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ABSTRACT Currently, the coding efficacy of the cutting-edge video coding standard H.266/VVC surpasses
that of 3D-HEVC (3D-High Efficiency Video Coding), but the existing VVC (Versatile Video Coding)
low-complexity coding algorithm is mainly optimized for 2D video coding and cannot fully utilize the
characteristics of the depth map itself. Based on this, we propose a fast decision algorithm employing the
CNN (Convolutional Neural Network)-LNN (Lightweight Neural Network) model to diminish the intricacy
of depth map intra coding in VVC 3D video. The algorithm treats the CU partitioning process in depth
map coding as a two-stage process, first adding a non-local block and spatial pyramid pooling to the CNN
model, enabling the proposed CNN model to skip the flat regions in the depth map and perform adaptive
partitioning prediction of CUs in the edge regions; then, the LNN model is used to make early decision on
TT (Ternary Tree) partition for CUs that need to be partitioned, and skip decisions for CUs that do not need
to be partitioned by TT, so as to reduce some unnecessary RDO calculations. Experimental results illustrate
that the algorithm achieves a notable reduction in encoding time amounting to 43.23% on average, with a
negligible impact on the increase of BDBR.

INDEX TERMS VVC 3D video, depth map coding, CU early prediction, CNN-LNN.

I. INTRODUCTION quality and a sense of image envelopment, overturning the

Amidst the incessant advancement of information and com-
munication technology, the application of digital video has
become more widespread and people’s pursuit of visual
effects has become higher and higher, not only for the increas-
ing requirements of clarity but also for the experience of
watching video. To meet these requirements, video coding
technology has evolved rapidly [1], the resolution of video
is increasing from standard definition (SD) to ultra-high
definition (UHD) [2] and multi-view stereoscopic video is
another direction of video development, with views evolving
from 2D to 3D and free-view, with stereoscopic video, multi-
view video, virtual reality and augmented reality emerging
as immersive videos with large viewing angles, high picture
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traditional visual experience. Compared to traditional 2D
video, 3D video usually contains multiple viewpoints of
video, presenting a 3D effect and therefore providing the user
with visual and auditory enjoyment that 2D video cannot [3].
Since 3D video provides an immersive visual experience,
it has also been successfully applied in people’s daily life,
such as 3D film and television, free-viewpoint TV, virtual
reality and medical equipment and other fields. 3D video
requires more video transmission bandwidth and more video
storage space due to the need to encode multiple views at the
same time, and its data volume is several times that of 2D
video, so reducing the complexity of 3D video has been a hot
topic of research both domestically and internationally.

2D video coding technology can no longer meet people’s
new requirements for visual effects. Therefore, the Motion
Image Expert Group and the Video Coding Expert Group
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jointly formed a 3D Video Joint Coding Group [4] to jointly
develop a new generation of 3D video in July 2012 to
develop a new generation of 3D video coding standard, and
officially released 3D-HEVC in February 2015, which is a
major progress based on multi-view video. Among them,
3D-HEVC adopts the encoding format of multi-viewpoint
texture plus depth [5], which uses the rendering technology
based on depth map to realize the synthesis of any virtual
viewpoint, and reduces the data volume of the video to be
encoded by reducing the number of viewpoints. Currently, the
latest generation of traditional video coding standards is VVC
announced in July 2020 [6]. In contrast to the previous gener-
ation of standard HEVC, the overall performance of VVC has
been greatly improved, and as shown in Figure 1 CU (Coding
Unit) partition adopts QTMT (Quad-tree with Nested Multi-
type Tree) partition structure, which consists of six partitions
(no partition, quadtree partition(QT),vertical binary tree par-
tition(BTV), horizontal binary tree partition(BTH), vertical
ternary tree partition(TTV) and horizontal ternary tree par-
tition(TTH)), in which the maximum size of CTU (Coding
Tree Unit) allowed is 128 x 128, the minimum size allowed
for QT sub-nodes is 16 x 16, the maximum size allowed
for BT and TT is 64 x 64, and the minimum size is 4 x 4.
Making it more flexible while reducing the CU prediction
residuals [7]. In addition, the intra prediction direction in
VVC is the same as in HEVC, both from 45° to -135° in
a clockwise direction, and the number of angle prediction
modes has increased from 35 to 65, making the prediction
more refined [8].

Compared with 2D video, the depth map introduced in 3D
video differs substantially from the texture map. The depth
map has large smooth areas and prominent edges. The intro-
duction of depth map coding techniques to accurately encode
the edge regions of the depth map has engendered a notable
increase in the intricacy of coding, which is one of the reasons
for the overall high coding complexity of 3D video [9]. In 3D
video, the depth map predominantly comprises undulating
terrains interspersed with precipitous contours, and the dis-
tortion of these delineations engenders resonant artifacts at
the peripheries of objects. Depth map coding is an important
part of 3D video coding, and its quality of the depth map
directly affects the bit rate required for coding and the video
quality of synthetic viewpoints. Figure 2 shows that the size
and depth of the CU partition in VVC 3D video are exists
a strong interrelation between the edge features of the depth
map [10]. Complex edge regions are usually delineated using
deeper depth and small-size CUs; conversely, simple edge
regions are usually encoded using shallow depth and large-
size CUs. Furthermore, distinct edges exhibit different pixel
values [11]. Owing to the flexible QTMT partition structure
and the coding technology in depth map, the coding com-
plexity and coding time of the VVC 3D video is greatly
increased. Since the MTT (Multi-Type Tree) structure is a
newly introduced coding scheme, it is also one of the hotspots
that people pay more attention to. However, the complexity
of its structure also makes researchers feel difficult. Most
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FIGURE 1. CU partition mode and depth in the QTMT partition structure.

FIGURE 2. A frame from the video sequence “Newspaper” (a) texture
map (b) depth map.

research methods only focus on QT and BT [12], and a few
studies on TT [14]. These researchers used statistical analysis
and decision tree models to study the complexity of QTMT,
but it is difficult to avoid the problem of overfitting, and
high complexity will be generated in the process of feature
extraction. That is, although the complexity of MTT can be
reduced, the problem of reducing the complexity of TT is still
a problem to be solved. Hence, to more effectively resolve the
aforementioned issues, it is imperative to find a fast coding
algorithm that can effectively diminish the complexity of
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depth map coding in VVC 3D video while ensuring coding
efficiency.

According to the characteristics of the depth map, to further
mitigate the computational complexity of the depth map in the
VVC 3D video, we mainly make the following contributions:
(1) we propose a CNN-based adaptive CU partition prediction
algorithm, which adds spatial pyramidal pooling to the CNN
model to solve the problem of uniform input of multi-size CU
into the CNN model caused by different CU sizes in the cod-
ing process; second, a non-local block is introduced, which
enables the proposed CNN model to partition and predict CU
in edge regions while skipping large-scale flat regions in the
depth map. (2) an LNN-based early TT decision algorithm
for CU is proposed, using the LNN model to make early
judgments on TT partition for CU that need to be divided
in the previous stage and skip decisions for CU that do not
need TT partition, to accomplish the objective of reducing
some unnecessary RDO (Rate Distortion Optimization) cal-
culations, thus reducing the larger computational complexity.

The subsequent sections of this paper are structured as
follows. In Section II, related work on diminishing the com-
plexity of 3D video coding is reviewed. Section III presents
the proposed fast intra coding algorithm for depth map.
Section IV presents the empirical findings and comprehen-
sive analysis of the algorithm. Finally, Section V concludes
the paper.

Il. RELATED WORKS

Currently, a multitude of expeditious intra coding algorithms
exist for 2D video, demonstrating remarkable aptitude in
diminishing the intricacy of HEVC and VVC intra coding, but
because depth map is introduced in 3D video and texture map
and depth map have different coding techniques, therefore it
is not suitable for intra coding of 3D video depth map [16].
To effectively diminish the intricacy entailed in coding the
depth map within 3D video, researchers have proposed the
following three main types of fast decision algorithms.

A. FAST INTRA MODE DECISION ALGORITHM

The computational intricacy of mode decision in depth map
coding in 3D video is so high that it is common to skip
unnecessary prediction mode using either traditional methods
or in combination with machine learning methods. In the
reference [17], Zhang et al. introduced two highly efficacious
algorithms for intra decision in depth modeling mode, one
of these approaches delves into the statistical attributes of
variance distribution within two partitions of depth modeling
mode, it subsequently suggests a straightforward, yet potent
criterion founded upon the squared Euclidean distance of
variance to accurately assess the RD cost of a prospective
DMM (Depth Modeling Mode) candidate; the other is to
propose a probabilistic-based early depth modeling mode
decision to merely the utmost plausible modes are chosen
and to determine the use of SDCs (Segment wise Depth
Coding) in advance grounded upon the RD cost of diminished
intricacy in the deliberations of coarse mode selection. A fast
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coding algorithm for depth map is proposed in reference [18],
which first analyses the intricacy of RD cost computation
in 3D-HEVC; subsequently designs the RD cost calculation
to sequentially calculate the coded bits, depth distortion and
SVDC (Synthesized View Distortion Change); and finally
designs an early termination method for RD cost calculation.
To reduce the computational intricacy of depth map intra
coding, Wang et al. proposed a multi-rate depth intra pattern
decision algorithm in reference [19] that combines an early
RMD (Rough Mode Decision) termination strategy, a can-
didate pattern reduction strategy, and a fast DMM decision
strategy to skip unnecessary DMM patterns by employing
a simplified edge detection method with minimal computa-
tional complexity. Reference [20] proposes a depth region
segmentation-based intra prediction model that integrates
segmented CNN into intra prediction for depth map coding,
using DRS-Net (Deep Region Segmentation Network) to
acquire partitioning results at the frame level to locate target
locations more accurately. Song et al. proposed a content
adaptive pattern decision to mitigate the intricacy entailed in
encoding depth map in 3D-HEVC in reference [21], which
adaptively skipped certain unnecessary prediction patterns.

B. FAST CU PARTITION DECISION ALGORITHM

As texture views and depth map in 3D video have different
characteristics, existing fast intra prediction methods are used
to encode texture views and depth map respectively. Based
on the self-learning residual model, the research in refer-
ence [22] presents a swift algorithm for intra size decision
in the context of texture views and depth map within 3D-
HEVC intra coding, which firstly acquires the residual signal
by extracting it from both the pristine luminance pixels and
the optimally predicted luminance pixels corresponding to
each CU size; additionally, it employs the self-learning resid-
ual model for expeditious determination of CU intra size to
predict the optimal CU size ahead of time using the residual
signal features. In reference [23], Li et al. proposed an unsu-
pervised learning-based scheme that enables adjustable early
decision-making regarding CU size for intra coding of depth
map within the framework of 3D-HEVC, proposing three
clustering models for clustering 64 x 64,32 x 32and 16 x 16
CUs to determine early whether they are further divided and
introducing similarity distances to achieve adjustable early
CU size decisions to attain varying degrees of reduction in
coding complexity. In reference [24] presented a fast depth
map coding algorithm for 3D-HEVC, which incorporates the
principles of data mining and machine learning to establish
associations between encoder context attributes, culminating
in the construction of a static decision tree, and then judging
whether the present CU necessitates partitioning. In [10],
a fast depth map intra coding method based on CNN is
proposed to diminish the intricacy of 3D-HEVC. In the initial
stage, a database of independent views based on the depth
map is established, and which curated repository encom-
passes the CU partition data associated with the depth map.
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Subsequently, a sophisticated framework known as the Deep
Edge Classification Convolutional Neural Network (DEC-
CNN) is established that primary objective revolves around
the classification of the intricate edges found within the depth
map. Lastly, the pixel values derived from the binarized depth
image are utilized to rectify and refine the aforementioned
classification outcomes.

C. JOINT FAST INTRA MODE DECISION AND CU
PARTITIONING ALGORITHM

Certain research methodologies employ concurrent tech-
niques to address both the expedited intra mode decision
and the predicted CU size decision, thereby augmenting the
overall efficiency of depth map intra coding. A size-decision
algorithm for intra prediction of depth map is proposed
in [25], which creates a size-decision model to expedite
intra encoding of depth map based on an automatic merg-
ing likelihood clustering method for a set of selective data.
Chen et al. [26] proposed a 3D-HEVC depth map intra cod-
ing algorithm on the basis of boundary continuity. Initially,
the fast intra mode decision diminishes the number of intra
mode and RMD candidates founded upon the intricacy of
boundaries; subsequently, the fast DMM decision method
determines whether DMM prediction should be employed
based on the difference in boundary variance; and finally,
the fast CU early termination algorithm incorporates RD
cost constraints to prevent superfluous CU splitting in the
smoothed region. Reference [27] proposed a 3D-HEVC fast
coding algorithm on the basis of visual perception, which
extracts the visual edge and depth map of color texture
respectively, classifies CTU into various types, and designs
acceleration algorithms for each type. Harnessing the features
of the human visual system, a fast algorithm for accelerated
3D-HEVC depth intra coding on the basis of visual percep-
tion was proposed in the reference [28], the depth map was
split into different regions by automatic thresholding of Otsu,
the dominant edge direction was classified for every predic-
tion unit, and the perceptual edges were detected based on a
disparity depth difference model to extract regions that could
potentially influence visual perception; based on the partition
of the depth map and analysis of edge distribution, the associ-
ated intra-corner patterns were reduced and the determination
of whether to perform the depth modeling model was made,
and fast CU decisions were proposed in combination with
boundary continuity and RD cost thresholds.

The above three types of fast decision-making algorithms
are mainly applied to 3D-HEVC, which are studied from
the aspects of fast intra mode decision-making, fast CU
segmentation decision-making and joint fast intra mode
decision-making and CU size segmentation decision-making,
respectively. At present, there are fewer fast decision-making
algorithms for VVC 3D video coding, while VVC has
become the mainstream video coding standard, and 3D
video is also more popular, so the complexity reduction
improvement for VVC 3D video coding has become a hot
research direction. Therefore, we propose CNN-LNN based
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TABLE 1. Official 3D video test sequence for JVT-3V.

Video . Frames to be Frame 3-views
Resolution .

sequences encoded Rate input
Undo_Dancer 250 25 1-5-9
Poznan_Hall2 200 25 7-6-5
Poznan_Street  1920x1088 250 25 5-4-3
Shark 300 30 1-5-9
GT-Fly 250 25 9-5-1
Kendo 300 30 1-3-5
Balloons 1024x768 300 30 1-3-5
Newspaper 300 30 2-4-6

fast decision making for intra coding to reduce the complexity
of intra coding in depth maps for the characteristics of depth
maps in VVC 3D video.

llIl. PROPOSED ALGORITHM

In contrast to 2D video, 3D video exhibits distinct char-
acteristics in terms of its access unit structure and coding
sequence, where the depth map can be thought of as a grey-
scale image with pixel values representing the quantization
values from the object to the camera, and the depth map
uses non-uniform quantization. The different ways in which
depth map describe scenes determine their particular nature
and furthermore determine the coding technique. The depth
map has the characteristic of segment smoothness, the pixel
values of the object interior and the background area are
almost unchanged and are divided by sharp edges; in addition,
the depth map is employed to depict the virtual synthetic
perspective; and the inter and the correlation between view-
points is poor, but has a similar motion direction to the texture
map. The depth map coding in VVC 3D video adopts the
QTMT partition structure, and there are many types of CU
partitions. Therefore, we divide the intra coding of the depth
map into two stages. First, construct a CNN model to make
an early judgment on whether the current CU is partitioned,
and then construct an LNN model to judge whether to skip
the calculation of the RD cost of the TT of the CU that needs
to be partitioned.

The depth map coding in VVC 3D video adopts the QTMT
partition structure, where each CU partition needs to itera-
tively calculate the RD cost of the QT, BT and TT partition
patterns for all depths, and the partition pattern with the
smallest RD cost is the best. This method has high partition
accuracy but is also very time-consuming. The depth map
standard test sequence selected for the establishment of the
dataset is displayed in Table 1, which respectively includes
the resolution, frames to be encoded, frame rate and view-
point of the video sequence. These are part of the official 3D
video test sequences of JVT-3V (Joint Collaborative Team
on 3D Video Coding Extension Development). The chosen
video sequences encompass various resolutions and scenes,
ensuring that the trained model exhibits robust generalizabil-
ity. To obtain the dataset for training the model, the depth map
dataset was divided into multiple classes based on CU size
and the data was enhanced by choosing to scale the image
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1

(a)Depth map of a frame of the "ballons” sequence

FIGURE 3. CU partition of a frame in the “Balloons” sequence.

(b)Scheme for the division of different regional CUs

frames for the UHD sequences and to zoom in on the image
frames for the HD sequences.

A. ADAPTIVE CU PARTITION PREDICTION ALGORITHM
BASED ON CNN

Depth maps are less detailed than texture maps, with sharp
edges and more flat areas [29]. The QTMT partition structure
tends to select larger-sized CUs for flat areas, and smaller-
sized partitions for edge areas. As shown in Figure 3, this
picture is the depth map of a certain frame in the sequence
“balloons”, and the red box is the depth map and partition
scheme of the same area, from which we can see that the edge
region has a deeper partition depth and a smaller partition
size, which is a more accurate partition of the edge region,
and the CU partition of the edge region often determines the
coding quality of the depth map.

Neural Networks have good feature extraction ability for
images as well as the ability to learn from large amounts of
data, and have been used with good results in video analysis
and image quality assessment [30]. Here we select CNN as
the base model. In addition, the depth map coding in VVC 3D
video still adopts the QTMT partition structure, that is, each
CU has six possible partitions, which may lead to the input
CU being cropped or distorted if different sizes are directly
input into the CNN model, making distortion or information
loss, thus limiting the accuracy of recognition [18]. When
the size of the input CU changes, the model may not be
able to adapt to the change of the current CU, resulting in
the need to train multiple CNN models according to the size
of the CU, which reduces the utilization of the model and
wastes resources [31]. Therefore, we add a spatial pyramid
pooling structure to the CNN model to solve this problem,
which can pool the input feature maps by three sizes of
lattices [32] to avoid the time loss caused by processing
different sizes of CU.

So that the proposed CNN model can skip flat regions in
the depth map and focus more on regions with sharp edges,
we add a non-local block to the CNN model. The non-local
block used here is based not only on the design of human
brain theory but also on the non-local mean value of the
non-local mean filter. That is, the basic idea is to calculate
the mean of the weights between all pixels in an image,
the weights being used to represent the correlation between
pixels.
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Therefore, we employ the non-local block in the proposed
CNN model, which can be expressed as:

1
Yi= 7 o %:f (xi x7) g (%)) (D

where x; denotes the present pixel, x; denotes all pixels within
the image, and f' (x;, x;) denotes the similarity between x; and
xj. C (x) is the influence factor, which is used for normal-
ization, and g (xj) is the mapping function, which is used to
calculate the representation of the feature map at position
Jj- The following equations are chosen here to represent the
f (i, xj) function, the C (x) function and the g (x;) function
respectively:

f (i) = 00100 @)
C )= f (xi.x) 3)

vj
g (xj) = Wex; @

where Wy is the matrix of weights to be learned. Thus y; can
be formulated as follows:

1
= T m %f (xi, %)) & (%)

_ b s ety
O e ®
The structural diagram of the non-local block is shown in
Figure 4, where X is a feature map of size [c, k, w], ¢ signifies
the quantity of channels, /2 and w signify the height and width
of the input feature map. First X will pass through three
convolution layers of 1 x 1 convolution kernel to obtain 6,
¢ and g, which correspond to the three functions of 6(x;),
¢(xj) and g(x;) in the above formula respectively. Stretching
0, ¢ and g as one-dimensional vectors give 6, ¢y and gr,
and transposing 6 and gr gives 6, and g,, which are matrix
multiplied to give a matrix of size [h x w, h x w]. After
normalizing this matrix by the Softmax function, it is matrix
multiplied with g, and its dimensions are re-stretched to
[c / 2, h, w]. Then it is convolved to expand the channel to
the original ¢ dimension. Finally, X is added to the acquired

feature map y to obtain the output feature map Z.
We therefore propose a CNN model structure based on a
Spatial pyramid pooling structure, and non-local block layers,
including one input layer, two Conv-Maxpooling layers, one
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FIGURE 5. Proposed CNN structure.
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FIGURE 6. LNN structure diagram.

non-local block layer, one convolutional layer, one Spatial
pyramid pooling layer, two fully connected layers, and one
output layer. Specifically, as shown in Figure 5, a CU of
size h; x w;, where h; is the height of the CU and w; is the
width of the CU, is input and the Conv-Maxpooling layer
contains a convolution kernel of size 3 x 3, a convolution
layer and a pooling layer with a pooling kernel of size 2 x 2,
using the maximum pooling method; the non-local block
layer performs non-local block operations on the feature map
output from the upper layer using the mentioned non-local
model; the Spatial pyramid pooling layer incorporates QP
(Quantization Parameter) to make the model more focused on
the edge CU; the fully connected layer uses Relu (Rectified
Linear Unit) function as the activation function and will also
be lost with 50% probability as it goes along in order to
prevent overfitting; the output layer uses the sigmoid function
as the activation function to obtain the output values.
According to the QP, the depth map dataset is divided into
four groups: 34, 39, 42, and 45, and a multi-scale training
method is adopted for the proposed CNN model, i.e. in each
epoch, the first size model was trained to generate then load
this model and train the second size until all sizes were
trained. The Adam optimizer is selected, the initial learning
rate is set to 10~3, the minimum learning rate is 1070, and a
total of 1000 epochs are iterated. The cross-entropy function
can prevent the model from falling into a local optimum
during the learning process and is widely used in classifi-
cation problems, so the loss function uses the cross-entropy
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function:
l n
loss = —ZZ;‘[yllog)7+(l —yl)log (1 —)A’)] (6)
i=

where y is the predicted value of the current training sample,
and y; is the label of the current training sample.

B. CU EARLY TT DECISION ALGORITHM BASED ON LNN
The depth map encoding in VVC 3D video adopts the QTMT
partition structure, and there are five types of CU partitions.
If the original VITM algorithm is used to perform a violent
RDO search on it, the complexity will be too high. The
calculation formula of the RD cost is:

where J,,, denotes the RD cost function, B, represents the
encoding bit rate, and A stands for the Lagrangian multiplier.
D represents the distortion of the synthesized view and depth
map in depth map encoding.

Hence, we propose to use the LNN model for early TT
decision prediction for the CUs that need to be divided in the
preceding partitioning process. In terms of the CU division
structure, the complexity of the MTT structure accounts for
the main aspect, containing a total of four partitions: BTV
partition, BTH partition, TTV partition, and TTH partition.
Therefore, the LNN model we proposed mainly makes judg-
ments on the TT partition, establishes an LNN model for each
partition direction of TT partition, and reduces unnecessary
RDO searches to accomplish the purpose of reducing com-
plexity. The purpose of using the LNN model is to effectively
use a limited number of features to make judgments about the
type of CU partitioning and curtail the intricacy. LNN models
are mostly low number of parameters, high computational
speed, and small memory footprint and lower complexity,
which can achieve high accuracy of neural network models
even with a small number of feature parameters [33]. That is,
the fewer the set of features employed by the LNN model,
the less complex the architecture will be [34], so here we
must improve the precision of the LNN model by selecting
the most critical features relevant to CU division in VVC 3D
video, and here we choose two types of features to form the
feature set.

One category is features that can be directly obtained
during the coding process. Firstly, the size and shape of
CU blocks are considered, and these features all have some
correlation with the type of CU partition, while the size and
shape are usually represented by the depth of the CU, and
the proposed LNN model mainly targets TT partition, so the
MTT depth (MTD) is chosen here as a feature that can be
directly obtained during the CU coding process.

Another category includes features that enable finer tuning
of the TT partition in addition to the CU features obtained
directly during the encoding process. The tendency of the CU
to split in different directions is influenced by the aspect ratio,
so the block ratio BSR is chosen as a feature measure the
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shape of the CU, where the block ratio BSR is represented as
follows:

h
—— BTH or TTH
W;L— h
BSR=1 —— BTV or TTV ®)
w+h
0.5 or

where w signifies the width of the CU, and # signifies its
height.

In addition, the partition of the CU is closely related to the
texture direction of the CU. A CU with a horizontal texture
direction should choose BTH partition or TTH partition in
the MTT partition and a CU with a vertical texture direction
should choose BTV partition or TTV partition, at the same
time, the corresponding RD cost should be smaller than the
RD cost in the other direction. Therefore, before judging
whether to skip TT partition, first use the RD cost of BTH and
BTV to judge the direction of TT partition. The BT advantage
(BTA) based on RD cost is then chosen as one of the features,
with BTA being 0.5 when the RD cost of BTV or BTH is
lower than in the other partitions, and 1 when the RD cost of
both BTV and BTH is lower than in the other partitions.

Additionally, by employing the Sobel operator to compute
the texture distribution across various directions within the
CU, where A is the pixel matrix, then the texture in the ver-
tical and horizontal orientations of the CU can be expressed
respectively as

w h -1 01
S>> 1A% =20 2
i=1j=1 —-101
Texturey = = 9)
w_h
w h 1 2 1
> 1A% 0 0 0
i=1j=1 -1 -2 -1
Texturey = = (10)

w-h
The above are the selected features and assuming that the pro-
posed method is exclusively employed for CUs that require
further MTT partitioning, the proposed LNN model consists
of 5 input nodes, 30 hidden nodes, and 1 output node. The
model structure is shown in Figure 6, with the computation
between the input, hidden and output layers defined as:

Yj =f(Zw,,»x,~+bj) (11)

where x; signifies the value of the i-th input, w;; signifies
the weight from the i-th current node to the j-th next layer
node, b; represents the bias, and j=1, 2, ...,¢ denotes the
neuronal count within each layer. To augment the LNN’s non-
linear fitting capacity, a Sigmoid function is incorporated as
the activation function following y;.

First, there is a 5D input feature vector in the input layer,
x = (MTD, BSR, BTA, Texturey TextureH)T, and feed x into
the neuron of the j-th node in the second hidden layer with a
non-linear weighted sum. Then transfer the y value obtained
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FIGURE 7. Overview of the proposed LNN model. The blue box is the
proposed early TT decision algorithm.

in the second layer to the third output layer in the same way,
and finally output the y value, and judge whether to skip TTH
partition or TTV partition according to the output y value.
In the output layer, the Sigmoid function is still used as the
activation function.

Our proposed LNN model therefore uses a total of 2 LNN
models, as shown in Figure 7, which have the same structure
and are judged in advance at the TT partition decision stage,
deciding whether the RD cost calculation for TTH partition
or TTV partition needs to be skipped predicated on the output
value of each LNN model compared to a preset threshold.
The 2 LNN models operate independently and are therefore
also trained separately.

Using the same depth map dataset as the CNN model
proposed earlier, the depth map dataset is divided into four
groups according to QP: 34, 39, 42, and 45. Using the Adam
optimization method, set the learning rate to 0.01, the calcu-
lated gradient is applied to the w;; and b; of the output layer,
and the chain rule is also used to apply it to the w;; and b; of
the hidden layer, and adopt MSE (Mean Squared Error) as the
loss function of the LNN model. During the training process,
the most suitable model (with the best weights and deviations)
can be updated iteratively and stored to obtain the best model,
which can then be implemented in the VITM 10.0 software.

C. OVERALL ALGORITHM

Based on the above work, we propose that the algorithm con-
sists of two stages of decision making, namely a CNN-based
adaptive CU partition prediction algorithm and an LNN-
based early TT decision algorithm, which are applied to fast
CU partition for VVC 3D video depth map coding as a way
to reduce computational complexity. First of all, by adding a
non-local block and spatial pyramid pooling structure to the
proposed CNN model, the CNN model thus constructed can
skip flat regions in the depth map and focus more on regions
with sharp edges, and is more flexible in processing CU of
different sizes, which can effectively avoid unnecessary CU
judgments and time loss caused by processing CU of different
sizes. In addition, the basic idea of the LNN-based early
TT decision algorithm makes the TT early skip decision for
the CUs that need to be divided in the previous stage, and
based on the extracted CU features to judge whether they
need to skip TTH partition or TTV partition, the unnecessary
partition of CUs can be reduced again. Figure 8 illustrates
the overall framework diagram of the proposed expedited CU
partition decision for depth map encoding in VVC 3D video.
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TABLE 2. Experimental configuration.

Hardware
CPU Intel(R) Core (TM) i7-11800H
RAM 16 GB
0S Microsoft Windows 10 64bits
Software
Reference software VTM 10.0
Configuration All intra
QP(depth) 34,39, 42,45

IV. EXPERIMENTAL RESULTS

To assess the efficacy of the proposed fast CU partition
decision algorithm for VVC 3D video depth map, the
devised scheme was integrated into the reference software
VTM10.0 and then tested using the official 3D standard video
test sequences of JVT-3V with a total of 8 video sequences,
including two resolutions of 1024 x 768 and 1920 x 1088,
details of the video sequences are described in Table 1 in
Section ITI-A. Table 2 lists the configuration of the algorithm
for conducting the experiments.

The algorithm posited within this paper only makes
improvements for depth map coding, so we measure the
savings in depth map coding time of the proposed algorithm
using TS, where the depth map coding time savings TS is
defined as:

Toro — Topi
TS =22 "% % 100% (12)

ort
where T),,, symbolizes the encoding time of the depth map
through the algorithm proposed in this paper and 7,,; denotes
the depth map coding time of the reference model VITM10.0.
In addition, BDBR (Bjgntegaard delta bit rate) is used as a
criterion to assess the coding efficiency gains achieved by
various methods while maintaining a consistent target quality.

A. ANALYSIS OF EXPERIMENTAL RESULTS

The proposed overall scheme includes a CNN-based adaptive
CU partition prediction algorithm and an LNN-based early
TT decision algorithm, where the CNN-based adaptive CU
partition prediction algorithm can avoid RDO calculations for
flat regions in the depth map and make early partition judg-
ments for CU in edge regions, while the LNN-based early TT
decision algorithm can make early TT partition judgments for
CU that need to be divided and skip decisions for CU that do
not need TT partition, and reducing some unnecessary RDO
calculations. Table 3 displays the coding performance results
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TABLE 3. The overall results of the proposed method and the results of
individual method.

CNN LNN Overall

Sequence B(DO/]SR TS (%) BP‘,/]SR TS (%) B(DO/];R TS (%)
Balloons 0.16 2242 0.28 26.33 0.14 37.28
Kendo 0.14 31.05 0.19 2421 0.16 34.52
Newspaper 0.28 25.81 0.36 23.79 0.37 42.16
GT_Fly 0.21 42.89 0.31 30.12 0.24 51.09
Poznan_Hall2 0.37 50.74 0.29 34.58 0.35 4827
Poznan_street 0.18 39.27 0.17 24.94 0.23 47.36
Undo_dancer 0.29 37.56 0.4 27.36 0.31 45.42
Shark 0.12 36.43 0.14 31.47 0.11 39.71
1024768 0.19 26.43 0.28 24.78 0.22 37.99
1920%x1088 0.23 4138 0.26 29.69 0.25 46.37
Average 0.22 35.77 0.27 27.85 0.24 43.23

BDBR increase

0z ©
0z 20
o1 15
0.1 10

= Sanchez ®Chiang ®Hamout = Proposed = Sanchez

Time saving

Average
Chiang t = Proposed

(a) (b)

FIGURE 9. The average coding proficiency exhibited by the proposed
algorithm with other algorithms in different video sequences categories
(a) BDBR increase (b) Time saving.

attained by the proposed individual algorithm, the overall
algorithm and the VITM10.0 anchoring algorithm. Evidently,
it can be discerned that in the CNN-based adaptive CU parti-
tion prediction algorithm, the average time saving is 35.77%
and the BDBR only increases by 0.22%, indicating that the
algorithm can efficaciously skip the flat regions in the depth
map and extract the CU partition of terminated flat regions,
making the CU partition more focused on the edge regions,
and there is no need to train multiple CNN models based on
the CU size, and the spatial pyramid pooling structure in the
proposed CNN model can make the CNN model adaptive to
the CU size. In addition, the experimental results delineated
in Table 3 evince an exemplary mean reduction of 27.85% in
coding time and accompanied by a mere increment of 0.27%
in BDBR in the LNN-based early TT decision algorithm,
indicating that the algorithm can effectively skip unnecessary
TT partition and reduce RDO calculations.

Simultaneously, Table 3 shows the coding performance
achieved by the proposed overall scheme, which combines
the CNN-based adaptive CU partition prediction algorithm
and the LNN-based early TT decision algorithm, and the
proposed algorithm can diminish the coding time by 45.37%
and increase the BDBR by only 0.24% (negligible) compared
to the anchoring algorithm. The Poznan_Hall2 sequence
contains more flat regions and therefore has the highest
coding time saving of 52.09%; the Shark sequence has the
lowest coding time saving of 36.74%. Thus, the algorithm
put forth can significantly increase the coding time saving
while maintaining the coding quality, indicating that the
present algorithm can significantly diminish the intricacy of
encoding.
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TABLE 4. Comparison of the experimental results of the proposed algorithm with other algorithms.

Sanchez[35] Chiang[36] Hamout[25] Proposed

Sequence BDBR (%) TS (%) BDBR (%) TS (%) BDBR (%) TS (%) BDBR (%) TS (%)
Balloons 0.36 34.1 0.03 34.4 0.12 329 0.14 37.28
Kendo 0.37 339 0.67 46.7 0.17 352 0.16 34.52
Newspaper 0.46 35.4 0.07 32.1 0.08 323 0.37 42.16
GT Fly 0.12 40.6 0.12 29.5 0.08 35.0 0.24 51.09
Poznan Hall2 0.43 38.8 0.07 38.0 0.39 51.6 0.35 48.27
Poznan_street 0.22 41.7 0.05 23.6 0.26 41.6 0.23 47.36
Undo_dancer 0.12 38.5 0.03 26.3 0.29 49.3 0.31 45.42
Shark 0.11 36.2 0.21 22.8 0.26 44.0 0.11 39.71
Average 0.27 374 0.16 31.7 0.21 40.2 0.24 43.23

B. COMPARISON WITH OTHER ALGORITHMS

The proposed algorithm is compared with the experimental
findings reported by Sanchez [35], Chiang [36] , and Hamout
[25] , where the algorithm in Sanchez [35] is related to the
reduction of the RDO process, and the algorithms in both Chi-
ang [36] and Hamout [25] are related to the CU partitioning
decision. As shown in Table 4 and Figure 9, where Figure 9
better shows the coding time saving and BDBR increase of
these algorithms, with the proposed algorithm mainly tar-
geting the main improvement in reducing the complexity in
depth map coding. The algorithm exhibits superior perfor-
mance in video sequences with a resolution of 1920 x 1088,
which can save encoding time by 46.37%, and BDBR only
increases by 0.25%.

Compared with the algorithm proposed by Sanchez [35]
to mitigate the computational intricacy of depth map intra
prediction, the proposed algorithm accomplishes an average
increase in encoding time savings of 7.97% and a reduc-
tion in BDBR of 0.03% on average. Notably, the coding
time saving of the GT_Fly sequence is increased by 11.49%
on average. The algorithm proposed by Chiang [36] con-
sists of two parts, fast pattern decision and fast CU size
decision, in which the coding time saving of the proposed
algorithm in this paper is remarkably improved compared to
the algorithm for the fast decision of CU size in depth map,
with an average improvement of 13.67%, while the BDBR
only increases by 0.08%, which is negligible, especially in
the 1920 x 1088 video sequence, the saving of encoding time
is the most improved, which is 20.13%. Compared with the
CU size decision algorithm proposed by Hamout [25] aimed
at diminishing the intricacy of depth map intra coding, the
proposed algorithm saves an average of 5.17% coding time,
with a trifling increase in BDBR. From Table 4 and Figure 9,
we can evidently compare with Sanchez [35] , Chiang [36] ,
and Hamout [25] , the proposed algorithm exhibits superior
coding performance and efficiently reduces the complexity of
depth map coding, thereby demonstrating its superiority over
existing methods.

V. CONCLUSION

To effectively mitigate complexity, this paper proposes a fast
decision algorithm for depth map coding in VVC 3D video,
which consists of two schemes, namely CNN-based adaptive
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CU partition prediction and LNN-based early TT decision
algorithm. The algorithm uses a CNN model to skip flat
regions in the depth map, to make partition predictions for CU
in edge regions, and an LNN model to make early judgments
on CUs that need to be divided for TT partition, and to
make skip decisions for CUs that do not need TT partition,
reducing some of the unnecessary RDO calculations. The
experimental results demonstrate a substantial reduction in
coding complexity achieved by the current algorithm, reduc-
ing the coding time by 43.23% on average, while the increase
in BDBR is negligible, and also shows excellent coding
performance compared to other existing algorithms used for
depth map coding. Therefore, while ensuring the coding qual-
ity, this algorithm also greatly reduces the intricacy of depth
map coding in VVC 3D video.
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