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ABSTRACT This paper presents a low-profile, high-isolation, dual-polarized antenna with broadband and
widebeam characteristics. The antenna consists of a square patch fed by double differential-fed scheme for
the high-isolation dual-polarized radiation. The patch is loaded with four top-hat monopoles to not only
broaden the beamwidth, but also generate an extra resonance, which is utilized to improve the operational
bandwidth. For verification, an antenna prototype with 0.096λ0-height at the center frequency of 2.5 GHz
has been fabricated and measured. The measurements result in a 10-dB return loss bandwidth of 13.8%
(2.36 - 2.71 GHz), an isolation of ≥ 43 dB, and excellent widebeam dual-polarized radiation, i.e., at
2.4 - 2.6 GHz, its half-power beamwidths are ≥ 180◦ and ≥ 120◦ in the E- and H-planes, respectively.

INDEX TERMS Composite patch-monopole, top-hat monopole, widebeam, dual-polarization, broadband,
high isolation.

I. INTRODUCTION
In order to achieve the optimal operation, several mod-
ern wireless communication systems, such as indoor
communications, short-range automotive radars, mobile
communications, and wide-angle scanning phased arrays,
require antennas with widebeam radiation, e.g., half-power
beamwidths (HPBWs) are normally expected to be ≥

120◦ [1]. Typical radiators such as microstrip patches,
printed dipoles or crossed dipoles, yield HPBWs of approx-
imately 60◦

− 70◦, which are insufficient to meet the
above requirement. Accordingly, different techniques are
required to enlarge their beamwidths. Those techniques, for
instance, include patch-monopole composite [2], [3], [4],
[5], angled dipoles [6], [7], [8], [9], dipole-monopole com-
posite [10], [11], [12], microstrip magnetic dipoles [13],
capacitive via fence [14], using fusion modes of dielectric
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resonator antennas [15], loading high-permittivity dielectric
slabs and using folded ground plane [16], current cancellation
method [17], and utilizingmetallic walls [18], [19], [20], [21].
Most of the aforementioned techniques yield negligible or
negative effects on the bandwidth of the original structures.
Furthermore, most of these widebeam antennas exhibit a high
profile of around 0.2λc (λc is the free space wavelength at the
center frequency).

In this paper, a square patch antenna is symmetrically
loaded with four top-hat monopoles to achieve: low-profile
structure, large beamwidth and broad bandwidth simulta-
neously. The two out-of-phase currents on two monopoles
induced by the patch are radiating together with two patch’s
equivalent magnetic currents to provide widebeam charac-
teristics. The monopoles generate an extra resonance, which
is combined with the patch resonance to enlarge the band-
width. Finally, the structure symmetry is utilized with a
double differential-fed scheme to achieve a high-isolation
dual-polarized radiation.
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FIGURE 1. (a) Initial design (with high profile) of the composite
patch-monopole antenna; (b) its synthesis radiation pattern in the
E-plane (in linear-scale).

II. ANTENNA DESIGN AND CHARACTERISTICS
A. INITAL DESIGN CONCEPT
The composite patch-monopole is a simple technique to
broaden HPBW of the microstrip patch antennas [2], [3], [4],
[5]. Fig. 1(a) shows the initial design concept. It consists of
a rectangular patch, two ∼λ/4 monopoles, and an infinite
ground plane (GND). The patch is designed to operate at
the fundamental TM10 mode. The radiated field of the patch
(Epatch) is caused by two equivalent magnetic currents (M1

and M2) and can be expressed in E-plane as [22]

Epatch(θ ) ≈ E1 cos(
βL
2

sin θ ) (1)

where β is the propagation constant in free space, L is
the patch length, and E1 is the complex amplitude. The
monopoles are excited by the coupling from the patch. When
the patch is excited at the TM10 mode, the two vertical
currents (Jv1 and Jv2) have the same amplitude and opposite
phase due to symmetry. A λ/4-monopole on infinite ground
plane has the E-plane radiated field as [22]

Emonopole(θ ) = E2
cos(π

2 cos θ )

sin θ
(2)

where E2 is the complex amplitude. The ratio E1/E2 is
mainly determined by the coupling between the patch and
monopoles. The array factor of these two monopoles is

AFmonopole(θ, φ) = 2 sin(βd sin θ cosφ) (3)

The total field of the composite patch-monopole antenna is

ETOTAL = Epatch + Emonopole × AFmonopole (4)

Fig. 1(b) shows the calculated E-plane (φ = 0◦) normalized
pattern of the antenna (d = λ/4). It can be observed that
the ratio between the amplitudes of Epatch and Emonopole,
i.e., |E1/E2| significantly affects the total field (ETOTAL).
It is noted that E1 and E2 are assumed to have the same
phase in the calculation, which is reasonable judging from
the simulated field distribution (not shown here for brevity).

FIGURE 2. Geometry of the proposed antenna: (a) cross-sectional view
and (b) top-view. (Wg = 100, Wp = 49.8, ha = 2.4, hs = 0.8128, h = 11,
a = 6.7, Sf = 18.5, d = 30, b = 1; unit: mm.).

In the H-plane (φ = 90◦), AFmonopole = 0, and therefore, the
total field of the composite patch-monopole antenna is

ETOTAL = Epatch (5)

which indicates that the monopoles theoretically do not affect
the H-plane beamwidth of the patch antenna.

One popular concept exploiting the combination of mag-
netic and electric current sources is magneto-electric (ME)
dipoles [23]. These structures are based on Huygen’s sources
with the target of achieving high-gain unidirectional patterns.
Fig. 1 and equations (1)-(4) demonstrate that the concept
utilized here is totally different with the aim of broadening the
beamwidth. It should be noted that to broaden the beamwidth,
an ME dipole needs to be loaded with meta-columns [11] or
metallic walls [19], [20] and generally requires more compli-
cated and higher-profile structures.

B. LOW-PROFILE AND DUAL-POLARIZED DESIGN
The design concept in Fig. 1 has amajor drawback of having a
high profile due to the monopole length. In order to achieve a
low-profile design, we propose the use of top-hat monopoles
[24] as shown in Fig. 2(a). Utilizing the structure symme-
try, double differential-fed scheme is applied to obtain dual
polarization with high isolation (Fig. 2(b)). Roger RO4003
substrate (εr = 3.38, tanδ = 0.0027, and hs = 0.8128 mm)
is used to print the patch, which is suspended on the GND at
an air-gap. For easy realization, the top-hats of monopoles are
built on four circular Roger RO4003 pieces with thickness of
0.8128 mm.

Numerical analysis of top-hat monopoles can be found
in [25] using the method of moment. The radiation character-
istics were shown in [26], which indicates that the radiation
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FIGURE 3. Simulated and calculated resonance frequency of the top-hat
monopole for different values of a and b, h is fixed at 12.5 mm.

pattern of a top-hat monopole is equivalent to that of a
λ/4 monopole. Nevertheless, a closed-form formula to esti-
mate the resonance frequency (for initial design parameters)
is not available in the literature. To achieve this, we seek an
equation for the effective height heff of an ideal quarter-wave
monopole such that its resonance frequency

fr =
c

4heff
(6)

is the same as the resonance frequency of the top-hat
monopole characterized by three parameters (a, b, h) (Fig. 2).

Since heff can be scaled with (a, b, h), we just need to
express heff/h as a function of (a/h, b/h). A wide range
of parameters with a/h ∈ [0, 1] and b/h ∈ [0, 0.1] is
simulated in ANSYS HFSS full-wave simulation. The res-
onance frequency is defined at which the imaginary part of
the input impedance is zero. Applying a simple polynomial
curve fitting, an empirical closed-form expression for heff is
derived as

heff
h

= 1 − 1.9
b
h

+ 3.76
a
h

− 20.3
ab
h2

+ 87.1
ab2

h3
(7)

It is noted that this equation is chosen such that heff = hwhen
a = b = 0. Fig. 3 shows the simulated resonance frequency
and calculated ones using (6) and (7). The results demonstrate
that the proposed empirical equations are reasonably accurate
for the range a/h ∈ [0, 1] and b/h ∈ [0, 0.1]. Using this
model, b = 1 mm and h = 11 mm are first selected, then
an initial value for a can be estimated to be about 8 mm
to yield a resonance frequency at about 2.5 GHz. Since in
the realization, the top-hat monopoles are built on Roger
RO4003 pieces, a should be chosen slightly smaller. The final
parameter-tuning gives a = 6.7 mm. A lower value of h
would result in a larger a and slightly degrade the beamwidth.
All other optimized parameters are given in the caption of
Fig. 2.

C. BANDWIDTH AND BEAMWIDTH ENHANCEMENTS
Fig. 4 shows 3 design configurations: Ant. 1 is a square
patch only; Ant. 2 is the patch loaded with four conventional
monopoles; Ant. 3 is the proposed design. For a fair com-
parison, all designs are optimized with the same GND size,
substrate size and center frequency. For impedance matching,
the feeding points and the patch size of Ant. 1 are slightly

FIGURE 4. (a) Steps of design evolution and their simulated (b) |Sdd11|

and (c) 2.5-GHz normalized radiation patterns.

modified as compared to the proposed antenna, i.e., Sf =

7.5 mm and Wp = 47.8 mm. Referring to Fig. 2, the design
parameters of Ant. 2 are as follows: Wp = 46.4, h = 24.6,
Sf = 15, d = 24.5, a= 1, b= 1; (unit: mm). Their differential
S-parameters are calculated as in [27]. It is noted that due
to the perfect symmetry, the antennas yield a theoretically
infinite isolation (Sdd21 = 0). As shown in Fig. 4(b), the con-
ventional patch yields a single resonance at 2.5 GHz, whereas
Ant. 2 and Ant. 3 show broadband characteristics with two
resonances. Fig. 4(c) shows the significant improvement in
the beamwidth of Ant. 2 and 3 compared to Ant. 1. For the
reflection coefficients of Ant. 2 and 3, the upper resonance
is due to the patch and the lower resonance is due to the
monopole. This is confirmed by the parametric study shown
in Fig. 5.

For the H-plane, the analysis in Section II-A shows that
the monopoles do not affect this beamwidth with an infinite
GND. To investigate further, the simulated E- and H-plane
HPBWs versus the GND size are shown in Fig. 6. It is
observed that for Wg at 0.5λc − 1.5λc (λc is the free space
wavelength referring to the center frequency), theGND size is
impactful on improving the HPBW. TheWg of ∼0.8λc offers
the widest HPBW in both E- and H-planes. As Wg increases
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FIGURE 5. |Sdd11| of the composite patch-monopole antenna for
different values of a and h.

FIGURE 6. HPBWs of the proposed antenna versus the GND size (Wg).

beyond 1.5λc, the beamwidths approach the theoretical val-
ues with the assumption of infinite GND, i.e., 150◦ and 70◦

in the E- and H-planes, respectively.
Although the H-plane beamwidth approaches 70◦ when

the ground size goes to ∞, the proposed structure still has
a positive impact on enlarging the H-plane beamwidth. This
is due to the presence of top-hat monopoles which change the
GND structure. FromFig. 6, it provides awide range values of
ground plane size, i.e., 0.5λc − 1.5λc, such that a wide beam
(HPBW of about 120◦) is achieved. It is noted that a patch
alone (without monopoles) can only achieve up to about 85◦

HPBW in H-plane with a finite ground plane [28].

III. FABRICATION AND MEASUREMENT
For measurement, the double differential feed is implemented
using two out-of-phase power dividers [29]. Roger RO4003
substrate (εr = 3.38, tanδ = 0.0027, and thickness of
0.508 mm) is used to realize the feeding network. Fig. 7
shows a prototype with overall size of 100 mm × 100 mm ×

11.5 mm. Its S-parameters are illustrated in Fig. 8(a). The
measurements yield a 10-dB return loss bandwidth of 13.8%
(2.36 - 2.71 GHz) and an isolation of ≥ 43 dB. Across the

FIGURE 7. Fabricated prototype of the proposed antenna.

FIGURE 8. (a) S-parameters, (b) realized broadside gains, and (c) total
efficiencies of the prototype.

impedance bandwidth, the measured broadside gains range
from −1.1 dBi to 3.2 dBi, which are close to the simulated
values of 0.6 - 3.7 dBi (Fig. 8(b)). There is a drop in the
broadside gain at the center frequency becuase of the antenna
yields the widest beamwidth in both E- andH-planes. A slight
discrepancy between the measured and simulated results is
attributed to the fabrication tolerances and the imperfect
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FIGURE 9. Normalized radiation pattern of the antenna when P1 is
excited.

TABLE 1. Comparison of the proposed antenna and the related works.

chamber. Due to function limitation of the anechoic cham-
ber, the efficiencies of the antenna have not been measured.
As shown in 8(c), the simulations result in a total efficiency
of greater than 80% and a peak value of 92% for both P1 and
P2 excitation.

The normalized patterns in Figs. 9 and 10 demonstrate
an excellent widebeam dual-polarized radiation; i.e., with
symmetric pattern and cross-polarization level of ≤ −30 dB
at broadside. Fig. 11 shows the HPBWs versus frequency.
At 2.4 - 2.6 GHz, the measured HPBWs are in the range
of 178◦

− 186◦ and 118◦
− 164◦ in the E- and H-planes,

respectively, whereas the simulated corresponding values are
186◦

− 230◦ and 118◦
− 220◦. The measured HPBWs are

FIGURE 10. Normalized radiation pattern of the antenna when P2 is
excited.

FIGURE 11. E- and H-plane HPBWs of the antenna when Port 1 is excited.

less than the simulated values which are attributed to the
imperfection of the measurement setup, especially toward the
back of the antenna.

As compared to other composite patch-monopole anten-
nas [2], [3], [4], [5] (Table 1), the proposed design shows
distinct advantages in terms of bandwidth, cross-pol andmost
importantly, antenna profile (which is the main contribution
of this paper). For the beamwidth, compared to [5], the
max HPBW in E-plane is smaller, but this is mainly due
to our measurement limitation in the θ > 90◦-range (the
simulated value is 230◦). Relative to the widebeam dual-
polarized antennas with asymmetric feeding structures [10],
[17], [19], the proposed antennawith structural symmetry and
differential feed achieves a lower cross-polarization, and con-
sequently a higher port-to-port isolation. It is noted that our
preliminary design in [12] is a composite dipole-monopole
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antenna, where the broadbeam is achieved from the radiation
of an equivalent loop electric current. In terms of structure,
the antenna in [12] is extremely complicated with many
components, multi-layered substrates, and especially suffers
from a high profile. The E-planeHPBW in [12] is also smaller
than what is presented here.

IV. CONCLUSION
A dual-polarized patch antenna with broadband and wide-
beam characteristics has been presented. The effect of the
loading monopoles is investigated thoroughly. Empirical
equation for the resonance frequency of a top-hat monopole
is proposed for a quick estimation of the initial design
parameters. Structure symmetry is utilized to achieve very
high-isolation dual-polarization radiation. Many advantages,
including low-profile, simple configuration, broadband, dual-
polarization, high isolation and widebeam, make the pro-
posed antenna a good candidate for wireless local area net-
work, 5G in-door access-points, as well as other modern
wireless communication systems.
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