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ABSTRACT The problem of query answering over incomplete attributed graph data is a challenging field of
database management systems and artificial intelligence. When there are rules on data structure expressed in
the form of the ontology, the theoretical complexity of finding exact solution satisfying ontology constraints
increases. Logic-based methods use theoretical constructions to obtain efficient rewritings of the original
queries with respect to ontology and find an answer to the rewriting query over incomplete data. However,
there is an opportunity to use faster machine learning methods to label all the data and query over the
“most probable” data model without taking into account the ontology. This research paper investigates the
effectiveness and trustworthiness of both mentioned approaches for answering ontology-mediated queries
on graph databases that integrate an ontology with a covering axiom, which states that every node belongs
to either of two classes. The first approach involves finding precise answers through logical reasoning and
rewriting the problem into a datalog program, while the second approach employs a trained graph neural
network to label data in a binary classification problem and leverages SQL for query answering. We conduct
an in-depth analysis of the time performance of these approaches and evaluate the impact of training
set selection on their ability of correct query answering. By comparing these approaches across various
experiments, we provide insights into their strengths and limitations for answering ontology-mediated
queries containing a Boolean conjunctive query. In particular, we showed the importance of logic-based
approaches for ontology with a covering axiom and the inability of machine learning methods to find answers
for ontology-mediated queries in large networks.

INDEX TERMS Computational complexity, datalog reasoner, disjunctive datalog, graph machine learning,
graph neural networks, node classification, ontology-mediated query.

I. INTRODUCTION

The object of our study lies in answering queries mediated
by a Description Logic (DL) ontology in the framework of
the Ontology-Based Data Access (OBDA) paradigm. Nowa-
days, OBDA is not just a theoretically interesting approach,
but foremost a widely-applied advanced model that helps
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in efficient and flexible data organisation and access, using
ontology as a key advantage. That is why, OBDA works with
not ordinary queries, but with Ontology-Mediated Queries
(OMQs), each of which is a pair of a query and an ontology.
Unfortunately, due to OBDA complexity, the benefits of this
approach can be applied only for ontologies formulated in
OWL 2 QL Web Ontology Language designed specifically
for OBDA to preserve first-order rewriting of OMQs into
equivalent standard queries.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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In this paper, we focus on Boolean conjunctive queries
mediated by a simple covering axiom stating that one class is
covered by the union of two other classes. Chosen ontology
rule is not covered by the functionality of OWL 2 QL, and we
consider this case as an extension of the OBDA approach for
more expressive and practical OMQs.

Theoretical research in this direction was started in [1],
[2], and authors following a non-uniform approach pre-
sented results on data complexity and rewritabily for concrete
OMQs. Later, they showed in [3] that the data complexity of
the problem varies from simple first-order rewriting in AC?
to a coNP case, in which there is no tractable solution. In this
research, we are going to use tractable results from [3] and
consider this case from another point of view.

We focus on OMQs belonging to the complexity classes
L/NL and P, for which there exists a way to rewrite the
original query to a datalog program taking into account infor-
mation from disjunctive ontology. Having produced a datalog
program, we aim to understand the efficiency of reasoning
solvers for ontology-mediated query answering on different
datasets and query patterns.

The ontological approach requires a great deal of effort to
find rewritings of OMQ, if possible, and then to prove the
tractability of these rewritings. Taking into account break-
throughs of machine learning techniques that successfully
solve many problems of answering queries over data labelled
by trained classification models, it was decided to apply
innovative machine learning models for our task and make
the comparison.

The main research gap is how to apply machine learning
techniques to the ontology-mediated query answering task
with a covering axiom in such a way that machine learning
models can effectively help in finding correct answers to
OMQ while being faster than their logic-based analogues.
Despite having various works on query embedding for knowl-
edge graphs [4], [5], [6], there are no works dealing with
OMQ answering with a covering axiom using machine learn-
ing approaches. We interpret our ontology as a foundation
for binary classification to label the data and then query data
over labelled data. Such an approach requires much less time
compared to logic-based methods.

We formulate the following research questions:

1. How the size of unlabelled data impacts the reasoning
solvers performance and helps in finding the correct
answer if we know all ground-truth labels?

2. Which graph properties help to achieve the best labelling
performance for graph neural networks, which models
perform the best?

3. Whether saturating graphs with labels obtained from the
node classification models can be directly used to find
the answer in the labelled data without the usage of the
ontology with a covering axiom?

To answer these questions, we conducted a series of exper-

iments on a small graph of collaborations in a classroom and
three extensive networks with positive, neutral, and negative
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assortativity impacting the performance of trained graph neu-
ral networks.

Our first task is to analyse the performance of several
datalog reasoners depending on the different tractable queries
with respect to smart/direct datalog query rewriting and the
percentage of data masked for an ontology evaluation.

The second task is to provide extensive ablation study
on the graph neural networks and choose the best
hyper-parameters and models for labelling graphs with node
classes having only a train subset of the whole graph.

Finally, our third task is to compare answers obtained by
logical reasoners with the help of ontology and answers via
querying data labelled by graph neural networks on large
networks containing a large number of labelled data.

As a result, our research study establishes a connec-
tion between theoretical advancements in Ontology-Based
Data Access regarding ontology-mediated queries with a
covering axiom and the practical application of machine
learning. We analyse interesting outcomes of machine learn-
ing techniques as an unconventional approach for theoret-
ical ontological query answering problems and shed light
on the exceptional interplay between logic and machine
learning.

The paper has the following structure. After the intro-
duction to the research idea and motivation in Section I,
we overview studies on related topics in Section II. Then,
we formulate the problem statement and describe the prepa-
ration of experiments to solve them in Section III. Section IV
contains comparative results based on two approaches in
terms of running time performance and correct answers eval-
uation for ontology-mediated query answering to analyse
specific of the ontology with a covering axiom. Finally,
we make a conclusions on formulated research questions and
discuss limitations in Section V.

Il. RELATED WORK

In the following, we briefly provide background on OBDA
and highlight notable recent achievements in this area that
are pertinent to our study from the perspective of some sim-
ilar aspects of problem statements. Then, we present initial
researches, where tractable cases of ontological queries deal-
ing with a covering axiom were found. Next, we consider
different rule-based reasoners including systems with sup-
port of covering axiom in the ontology and their specifics
of work. Finally, we describe modern graph neural network
approaches that allow to label graph data performing node
classification and then querying labelled data without the help
of an ontology at all.

A. ONTOLOGY-BASED DATA ACCESS

The fundamental direction that underlies our work is Ontol-
ogy Based-Data Access [7], [8] providing answering queries
mediated by a DL ontology [9]. The methodology of OBDA
has being investigated in both theoretical and practical direc-
tions for applying OBDA to expressive ontologies beyond
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standard OWL 2 QL! Web Ontology Language. The core
idea of OBDA is the existence of a first-order rewriting or
some datalog rewriting that provides tractability of answering
ontology-mediated queries, that is why there are a lot of inves-
tigations on deciding a rewriting of OMQs over expressive
ontologies or its construction if it is possible.

Toman and Weddell in their recent paper [10] on Horn
ontologies have used Clark’s completion of datalog programs
and Beth’s definability for deciding uniform FO-rewritability
of OMQ in Horn-SHIQ and in Horn-DLFD and have pro-
vided an algorithm for rewritings construction based on their
characterization of FO-rewritabiliy. Also, they showed that
their techniques can be applied to the non-uniform approach,
in which we are interested during our research.

Authors of [11] gave us inspiration and ideas for our
research because they have studied a similar problem, but
with another original setting and have found a semantic char-
acterisation of OMQs with an EL ontology for a complete
classification in terms of the complexity and rewritability of
ontology-mediated queries with atomic queries.

In the framework of computational complexity, it was
provided new theoretical results [12] on decidability and
complexity bounds for the entailment of positive existential
two-way regular path queries (P2RPQs) mediated by expres-
sive ontologies with transitive roles and qualified number
restrictions that the problem is 2ExpTime-complete in com-
bined complexity and coNP-complete in data complexity.

More tractable results on the extension of OBDA for an
expressive ontology with a covering axiom were obtained
in [3] and [13], where authors have presented results on
rewritability and data complexity for specific ontology-
mediated answering tasks to separate tractable and intractable
cases for Boolean path queries. By the way, the current paper
will continue to study the same case study, but from a prac-
tical point of view. We are going to use datalog rewritings
obtained in [3] for conjunctive Boolean queries mediated with
ontology containing a covering axiom and test them using
datalog reasoning systems.

B. DATALOG REASONERS

We aim to consider ontology rules and queries in terms of
datalog syntax, hence, we overview available systems for
datalog reasoning.

At the University of Oxford, researchers created a powerful
tool for efficient processing and querying graph-structured
data that is called RDFox [14]. This semantic reasoning
engine boasts a unique patented in-memory architecture
and parallelised computation and provides import Resource
Description Framework (RDF) triples, rules, OWL 2,
or Semantic Web Rule Language (SWRL) axioms using dif-
ferent formats including extensions of the datalog.

Protégé [15] is a ubiquitous open-source ontologies editor
that has a lot of various plug-ins for knowledge representation
and reasoning. For instance, Protégé’s plug-in architecture

1 https://www.w3.org/TR/owl2-profiles/
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of SWRLTab [16] was designed to easily integrate vari-
ous ontologies into the OMQ pipeline of data management.
It allows us to take the output of Protégé with either rule
systems or particular problem solvers and incorporate such
framework in various applications using intelligent data
access, verification, and saturation models. Ontop [17] plug-
in is an application for classical OBDA with SPARQL queries
over virtual RDF graphs. In addition, inside Protégé there are
several OWL 2 reasoners supporting the rule-based approach
such as hermit [18] and pellet [19].

Despite the many different rule-based tools providing dat-
alog programming, in the framework of our research, we con-
sider not trivial disjunctive datalog paradigm. In addition,
we are interested in open source easy-to-use frameworks
for querying large graph databases. Among such systems,
we choose the following two.

A database system DLV (Datalog with Vv—disjunction)
[20] has deductive reasoning using disjunctive logic pro-
gramming. It is enterprise-level software supporting various
ontology-based data access concepts and integrated with the
NoSQL databases interface.

Another system was developed by researchers from the
University of Potsdam as an Answer Set Programming (ASP)
tool named Clingo [21]. It allows us to formulate a problem
as a logic program. This tool enables users to convert logic
programs with variables into equivalent propositional logic
programs without variables. It then proceeds to compute the
answer sets of the propositional programs.

In our research, both systems have very close input data
formats and easy-to-use datalog syntax, thus providing useful
tools for our experiments.

C. GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have been successfully
applied to various graph-based machine learning problems
including node classification [22], which corresponds to
our task. Graph Convolutional Network(GCN) [23], Graph-
SAGE [24] and Graph Attention Network (GAT) [25] are the
most popular general-purpose GNNGs.

Many graph machine learning methods construct node
embeddings based on nodes local neighbourhoods. GCN
stacks convolutional layers with shared node-wise feature
transformation and operates with the full graph adjacency
matrix at each of them. GraphSAGE, on the other hand,
generalises neighbourhood aggregation by sampling only a
subset of neighbouring nodes at different depth layers. GAT
leverages self-attention layers over the node features to define
the importance of neighbours. By concatenating the output of
several different heads, this method captures different types
of relationships between nodes.

Despite the wide use of the aforementioned models, it is
often considered that standard GNNs only work well for
homophilic graphs, i.e., graphs where nodes tend to be
connected with the nodes of the same class. Recently, het-
erophilic graph learning has become an upward-trending
research topic, and various specific structured GNNs have
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been proposed. Most of them either redefine the node neigh-
bourhood (e.g. Geom-GCN [26]) or adapt messages between
nodes (e.g. FAGCN [27]) to capture intra-class similari-
ties [28]. Unlike them, several recent papers [28], [29]
study inter-class node distinguishability and have found that
inter-class edges can be helpful when the neighbour distribu-
tion satisfies certain conditions.

The authors of [29] revisited existing benchmarks and
proposed an evaluation of a wide range of GNNss, both stan-
dard and heterophily-specific on the proposed benchmark.
They revealed that general-purpose GNNs almost always
outperform heterophily-specific methods on the proposed
benchmark. Thus, we justify the choice of baseline models
and provide our own results on the applicability of stan-
dard GNNs to the three large networks having different
homophily/heterophily patterns.

IIl. EXPERIMENT SETTINGS

We provide one small and three large networks for our exper-
iments. Below, we discuss descriptive statistics of the data,
state the core problem and experiment design for the compar-
ative analysis, and describe quality assessment procedures.

A. DATASETS

1) CLASSROOM?

A network describes connections between 26 classmates of
9 years of age at school and comes from a larger study of
Dolata [30], where it was collected within questioning “With
whom do you like to play with?”’. The data is available in the
form of an edges list and nodes have attributes in terms of
gender.

The network was filtered to provide a toy exam-
ple for the purposes of a balanced comparison of sim-
ple tractable queries over a small graph. In particular,
we removed one direction of a symmetric edge (1042, 1006)
(otherwise most OMQs will give the ‘yes’ answer).
We mask nodes (remove original labels) from the layer
interconnecting two communities of nodes with identical
labels 1042, 1048, 1036, 1051, 1027, 1069, 1063, 1006. As a
result, we have eight unlabelled nodes and different ‘yes’/‘no’
answers for simple OMQs. This masked dataset is called
Classroom in our experiments, while Classroom Ground
Truth (GT) stands for the original dataset after the edge
removal and with all the labels known.

2) POLITICAL BLOGS NETWORK?3

The Polblogs network reflects directed interactions between
US political weblogs recorded in 2005. There are two classes
of node labels that correspond to the two political communi-
ties such as liberals and conservatives. Within the network,
two blogs are connected with a directed edge, if the URL of
the second blog is present on the page of the first blog. The
collection process of Polblogs is described in the paper [31].

2https://statnet.org/workshop—intro—sna—tools/
3 http://konect.cc/networks/dimacs10-polblogs/
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TABLE 1. Datasets statistics.

Statistics Classroom Polblogs Deezer Pokec-1

# nodes 25 1224 28 281 265 388

# edges 87 16 718 185 504 700 352
Binary node labels | Gender [M, F] | Pol. parties [C, L] | Gender [0, 1] | Gender [M, F]
Labels ratio F/T [0.48,0.52] [0.48,0.52] [0.56, 0.44] [0.54, 0.46]
Assortativity 0.8623 0.8114 0.0304 -0.1795

3) DEEZER EUROPE SOCIAL NETWORK*
The dataset presents a social network of music streaming app
Deezer users. Available at SNAP project, it was collected
using public API in March 2020. The Deezer dataset treats
users from European countries as nodes and symmetric fol-
lower relationships between users as edges. Node features
contain information on user preferences of artists presented
in the app. Nodes were assigned by binary gender class using
natural language processing methods based on the user name.
Used for node classification on graphs, this dataset is suit-
able for evaluation in our task due to possibly ambiguous
labelling and hardness to correctly classify genders from
graph information alone (with 20% train, it was reported only
65% best mean micro-averaged AUC [32]).

4) POKEC SOCIAL NETWORK?

The dataset presents the most popular online social network
in Slovakia. Pokec connects more than 1.6 million people
over the past decade. A collection of data from the SNAP
project contains anonymised data of the whole network, such
as user gender, age, hobbies, interest, education, etc. All the
relations between users are directed edges, which differ from
the standard mutuality of friendship relations.

For our experiments, we retain the fourth part of this graph
called Pokec-1, because, in the framework of our research,
it is not necessary to maintain extra large networks.

Main statistics on the three graphs described above are
represented in Table 1. For each binary class, we interpret
them as either ‘F’ or ‘T’ labels as follows:

o Classroom: 0 - F (male), 1 - T (female)

o Polblogs: 0 - F (conservators), 1 - T (liberals)

e Deezer: 0 - F, 1 - T (authors did not specify which
number O or 1 stands for males/females)

o Pokec-1:0 - F (male), 1 - T (female)

B. PROBLEM STATEMENT
The initial core fundamental research problem is finding
tractable cases of OMQ answering with respect to data com-
plexity and possible rewriting for the task of the form:
Q = (cova, q), where covq4 = {A T FUT}isan
ontology and ¢ is a Boolean CQ with unary predicates
F, T and arbitrary binary predicates.
Following the conjecture that interplays between the cov-
ering axiom A © F U T and the structure of g determines

4https://snap.stanford.edu/data/feather—deezer—social.html
5 https://snap.stanford.edu/data/soc-pokec.html
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TABLE 2. Query graphical representation as a directed labelled graph.

T . T . F

q9 NL
T F

q, © >o NL
T T T F

qs NL
T F T

a3 NL
T F T

q4 p
F T . T

a5 p
T F T F

qe CONP

the complexity and rewritability properties of g, we have
obtained the significant result on explicit AC’/NL/P/
coNP-tetrachotomy of path-shaped queries (with disjoint F'
and T) [3].

In our previous research [3], we highlighted the impor-
tance of tractable classes from the identified tetrachotomy
and suggested datalog transformations for ontology-mediated
queries with Boolean path conjunctive queries and a covering
axiom. For the current experiments, we choose quite simple
and short queries that can be processed by datalog systems in
a reasonable time and that reflect different syntax patterns of
query structure such as

« the ratio of the number of nodes with different labels that
influences the complexity of answering task;

« specific placement of nodes labels that also can change
significantly a datalog program structure and, hence, the
complexity of answering task;

« empty nodes presence that makes query answering pro-
cess more complex;

« edge directions that we can vary and, for instance, form
linear path queries with tractable complexity.

Table 2 provides the complexity classes and graphical
representations of conjunctive queries, for which we are car-
rying out experiments on performance evaluation of datalog
reasoners in this study.

In order to perform experiments with machine learning
approaches, we need to train graph neural networks on the
train subgraph of the original graph and extrapolate node class
predictions to the rest of the graph. After that, we can just run
an SQL query over the labelled graph without the use of the
ontology with a covering axiom.

C. EXPERIMENT DESIGN

For the ontology approaches, logic-based solvers can find an
answer for any size of labelled data; however, the size of
unlabelled data can affect the search time. Taking that into
account, we propose the idea of using GNN-based methods
to fill the missing labels. We substitute the task of querying
via OMQ rewriting with training machine learning models
for the binary node classification and directly querying over
labelled data.
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In our research, one of the ideas was to analyse the influ-
ence of the size of unlabelled data on the results of approaches
and to find out the possible ‘balance’ between logic-based
and GNN-based methods’ performances.

Basically, when almost no labels are known, machine
learning will fail, similar to logic solvers. When almost
100% labels are known, machine learning does not make
any difference compared to querying over original data.
So, we aimed to study whether there is an interest-
ing threshold of training set size and masking parame-
ters benefiting machine learning approaches which, by the
nature of constructing, are much faster than logic-based
solvers.

We consider settings where we mask 5% to 95% of graph
data with step 5%, taking three random seeds. In addi-
tion, during masking, we need to consider the ratio of
masked binary classes. In the original datasets, this ratio
is around 0.5; thus, we consider a balanced masking pro-
cedure with a ratio of 0.5 and two imbalanced ratios of
0.25 and 0.75, respectively. Finally, we study how the assor-
tativity coefficient impacts the GNN models performance
and provides GNNs designed for homophilic and heterophilic
networks.

With a fixed train set, we train GNN models, label the
whole graph and compare the time complexity and correct-
ness of OMQ via reasoner on a train set with the original data
labelling and with the result of querying labelled by GNN
graph.

D. ASSESSMENT PROCEDURES
In order to conduct the comparative study, evaluating the
quality of both ontology-based reasoner and labelling by
GNNs, we propose the following three aspects that should
be studied.

The first two concepts evaluate the precision of each
method, while the third one aims to estimate how well the
GNN-based reasoning approximates the logic-based one:

« consistency of predictions of ontology-based reasoner
compared to ground truth labels;

« consistency of predictions of GNN-based reasoner com-
pared to ground truth;

« consistency of predictions of GNN-based reasoner with
ontology-based reasoner’s predictions as ground truth.

To evaluate the quality of GNN models for the node classi-
fication task, we have used a standard balanced F; measure.
We selected default parameters and most popular settings
taken from surveys on graph machine learning [22], [33],
[34], [35].

In addition, measuring the running time for answering
OMQ)s is one of the important metrics for analysing the rea-
soners performance, because the tractability of OMQs relates
to the time of computations. In the case of GNN models,
we do not take into account time for training and labelling
over masked data; we consider only time for reasoning over
already labelled data.
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IV. EXPERIMENT RESULTS

First, we evaluate the performance of reasoners on large
networks and when their answers on masked data are incon-
sistent with labelled data.

Second, we perform an ablation study to choose the best
GNN models based on node classification tasks. We provide
results on the limitations of the applicability of GNN-based
labelling on large networks.

Finally, we conduct the experiment with a small graph
to compare all the settings with various ‘yes’/‘no’ answers
to OMQs, including Boolean conjunctive queries presented
in Table 2. We make conclusions on the consistency of
GNN-based and logic-based approaches for OMQs answer-
ing with regard to ontology with a covering axiom.

A. PERFORMANCE ANALYSIS OF DATALOG REASONERS
Here, we analyse how the size of unlabelled data impacts
the running time for the OMQs answering using logical
reasoning solvers. In particular, we study how the mask-
ing percentage of graph data reflects on finding the correct
answer with respect to ground truth labels.

In Table 3 and 4, we provide detailed time comparison
for finding an answer for OMQs for datasets Polblogs and
Deezer, respectively. We masked 25%, 50% and 75% of
graph data with class ratios of 0.25, 0.50, and 0.75 for the
masked data part. We report mean and standard deviation
(std) computed over three random seeds for each setting.

The results for large networks are provided with respect
to go—¢5 queries from Table 2 omitting g, because it lies
in coNP without the existence of tractable rewriting and runs
out of device memory even for reasoning on 5% of masked
data.

As one can see, the impact of the class ratio is unstable,
and it is hard to make a universal assumption on how the class
ratio impacts the running time for answering OMQs. Across
all three datasets, we observe deviations from 10% to 50%
of the time for a balanced ratio equaled 0.5 (consistent with
all three datasets’ class ratios). It can be explained that the
answering time for a particular query depends on the number
and positions of labelled T or F literals in the query. Thus,
it is obvious that changing the class ratio directly impacts the
time for answering OMQ.

In addition, in complex query g5, we observe a signif-
icant increase of std for the class ratio equaled 0.25 and
75% masked data compared to the balanced class ratio of
0.5 because the corresponding datalog rewriting takes too
much time to find the answer in highly imbalanced unlabelled
data.

In almost all cases, we can see a tendency that Clingo
is significantly faster than DLV. We suppose that Clingo
has improved performance optimizations and more efficient
implementation of the grounding and solving steps in the
two-step ASP process, resulting in quicker computation
of stable models for our logic programs. All the answers
between the two reasoners are consistent, which was expected
from the logic approach.
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Next, in Figure 1 and 2, we compare the speed of answering
to different OMQs in dependence on the masking percent-
age for both reasoners. For simple queries g§;—¢j3, it does
not significantly impact the answering time on Polblogs and
Deezer. However, there is a decreasing time trend when the
number of unlabelled data increases. It may be due to the fact,
that the reachability problem underlying NL complexity of
q1—4¢3 can be computed faster when less number of nodes
are labelled.

For P-complexity queries q, and g5, we observe the
increase of time, especially for g5, because the underlying
datalog rewriting spans a polynomial tree to find an answer
to OMQ and the size of that tree increases when the number
of unlabelled data increases.

Also, it is worth to describe the situation for q,, when
the running time is extra high in comparison to the other
considered queries. It seems that it is due to the number of
nodes in the query. g, is the longest query containing only
5 nodes in our list, but we can see that just adding one node
leads to a crucial timing increase compared to ¢, and g;.
Besides, for directed Polblogs the computed time is much
higher than for Deezer with symmetric edges.

In addition, we want to explain two anomalies in the afore-
mentioned Figures.

One is a sudden increase of time near 25% mask ratio
for g, query on Polblogs with Clingo (see Figure 1 (left)).
The reason behind this may be the fact that reachability from
“T—=T—T” to ‘F’ requires a search for the directed path
of three “I’, which is implemented faster in Clingo ASP
compared to DLV ASP. It only holds for the case when
many data are labelled, but starting from a certain increase of
unlabelled data, its performance decreases and both reasoners
perform similarly to each other. It is logical that increasing
uncertainty in data leads to decreasing the number of patterns
“T—T—T” in data and, hence, decreasing the number of
reasoning steps.

Another case is a sudden decrease of answering time after
masking 85% of the Deezer graph for g, and g5 (see Figure 2
(right) and 2 (left)). In such cases, the answer changes from
‘yes’ due to a lack of labels either T or F, thus making the
answer ‘no’ due to insufficient labelled data (as shown later
in Figure 3).

Basically, there is a threshold for masking, starting from
which the reasoners answers will deviate from the answers
on ground truth fully-labelled real-world graph. That may
happen not only if either F or T is missing in the labelled
data, but also with just several F/T labels presented.

One of the important conclusions of this section is that one
needs to be sure that for a given query type there is enough
labelled data for the usage of the logical approach. For social
networks, usually, only 5-10% of people mention their gender
in profile info; thus, direct application of the logical approach
may provide incorrect answers. One of the possible ways to
mitigate this problem may be the additional labelling via text
mining for names, GNNSs, and other methods helping to label
more data.
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TABLE 3. Running times of DLV and Clingo on Polblogs.

M/F DLV, Masked Clingo, Masked
Query | Ratio 25% 50% 75% 25% 50% 75%
0.25 2385.7044+69.704  2046.157+107.064 1252.5334+82.160 | 592.466+24.114 501.292+15.901 323.944+18.517
q0 0.50 2837.41459.413 2809.734487.281 2318.423494.859 633.04745.843 672.103+20.843  598.614+46.230
0.75 | 3370.457+183.876  3546.030142.558 1064.1414+106.536 | 648.101£8.020 754.1364+5.824  285.793+33.640
0.25 0.44310.003 0.46610.002 0.64240.085 0.388+0.015 0.37440.011 0.39140.013
qq 0.50 0.4601+0.017 0.46540.003 0.36540.006 0.39140.010 0.36440.004 0.39040.003
0.75 0.46440.011 0.3384+0.014 0.593+0.014 0.41740.036 0.41£0.037 0.41140.007
0.25 37.22243.965 17.4674+2.408 5.746+0.609 8.236+1.903 2.1454+0.214 0.72340.066
q, 0.50 47.079+1.468 36.401+1.868 16.41140.657 10.53144.050 5.40840.356 1.896+0.069
0.75 56.500+0.933 54.092+1.109 4.45140.769 9.44140.176 9.47840.553 0.59840.059
0.25 2.29340.059 2.708+0.395 1.86140.045 0.39540.005 0.41140.004 0.43440.005
qs 0.50 2.426+0.072 2.903+0.0420 2.684+0.021 0.39740.004 0.41140.018 0.44440.017
0.75 2.707+£0.019 3.387+0.041 1.739£0.072 0.400+0.001 0.42240.007 0.44040.005
0.25 1.26440.054 2.58340.172 4.93140.826 0.41540.004 0.4614-0.009 0.4444-0.020
qu 0.50 1.22440.169 2.773£0.070 6.224+0.160 0.410£0.006 0.44740.012 0.47840.013
0.75 1.145+0.029 3.317+£0.055 5.618+0.168 0.401£0.003 0.45540.008 0.435+0.020
0.25 64.353+2.417 135.1714+3.553 291.627+43.041 12.1614+1.058 17.2624+0.320 33.457+0.471
qs 0.50 54.600+5.499 150.94543.568 399.764+13.664 12.078+0.381 24.54640.302 39.197+0.630
0.75 52.953+1.528 202.838+3.598 360.5684+12.068 14.70040.792 33.961£0.600 35.101£0.544
TABLE 4. Running times of DLV and Clingo on Deezer.
0/1 DLV, Masked Clingo, Masked
Query | Ratio 25% 50% 75% 25% 50% 75%
0.25 159.64340.647 134.6724+1.174 5.6214+6.474 36.7244+0.459 34.678+0.209 20.720+1.614
q0 0.50 205.02843.326 257.879+6.469 281.831+6.189 47.095+0.758 65.447+1.511 72.865+1.395
0.75 256.50242.643 403.9954+6.472 52.628+6.798 57.6840.572 101.31240.395 14.847+1.749
0.25 2.1504-0.062 2.52340.153 2.91240.197 1.61440.141 1.50940.117 1.49540.160
q, 0.50 2.17240.083 2.71840.062 1.177+0.040 1.45940.118 1.63640.134 1.731+0.069
0.75 2.22940.112 2.99610.067 3.26140.123 1.53440.133 1.55540.103 1.66640.170
0.25 7.37440.611 6.7754+0.578 5.79840.153 2.80040.023 2.58440.092 2.12740.017
q- 0.50 9.2674+0.707 9.5004-0.282 9.41140.252 2.78340.033 2.90940.112 2.23040.076
0.75 11.418+0.317 14.234+0.282 6.0244-0.219 3.60940.293 3.48640.250 1.88340.131
0.25 5.43040.085 5.7740.225 5.79640.455 1.73240.031 1.80040.008 2.04340.137
qs 0.50 5.83940.074 6.64710.02 6.75640.057 1.5854+0.119 1.72440.114 2.00040.105
0.75 6.3134+0.086 7.77440.537 5.10240.219 1.74940.016 1.94740.122 1.91640.116
0.25 4.405+0.406 9.5574+1.007 16.341+0.441 1.59440.127 1.5954+0.019 1.6784+0.010
q, 0.50 4.565+0.230 8.61441.145 15.29840.428 1.53140.077 1.66740.035 2.03040.120
0.75 4.885+0.122 10.989+0.177 20.1461+0.997 1.49240.005 1.70540.010 1.7034+0.018
0.25 35.331+£1.755 77.569+6.294 194.958425.661 6.27640.644 8.216+0.297 11.564+0.263
qs 0.50 27.027+1.198 87.333+£10.967 185.99740.975 6.9804+0.411 12.974+0.472 16.013+0.116
0.75 32.138+1.485 112.4414+10.800  240.039410.154 8.286+0.132 14.694+1.198 12.048+0.124

B. TRAINING GRAPH NEURAL NETWORKS FOR DATA
LABELING

Next, we decided to train GNNs to label masked node classes In
for our graphs. We chose several representative neural archi-
tectures as our baselines: GCN, GraphSAGE, GAT and two
types of their modifications, proposed in [36].

The first kind of modification is to add a residual connec- .
tion between neural network layers to additionally propagate
node features as it was realised in ResNet [37]. The second .

modification is based on [38], which shows that separating
ego- and neighbour-embeddings in the GNN aggregation
step is beneficial when learning under heterophily. In our .
experiments, we added this modification to GCN and GAT
in the same way as it was done in GraphSAGE, where a
node embedding is concatenated to the mean of its neighbours
embeddings, rather than simply summing them. We will refer
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to these modifications by postfixed ““-Skip” and “-SEP”,
respectively.

order to conduct a fair comparison, node features were

initialised in graph neural networks based solely on the graph
structure, as OMQs do not utilise node features for inference.
Three types of initialisation were taken into account:

random initialisation: node features are uniformly sam-
pled from [0;1];

dummy initialisation: node features are represented as
one-hot vectors with |V| components, where |V| is a
number of nodes in a graph;

node2vec-based initialisation: node features are obtained
by training node2Vec model [39] maximising the prob-
ability of simultaneously finding neighbouring nodes to
have appeared in the same random walks. Thus, such
features preserve structural similarities between nodes.
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FIGURE 1. Comparison of the running time of DLV (left) and Clingo (right) systems for different queries on Polblogs.
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FIGURE 2. Comparison of the running time of DLV (left) and Clingo (right) systems for different queries on Deezer.

Prior to the comparison of GNN-based with logic-based
one, for each architecture, we found a set of optimal parame-
ters via ablation study presented in Table 5.

It can be clearly seen that different kinds of masking
strongly affect the performance of all models on Polblogs,
except for GAT and its modifications. Specifically, GAT
and GAT-Skip show the best results, while the quality of
GCN-based and GraphSAGE-based models drastically falls,
as the masking ratio increases. This could be explained by
the fact that the dataset has a high level of assortativity.
In such cases, a more complex graph neural model is able to
accurately capture this characteristic even when a significant
amount of masking is applied.
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On the Deezer dataset with assortativity close to 0, all
GNNs show performance not higher than 0.57 with a small
variance for different masking. It might be due to the irreg-
ular distribution of node labels, which challenges message
passing to capture the underlying patterns and relationships
from the local node neighbourhood. The best results are
shown by vanilla GCN and GAT. The low performance of
GraphSAGE-based models might indicate that the sampling
node neighbourhood does not let them preserve the necessary
structural patterns of this graph.

On Pokec-1, which has negative assortativity, the models
show almost the same results, but worse metrics, thus we
decided not to consider labelling it for further results because
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FIGURE 3. Comparison of correct answers for logic reasoner Clingo and
reasoning using labelled via GAT data. We see that on both datasets logic
reasoning fails when the number of labelled data is small. GNN labelling
just provides the answer ‘yes’ in all the cases due to generating all simple
query patterns by the labelling procedure.

the node classification task is not trustworthy as a backbone
for ontological query answering.

Thus, we have selected GCN, GAT, and GAT-Skip as the
most promising models for performance-related experiments.
Among these models, we mostly use GAT as it has shown to
be the best performing (see Table 5).

The time complexity for training and inference of the
best-performing models is presented in Table 6. In the case
of GAT-based models, it is evident that the training time
increases as the number of labelled nodes in the graphs
increases. This is because of the general property of message
passing that larger graphs take more time to be processed.
On the other hand, for GCN, having either too small labelled
data also leads to increased training time. This could be
explained by the fact that GCN has simpler architecture than
GAT, requiring more epochs for convergence when training
on a small graph. At the same time, inference time is compa-
rable between models trained on the training sets of various
sizes.

As a result, each GNN model has made the labelling
of given datasets and we achieved the main goal to query
fully labelled networks. However, due to the complex and
dense enough network structures that easily cover all syntax
patterns regardless of concrete node labelling, all considered
queries yielded a ‘yes’ response for every GNN model.

One can see that node classification did not work well for
the precise answering of simple Boolean conjunctive queries
combined with a covering axiom. Finding an accurate answer
requires consideration of contextual dependencies and inter-
actions between nodes, in particular nodes labels. Even state-
of-the-art node classification methods can overlook or have
difficulty capturing these dependencies, leading to inaccurate
results. Moreover, sometimes a few wrong label predictions
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TABLE 5. Comparison of various GNNs configurations for three large
network datasets (the best results are in bold, the second best results are
underlined).

Data | Model Hidden Layers | Input Weights | Features | } izati Masking | Fl-score
0.1 0,940

GCN [64] false dummy LayerNorm 0.5 0.900
0.9 0.690

01 0.947

GCN+Skip 1641 false dummy LayerNorm 0.5 0.933
0.9 0.767

01 0917

GCN-SEP [64, 64] false dummy No 0.5 0.883

0.9 0.720

0.1 0.947

GCN-SEP+Skip | [64] false dummy LayerNorm 0.5 0.937
0.9 0.667

0T 0,940

4, | GraphSAGE [64, 64] false dummy No 0.5 0.893
g 0.9 0.747
= 0.1 0.950
& | GraphSAGE+Skip | [64,64] false dummy No 0.5 0913
0.9 0.750

0.1 0.950

GAT [64] false dummy LayerNorm 0.5 0.926

0.9 0.923

0 0,943

GAT+Skip (641 false dummy LayerNorm 0.5 0.940
0.9 0.940

0T 0,940

GAT-SEP [64, 64] false dummy LayerNorm 0.5 0.933

0.9 0.870

0.1 0.933

GAT-SEP+Skip [641 false dummy BatchNorm 0.5 0.853
0.9 0.843

01 0.568

GCN [128,128] true Node2Vec | BatchNorm 0.5 0.561
0.9 0.551

0.1 0.566

GCN+Skip [128] false Node2Vec | BatchNorm 0.5 0.560
0.9 0.543

0.1 0.567

GCN-SEP [128] true Node2Vec | BatchNorm 0.5 0.555
0.9 0.537

01 0.566

GCN-SEP+Skip | [128, 128] true Node2Vec | BatchNorm 0.5 0.559
0.9 0.532

0.1 0.562

_ | GraphSAGE [128] true Node2Vec | BatchNorm 0.5 0.558
2 0.9 0.540
& 01 0.567
GraphSAGE+Skip | [128, 128] false Node2Vec | BatchNorm 0.5 0.556
0.9 0.541

01 0.570

GAT [128] true dummy BatchNorm 0.5 0.557

0.9 0.554

01 0.563

GAT+Skip [128] true dummy BatchNorm 0.5 0.558

0.9 0.557

01 0.562

GAT-SEP 1641 true dummy BatchNorm 0.5 0.557
0.9 0.554

0T 0.566

GAT-SEP+Skip [64, 64] true dummy BatchNorm 0.5 0.557

0.9 0.557

01 0.541

GCN [128,128] true dummy No 0.5 0.542

0.9 0.541

0T 0.540

GCN+Skip [128, 128] true dummy No 0.5 0.542

0.9 0.542

0 0.541

GCN-SEP [128,128] true dummy No 0.5 0.542

0.9 0.542

01 0.541

GCN-SEP+Skip | [128, 128] true dummy No 0.5 0.542

0.9 0.542

01 0.540

_ | GraphSAGE [128] true dummy No 0.5 0.539
S 0.9 0.542
2 01 0.541
| GraphSAGE+Skip | [128, 128 true random No 0.5 0.542
0.9 0.530

0.1 0.541

GAT [128,128] true dummy No 0.5 0.542

0.9 0.541

0.1 0.541

GAT+Skip [128,128] true random No 0.5 0.542

0.9 0.541

0.1 0.541

GAT-SEP [128,128] true dummy No 0.5 0.542

0.9 0.542

0.1 0.541

GAT-SEP+Skip [128,128] true random No 0.5 0.542

0.9 0.536

are enough to get an incorrect answer to a query, even for
models with almost 100% accuracy.

This is not an obvious fact that became one of the findings
of our work. It appears that having disjunctive ontology prop-
erty, evaluation of the Boolean query checks the data property
for all the possible labelling cases, while the GNN-based
approach checks the “most probable” data model.

The GNN-based approach can still be applied to either
small graphs with transparent structure or significantly more
complicated conjunctive queries, but tractable cases were
identified among only path- or tree-shaped conjunctive

VOLUME 11, 2023



0. Gerasimova et al.: Comparative Analysis of Logic Reasoning and GNNs for OMQ Answering

IEEE Access

TABLE 6. Speed of GNNs (seconds) with different training set sizes on
three network datasets.

TABLE 7. Comparison of DLV and Clingo, both with original and rewritten
datalog programs for OMQs with a covering axiom.

queries, for which we could test their datalog rewritings.
To evaluate the performance of GNNs on the small graph,
we perform rigorous evaluation in the next section.

C. COMPARISON OF LOGIC-BASED AND GNN-BASED
QUERY ANSWERING WITH A COVERING AXIOM ON A
SMALL GRAPH CLASSROOM

First, we take the small graph Classroom and compare two
reasoners DLV and Clingo for two versions of datalog repre-
sentations of OMQs: one of which is the original combination
of the query and the covering axiom rule, and another is
rewriting. Let us explain in detail.

The idea of the original datalog program is to explicitly
use covering axiom as a disjunctive datalog rule, thus gener-
ating 241 data models, where |A| is a number of unlabelled
data. Another direction is to use tractable datalog rewritings
suggested in [3], which is the efficient way that will be used
in further experiments. The time comparison is presented in
Table 7. As one can see, Clingo is a little bit faster than DLV
(which is more noticeable in Section [V-A).

For g¢ there is no known polynomial rewriting due to
coNP complexity, thus only the original datalog program is
possible, but it is still tractable for very small graphs like
Classroom. These experiments are only possible on small
graph data because for larger graphs the computations would
be intractable. For e.g., for 5% of masked Polblogs data, direct
answering of OMQ via the original datalog program, which
checks all data models arising from the covering axiom, takes
over 3 hours spending 30Gbs in intermediate computations
(while rewritten OMQ takes just seconds).

Second, we trained several GNNs that were shown to
perform the best on large networks (see Section IV-B) and
compare the consistency of the answers between reasoner-
based (finding answer to OMQ with missing labels in graph
and the ontology at hand), and GNN-based (finding answer
to query over labelled by GNN graph).
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Dataset Mask Phase GCN GAT GAT-Skip Query | DLV, Original | DLV, Rewriting | Clingo, Original | Clingo, Rewriting
10% Train 1.596 1.823 1.792 90 0~:7 Oﬁ 0~}5 0~:5
Inference | 0.008  0.001 0.007 o o P o o
Polblogs | 50% Train 0.976 1.471 1.502 a; 0.16 0.15 0.15 0.15
Inference 0.009 0.016 0.006 a4 0.15 0.14 0.15 0.14
90% | Train 1053 1548 1.646 95 o oL o o1
Inference | 0.009  0.009 0.008 = : TOTERIERE : TOTERIERE
10% Train 2.115 2215 2.203
Inference 0.009 0.009 0.008 TABLE 8. Comparison of querying Classroom with DLV and Clingo
Deezer 50% Train 1.175 1.353 1.331 reasoners (with r_ewritten d_atalo_g) with three GNN modgls. Column ‘Data’
Inference 0.012 0.011 0.010 represents querying data with eight unlabelled nodes without ontology.
: e column (Ground Truth) represents answers to queries over the
90% | Train 1198 1215 1224 The ‘GT" column (Ground Truth) t t th
Inference | 0.016  0.016 0.013 original fully-labelled graph.
10% ITI?;?CHCC 18'?8‘31 zg.g;g 18'2(1)2 Query | DLV Clingo | GCN GAT GATskip | Data GT
) g . . . qp yes yes yes yes yes no yes
et [0 e T e om0 R R R Rk
N N N €S €S €S €s () no €S
90% | Train 39.142 12570 3332 @ | e o | v yes Jes o yes
Inference 0.130 0.242 0.190 qu no no yes yes yes no no
qs no no yes yes yes no yes
qs no no yes yes yes no no

The time for training and inferencing GNN is very small on
such a graph (it is small even for large networks as shown in
Table 6, but requires to label all the unlabelled data). Query-
ing labelled graph with DLV/Clingo without the ontology
takes 0.13-0.15s, which is consistent with Table 7.

Now, let us discuss the main results of the comparison
presented in Table 8. We will categorise our observations into
distinct aspects for a more comprehensive analysis.

First, if we take Classroom ground truth data, almost all the
answers will be ‘yes’, which is a usual case for an OMQ as we
saw in Sections IV-A and Section IV-B. The only exception
is OMQ ¢4 providing a more complex pattern not observed
in a given two-community graph.

However, if we try to query Classroom data without the
ontology (as shown in column Data), we did not find any
answer, while both reasoners DLV and Clingo found three
‘yes’ answers with the help of the ontology. Thus, using
reasoners with the help of an ontology provides more con-
sistency with data results compared to not using ontology at
all.

Second, all the trained GNN models query labelled data
without the use of the ontology, and all provide the answer
‘yes’, which shows poor quality compared to the results
from the reasoners (similar to the results in Section IV-B).
However, if we look at one data model presented in the
Ground Truth, they have a mistake only in the case of gg.
Having a larger dataset, probably even ‘“complex” coNP
queries, including g4, will be answered ‘yes’ if used with
GNN labelling of unlabelled data.

Finally, we observe quite contradicting results leading us
to the following two conclusions.

One conclusion is that using machine learning for labelling
data produces a number of various structure patterns contain-
ing many simple queries directly in the data; thus, machine
learning will mostly provide the answer ‘yes’ for such
queries.
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Another result lies in the fact that in the real world,
every person has mostly fixed node class, and one should
be sure whether to consider all the possible data models
answering OMQ with respect to the ontology with a covering
axiom or directly trying to label the data as close to the real
data as possible and then query labelled data with a certain
confidence.

Thus, the choice of method is based on the use-case sce-
nario. For e.g., in software verification, you need to check
all the possible settings to integrate such a system into pro-
duction, while in the application of querying social networks,
it may be better to get approximate labelling and obtain
consistent answers with the one real-world data model. Code
of experiments could be found on GitHub.®

V. CONCLUSION

We have considered using a covering axiom as the ontol-
ogy in the framework of ontology-mediated query answering
tasks. During this study, we have received practical experi-
ence in applying ontology-based data access with a covering
axiom to actual data showing the pros and cons of such an
approach.

Initially, we formulated three research questions to eval-
uate our investigations on how efficient disjunctive datalog
reasoners work for the given task and whether it is possible
to replace precise computations based on logical deduction
with machine learning-based data labelling.

An ontology becomes of current interest when there is
missing information in the data or, in our case, when there
are unlabelled nodes that could be filled again and produces
possible data models with the help of the ontology. That is
why, we added uncertainty in data to mask a part of the
original data and studied the dependence of datalog and GNN
query answering performance versus the size of unlabelled
data.

For logic-based reasoners, we have seen that the running
time of datalog systems for different sizes of unlabelled
data directly depends on the conjunctive query structure. For
example, for the reachability-based query ¢,, we can see that
the larger the masking size, the faster the answer is searched,
as for g5 belonging to P complexity class, the situation is the
opposite. Also, it is clear that the larger query, the greater the
running time. In addition, it is important to mention that if
the size of unlabelled data is too much, then the ontological
approach could fail due to a lack of labels. However, for small
graphs (e.g., ego networks), we directly see the advantage
of the ontology approach and its benefits in finding missed
answers.

Regarding scalability with respect to data size, no general
trend shows a dependence between running time and dataset
size for all the queries. We can see that for ¢q,, ¢,, and gs,
in the case of the smaller dataset Polblogs, running time is
greater, while for the rest queries, the situation is the opposite.
However, our datasets have various natures and structural

6https:// github.com/Olga3993/MLvsOBDA
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specifications; that is why, it would be better to provide a
proper data scalability analysis for subsets of different sizes
from one dataset. Also, as a future work, it is interesting
to attempt technically speeding up the search for answers
using efficient parallel data processing and analyse scalabil-
ity performance for the different number of computational
clusters [40].

For GNN-based reasoning, we have received that the pre-
diction level for node classification, especially for graphs
with negative assortativity, is not enough to replace logic
reasoners. However, for large networks, even GNN models
with high accuracy will fail, because their node labelling is
too excessive with respect to our task, and it is impossible
to learn valuable network patterns not impacting almost all
simple query patterns used for OMQs.

To sum up, our results highlight the importance of
combined analysis of network and query structures and
the amount and placement of unlabelled data for choos-
ing between a precise or approximate decision-making
method. We have pointed out the limitations of the node
classification approach for our problem and the benefits
of reasoners and OMQs rewriting in promoting data
consistency.

APPENDIX A
DATALOG REWRITINGS IN THE SYNTAX OF DLV SYSTEM
# T->.->T->.->F
DRO = P(V) :- T(X), R(X,Y), R(Y,Z), T(2), R(Z,W), R(W,V),
A(V) .
P(V) := P(X), R(X,Y), R(Y,Z), T(Z), R(Z,W), R(W,V),
A(V) .
P(V) :- P(X), R(X,Y), R(Y,V), A(V).
G :- T(X), R(X,Y), R(Y,Z), T(Z), R(Z,W), R(W,V),
F(V).
G :- P(X), R(X,Y), R(Y,2Z), T(Z), R(Z,W), R(W,V),
F(V).
G :- P(X), R(X,Y), R(Y,V), F(V).
# T->F
DRl = P(X) :- F(X).
P(X) :- A(X), R(X,Y), P(Y).
G :—- T(X), R(X,Y), P(Y).

# T->T->T->F

DR2 = P(V) :- T(X), R(X,Y), T(Y), R(Y,Z2), T(Z), R(Z,V),
A (V).
P(V) :—= P(X), R(X,Y), T(Y), R(X,2), T(Z), R(Z,V),
A(V) .
P(V) := P(Y), R(X,2), T(Z), R(Z,V), A(V).
P(V) :- P(Z), R(Z,V), A(V).
G :- T(X), R(X,Y), T(Y), R(X,2), T(Z), R(Z,V), F(V).
G :- P(X), R(X,Y), T(Y), R(X,2), T(Z), R(Z,V), F(V).
G :- P(Y), R(X,Z2), T(Z), R(Z,V), F(V).
G := P(Z), R(Z,V), F(V).

# T<-F->.->T

DR3 = P(X) :— R(X,Y), T(Y), R(X,2), R(X,V), T(V).
P(X) := R(X,Y), T(Y), R(X,2), R(X,V), P(V), A(V)
P(X) := R(X,Y), P(Y), A(Y).
G :- P(X), F(X).

# T->F->T

DR4 = P(X) :— T(X).
P(Y) := P(X), R(X,Y), A(Y), R(Y,2), P(2).
G :- P(X), R(X,Y), F(Y), R(Y,Z), P(Z).

# F->T->.->T

DR5 = P(X) :— T(X).
P(X) :- A(X), R(X,Y), P(Y), R(Y,2), R(Z,V), P(V).
G :- F(X), R(X,Y), P(Y), R(Y,Z), R(Z,V), P(V).
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APPENDIX B
ORIGINAL DATALOG PROGRAMS IN THE SYNTAX OF
CLINGO

# t-
Q0 =

# t-
Ql =

# t-
Q2 =

# t<
Q3 =

# t-
Q4 =

# f-
Q5 =

# t-
Q6 =
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>.—>t->.->f
g = t(X),
£(Vv).
t(x);f(x) -
#show g/0.
>f
g = t(X), r(X,Y),
t(x);£(x) :— a(x).
#show g/0."
>t->t->f
g = t(X),
t(x); £(x)
#show g/0.
—f->.->t
g - t(X),
t(x);£(x)
#show g/0.
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#show g/0.
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g = £(X),
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#show g/0.
>f->t->f
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t(x);f(x)
#show g/0.

r(x,Y), r(Y,2), t(z), r(z,W), r(W,V),

a(x).

r(X,Y),
- a(x).

r(Y,z2), t(z), r(z,W), £(W).

r(Y,X),
- a(x).

r(Y,2), r(z,W), t(W).

r(X,Y),
- oa(x).

r(Y,z), t(z).

r(X,Y),
- a(x).

r(Y,z), ©(Z,W), t(W)

r(X,Y),
- a((x).
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