentioned in Subsection III-F2. Features gen-
erated using catch22 time-series analysis were compared
with the basic statistical features of skin temperature and
pupil dilation, with both sets having the same HRV and
EDA features. This was performed to investigate whether
the basic statistical approach can provide comparable per-
formance to that of computationally demanding time-series
analysis. If both sets would show comparable performance,
then a set with a lower computational load would be prefer-
able for a system working continuously and in a real-world
setting.

First, feature selection using RFE with the LGBM
classifier was performed to select the best predictors of
HUD-induced cognitive load for each signal. 5-fold cross-
validation was used to reduce model bias. The selected
features for HRV and the tonic and phasic features of EDA
were identical in both final feature sets. The basic statistical
feature set is listed in Table 2.

The catch22 set included the same features for HRV and
EDA (presented in Table 2), and the time-series specific
catch22 features generated for pupil dilation and skin tem-
perature (shown in Table 3).

The feature importance values calculated for the two sets
of selected features are shown in Figures 4 and 5.

87843



IEEE Access

G. Strle et al.: Physiological Signals as Predictors of Cognitive Load

Feature Importances
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FIGURE 4. Time-series features: feature importance generated with LGBM
classifier based on HRV, EDA, and the time-series (catch22) features for
skin temperature and pupil dilation. Note that some catch22 feature
names were shortened for presentation.
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FIGURE 5. Basic statistical features: feature importance generated with
LGBM classifier based on HRV, EDA, and the basic statistical features for
skin temperature and pupil dilation.
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FIGURE 6. Comparison of physiological signal fusion for both feature
sets, catch22 (left) and basic statistics (right). The ROC AUC scores are
shown with the bounds for standard deviation of the scores.

1) EFFECTS OF SIGNAL FUSION ON CLASSIFICATION
PERFORMANCE
Next, the two sets of selected features were used in the signal
fusion to determine the optimal combination of signals for
predicting the cognitive load induced by the two HUDs. The
effects of signal fusion on classification performance were
analyzed using the exhaustive feature selector [60] by sam-
pling and evaluating all possible signal combinations (n = 15)
with 5-fold cross-validation and LGBM.

Figure 6 shows a performance comparison of the two fea-
ture sets (based on the catch22 and the basic statistics) trained
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TABLE 4. Catch22 time-series feature set. The signal fusion of HRV, EDA,
and catch22 features for the skin temperature and pupil dilation. The
effects of physiological signal combinations on the LGBM classifier
performance.

Set  Signal fusion AUC CI_bound STD std_err
3 HRY, skin, pupil 0.69 0.03  0.09 0.01
4 HRVY, skin, EDA 0.67 0.03 0.10 0.01
2 HRV, pupil, EDA 0.67 0.03 0.10 0.02
0  skin, pupil, EDA 0.63 0.03 0.11 0.02
1 HRYV, skin, pupil, EDA 0.58 0.03 0.10 0.01

TABLE 5. Basic statistics feature set. Signal fusion of HRV, EDA, and basic
statistical features for skin temperature and pupil dilation. The effects of
physiological signal combinations on the LGBM classifier performance.

Set  Signal fusion AUC Cl_bound STD std_err
3 HRY, skin, pupil 0.77 0.02  0.09 0.01
4 HRV, skin, EDA 0.76 0.03  0.09 0.01
0  HRV, pupil, EDA 0.75 0.02  0.09 0.01
1 skin, pupil, EDA 0.69 0.02 0.08 0.01
2 HRV, skin, pupil, EDA 0.63 0.03 0.10 0.01

using the LGBM. The numbers on the x-axis in Figure 6
denote the five best-performing signal fusion sets listed
in Tables 4 and 5.

Table 4 shows the five best-performing signal fusion sets
based on the catch2? time-series feature set, whereas Table 5
shows the same for the basic statistical feature set.

Along with each fusion set, the tables provide the
ROC AUC performance scores (AUC), confidence interval
bounds of the cross-validation score average (CI_bound),
standard deviations (STD), and standard errors (std_err.).
Tables 2 and 3 present the features that represent each signal.

C. CLASSIFICATION OF COGNITIVE LOAD:

HUD VS. AR-HUD

The three machine-learning classifiers, LGBM, XGB, and
HGBC, were further tested on the top-ranking feature sets
presented in Tables 4 and 5, respectively. The results of the
classifiers trained on the signal fusion sets of HRYV, skin tem-
perature, and pupil size are shown in Figure 7. The classifiers
built on the basic statistical feature set for skin temperature
and pupil dilation showed better overall performance than
those built on the time-series (catch22) features of the two
signals. The average AUC ROC scores and the standard devi-
ations of the scores for the classifiers based on the catch22
set were: XGB = 0.67 (0.09), LGBM = 0.69 (0.09), and
HGBC = 0.70 (0.09). The average AUC ROC scores and
standard deviations of the scores for the classifiers based on
the basic set were better overall compared to the catch22 set:
XGB = 0.76 (0.07), LGBM = 0.76 (0.09), and HGBC =
0.76 (0.07). The best performance for each classifier was also
obtained with the basic statistical feature set, with ROC AUC
scores of LGBM = 0.96, XGB = 0.96, and HGBC = 0.98.

D. MODEL INTERPRETABILITY
To further investigate the physiological responses to cogni-
tive load associated with each HUD type, SHAP analysis
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FIGURE 8. Physiological responses to cognitive load associated with
AR-HUD. The impact of individual features on predicting the type of HUD
is shown through positive and negative relationships between features
and cognitive load. Features are ranked in descending order of
importance.

was conducted on the features from the best-performing sig-
nal fusion set of HRV, pupil dilation, and skin temperature
(Tables 5 and 2). To reduce model bias and substantiate its
validity, stratified 10-fold cross-validation was used to train
the LGBM classifier and calculate the SHAP values.

Figure 8 shows a SHAP summary plot of the impact of
individual physiological features on predicting the cogni-
tive load associated with AR-HUD. Note that for binary
classification, the SHAP values for the baseline HUD and
AR-HUD classes are symmetrical, as the contribution of a
feature towards one class reduces the probability of its con-
tribution to the other class by the same amount. The features
are ranked in the descending order of importance. The dots
represent the instances of each feature, and the horizontal
position of the dot is determined by the SHAP value of that
feature. The horizontal location of each dot shows the effect
of its value on the prediction (cognitive load associated with
HUD type). The density of each feature is observed from the
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swarm plot. The color indicates the original value of a feature,
with high values denoted in red and low values denoted in
blue [64].

Figure 8 shows that a high level of skew in pupil dila-
tion has a high positive correlation with the cognitive load
associated with AR-HUD. The increase in mean pupil size is
also associated with AR-HUD, but to a lesser extent, and this
effect is not as distinctive. The increase in mean pupil size
may indicate an increase in cognitive load while driving with
AR-HUD, as increases in load typically lead to increases in
pupil dilation [46]. However, it might also show the effects
of external conditions on pupil dilation, such as variations
in luminance conditions associated with HUD type and/or
road conditions [65]. A higher density of lower pupil skew
is associated with the baseline HUD, whereas a higher skew
in pupil dilation is associated with AR-HUD. This may indi-
cate that AR-HUD elements had higher luminance and/or
that the participants were attentive to different screen areas
when using AR-HUD, which would cause a higher deviation
from the mean pupil size and thus higher levels of skew
in pupil dilation while driving with AR-HUD. The latter is
in line with the eye-tracking study of AR-HUDs by [24],
who reported that AR-HUD makes “the visual gaze more
dispersed, [and] the AR-HUD-assisted driving allocates more
driving resources to places other than the central driving
area” [24, p. 129963].

Another interesting finding is the SHAP values for the
HRV features, specifically the impact of RMSSD and SDSD
on the predictive performance of the model. As shown
in Figure 8, increased RMSSD correlates with the cognitive
load associated with AR-HUD, whereas increased SDSD is
negatively correlated with AR-HUD. The positive correlation
between high RMSSD and AR-HUD might indicate that
a lower cognitive load is associated with the AR-HUD as
compared to that induced by the baseline HUD. This is in
line with the results reported by [43], who investigated heart
rate variability in resting, anticipatory, stressful, and recov-
ery periods and its association with cognitive performance
measured by a verbal learning task. Their results showed
that RMSSD correlated negatively with the cognitive load
induced during stressful periods but increased in the restful,
anticipatory, and recovery periods. Their results also showed
that the SDNN, which reflects the overall variability of the
beat-to-beat RR intervals, increased during anticipatory and
stressful periods. However, the SHAP values for the SDNN
presented in Figure 8 are inconclusive, with a slight cor-
relation between low SDNN values and the cognitive load
associated with AR-HUD. This might be because SDNN
represents phasic heart rate variability changes over longer
periods of time and thus cannot capture shorter time intervals
of the changing conditions (baseline vs. AR-HUD). In con-
trast, higher short-term (beat-by-beat) variability represented
by SDSD is negatively correlated with the AR-HUD and posi-
tively correlated with the baseline HUD, as shown in Figure 8.
Increased SDSD may indicate cognitive stress peaks dur-
ing increased cognitive load. Similar results were obtained
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by [42], who studied physiological responses to cognitive
load induced by driving with and without a secondary task.
They reported that RMSSD and SDSD were the most robust
measures, whereas SDNN failed to differentiate between the
conditions. Moreover, in the present study, the lower min-
imum skin temperature values are being highly negatively
correlated with AR-HUD, whereas the other SHAP results
for skin temperature features are mostly inconclusive.

V. CONCLUSION AND FUTURE WORK

This study investigated whether differences in the physiolog-
ical responses of drivers to cognitive load could predict the
type of HUD used while driving. The present study found
no statistically significant differences in the physiological
responses to the two HUD types. This finding is consistent
with the results of previous studies [15], [51], [52]. However,
the results showed that physiological signals are reliable
predictors of the cognitive load associated with HUD type.
The impact of individual physiological features on predicting
cognitive load was examined using the SHAP analysis on the
best-performing feature set. The results showed that the most
robust predictors of cognitive load associated with the two
HUDs were pupil dilation and HRV signals, namely pupil
skew, mean pupil size, HRV RMSSD, and HRV SDSD.

In terms of related work, no directly comparable studies
have investigated drivers’ physiological responses to the cog-
nitive load induced by HUDs, as discussed in Section II.
Most studies have investigated cognitive load associated with
secondary tasks.

Studies by [12], and [13] showed that a higher driver
cognitive load is associated with a secondary task. The results
of [13], and [14] also showed that cognitive load can be accu-
rately detected using machine learning classifiers based on
physiological signals and their combinations. Their method is
similar to that presented here, but they focus on the cognitive
load induced by secondary tasks and takeover situations and
report classification performance in terms of accuracy (e.g.,
accuracy between 69 and 73% for EDA and the best accuracy
of 92-94% achieved by combining respiration and ECG),
which is not directly comparable to our ROC AUC scores.
In another classification study [14], driver cognitive load was
assessed as a function of task difficulty (no task vs. low vs.
high) and task modality (visual cognitive task vs. auditory
cognitive task). The reported F1 metrics for task difficulty
ranged from 0.51 to 0.71, depending on the model and feature
combination. Their results also showed that the models had
difficulty predicting the task modality (visual vs. auditory),
with the best model using ECG and RESP as signals achiev-
ing a weighted F1 value of 0.61 and an average weighted F1
accuracy of approximately 50% [14].

The results presented show promising potential for physi-
ological signals as indicators of cognitive load. The ability to
predict the cognitive load induced by HUDs based on driver
physiology means that dynamic regulation of cognitive load
and its effects in real time is possible. This is an important
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step towards reducing excessive cognitive load and improving
driver performance and safety.

This study has several limitations, most of which are
characteristic of research conducted in simulated driving
environments. One limitation of this study was the relatively
small sample size of 28 participants, which may not be rep-
resentative of the larger driving population. This should be
addressed in future studies by recruiting a larger and more
diverse driver sample. Another limitation is the use of a sim-
ulator, as it may not accurately capture the cognitive load in
real-world driving situations given its controlled environment
and lack of real-world unpredictability. Therefore, the results
of this study should be investigated under actual driving
situations.

Future work will consider a broader range of physiolog-
ical indicators of cognitive load. Additionally, the type of
HUD could be expanded to include more than just the base-
line and AR-HUD, allowing for a more robust examination
of the effects of different visual information complexities.
It will examine HUDs in terms of visual information com-
plexity, information cluster saturation, and placement in the
driver’s environment. Testing across additional forms of cog-
nitive stimuli in the HUD should be considered. Further
research could refine the application of machine-learning
approaches within real-time systems to ensure practical fea-
sibility, accuracy, and consistency. The study should also
be conducted in actual driving situations, as opposed to a
simulator, to improve the external validity.
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