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ABSTRACT This paper is concerned with highly accurate analytical approximate solutions to dynamic
oscillation of the parallel-plates model of an electrostatic micro-actuator. A potential difference is applied
between the two electrodes to obtain a desired oscillatory effect, and the top movable electrode is suspended
over the bottom fixed electrode by a linear suspension. The periodic oscillation solutions are obtained by
generalizing the second-order Newton-harmonic balance (HB) method. The procedure obtains brief and
accurate analytical approximate solutions for a large range of oscillation amplitudes with only one iteration
step, the analytical approximate solutions show excellent agreement with the ‘‘exact’’ solution yielded by
numerical integration. These analytical approximate solutions can be applied to analyze and design micro-
and nano-devices employing electrostatic parallel plates.

INDEX TERMS Parallel plate, MEMS, analytical approximation, second-order Newton iteration, harmonic
balance.

I. INTRODUCTION
Parallel plates are widely used as a necessary component in
many microdevices that use electrostatic forces for actuation
and capacitance changes for inspection. In bio-MEMS appli-
cations, the parallel plates act as micro-actuators for driving
micropumps [1], [2] and microvalves [3]. In optical and RF
MEMS applications, parallel plates are also applied to mod-
ulating a light beam [4], cantilever micro-electro-mechanical
actuator [5], and even tuning a capacitance [6].

Due to the different geometry of the movable plates and
flexures, the parallel plate suspended by flexures and subject
to electric force moves toward the fixed plate with or without
angular displacement. Parallel plate without angular displace-
ment [7] is selected as a simple model in manyMEMS device
or component researches. A parallel-plate model is the one-
dimensional idealization of an electrostatic micro actuator
that is used to develop insight into its nonlinear dynamic
behaviors [8], [9], [10]. For the parallel plate whose movable
plate moves downward to the lower electrode, the pull-in
voltage and the corresponding displacement were obtained
in closed forms [8]. In addition, the effective stiffness, inter-
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plate gap, capacitance, resonant frequency and their sensi-
tivities have also been derived as functions of the voltage
applied across the plates [9]. In someMEMS devices, electro-
statically actuated micro cantilever or fixed–fixed beam are
simulated as a single parallel plate capacitor suspended by
an ideal linear spring [11], [12], and obtained the behavior
or response to an applied voltage by numerically solving
a fourth-order nonlinear differential equation. Optimization
[13], dynamic model development [14], or control [15] of a
variety of parallel plates is concerned by researchers. On the
other hand, electric membrane parallel plate [16] has been
analyzed to examine the response to a given voltage. All par-
allel plates [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]
are nonlinear systems whose mechanical behavior is coupled
with electrostatic forces generated by an applied voltage, so
that the parallel plate’s responses such as displacement at the
voltage has been obtained by employing complicated numer-
ical simulations. For further analytical studies of the parallel
plate model, analytical approximate solutions which provide
accurate explicit expressions of the model are attractive.
Lee [9] derived a closed-form solution and a standard formula
for a parallel-plate problem, which involved a movable rigid
plate and a symmetrically-bent plate, and achieved a closed-
form solutionwhich included parameters such as the height of
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FIGURE 1. Schematic illustration of parallel-plates model for an
electrostatic actuator.

TABLE 1. Parameters of the parallel-plate model.

the moving plate and its effective stiffness due to the applied
voltage. Yu et al. [17] discussed the static and dynamic pull-
in parameters of the parallel-plate microelectrostatic actuator
with the help of Galerkin’s method and Newton’s method.

Nonlinear free vibration of a parallel-plates model that is
subjected to constant voltage is investigated here. Although
the second order Newton-HB method [18], [19] has been
successful in some cases above, it is still a great challenge
to extend and generalize this method to this parallel-plates
vibration system. As it will become clearer below, this is
because the governing equation does not only have con-
current presence of odd and non-odd nonlinear terms, but
also contains highly negative-powered restoring terms. The
coexistence of these terms makes the system extremely non-
linear, and hence, higher order approximation and assurance
of numerical accuracy will become a challenge. Based on the
nonlinear problem with odd and even nonlinearities, two new
nonlinear equations with odd nonlinearity are proposed. The
accurate analytical approximations of the original nonlinear
problem are mathematically formulated by combining piece-
wise approximate solutions from such two new nonlinear
systems. The details of modeling and approximations are pre-
sented below. In the illustrative examples specified by certain
material parameters and initial conditions, the approximate
analytical solutions are derived and subsequently verified by
separately comparing to numerical integration solutions.

II. FORMULATION OF PARALLEL-PLATES MODEL
Consider a parallel-plates model as shown in Figure 1. The
top movable electrode has mass m̂, and is suspended over
the bottom fixed electrode by a linear suspension having
stiffness k̂ . The initial separation between the two electrodes
is equal to ĝ0. Permittivity of the vacuum is denoted byε̂0 and
Â represents the area of overlap between the two electrodes,
and V̂ is the applied voltage. Also, x̂

(
t̂
)
denotes the time-

dependent displacement of themovable electrode. Parameters
of the parallel-plate model are list in Table 1.

Neglecting the effect of energy dissipation, the dynamic
equation of motion of the system is written as

m̂
d2x̂

d t̂2
+ k̂ x̂ =

ε̂0ÂV̂ 2

2
(
ĝ0 − x̂

)2 ,

x̂ (0) = 0,
dx̂

d t̂
(0) = 0. (1)

We define the following dimensionless quantities in order to
generalize the forthcoming analysis:

x (t) =
x̂
(
t̂
)

ĝ0
,V =

(
ε̂0ÂV̂ 2

k̂ ĝ30

) 1
2

, t =

(
k̂
m̂

) 1
2

t̂ (2)

where x,V , and t denote normalized displacement, dimen-
sionless voltage and dimensionless time, respectively. These
definitions reduce (1) to the following dimensionless
form [10]:

d2x
dt2

+ x =
V 2

2 (1 − x)2
, x (0) = 0,

dx
dt

(0) = 0. (3)

Then, (3) can be rewritten as

d2x
dt2

+ F (x,V ) = 0,

where

F (x,V ) = x −
V 2

2 (1 − x)2
.

III. ANALYTICAL APPROXIMATIONS TO STATIC PULL-IN
STATE
Setting the time derivatives in (3) to zero, assuming a constant
electric load yields the nonlinear algebraic equation govern-
ing the static deflection as of the parallel-plate as follows

F (xs,V ) = xs −
V 2

2 (1 − xs)2
= 0. (4)

Based on (4), the potential V (V ≥ 0) can be solved and
expressed in terms of the normalized static beam center

V =

√
2(1 − xs)2xs. (5)

In general, the solution curve in (5) is composed of the left and
right branches. In figure 2, the highest point is the pull-in one
where the corresponding voltage and normalized static beam-
center deflection are denoted by Vp and xp, respectively.
In addition, stability analyses of the static deflection have
been performed in [20]. It has been pointed that, the left
branch is stable and the right branch is unstable. The static
pull-in parameters (normalized voltage Vp and normalized
displacement xs) of the plates are derived by (5), xp = 1

/
3,

Vp = 0.544331.

IV. ANALYTICAL APPROXIMATIONS TO NONLINEAR
FREE VIBTATIONS
In this section, we construct the analytical approximate peri-
ods and periodic solutions to (3). Let deflection

x = xs + u, (6)
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FIGURE 2. Variation of normalized voltage V along with normalized static
deflection xs.

FIGURE 3. Variation of the potential energy
∏

with normalized
incremental deflection u for xs = 0.1.

where u is the normalized incremental deflection from a
stable equilibrium position x = xs. Substituting (6) into (3)
leads to

d2u
dt2

+ f (u) = 0, u (0) = A1,
du
dt

(0) = 0. (7)

where

f (u)=xs+u−
V 2

2 (1 − xs − u)2
,V = V (xs) ,A1 = A− xs.

and A1 represents the initial normalized maximum displace-
ment. The corresponding potential energy function is∏

(u,V ) =

∫
f (u) du =

u2

2
+ uxs −

V 2

2 (1 − u− xs)
, (8)

and it reaches its minimum at u = 0. Thus, the system
will oscillate between asymmetric limits[−A2,A1] where
both−A2 (A2 > 0) andA1 have the same energy level, namely∏

(−A2,V ) =

∏
(A1,V ) , (9)

and they are left and right limitations of normalized incre-
mental deflection, respectively, for the vibration. In figure 3
the change of the potential energy

∏
(u,V ) (xs = 0.1) with

respect to the normalized incremental deflection u is shown.
The denominator of elelectrostatic force is expended into

a Taylor series at u = 0 up to the third order. Further, (7) is
approximated by

d2u
dt2

+
C1u+ C2u2 + u3

M0 +M1u+ u2
= 0, u (0) = A1,

du
dt

(0) = 0.

(10)

where

C1 = 1 − 4xs + 3x2s ,C2 = 3xs − 2,M0

= 1 − 2xs + x2s ,M1 = 2xs − 2.

Introducing the new independent variable τ = ωt , we may
transform (10) as

�
(
M0 +M1u+ u2

)
ü+ C1u+ C2u2 + u3 = 0,

u (0) = A1, u̇ (0) = 0. (11)

where � = ω2 and a dot denotes differentiation with respect
to τ . Based on (11), two odd nonlinear oscillators for i =

1, 2 are defined as follows

�i8
(i)(u)ü+ K (i)(u)

= 0, u(0) = Ai, u̇(0) = 0, (12a)

8(i)(u) =

{
M0 + (−1)i−1M1u+ u2, if u ≥ 0,
M0 − (−1)i−1M1u+ u2, if u < 0.

(12b)

K (i) (u) =

{
C1u+ (−1)i−1C2u2 + u3, if u ≥ 0,
C1u− (−1)i−1C2u2 + u3, if u < 0.

(12c)

Here, for i = 1, 2, K (i) (u)is an odd function of u, and
8(i)(u)is an even function of u.
Based on the single term HB method, the initial approxi-

mation to (12) is set as

u(i)
1 = Ai cos τ, i=1,2 (13)

Substituting (13) into (12), expanding the resulting expres-
sion in the Fourier series and setting the coefficient of cos τ

to zero result in

�
(i)
1 (Ai) =

9πA2i + 12πC1 + 32 (−1)i−1 AiC2

9πA2i + 12πM0 + 32 (−1)i−1 AiM1
, i = 1, 2

(14)

Therefore, the first approximation to the period of nonlinear
oscillator in (12) for i = 1, 2 is

T (i)
1 (Ai) = 2π

/√
�

(i)
1 (Ai), (15)

and the corresponding approximate periodic solution is

u(i)
1 (t) = Ai cos

(√
�

(i)
1 (Ai)t

)
. (16)

Based on the initial approximations �
(i)
1 (Ai) and u(i)

1 (t) in
(14) and (16), respectively, to the solution of (12), the second-
order Taylor expansion and the HB method can be combined
to obtain a more accurate solution. The periodic solution of
(12) and its frequency squared can be formulated as

u(i)
= u(i)

1 + 1u(i)
1 , �(i)

= �
(i)
1 + 1�

(i)
1 , i = 1, 2 (17)

Substituting (17) into (12), neglecting the third-order and
higher-order power degree terms in 1u(i)

1 and 1�
(i)
1 , lead to

8(i)(u(i)
1 )
(
�

(i)
1 ü

(i)
1 + 1�

(i)
1 ü

(i)
1 + �

(i)
1 1ü(i)

1 + 1�
(i)
1 1ü(i)

1

)
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+ 8(i)
u (u(i)

1 )1u(i)
1

(
�

(i)
1 ü (i)(i)1 + 1�

(i)
1 ü

(i)
1 + �

(i)
1 1ü(i)

1

)
+ K (i)(u(i)

1 ) + K (i)
u (u(i)

1 )1u(i)
1

+
1
2

[
8(i)
uu(u

(i)
1 )�(i)

1 ü
(i)
1 + Kuu(u

(i)
1 )
]
(1u(i)

1 )2 = 0,

1u(i)
1 (0) = 0, 1u̇(i)

1 (0) = 0, i = 1, 2 (18)

Firstly, the linearized equation in 1u(i)
10 and 1�

(i)
10 derived

from (18)

�
(i)
1 8(i)(u(i)

1 )ü(i)
1 + K (i)(u(i)

1 ) + 1�
(i)
108

(i)(u(i)
1 )ü(i)

1

+ �
(i)
1 8(i)(u(i)

1 )1ü(i)
10 + �

(i)
1 8(i)

u (u(i)
1 )ü(i)

1 1u(i)
10

+ K (i)
u (u(i)

1 )1u(i)
10 = 0,

1u(i)
10(0) = 0, 1u̇(i)

10(0) = 0, i = 1, 2 (19)

is solved. The approximate solution to (19) can be developed
by setting 1u(i)

10 as

1u(i)
10(τ ) = α

(i)
1 (cos τ − cos 3τ ), i = 1, 2 (20)

Substituting (13) and (20) into (19), expanding the resulting
expression into the Fourier series, setting the coefficients of
cos τ and cos 3τ to zero, respectively, yield

�
(i)
10 =

N (i)
2 P(i)

α − N (i)
1 Q(i)

α

Q(i)
α P

(i)
� − P(i)

α Q
(i)
�

, α(i)

=
−N (i)

2 P(i)
� + N (i)

1 Q(i)
�

Q(i)
α P

(i)
� − P(i)

α Q
(i)
�

, i = 1, 2. (21)

where P(i)
α ,P(i)

� ,N (i)
j ,Q(i)

α , and Q(i)
� , (i = 1, 2; j = 1, 2) are

listed in Appendix VI.
Therefore, the second approximate period and periodic

solution to (12) for i = 1, 2 can be expressed as

T (i)
2 (Ai) = 2π/

√
�

(i)
2 (Ai), (22)

u(i)
2 (τ ) = (Ai + α

(i)
1 ) cos

(√
�

(i)
2 (Ai)t

)
− α

(i)
1 cos

(
3
√

�
(i)
2 (Ai)t

)
, (23)

where

�
(i)
2 = �

(i)
1 + 1�

(i)
10. (24)

Next, in (18), replacing 1�
(i)
1 in 1�

(i)
1 8(i)(u(i)

1 )1ü(i)
1 with

1�
(i)
10, 1ü

(i)
1 in �

(i)
1 8

(i)
u (u(i)

1 )1ü(i)
1 1u(i)

1 with 1ü(i)
10, 1�

(i)
1 in

1�
(i)
1 8

(i)
u

(
u(i)
1

)
ü(i)
1 1u(i)

1 with 1�
(i)
10, and one of two 1u(i)

1

terms in 0.5(1u(i)
1 )2�(i)

1 8
(i)
uu(u

(i)
1 )ü(i)

1 + 0.5(1u(i)
1 )2K (i)

uu (u
(i)
1 )

with 1u(i)
10, respectively, yields linear equation in 1u(i)

1 and
1�

(i)
1 :

8(i)(u(i)
1 )
(
�

(i)
1 ü

(i)
1 + 1�

(i)
1 ü

(i)
1 + �

(i)
1 1ü(i)

1 + 1�
(i)
101ü

(i)
1

)
+ 8(i)

u (u(i)
1 )1u(i)

1

(
�

(i)
1 ü

(i)
1 + 1�

(i)
10ü

(i)
1 + �

(i)
1 1ü(i)

10

)
+ K (i)(u(i)

1 ) + K (i)
u (u(i)

1 )1u(i)
1

+
1
2

[
8(i)
uu(u

(i)
1 )�(i)

1 ü
(i)
1 + Kuu(u

(i)
1 )
]
1u(i)

101u
(i)
1 = 0,

1u(i)
1 (0) = 0, 1u̇(i)

1 (0) = 0, i = 1, 2 (25)

Let 1u(i)
1 in (25) be

1u(i)
1 (τ ) = β(i) (cos τ − cos 3τ) + γ (i) (cos 3τ − cos 5τ) ,

(26)

which satisfies the initial conditions in (25). Substituting
(13), (14), (20), (21), and (26) into (25), expanding the
resulting expression into the Fourier series and setting the
coefficients of cos τ , cos 3τ and cos 5τ to zeros, respec-
tively, produce, as in (27), shown at the bottom of the next
page, where R(i)

� ,P(i)
β ,P(i)

γ ,N (i)
k ,E (i)

� ,Q(i)
β ,Q(i)

γ ,F (i)
� , S(i)

β ,and

S(i)
γ (i = 1, 2; k = 1, 2, 3) are listed in Appendix VI.
Finally, the third approximations to the period and corre-

sponding periodic solution to (12) for i = 1, 2can be written
as

T (i)
3 (Ai) = 2π/

√
�

(i)
3 (Ai), (28)

u(i)
3 (t) =

(
Ai + β(i)

)
cos

[√
�

(i)
3 (Ai)t

]
+

(
−β(i)

+ γ (i)
)
cos

[
3
√

�
(i)
3 (Ai)t

]
− γ (i) cos

[
5
√

�
(i)
3 (Ai)t

]
, (29)

where

�
(i)
3 = �

(i)
1 + 1�

(i)
1 . (30)

Finally, the corresponding the nth (n = 1, 2, 3) analytical
approximate period and periodic solution to (7) can be written
as

Tn (A1) =
T (1)
n (A1)

2
+
T (2)
n (A2)

2
, (31)

un (t) =



u(1)
n (t) , 0 ≤ t ≤

T (1)
n (A1)
4

;

u(2)
n

(
t −

T (1)
n (A1)
4

+
T (2)
n (A2)
4

)
,

T (1)
n (A1)
4

≤ t ≤
T (1)
n (A1)
4

+
T (2)
n (A2)
2

;

u(1)
n

(
t +

T (1)
n (A1)
2

−
T (2)
n (A2)
2

)
,

T (1)
n (A1)
4

+
T (2)
n (A2)
2

≤ t ≤
T (1)
n (A)

2

+
T (2)
n (A2)
2

(32)

The exact period Te (A1) is

Te (A1) = 2
∫ A1

−A2
[25 (A1,V ) − 25 (A2,V )]−1/2du. (33)

where A2 is determined by (8) and (9).
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TABLE 2. Comparison of approximate and ‘‘exact’’ periods for
xs = 0.1, V = 0.402492, Ap = 0.545862.

TABLE 3. Comparison of approximate and ‘‘exact’’ periods for
xs = 0.2, V = 0.505964, Ap = 0.287689.

TABLE 4. Comparison of approximate and ‘‘exact’’ periods for
xs = 0.3, V = 0.542218, Ap = 0.0678175.

V. RESULTS AND DISCUSSION
To describe the dynamic vibration behavior and verify the
accuracy of analytical approximate solutions, comparative
analysis of the approximate and ‘‘exact’’ solutions is given
in this section.

The ‘‘exact’’ period Te (A1) obtained by (33) and the
approximate periodsT1 (A1), T2 (A1), and T3 (A1) computed
by (31) are listed in Table 2, 3, and 4. Note that the maximum
amplitude Ap of vibration is determined by the difference
between unstable deflection in the right branch and stable
static deflection as in the left branch at an equal potential
V (xs). From Table 2, 3, and 4, it can be analyzed that the
third approximate period T3 (A1)derived by (33) provides

FIGURE 4. Comparison of approximate periodic solutions with ‘‘exact’’
solution for xs = 0.1, V = 0.402492, A1 = 0.53.

FIGURE 5. Comparison of approximate periodic solutions with ‘‘exact’’
solution for xs = 0.2, V = 0.505964, A1 = 0.27.

FIGURE 6. Comparison of approximate periodic solutions with ‘‘exact’’
solution for xs = 0.3, V = 0.542218, A1 = 0.065.

very good accuracy to the exact period for various vibration
amplitudes.

1�
(i)
1 =

Q(i)
β S

(i)
γ N (i)

3 − Q(i)
γ S

(i)
β N (i)

3 + P(i)
γ S

(i)
β N (i)

4 − P(i)
β S

(i)
γ N (i)

4 − P(i)
γ Q

(i)
β N

(i)
5 + P(i)

β Q
(i)
γ N

(i)
5

F (i)
� P(i)

γ Q
(i)
β − F (i)

� P(i)
β Q

(i)
γ − E (i)

� P(i)
γ S

(i)
β + Q(i)

γ R
(i)
� S

(i)
β + E (i)

� P(i)
β S

(i)
γ − Q(i)

β R
(i)
� S

(i)
γ

β(i)
=
F (i)

� Q(i)
γ N

(i)
3 − E (i)

� S(i)
γ N (i)

3 − F (i)
� P(i)

γ N
(i)
4 + R(i)

� S
(i)
γ N (i)

4 + E (i)
� P(i)

γ N
(i)
5 − Q(i)

γ R
(i)
� N

(i)
5

F (i)
� P(i)

γ Q
(i)
β − F (i)

� P(i)
β Q

(i)
γ − E (i)

� P(i)
γ S

(i)
β + Q(i)

γ R
(i)
� S

(i)
β + E (i)

� P(i)
β S

(i)
γ − Q(i)

β R
(i)
� S

(i)
γ

γ (i)
=
E (i)

� S(i)
β N (i)

3 − F (i)
� Q(i)

β N
(i)
3 + F (i)

� P(i)
β N

(i)
4 − R(i)

� S
(i)
β N (i)

4 − E (i)
� P(i)

β N
(i)
5 + Q(i)

β R
(i)
� N

(i)
5

F (i)
� P(i)

γ Q
(i)
β − F (i)

� P(i)
β Q

(i)
γ − E (i)

� P(i)
γ S

(i)
β + Q(i)

γ R
(i)
� S

(i)
β + E (i)

� P(i)
β S

(i)
γ − Q(i)

β R
(i)
� S

(i)
γ

(27)
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For xs = 0.1,V = 0.402492,A1 = 0.53; xs =

0.2,V = 0.505964,A1 = 0.27,andxs = 0.3,V = 0.542218,
A1 = 0.065 the ‘‘exact’’ periodic solution ue (t)calculated by
numerically solving the initial value problem of (7) with the
Runge-Kutta method and the approximate analytical periodic
solutions u1 (t) , u2 (t) , and u3 (t)computed by (32) are pre-
sented in figure 4, 5, and 6. These figures show that the second
analytical approximate periodic solutions in (32) provide the
very good approximations to the ‘‘exact’’ periodic solutions
for the whole range of small and large amplitude of vibration.

VI. CONCLUSION
In this study, the nonlinear free vibration of the parallel-
plate type microelectrostatic actuator is analytically inves-
tigated by combing the second-order Newton method and
the harmonic balance method. The governing equation that
is expressed in a specific form has been solved in two
steps, a predictor step and a corrector step. Solution to each
step has been constructed in an appropriate manner using
the harmonic balance method. This new method retains the
advantage of solving a set of linear equations instead of a
set of nonlinear ones, yet it incorporates in a natural way
the second-order terms in the expansion. This higher-order
method yields accurate solutions with faster convergence rate
for all amplitudes of the parallel-plate type microelectrostatic
actuator. With these analytical expressions, it is possible to
perform analytical parametric investigations with respect to
various physical quantities that influence the dynamic behav-
ior and to help MEMS and NEMS designers for improving
the performances of resonant sensors.

APPENDIX A
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APPENDIX B
The coefficientsR(i)
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