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ABSTRACT In recent years, data security has been a challenging endeavor, especially when the data is being
transmitted every second. Internet of Things (IoT) involves continuously sending data over public networks,
making the data vulnerable to various security threats. Therefore, ensuring the secure end-to-end commu-
nication of IoT data is critical. Cryptography and steganography have proven effective in providing secure
connectivity for IoT devices. However, challenges in existing approaches include scalability, computational
complexity, implementation, key management, trade-offs, evolving threats, and hyperparameter tuning.
Therefore, in this paper, we propose EGCrypto, an efficient and secure model for IoT networks. EGCrypto
utilizes a low-complexity elliptic Galois cryptography approach along with matrix XOR steganography to
enhance security. To optimize its performance, we employ the zoning evolution of control attributes and adap-
tive mutation based self-adaptive differential evolution with fitness and diversity ranking. These techniques
are utilized to fine-tune the hyperparameters of EGCrypto, enhancing its effectiveness and efficiency. The
confidential IoT data is encrypted using low-complexity elliptic Galois cryptography. Following encryption,
the encrypted data is embedded or hidden into cover blocks of an image, which are selected using the
optimization algorithm. This ensures secure data communication in IoT architectures, as the encrypted data
is transferred safely and can be easily recovered and decrypted at the receiving end. The experimental results
demonstrate that EGCrypto outperforms competitive models with improvements of 1.8473% in peak signal
to noise ratio (PSNR), 1.5490% in strutural similarity index metric (SSIM), 1.7682% in normalized root
mean square error (NRMSE), 1.3829% in carrier capacity, and 1.9372% in embedding efficiency.

INDEX TERMS Data security, the Internet of Things, secure communication, cryptography, steganography,
elliptic Galois, differential evolution, hyperparameters, encryption.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ramakrishnan Srinivasan .

I. INTRODUCTION
Internet of Things (IoT) refers to an environment where
various physical resources, electronic gadgets, vehicles, and
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software are interconnected, facilitating data transmission
between these devices [1]. Initially, IoT was used for inte-
grating Radio-frequency Identification (RFID) tags, sensors,
and various communication devices. Its primary purpose is
to provide a reliable and secure framework for exchanging
‘‘Things’’ [2]. These ‘‘Things’’ in the context of IoT are small
items and devices that collaborate to accomplish tasks. The
concept of IoT enables the association of different devices
over the internet, allowing them to cooperate and achieve
common goals [3]. However, the implementation of IoT poses
challenges such as computational power limitations, connec-
tivity issues, and energy constraints.

One challenge that often receives insufficient attention is
secure communication in IoT networks. While developers
focus on enhancing the potential of IoT devices, the security
aspect is sometimes overlooked [4], [5]. Insufficient security
measures during data communication leave the entire system
vulnerable to security attacks, including data theft, manip-
ulation, and other threats [6]. Without proper data security,
personal user information becomes susceptible to hacking
[7]. Therefore, it is crucial to implement user authentication
and identification approaches to verify the authenticity of
users accessing the data and ensure that data is transferred
to the correct devices from trusted sources [8].
The personal data needs to be encrypted (i.e., transformed

into a meaningless form) when sent from one device to
another over an IoT network. Data encryption provides
security and protects it from attackers [9]. Cryptographic
techniques can be used to encrypt data, ensuring authentica-
tion, integrity, confidentiality, and non-repudiation [10]. This
paper utilizes Elliptic Curve Cryptography (ECC), which
is based on the algebraic structure of elliptic curves over
finite fields. ECC offers smaller key sizes compared to other
cryptographic techniques [11], [12].

It is found that the competitive approaches face challenges
in scalability, complexity, implementation, key manage-
ment, trade-offs, evolving threats, and hyperparameter tun-
ing. Therefore, to enhance data security, this paper employs
steganography alongside cryptography. Specifically, Matrix
XOR steganography is utilized, embedding encrypted data
into irrelevant file data, such as images. The selection
of the block for hiding the encrypted data is achieved
through an efficient method called Zoning evolution of
control attributes and adaptive mutation based self-adaptive
differential evolution with fitness and diversity ranking
(ZSADE). The proposed approach operates as follows: the
data is initially encrypted using ECC, then the ZSADE
algorithm optimizes the image block, and finally, the
encrypted data is concealed within the selected block
using matrix XOR steganography. Consequently, potential
intruders remain unaware of the existence of the hidden
message.

The main contributions are as follows:
• A secure end-to-end communication model called

EGCrypto is designed specifically for IoT
networks.

• The sensed data is initially encrypted using the low
complexity elliptic Galois cryptography (LCEGC)
approach.

• Matrix XOR steganography is utilized to embed the
ciphered data into the cover image.

• Zoning evolution of control attributes and adaptive
mutation based self-adaptive differential evolution with
fitness and diversity ranking (ZSADE) is designed to
optimally embed the encrypted data in the cover image.

The remaining organization of the paper is as follows:
Section II discusses the literature work in the field. Section III
presents the methodology used. Section IV covers the exper-
imental setup and results. Finally, Section V concludes the
paper.

II. RELATED WORK
In an era dominated by the IoT, the importance of securing
communication cannot be overstated. Various approaches
have been devised to ensure end-to-end encryption and
protect sensitive data. This section delves into recent
advancements in end-to-end encryption techniques and their
significance in safeguarding valuable information.

In [1], an elliptic Galois cryptography and matrix XOR
steganography (EGMX) approach was designed to achieve
secure end-to-end communication over IoT networks. Adap-
tive firefly optimization was used to obtain optimal blocks
for hiding the encrypted image in the cover image. In [13],
a secure IoT-enabled surveillance model was designed by
applying a probabilistic and lightweight approach (PLA)
for the encryption of key frames prior to communication.
The designed model minimized the communication cost,
bandwidth, and storage of surveillance data. In [14], an opti-
cal ghost steganography (OGS) approach was designed by
embedding the intensity signals of one image into signals,
with RSA asymmetric encryption used for the intensity sig-
nals encoding.

In [15], an advanced encryption system was integrated
with bit matching steganography (IAEBM) to enhance the
security of data packets. The bit matching approach evalu-
ated the location of matching pixels and acquired a key to
recover the secret packet. In [16], a bit mask-oriented genetic
algorithm (BMOGA) was implemented to minimize the
redundancy of medical reports communicated across organi-
zations. Boolean-based mask-fill operators were utilized to
overcome premature convergence. In [17], DNA steganogra-
phy based hyper-elliptic curve cryptography (DHECC) was
implemented to improve security, albeit with lower embed-
ding capacity.

In [8], homomorphic encryption (HomEnc) were imple-
mented for secure end-to-end communication in their pro-
posed secure IoT architecture with lattice-based encryption.
In [18], a hybrid cloud solution (HCS) for secure storage and
communication of large images was proposed. Encryption
was implemented on sensitive data prior to storing it on
the private cloud. Compressive sensing and encryption-then-
subsampling were applied to insensitive data stored on the
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public cloud. In [19], a secure model for image transmission
in IoT using compressive sensing (SCS) was implemented.
The model combined diffusion and quantization operations
utilizing chaotic maps to improve transmission security while
meeting requirements of low storage, minimum energy con-
sumption, and low computational cost.

In [10], the security of multimedia-based IoT applications
was improved using compressive sensing-based encryption
(CSEn). Artificial noise was utilized for quantization of com-
pressive sensing measurements to resist ciphertext-plaintext
attacks. In [20], image cryptography keys were secured
using a random phase key exchange approach (RPKE)
for Fourier optics image encryption. In [21], an encryp-
tion system was proposed for securing information sensed
through IoT sensor nodes. Homomorphic encryption with
collective matrix factorization and locality-sensitive hashing
(HCL) were employed to provide significant security and
privacy-preserving index structure.

In [22], a secure cryptographic hardware was built to
increase the side-channel security and reduce the energy
consumption of IoT-edge nodes. The hardware implemented
an optimal datapath architecture (ODA) to resist power-
based side-channel analysis attacks. In [23], the security was
improved by selectively obtaining vehicle details without
revealing sensitive details. A convolutional neural network
(CNN) was utilized to recognize encrypted images based on
the type of vehicle in real-time, captured by cameras placed
on road-side units as part of an intelligent transportation sys-
tem. In [24], an asymmetric broadcast encryption approach
(ABE) was designed for securing various kinds of images in
an efficient manner with minimum transmission/computation
overhead. In [25], a lightweight break-glass access control
model (LBAC) was implemented, allowing dual ways of
retrieving encrypted data, namely break-glass and attribute-
based retrieval. This model demonstrated significantly lesser
communication and storage overheads.

In [26], a highly efficient cryptographic hardware, called
EC-Crypto, was developed to optimize area and delay for
ECC. This hardware aimed to enhance side-channel secu-
rity and reduce energy consumption in IoT-edge nodes by
implementing an optimal datapath architecture. In [27],
a lightweight authentication scheme (LAS) was proposed
for IoT devices based on elliptic curve El Gamal using
ephemeral encoding parameters. This scheme aimed to pro-
vide secure authentication while minimizing computational
overhead, making it suitable for resource-constrained IoT
environments. In [28], an intrusion detection model (IDM)
was presented that combined an optimized quantum neural
network with elliptic curve cryptography for data security.
This model aimed to detect and prevent intrusions by leverag-
ing the strengths of both techniques, ensuring robust protec-
tion of sensitive data. In [29], a hybrid Advanced Encryption
Standard (AES) model was designed for IoT in telemedicine.
This model integrated ECC and ID-based key generation to
provide secure communication in telemedicine applications.

The hybrid approach aimed to enhance the security of
data transmission and storage in IoT-based telemedicine
systems.

Table 1 presents various approaches to enhance IoT secu-
rity, including cryptographic algorithms, steganography, and
optimization methods. Secure hardware architectures and
lightweight authentication schemes improve device security,
while advanced encryption systems, genetic algorithms, and
compressive sensing techniques ensure secure data transmis-
sion. Despite these advancements, challenges remain in scal-
ability, computational complexity, and implementation. Key
management, trade-offs, and evolving threats also pose sig-
nificant challenges. Furthermore, hyperparameter tuning in
ECC and homomorphic encryption lacks standardized guide-
lines and automated tools, requiring expertise and research to
develop efficient optimization algorithms and establish best
practices.

III. METHODOLOGY
We propose EGCrypto, a model motivated from [1],
which combines low-complexity elliptic Galois cryptogra-
phy (LCEGC) [30], optimal matrix-based XOR (OM-XOR),
and Zoning Evolution of Control Attributes with Adaptive
Mutation-based Self-Adaptive Differential Evolution with
Fitness and Diversity Ranking (ZSADE) to address IoT
security issues. Our EGCrypto model ensures secure data
exchange between IoT devices, as shown in Figure 1. LCEGC
serves as the controller for data exchange, encrypting the data
within the controller using LCEGC and embedding it in a
cover image via Matrix XOR steganography. The ZSADE
optimization algorithm selects the optimal image block for
inserting the encrypted data. The resulting image, with hidden
encrypted data, is transmitted over the Internet, ensuring
confidentiality and preventing unauthorized detection of sen-
sitive information. Table 2 presents the nomenclature used in
this paper.

A. LOW COMPLEXITY ELLIPTIC GALOIS CRYPTOGRAPHY
As mentioned previously, ECC is a public key cryptography
that utilizes the properties of elliptic curve equations for key
generation. This process distinguishes it from other cryptog-
raphy techniques. The use of an elliptic curve over a Galois
field (GF()) enhances computational efficiency and reduces
complexities related to rounding errors [31]. GF(Q)’s values
must exceed 1. GF(Q) elements are defined as [30]:

GF(Q) = S0 ∪ S1 ∪ S2 ∪ . . . ∪ Sn−1 (1)

Here,

S0 = (0, 1, 2, . . . ,Q− 1) (1a)

S1 = (Q,Q+ 1,Q+ 2, . . . ,Q+ Q− 1) (1b)

S2 = (Q2,Q2
+ 1,Q2

+ 2, . . . ,Q2
+ Q− 1) (1c)

Sn−1 = (Qn−1,Qn−1
+ 1, . . . ,Qn−1

+ Q− 1) (1d)
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TABLE 1. Pros and cons of competitive approaches.

Here, Q ∈ Q and n ∈ Z+. Q represents the char-
acteristic of the field, and Qn represents the order of
the Galois field. Each polynomial’s degree is maximum
n− 1 [30].

In ECC, a user generates two keys: a public key and a
private key. The public key is used for data encryption and is
accessible to everyone, while the private key is kept only by
the user and is used for data decryption. The key generation
process is essential as both keys are derived using the same
process.

An elliptic curve in the Galois field GF(Q), where Q > 3,
is defined by variables i and j and elements (a, b), resulting
in the following equation [30]:

b2 = a3 + j mod Q+ ia (2)

Different elliptic curve points with a and b persist for
different values of inputs, i, and j. Consequently, the elliptic

curve serves as the foundation for the public key, while
the private key is generated through a random process. The
public key is obtained by multiplying the private key with the
generator point, represented as G, on the curve.

Let there be two points on the elliptic curve represented as
Q and R, such that:

PU = GPR (3)

Here, PU and PR represent the public and private keys,
respectively. Using a generator point G, an elliptic curve
can be computed as long as there are no repeated factors in
27j2 + 4i3 ≡ 0 (mod Q) and a3 + ia+ j.
Under these conditions, the addition over GF(Q) can be

expressed as follows: If Q = (a1, b1) and R = (a2, b2) are
elliptic curve components, then:

Q+ R = (a3, b3) (4)
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FIGURE 1. Diagrammatic flow of the proposed EGCrypto model.

where a3 and b3 are given as

a3 = λ2 − a1 − a2 (5)

b3 = λ(a1 − a3) − b1 (6)

Here, λ is given as

λ =


3a21 + c

2b1
if Q = R

b2 − b1
a2 − a1

if Q ̸= R
(7)

After completing the key generation process, the data
is encrypted using a chaotic neural network (ChNN),
as described in the subsequent section.

B. CHAOTIC NEURAL NETWORK-BASED ENCRYPTION
ChNN encrypts the input plain data and generates the cipher
data using the Galois field. The sensed data is represented
as (I1, I2, . . . , In), and the encrypted data is represented as
(E1,E2, . . . ,En). ChNN with n inputs and outputs performs
encryption using the following steps:

Step 1: Firstly, a chaotic sequence, known as the encrypted
data, is generated and represented as:

(c(n), c(n+ 1), . . . , c(n+ n+ 1)) (8)

Step 2: The ChNN takes plain data as input and converts it
into a sequence of binary data represented as (s1, s2, . . . , sn).
This computation can be expressed as:

s(8n− 8)s(8n− 7) . . . s(8n− 2)s(8n− 1) (9)
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TABLE 2. Nomenclature.

Step 3: In this step, weight factors are generated based
on the binary sequence from Step 2. The weight factors are
dependent on the input values, meaning that different inputs
result in different weight factors, as illustrated below:

Wx =

{
1 if s(x + 8 × n) = 0
−1 if s(x + n× 8) = 1

(10)

Here x varies from 0 to 7.
Step 4: A bias function is generated for all chaotic val-

ues using the weight factors generated in Step 3. This bias
function, denoted as b′

x , is designed to address the singularity
problem. The generation of the bias function, incorporating
the weight factor Wx and input bx , can be described as
follows:

b′
x = f (Wx × bx) (11)

Step 5: Finally, the encrypted sensed data is generated
using the input and the weight factor, according to the fol-
lowing procedure:

c(i) = an(n)‘(1 − bn) + b′
x (12)

Here, (an, bn) represents a value pair on the elliptic curve,
which serves as the secret key. Subsequently, theMatrix XOR
technique of steganography is employed to store the cipher
data generated in Step 5 on a cloud platform, as elaborated in
the subsequent section.

C. OPTIMAL MATRIX BASED XOR
The encrypted data is hidden using the Optimal Matrix based
XOR (OM-XOR) technique [32]. The image blocks are opti-
mized through the ZSADE optimization algorithm, which
selects the block from the complete image to conceal the
data [31]. The following steps are involved in completing the
process.

1) PERMUTATIVE STRADDLING
In certain cases, the complete image may not be utilized to
hide the encrypted text, resulting in unused image blocks. To
address this issue, permutative straddling can be employed to
scatter the encrypted message throughout the entire image.
A key-based password is utilized to perform the permutation,
and the permutation can be repeated if the user possesses the
correct key.

2) ENCODING
Among the various algorithms available for embedding
encrypted data in an image block, Matrix XOR is uti-
lized. Matrix XOR converts the triple (m, k, c(i)) to a quad
(d, k, c(i)) and compresses the encrypted message, thereby
enhancing the embedding efficiency. The secret data or
chaotic sequence c(i) is embedded into the cover block,
which is the optimized image block, using Matrix XOR. The
encrypted data block is substituted for one bit of the cover
block during embedding. The process of embedding a single
bit is performed as follows, with M representing the binary
data bit and N is the block of binary image bits.

Ed = M ⊕ N (13)

The embedding procedure is conducted based on the fol-
lowing two conditions:

1) If the result of the XOR operation between two blocks
is zero, the last bit position remains unchanged.

2) If the result of the XOR operation between two blocks
is non-zero, bit position in cover block is modified,
either from one to zero or from zero to one.

After verifying these conditions, the embedding is per-
formed according to the following rule.

Ed =

{(
(m(i) ⊕ n(i))n′(i)

)
+ ((m(i) ⊕ n(i))′n′(i))

}
(14)

The image blocks are optimized using the ZSADE
algorithm, as explained below.

D. OPTIMIZATION
Zoning evolution of control attributes and adaptive mutation
based self-adaptive differential evolution with fitness and
diversity ranking (ZSADE) algorithm introduces a modified
mutation operation based on fitness and diversity ranking. It
aims to arrange individuals effectively for the mutation oper-
ation, considering both fitness and diversity. This approach
balances exploitation, considering the fitness value, and
exploration, emphasizing diversity.

The ZSADE algorithm operates as follows:
Step 1: Initialize generation G to 0 and randomly initialize

the population in generation 0 as follows:

I01 , I02 , . . . , I0NP (15)

where NP represents the size of the population.
Step 2: Calculate the fitness value f (I0i ) for i = 1 to NP

using the following equation:
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Repeat the following steps until the termination condition
is met.

Step 3: Assign the fitness rank FitRi to each individual
using the following:

FitRi = i (16)

Step 4: Calculate the deviation fdv,i and the diversity rank
DivRi of an individual i using:

fdv,i = |fi − fmid | (17)

Considering FitRi as the median individual with a value of
NP/2, where fmid represents its fitness value and fi represents
the fitness of IGi .

DivRi = NP− i (18)

Step 5: Determine the final rank Rank i using:

Rank i = v× DivRi + (1 − v) × FitRi (19)

where

v =
G
M

(20)

Here,M shows maximum number of generations.
Step 6: For all individuals, i.e., for i = 1 to NP, select three

random variables r1, r2, and r3 such that i ̸= r1 ̸= r2 ̸= r3.
Step 7: Arrange IGr1, I

G
r2, and I

G
r3 according to their final

ranks, i.e., Rankr1, Rankr2, and Rankr3. Represent the newly
sorted individuals as IGr1∗, I

G
r2∗, and I

G
r3∗.

Step 8: Perform themutation operation to obtain themutant
vector WG

i as:

WG
i = IGr1∗ + F × (IGr2∗ − IGr3∗) (21)

Step 9: Perform the crossover and selection operations
based on the zoning evolution of control attributes and adap-
tive mutation of self-adaptive differential evolution [33].

Step 10: Increment the generation, i.e., G = G+ 1.

E. DATA RETRIEVAL
The OM-XOR retrieval method is employed to retrieve the
encrypted data stored in the cloud at the receiving end.
This retrieval process involves decrypting the data using
the user’s private key and ChNN decryption. Decryption is
accomplished using private key of user whose public key was
initially used to encrypt the data.

IV. PERFORMANCE ANALYSIS
In this section, we present the experimental results and com-
parative analysis of EGCrypto. For experimentation, we have
selected five cover images and five sensed data strings.
EGCrypto is compared against five competitive encryption
models as well as five steganography approaches to assess its
effectiveness and performance.

A. VISUAL ANALYSIS
The visual analysis of EGCrypto is depicted in Figure 2.
The first row displays the cover images, while the second
row shows the obtained sensed data (strings). The third row
illustrates the encrypted sensed data, and the fourth row
showcases the final embedded stego images. The visual com-
parison demonstrates that there is no apparent correlation
between the original sensed data and the encrypted data.
Furthermore, the embedded stego images closely resemble
their corresponding cover images, indicating the effectiveness
of EGCrypto.

B. QUANTITATIVE ANALYSIS
To evaluate the performance of EGCrypto against com-
peting approaches, performance measures such as peak
signal-to-noise ratio (PSNR), strutural similarity indexmetric
(SSIM), normalized root mean square error (NRMSE), exe-
cution time, carrier capacity, and embedding efficiency are
utilized.

Table 3 presents PSNR analysis comparing EGCrypto with
existing steganography approaches. The results demonstrate
that EGCrypto achieves significantly better performance
compared to the existing approaches, outperforming them
by 1.8473%.

TABLE 3. PSNR analysis among EGCrypto and competitive approaches.

Figure 3 illustrates the results of the Structural Similar-
ity Index (SSIM) analysis conducted among EGCrypto and
other competitive models. The quantitative analysis reveals
that EGCrypto consistently achieves the highest SSIM values
across various scenarios. This indicates a strong similarity
between the cover image and the embedded stego image,
highlighting the effectiveness of EGCrypto in ensuring accu-
rate and secure data transmission within IoT networks. SSIM
values obtained for EGCrypto range from 0.9898 to 0.9919,
further emphasizing its ability to maintain the integrity and
fidelity of the transmitted data. EGCrypto outperforms exist-
ing approaches by 1.5490%, ensuring robust and reliable
protection for Internet of Things network communications.

Figure 3 illustrates the analysis of Normalized Root Mean
Square Error (NRMSE) conducted among EGCrypto and
other competitive models. The NRMSE values are computed
between the cover image and the resulting stego image, where
text is embedded within the cover image. Lower NRMSE val-
ues indicate better quality and a closer resemblance between
the cover and stego images. Among the evaluated models,
EGCrypto achieves the lowest NRMSE values across vari-
ous images, including Room, Parking, Store, Hospital, and
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FIGURE 2. Visual analysis of EGCrypto: 1st row- Cover images, 2nd row- obtained sensed data (i.e., strings), 3rd row- encrypted sensed data,
and 4th row- final embedded stego images.

FIGURE 3. SSIM analysis among EGCrypto and competitive approaches.

Patient. This indicates that EGCrypto performs well in pre-
serving the content of the cover image while embedding the
text, resulting in high-quality stego images. Other models
such as DHECC, BMOGA, IAEBM, OGS, and EGMX also
demonstrate relatively low NRMSE values, indicating their
effectiveness. However, EGCrypto consistently outperforms
them in terms of NRMSE values by 1.7682%, suggesting its
superior ability to maintain image quality while embedding
text.

Table 4 shows the carrier capacity analysis of EGCrypto.
It is found that EGCrypto has significantly better carrier
capacity values as compared to the existing steganography
approaches. EGCrypto shows an average improvement in
carrier capacity as 1.3829%.

FIGURE 4. NRMSE analysis among EGCrypto and competitive approaches.

TABLE 4. Carrier capacity analysis among EGCrypto and competitive
approaches.

Figure 5 shows the embedding efficiency analysis. It
should be maximum. EGCrypto obtains significantly better
embedding efficiency values as compared to the competitive
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approaches. EGCrypto has shown 1.9372% improvement
over the existing approaches.

FIGURE 5. Embedding efficiency analysis among EGCrypto and
competitive approaches.

Table 5 illustrates the execution time analysis (in sec-
onds) of EGCrypto, including encryption and embedding.
The results show that EGCrypto requires less time compared
to existing approaches, reducing execution time by 0.9382%.
This highlights the efficiency of EGCrypto for implementa-
tion in IoT networks.

TABLE 5. Execution time analysis (in seconds) among EGCrypto and
competitive approaches.

Figure 6 show the recovery message’s (i.e., secret message
extracted from stego image) accuracy analysis. EGCrypto
demonstrates a significantly higher accuracy compared to
existing models, outperforming them by 1.2831%.

C. DISCUSSION
From the comparative analysis, it is found that DHECC
[17] achieved a maximum PSNR of 36.69, maximum car-
rier capacity of 12.09, and maximum embedding efficiency
of 86.64. BMOGA [16] obtained a maximum PSNR of
38.84, maximum carrier capacity of 13.68, and maximum
embedding efficiency of 85.97. IAEBM [15] achieved a
maximum PSNR of 38.78, maximum carrier capacity of
13.56, and maximum embedding efficiency of 83.92. OGS
[14] achieved a maximum PSNR of 38.38, maximum car-
rier capacity of 14.91, and maximum embedding efficiency
of 88.37. Although DHECC, BMOGA, IAEBM, and OGS
achieved good results, EGMX [1] outperformed them with
a maximum PSNR of 38.51, maximum carrier capacity of
14.91, and maximum embedding efficiency of 88.37.

EGCrypto achieved a maximum PSNR of 40.16, maxi-
mum carrier capacity of 15.69, and maximum embedding

FIGURE 6. Recovery message’s accuracy analysis among EGCrypto and
existing secure IoT models.

efficiency of 89.16. Thus, EGCrypto demonstrated sig-
nificantly better performance compared to the existing
approaches. Additionally, EGCrypto could encrypt and
embed images in 0.78 seconds, which was significantly faster
than the existing approaches. Therefore, EGCrypto could be
efficiently utilized in IoT networks to provide secure data
transmission.

V. CONCLUSION
A novel cryptography and steganography model was
designed using low-complexity elliptic Galois cryptography
and matrix XOR steganography. ZSADE was employed to
tune the hyperparameters of EGCrypto. The IoT data was
initially encrypted using low-complexity elliptic Galois cryp-
tography and then embedded into optimal cover blocks of
the cover image. This approach achieved secure commu-
nication in IoT architecture, ensuring the safe transfer and
easy recovery of encrypted data. Extensive experimental
results demonstrated that EGCrypto outperformed compet-
itive models in terms of PSNR, SSIM, NRMSE, carrier
capacity, and embedding efficiency by 1.8473%, 1.5490%,
1.7682%, 1.3829%, and 1.9372%, respectively. Furthermore,
the improved computational speed of EGCrypto indicated its
efficient implementation in securing IoT networks.

In the future, there are key areas to focus on for advancing
EGCrypto in securing data transmission within IoT networks.
First, optimization techniques and algorithms can be explored
to enhance EGCrypto’s efficiency and security. Efforts should
also be made to strengthen its resilience against advanced
attacks. Scalable solutions are needed to handle the grow-
ing data volume in large-scale IoT networks. Real-world
implementation and validation of EGCrypto, along with stan-
dardization efforts, will contribute to its practical viability and
widespread adoption.
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