
Received 28 July 2023, accepted 8 August 2023, date of publication 14 August 2023, date of current version 18 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3305268

Virtual Machine Migration Techniques for
Optimizing Energy Consumption in
Cloud Data Centers
ZHOUJUN MA, DI MA, MENGJIE LV, AND YUTONG LIU
State Grid Jiangsu Electric Power Company Ltd., Nanjing Power Supply Branch, Nanjing 210019, China

Corresponding author: Yutong Liu (yutongliu0110@gmail.com)

This work was supported by the Science and Technology Project of State Grid Corporation of Jiangsu Electric Power Research on ‘‘Key
technologies of collaborative regulation of cloud data center resources for cyber-physical systems’’ under Grant J2022029.

ABSTRACT The energy used by cloud data centers (CDCs) to support large volumes of data storage and
computation is dramatically increasing as the scope of cloud services continues to expand. This puts a greater
burden on the environment and results in higher expenses for cloud providers. Virtualization migration
and consolidation have been widely used in current CDCs to achieve service consolidation and reduce
energy consumption (EC). This study divides the fundamental tasks of virtual machine (VM) migration into
three portions: determining migration timing, choosing the VMs to migrate out, and selecting the migration
destination hosts. An EC levels-based adaptive dynamic threshold method for determining migration timing
was proposed, as well as a correlation and utilization-based strategy for selecting the VMs to migrate out
and an improved EC-aware best-fit algorithm for selecting the migration destination hosts. The pro-posed
algorithms were evaluated using the CloudSim toolbox, and the real VM workload traces from PlanetLab
were used as experimental data. According to the experiments, the proposed algorithms reduce EC, service
level agreement violation (SLAV), and the number of VM migrations by an average of 15.49%, 7.85%, and
83.32% in comparison to the related state-of-the-art methods and benchmark algorithms. This suggests that
the proposed methods outperform other techniques for VM migration, even when the workload necessitates
a significant number of VMs or a greater amount of host resources, and improve the quality of service while
optimizing energy consumption. However, the experiments were conducted in a simulation platform, which
has some drawbacks, leading to the experimental results varying slightly from the actual environment.

INDEX TERMS Energy consumption optimization, virtual machine migration techniques, dynamic thresh-
old, virtual machine selection, host selection, cloud data center.

I. INTRODUCTION
Cloud computing technology has become increasingly pop-
ular and widely used in recent years. This has resulted in
the rapid expansion of cloud data centers (CDCs) to meet
large-scale data storage and computing demands. However,
the expansion of CDCs has led to a rise in the energy
consumption (EC) of servers, creating a major challenge
for large-scale infrastructures like clusters, grids, and CDCs
composed of thousands of heterogeneous servers [1], [2]. The
rise in EC has also resulted in high costs for CDCs, reduced
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profits for cloud providers, and increased CO2 emissions.
Consequently, researchers and industries are now exploring
ways to use electricity more efficiently and sustainably to
address these challenges.

Servers are usually configured and deployed in CDCs to
handle peak workloads and achieve optimal performance.
However, this can result in insufficient use of servers during
non-peak periods, resulting in resource waste and higher
EC. To address this issue, virtualization consolidation has
become a common practice in modern data centers (DCs),
enabling service consolidation and reducing energy usage
through resource multiplexing [3], [4], [5]. By utilizing vir-
tualization technology to create multiple VM instances on a
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single physical server, cloud providers can enhance resource
utilization and boost their return on investment.

According to recent statistics, servers in an idle state can
consume between 50%–70% of the energy used by servers
operating at full capacity [6]. This implies that idle servers
consume a significant amount of energy without contributing
to computing tasks. Consequently, many DCs have imple-
mented energy management schemes that monitor server
utilization and trigger VMmigration to consolidate underuti-
lized servers. Based on their resource requirements, VMs are
reallocated through live migration to minimize the number
of active hosts [7]. The power consumption of idle hosts is
eliminated by switching them to low-power modes like sleep
and hibernation, which further minimize EC. When work-
load demands increase, the hosts are reactivated to prevent
application performance degradation due to resource scarcity.
This approach has two primary objectives:minimizing energy
consumption and maximizing quality of service (QoS), with
QoS requirements determined by the service level agreement
violation (SLAV) indicator. Besides EC optimization scenar-
ios, VM migration techniques are used in load balancing,
server upgrades, andmachine downtimemaintenance [8], [9],
[10], [11].

This study focuses on the critical tasks involved in VM
consolidation migration, namely determining migration tim-
ing, selecting the VM to migrate out, and finding suitable
migration destination hosts. Themethods for addressing these
tasks have been analyzed and several limitations have been
identified.

To begin with, the study examines two methods for deter-
mining migration timing: static and dynamic threshold. The
static threshold method, although relatively easy to imple-
ment, lacks flexibility as it remains fixed throughout the
migration process. On the other hand, the dynamic threshold
method is more adaptable and flexible. However, most exist-
ing studies primarily consider resource and load situations
when setting the migration thresholds, without taking into
account EC levels.

Regarding the selection of VMs to migrate out, various
migration metrics such as resource utilization, load bal-
ancing, migration time, migrated data volume, application
performance, and EC are considered. However, there is a need
for a method that comprehensively addresses these metrics
and incorporates EC considerations.

The study also explores different approaches for find-
ing suitable migration destination hosts, including heuristic,
metaheuristic, and machine learning algorithms. However,
each of thesemethods has its limitations. For instance, heuris-
tic algorithms can get trapped in local optima, metaheuristic
algorithms often converge slowly, andmachine learning algo-
rithms suffer from poor interpretability and a heavy reliance
on training data.

To overcome these limitations, this study proposes sev-
eral improvements and novel approaches. Firstly, an adaptive
dynamic threshold method is introduced, which adjusts the
migration trigger threshold based on EC levels, resource

situations, and data center conditions. This dynamic approach
enhances adaptability, optimizes EC, and reduces unnec-
essary migrations more effectively compared to existing
methods.

Additionally, a correlation and utilization-based strategy is
proposed for selecting the VMs to migrate out. This strategy
prioritizes computing tasks with high load correlation and
small comprehensive load values for migration. By doing so,
it enables quick restoration of the host to a normal load state,
minimizes performance loss during migration, and reduces
migration costs.

Furthermore, the study presents an improved EC-aware
best-fit algorithm, which has simplicity in implementation
and fast convergence. This algorithm contributes to EC reduc-
tion and enhances load balancing to a certain extent, leading
to improved resource efficiency.

In summary, the main contributions of this study are as
follows:
• An adaptive dynamic threshold method based on EC
levels is proposed to determine the migration timing,
which dynamically and automatically adjusts the migra-
tion trigger threshold according to different EC levels
and can accelerate the dynamic migration adjustment
process of VMs. Additionally, it helps to avoid unnec-
essary migration. Compared to existing methods, the
proposed method is more effective in EC optimization
and is better at reducing the number of VM migrations.

• A correlation and utilization-based strategy is proposed
for selecting the VMs to migrate out. The computing
tasks with high load correlation and small comprehen-
sive load values are selected for migration. This helps
to quickly restore the host to a normal load state. Addi-
tionally, it has the benefit ofminimizing the performance
loss of the application during the migration process and
reducing the migration cost.

• An improved EC-aware best-fit algorithm with simple
implementation and fast convergence is proposed. This
helps to reduce EC and improves load balancing to some
extent.

By addressing the limitations of existing methods and
introducing these novel approaches, this study aims to
enhance the efficiency, adaptability, and cost-effectiveness of
VM consolidation migration.

The rest of this paper is organized as follows. Section II
discusses related work. Section III presents the VMmigration
scheduling problem formulation and provides the solution.
Section IV provides experimental simulation results. Finally,
Section V concludes the paper with directions for future
work.

II. RELATED WORK
The optimization of EC in CDC has long been a focus of
research in the field of information technology. This can be
achieved by proposing a reasonable migration strategy while
ensuring the QoS. Existing work in EC optimization of CDC
can be classified into three aspects: determining migration
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timing, selecting migrated VMs, and selecting migration des-
tination hosts. The state of the art of the three aspects is as
follows.

A. DETERMINING MIGRATION TIMING
Currently, migration trigger thresholds are defined to decide
the time of migration. When the host load rises beyond the
overload threshold or falls below the low load threshold,
migration is initiated. While moving VMs from underused
servers and putting them in sleep mode can assist prevent
energy consumption, doing so can also help lower SLAV.
Unreasonable migration thresholds, however, might cause a
lot of consolidation and frequent, pointless migrations, which
can have a bad effect on the performance of the applica-
tion because of additional delays like migration time and
downtime [12]. The service level agreement (SLA) may be
broken due to this decline in service quality, which could
lead to fines. To reduce the number of VM migrations, it is
therefore required to identify overloaded and underloaded
hosts. Effective solutions are also required to choose the right
time for VM migration.

Migration trigger thresholds can be either static or
dynamic. Static thresholds are manually set and remain fixed
throughout the entire migration process. Liang et al. [13] and
Liu et al. [14] have explored the static threshold approach.
In contrast, dynamic thresholds change dynamically based
on the current resource situation, cluster load, and time,
making them more adaptable and flexible. Beloglazov and
Buyya [15], Yadav et al. [6], Singh and Kumar [16], and
Kulshrestha and Patel [17] have employed dynamic thresh-
old approaches. Beloglazov proposed two adaptive thresh-
old methods, interquartile range (IQR) and median absolute
deviation (MAD), based on a statistical analysis of host his-
torical data. To assess the host’s state over time, the present
utilizationwas compared to a dynamically determined thresh-
old. Yadav et al. [6] introduced the GradCent algorithm to
calculate the upper limit threshold of a central processing
unit (CPU) utilization based on historical CPU workload
data and adjust it dynamically. Singh and Kumar [16] pro-
posed a dynamic threshold with enhanced search (DT-ESAR)
for VM consolidation systems. Kulshrestha and Patel [17]
optimized host overload detection by proposing an exponen-
tially weighted moving average-based threshold formulation
method. Host load status is monitored in real-time through
load detection procedures, and load prediction methods are
used to evaluate the host load state. Load prediction methods
predict server load by creating mathematical models, and
CDCs can proactively allocate and schedule resources based
on the prediction results [18].

The static threshold method for overload and underload
state is easy to implement but remains fixed throughout the
migration process, limiting flexibility. However, the dynamic
threshold varies dynamically with time, resource availability,
and cluster load. This approach offers better adaptability and
flexibility, but most studies focus on setting the thresholds
based on resource and load situations without considering EC

levels. The load prediction method can proactively allocate
and schedule resources in advance, but they require highly
accurate prediction models. Otherwise, inaccurate predic-
tions can lead to additional overhead and worse migration
results.

B. SELECTION OF MIGRATED VMS
The VM migration selection algorithm mainly considers one
or more migration metrics such as resource utilization, load
balancing, migration time, migrated data volume, applica-
tion performance, and Reddy et al. [19] mainly considered
resource utilization and migration time metrics and proposed
a VM selection algorithm based onmemory utilization, band-
width utilization, and VM size to optimize the current alloca-
tion. Ahmadi et al. [20] considered migration time, migration
risk, VM connectivity, freeable resources, and SLAV rate for
the selection process and proposed a multi-criteria decision-
making method based on hierarchical analysis. Baskaran [21]
applied the fuzzy soft set method to select the appropriate VM
for migration, which considered CPU usage, memory usage,
RAMusage, and correlation values.Mekala andViswanathan
[22] proposed an energy-efficient resource ranking and uti-
lization factor-based VM selection (ERVS) method, which
focused on EC and resource utilization metrics. Li et al. [23]
selected the out-migration VMs using the content similarity
between the VM memories, which can reduce the time of
migration, amount of data transmitted, and pressure on net-
work traffic. Haghshenas and Mohammadi [24] proposed a
regression-based approach to predict the resource utilization
of VMs based on historical data and selected the VMs with
higher utilization prediction results for migration.

C. SELECTION OF MIGRATION DESTINATION HOSTS
The selection of the destination host requires choosing the
hosts from many hosts to migrate the selected VM, and this
task belongs to the nondeterministic polynomial (NP)-hard
problem. When the scale of the problem increases, the com-
putational complexity will increase exponentially. Currently,
researchers mainly use heuristic, meta-heuristic, andmachine
learning algorithms to determine the target physical hosts.

Heuristic algorithms mainly include next fit (NF), first fit
(FF), best fit (BF), first fit decreasing (FFD), and best fit
decreasing (BFD) algorithms. Liang et al. [13] used the BF
algorithm to select a target host with the smallest remain-
ing space that can accommodate VMs. Chhikara et al. [25]
implemented the BF algorithm using heap structure to deter-
mine the target host for the migration container. This imple-
mentation has a time complexity of O (1). Chen et al. [26]
used the FF, BF, and random algorithms to find a destination
host for containers and compare the performance of the three
algorithms. Fan et al. [27] used the FF algorithm to ensure
that the destination server has enough available resources.
Assigning each VM to the host with the smallest increase
in power consumption as a result of that assignment is how
Beloglazov and Buyya [15] utilize the BFDmethod to sort all
VMs in descending order by their present CPU use.
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Meta-heuristic algorithms mainly include simulated
annealing, particle swarm optimization, differential evo-
lution, genetic algorithm (GA), ant colony optimiza-
tion algorithm, and cuckoo search algorithms. Moreover,
to jointly exploit the advantages of several metaheuristics,
multi-method-based approaches have gained wider attention
in the practical field. Liu et al. [14] proposed an algorithm
for VM consolidation in CDCs based on ant colony systems
and extreme learning machines (ELM). Luo et al. [28] used
the improved shuffled frog leaping and improved extreme
value optimization algorithms to solve the dynamic alloca-
tion problem of VMs and reduce power consumption while
satisfying the QoS. He et al. [29] used GA for VM consolida-
tion. Bibiks et al. [30] proposed an improved discrete cuckoo
search to solve the resource-constrained scheduling problem.
Moazeni et al. [31] proposes a dynamic resource allocation
strategy using an adaptive multi-objective teaching-learning
based optimization (AMO-TLBO). AMO-TLBO introduces
the concept of the number of teachers, adaptive teaching
factor, tutorial training, and self-motivated learning. The
objectives of AMO-TLBO include minimizing makespan,
cost and maximizing utilization using a well-balanced load
across virtual machines.

The machine learning algorithms used to determine
the target hosts mainly include clustering, classifica-
tion, reinforcement learning, and neural network meth-
ods. Liang et al. [32] proposed a dynamic hybrid machine
learning-based algorithm for energy-aware resource deploy-
ment in CDCs. They used an extended K-means clustering
algorithm and an extended k-nearest neighbors classification
algorithm to complete the VM deployment. Ma et al. [10]
proposed an online VM scheduling scheme (OSEC) for joint
EC and cost optimization based on reinforcement learning
theory. Rezakhani et al. [33] applied reinforcement learning
and an artificial neural network to propose an integrated
algorithm based on energy-aware QoS to dynamically man-
age VMs in CDCs. Liu et al. [14] proposed a deep rein-
forcement learning model based on QoS feature learning to
optimize DC resource scheduling.

The heuristic algorithm is advantageous because of its
simple implementation and fast convergence. However, it is
prone to get stuck in local optima. On the other hand, the
metaheuristic algorithm can better find the global optimal
solution, but it is faced with some limitations, such as slow
convergence, excessive parameterization, poor computational
result reusability, and difficulty in efficient parameter tuning.
Machine learning algorithms have self-learning and self-
adaptation capabilities, with superior global search abilities.
Nonetheless, these methods suffer from poor interpretability
and high reliance on training data.

III. PROBLEM MODEL AND SOLUTION METHODOLOGY
A. EC MODEL AND RESOURCE MODEL OF CDC
The CDC–EC model used in this study will be introduced
in this subsection. The CDC’s overall EC consists of var-
ious components such as the power used by the server

host, cooling system, network equipment, and other systems
(which may include low-power systems like fire, electrical,
lighting, and lightning protection). Since the center’s overall
EC is the server host’s EC, this study mainly focuses on the
EC optimization of the host. The overall EC of the center was
modeled as the sum of the EC of all hosts, while the EC of the
DC in the time interval from t1 to t2 was calculated as shown
in (1).

E =
∫ t2

t1

∑
hϵH

Ph(t) (1)

where E is the EC of the DC, H is the collection of all hosts
in the CDC, and Ph(t) is the power consumption of the host
h at time t, t ∈ [t1, t2].
Approaches for evaluating energy efficiency in CDCs

can be categorized into three main groups: measurement-
based methods, simulation-based methods, and analytical
modeling-based methods. Among these, measurement-based
evaluation stands out as the most accurate approach, pro-
viding real-world data on energy consumption. On the other
hand, simulation-based methods offer lower accuracy due
to the inherent limitations and simplifications of the models
used [34].

The power consumption of a host in a CDC is influ-
enced by various factors, including its hardware configuration
and processing components such as the CPU, memory, hard
disk, I/O, and network. Previous studies have predominantly
relied on linear or square regression models that utilize
CPU utilization as the primary parameter to estimate power
consumption [35], [36]. However, such an approach fails
to consider the impact of memory consumption, which has
become increasingly significant with the rise of modern
servers equipped with larger memory capacities. Ignoring the
power consumption caused by memory can lead to inaccurate
estimations. Thus, accurately modeling power consumption
for multi-core CPUs is a complex and challenging task.

In light of these challenges, instead of relying solely on
specific quantitative models for server power consumption,
the study leverages actual power consumption data generated
by the SPECpower benchmark results.

The SPECpower committee has launched an energy effi-
ciency benchmark suite called SPECpower_ssj2008. This
suite measures the power consumption of a server while
running at maximum workload, which is taken as 100%.
The workload is divided into 11 discrete zones of 10% each,
ranging from 0 to 100%. To determine the dynamic power
consumption between two load levels, linear interpolation is
used.

HP ProLiant ML110 G4 (Intel Xeon 3040, 2 core,
1860 MHz, 4 GB) and HP ProLiant ML110 G5 (Intel Xeon
3075, 2 core, 2660 MHz, 4 GB) were chosen as the hosts.
Table 1 presents the power consumption properties of the
selected server. As can be seen, the power consumption
of servers increases with higher processor utilization. Also,
servers with different CPU frequencies show various power
consumption at the same CPU utilization efficiency.
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TABLE 1. Power consumption for different level of utilization.

Then, the resources of the CDC were described, mainly
including the server host and VM sets. The host was taken
as the resource provider, while the VM was the resource
demander. The details are expressed in (2) and (3).

Pi,d =
(
Pi,cpu,Pi,mem,Pi,bw, . . .

)
(2)

Vj,d =
(
Vj,cpu,Vj,mem,Vj,bw, . . .

)
(3)

Formula (2) describes the d-dimensional resources avail-
able on host i, where Pi,cpu, Pi,mem, and Pi,bw are the CPU,
memory, and bandwidth resources owned by host i, respec-
tively, whereas Formula (3) represents the d-dimensional
resource requirements of VM j, where Vj,cpu, Vj,mem and Vj,bw
represents the CPU, the memory, and the bandwidth resource
demand of VM j, respectively.

B. DETERMINE THE TIMING OF MIGRATION: ADAPTIVE
DYNAMIC THRESHOLD BASED ON EC LEVELS
Migrating VMs from overloaded hosts helps reduce SLAV,
while migrating VMs from less-efficient servers and switch-
ing them to energy-efficient mode reduces EC. The migration
timing in this study was determined by setting a migration
trigger threshold. This was because unreasonable migration
thresholds may result in excessive consolidation and frequent
meaningless migration, further leading to decreased QoS and
other negative effects.

An adaptive dynamic threshold method was proposed
based on EC levels (ADT-EC), which dynamically and auto-
matically adjusts the migration trigger threshold according to
different EC levels. This method will help to avoid unneces-
sary migration while reducing EC optimization time.

First, the EC level was defined within the CDC,
as expressed in (4).

Level =


BLUE, E < aEmax
GREEN , aEmax ≤ E ≤ bEmax
RED, E > bEmax

(4)

where Emax is the maximum allowable EC of the CDC and
a and b are the adjustable coefficients that satisfy that 0 <

a < b < 1. The EC level is BLUE when the center’s EC is
lower than aEmax , indicating an ideal state. When the EC is
between aEmax and bEmax , the level is GREEN, indicating a
normal state. When EC is larger than bEmax , the EC level is
RED, indicating an undesirable state. The overload threshold
is calculated using (5), which is given as follows.

thrhigh =


0.9, BLUE
max

{(
thrhigh − step

)
, 0.7

}
, GREEN

max
{(
thrhigh × α

)
, 0.6

}
, RED

(5)

Algorithm 1 ADT-EC
Input: HostList and EC of CDC
Output: OverutilizedHostList and UnderutilizedHostList
1: for each host in HostList do
2: count←0
3: utilizationHistory←getHostUtilizationHistory(host, T)
//Obtain the m load data of the host in the time interval T
4: level←getECLevel(EC of CDC)

//Obtain the CDC’s EC level by (4)
5: thrhigh←updateUtilizationThreshold(level)

//Update the threshold by (5)
6: for each i=1 to m do //m is same as line 3
7: if utilizationHistory[i] > thrhigh, then
8: count++
9: if utilizationHistory[i] < thr low, then
10: add host to UnderutilizedHostList
11: break
12: if count > n, then //n < m
13: add host to OverutilizedHostList
14: return OverutilizedHostList and

UnderutilizedHostList

where the step for adjustable parameters ranges from 0 to 0.1,
and the values of α for adjustable parameters range
from 0 to 1. When the EC level is in the BLUE state, thrhigh
is set to 0.9. When the EC level is in the GREEN state, thrhigh
enters the fixed step length reduction process. When the EC
level is in the RED state, the thrhigh enters the process of
fixed coefficient reduction. The underload threshold thr low =
0.3 remains constant.

The server utilization may occasionally exceed the max-
imum threshold for a short time, dropping the load rapidly.
There is no need to move the VM from this server in order
to free up resources because the host is not overloaded in
this instance. Therefore, it is essential to prevent unnecessary
migration. In the time interval T, when at least n ofm load data
is higher than thrhigh (n < m), it is possible that the host is in
the overloaded state and will trigger the overload migration.
Unlike overload migration, because the underload threshold
is set low enough when the load data is below the thr low, it is
possible that the host is in the underload state and can trigger
the underload migration immediately.

Algorithm 1 describes the pseudo-code of the ADT-EC,
which helps to understand the entire workflow of this
algorithm.

Algorithm 1 inputs the host list and EC of CDC to get the
overloaded and underloaded host list. First, the load data of
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the host in the time interval T (line 3) is obtained, then the
load status of the host is judged, and the dynamic thresh-
old (lines 4–5) is updated before performing the judgment.
To prevent unnecessary migration, when at least n load data
is higher than thrhigh (lines 7–8), the host is added to the
overloaded host list (lines 12–13). However, when the load
data is below the thr low, the host is immediately added to the
underloaded host list (lines 9–11).

C. SELECT THE VM TO MIGRATE: SELECTION STRATEGY
BASED ON CORRELATION AND UTILIZATION
It is necessary to effectively select the VM that moves out
when the server host is overloaded, minimize the negative
impact on the migration process, and quickly restore the
host’s normal load state. Therefore, the selection strategy
based on correlation and utilization (SS-CAU) in this study
was proposed, and the SS-CAU method is described as
follows.

The SS-CAU selects the VM from the set of VMs with the
least CPU utilization and high load correlation to migrate.
Selecting the VM with a high correlation can accelerate the
host restore to the normal load state because the higher the
correlation between theVM load and the host load, the greater
the possibility of incurring the host overload. Therefore,
under the premise of high correlation, the VM with the least
CPU utilization was selected. This method has the benefit of
minimizing the performance loss of the application during the
migration process and reducing the migration cost.

Regression analysis was used to calculate the load correla-
tion where the load sequence of the VM is {x1, x2, . . . , xn}
and the load sequence of the host is {y1, y2, . . . , yn}. The
correlation coefficient is expressed as (6).

R2 =

∑n
i=1 (xi − x̄)2 (yi − ȳ)2∑n

i=1 (xi − x̄)2
∑n

i=1 (yi − ȳ)2
(6)

The load correlation between the VM and host is denoted
by R2, where x̄ and ȳ are the average value of the load data
for the VM and host, respectively. The value of R2 ranges
between 0 and 1, with a higher value indicating a stronger
correlation between the VM and the host. When 0.6 < R2 ≤
1, it indicates a strong correlation between the VM and the
host; theVM thatmeets this criterion is added to the candidate
set. Then, the VM with the lowest CPU utilization is chosen
from the set and migrated to another host until the overloaded
host returns to its normal load level.

Algorithm 2 describes the pseudo-code of the SS-CAU.
Algorithm 2 inputs the overloaded hosts and outputs the

selected VMs to be migrated. First, the list of VMs on the
overloaded host (line 2) is obtained, then the correlation
coefficient of the VM (lines 4–5) is calculated according to
Formula (6). The VMs with a correlation coefficient greater
than 0.6 are added to the candidate set (lines 6–7), which is
then sorted in ascending order by utilization (line 8). Finally,
the VMs are moved out in sequence until the overloaded host
returns to the normal load level (lines 9–12).

Algorithm 2 SS-CAU
Input: OverutilizedHostList
Output: SelectedVMList //Selected VM which will be
migrated
1: for each host in OverutilizedHostList do
2: vmList←getMigratableVms(host) //Get the list of VMs
on the overloaded host
3: candidateVmList←null //The VM that meets the strong
correlation criterion will add to the candidate list.
4: for each vm in vmList do
5: r←getCorrelationCoefficient(vm, host) //The corre-
lation coefficient of vm is calculated according to (6)
6: if r > 0.6, then
7: add vm to candidateVmList
8: sortedVMList←sortByUtilization(candidateVmList)
//Sort candidateVmList in ascending order by utilization
9: for each vm in sortedVMList do
10: add vm to SelectedVMList
11: if the host returns to the normal load level, then
12: break
13: return SelectedVMList

D. SELECT THE DESTINATION HOSTS: IMPROVED
ENERGY-AWARE BEST-FIT ALGORITHM
Selecting the destination hosts is essentially similar to the
initialization placement problem of the VM. Therefore, it is
necessary to map the VM to the appropriate host. The host
not only needs to meet the VM’s resource requirements but
also consider saving energy, improving load balance, and
resource utilization. The task of selecting the destination host
is abstracted as the optimization problem, as expressed in (7).

min (EDC =
n∑
i=1

EPMi)

st.VM request (CPU ,MEM ,BW ,Disk)

≤ PM surplus (CPU ,MEM ,BW ,Disk)

Ulow < PMutilization < Uhigh (7)

Our objective is to minimize EC in the CDC. The first
constraint requires that the resources provided by the selected
host be greater than the migrated VM’s requests. The second
constraint ensures that the selected host’s resource utilization
remains within the ideal interval to prevent frequent migra-
tions due to high or low utilization. Thereby reducing the
number of VM migrations, minimizing performance losses,
and improving load equilibrium and resource utilization.

Unfortunately, this is an NP-hard problem, and the com-
putational complexity grows exponentially as the problem
scale expands. The heuristic greedy algorithm was adopted
to avoid high overhead, and an improved energy-aware best-
fit (IEABF) algorithm was proposed based on Beloglazov’s
work [7].

Algorithm 3 provides the pseudo-code for the IEABF.
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Algorithm 3 IEABF
Input: HostList and SelectedVMList //The list of all hosts in
CDC and the list of VM which will be migrated
Output: SelectedHostList //The list of the destination hosts
1: sort SelectedVMList in decreasing order by CPU

utilization
2: for each vm in SelectedVMList do
3: minEnergy←Max //Assign a max value to the metric of
energy
4: selectedHost←null
5: excludedHosts←ADT-EC(HostList) //Overload and
underload hosts are excluded using algorithm 1
6: for each host in HostList do
7: if excludedHosts.contains(host), then
8: continue
9: if host.isSuitableForVm(vm), then //The host meets
the VM resource requirements
10: energy←getEnergyAfterPlacement(vm, host)
11: if energy < minEnergy and Ulow < host.utilization <

Uhigh, then
12: minEnergy←energy
13: selectedHost←host
14: if selectedHost is not null, then
15: add selectedHost to SelectedHostList
16: return SelectedHostList

Algorithm 3 takes the list of all hosts in CDC and outgoing
VMs as input and maps each VM to an appropriate host.
First, the VMs are sorted in descending order by CPU uti-
lization (line 1). This is conducted by giving higher priority
to VMs with high CPU utilization. The algorithm excludes
overloaded and underloaded hosts from the list for each
VM using algorithm 1 (lines 5–8). From the remaining host
list, the algorithm selects the host that meets the VM’s
resource requirements while consuming the lowest energy
(lines 9–13). Additionally, the algorithm ensures that the
selected host’s resource utilization falls within the ideal range
(line 11). After the loop, the algorithm returns the list of the
destination hosts.

IV. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
In this study, the CloudSim toolbox was used to conduct the
simulation experiments of the proposed algorithm. CloudSim
is a widely used cloud computing simulation platform soft-
ware that provides DC-based virtualization technology, vir-
tual cloud modeling, and simulation functions. Each entity
in CloudSim is a simulated instance of CDC components,
including CDC, host, VM, agent, and cloud task. Both the
host and VM have corresponding computing capabilities.

A CDC with 800 heterogeneous servers was developed for
this study: 400 HP ProLiant ML110 G4 dual-core machines,
each 1860 MIPS; 400 HP ProLiant ML110 G5 dual-core
machines, each 2660 MIPS. Both servers have 4 GB memory

TABLE 2. Server characteristic parameters.

TABLE 3. Vm characteristic parameters.

TABLE 4. The characteristics of workload dataset.

and support 1 GB/s bandwidth. According to the SPECpower
benchmark, Table 1 in Section III presents the power con-
sumption characteristics of these servers, while Table 2
presents other characteristics.

VM instances include high-memory and High-CPU, while
VM sizes include large, medium, small, and micro. Four
Amazon EC2 VMs were used in this experiment. Table 3
presents the details of the VM instances. Additionally, the
start/stop delay of the VM directly affects the SLAV index
during the experiment. Therefore, the start/stop delay of the
VM was set to 100 s.

To show the accuracy and practicability of the proposed
methods, experiments were conducted using real workload
data provided by the CoMon project, which is a mon-
itoring infrastructure of PlanetLab. This dataset includes
bandwidth, CPU utilization, and memory usage of over
1000 hosts in 500 locations worldwide. The workload
data was collected between March 3 and April 20, 2011.
These workloads cover a range of VM numbers and dif-
ferent resource utilization characteristics, such as average
CPU utilization and standard deviation. Each VM comprises
288 CPU utilization records, measured every 5 min. These
data were then interpolated to generate CPU utilization per
second. Table 4 presents the characteristics of workload
dataset.
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TABLE 5. Experimental design.

B. EVALUATION METRICS
Different indicators were used to compare the effectiveness of
the proposed algorithm. The main focus of this study was to
minimize the EC of the CDC under the premise of ensuring
the QoS. First, the EC of the DC was calculated using (1).
Second, SLAV and the number of VM migrations were used
as QoS indicators to evaluate the proposed algorithm. The
increase in the SLAV indicates that the resource allocation
scheme of the migration algorithm is not perfect. It also
indicates that the resources in the VM are either insufficient
or the number of VMs is insufficient to meet the resource
requirements of users. The description of SLAV is expressed
in (8).

SLAV = SLAVO× SLAVM (8)

SLAV is the combined impact of SLA violation due to
overloaded hosts (SLAVO) and SLA violation for migrations
(SLAVM). (9) and (10) provide the calculation criteria for
SLAVO and SLAVM.

SLAVO =
1
M

∑M

i=1

Tsi
Tai

(9)

M describes the count of servers, Tsi is the total time when
host i experienced 100% utilization leading to SLAViolation,

Tai is the total active time of host i.

SLAVM =
1
N

∑N

j=1

Cdj
Crj

(10)

N describes the count of VMs, Cdj stands for the CPU
request at the time of migration of VM j and Crj stands for
total CPU requested by VM i.

The increased number of VM migrations may result in
increased system overhead and instability, mainly due to the
following:

• VMs are heavyweight, and multiple migrations will
cause massive file replication between hosts, consum-
ing bandwidth and congesting the network.

• The migration process will fail or roll back due to
packet loss during transmission.

• VMmigration will cause long service pauses (long file
transfer and start/stop time).

C. EXPERIMENTAL DESIGN
In this section, we design experiments to assess the effective-
ness and efficiency of our proposed approaches. Specifically,
we need to evaluate the performance of the ADT-EC in deter-
mining migration timing, the SS-CAU in selecting VMs to
migrate out, and the IEABF in selectingmigration destination
hosts. To compare our proposed algorithms, we simulated
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FIGURE 1. Comparison of average EC for ten workloads – exp1.

them alongside other threshold methods, VM selection algo-
rithms, and host selection algorithms.

Four questions require investigation:
RQ1: How does the ADT-EC method perform on hetero-

geneous hosts using real PlanetLab workloads compared to
other migration timing methods?

RQ2: How does the SS-CAU perform on heterogeneous
hosts using real workloads compared to other VM selection
methods?

RQ3:Howdoes the IEABF perform compared to other host
selection methods using real workloads?

RQ4: How does the combined effect of the ADT-EC
approach, SS-CAU, and IEABF compare to advanced VM
migration consolidation strategies?

To address these questions, we designed Experiments 1 to
4 as outlined in Table 5.

D. ANALYSIS OF EXPERIMENTAL RESULTS
1) EXPERIMENT 1 - EVALUATION OF ADT-EC ALGORITHM
For Experiment 1, we simulated and analyzed the perfor-
mance of the ADT-EC algorithm. As benchmark algorithms,
we selected the static threshold (THR), median absolute devi-
ation (MAD), inter-quartile range (IQR), and local regression
(LR) methods [7]. Additionally, we compared the results of
our proposed algorithm against three advanced algorithms:
LAOD [37],MDP_3.0 [38], and EPA [39]. In this experiment,
various threshold methods were used for the migration timing
determination phase. Minimum migration time (MMT) [15]
was used to determine the migration out VM method, while
power aware best fit decreasing (PABFD) [15] was used to
determine the migration in the destination host method.

• THR: This manually sets the migration threshold, caus-
ing it not to change during the migration process. The
best static threshold is determined to be 0.8 through
research [13].

• MAD: This analyzes the change in the historical load
of the host and calculates the median absolute devia-
tion of the CPU utilization to dynamically adjust the
overload threshold. The degree of VM consolidation is
determined by the experiment’s safety parameter, which
has a value of 2.5. This parameter controls the safety

FIGURE 2. Comparison of average SLAV for ten workloads – exp1.

level, with a lower level resulting in less EC but a greater
SLAV due to consolidation.

• IQR: This method is similar to the MAD method in that
it calculates the IQR of CPU utilization and reserves
additional resources for hosts with unstable loads. The
safety parameter is similar to MAD, which has a value
of 2.5.

• LR: Use linear regression to predict the CPU utiliza-
tion of servers in a time series method. It identifies
overloaded physical machines at each time interval. The
safety parameter is similar to MAD and IQR, which has
a value of 1.2.

• LAOD: The method, which is based on learning
automata, aims to predict the CPU utilization of VMs
to estimate whether a host is overloaded or not. Each
VM is equipped with its learning automaton, which can
take actions to increase, decrease, or maintain its CPU
utilization. The predicted CPU utilization of a host is
calculated as the sum of the predicted utilizations of
all VMs.

• MDP: The threshold selection is modeled as a Markov
decision process.With the solution of the improved Bell-
man optimality equation by the value iteration method,
the optimization model is resolved, and the optimum
overload threshold is adaptively selected. MDP-3.0,
in which the ‘‘3.0’’ denotes a slide window size of 3u in
the online probability estimation for the stat transition
probability. The u represents the times of VMs consoli-
dation with one-day workload trace due to conducting a
VMs consolidation each 5 min.

• EPA: Calculate theMADdistance criterion for three pre-
diction models: simple exponential smoothing, double
exponential smoothing, and polynomial regression. The
weights of the forecasting models are determined based
on the MAD criterion. The median of the server’s CPU
utilization history and the forecasting models, along
with their weights, are used to predict the server’s CPU
utilization the next time. The predicted value is then
compared to the threshold to determine whether the
server is overloaded.

Fig.1–3 show the specific results of the experiment.

VOLUME 11, 2023 86747



Z. Ma et al.: VM Migration Techniques for Optimizing EC in CDCs

FIGURE 3. Comparison of average number of VM migrations for ten
workloads – exp1.

The proposed ADT-EC algorithm outperforms other algo-
rithms in terms of EC, SLAV, and the number of VM
migrations, as shown in Fig.1–3. Fig.1 illustrates EC when
executing all workload samples under different threshold
methods. Compared to THR, MAD, IQR, LR, LAOD, MDP,
and EPA, ADT-EC reduces the total EC of the CDC by an
average of 23.43%. Fig.2 shows that the SLAV is reduced by
an average of 79.04%. Additionally, the ADT-EC approach
significantly reduced the number of VMmigrations, as shown
in Fig.3, the number of VM migrations is reduced by an
average of 83.59%. VMmigrations require additional system
overhead and have a non-negligible migration cost, so mini-
mizing the number of migrations is sensible. These all show
that ADT-EC outperforms the other algorithms.

2) EXPERIMENT 2 - EVALUATION OF SS-CAU METHOD
This experiment focused on comparing different methods
in selecting the migration out VMs. The performance of
the SS-CAU method was assessed and compared with the
minimum migration time (MMT) [15], minimum utilization
(MU) [15], MPCM [40], and MUMA [41] policy. LR was
used for the migration timing determination phase, and
PABFD for selecting the destination host phase.

• MMT: The MMT policy migrates a VM that requires
the minimum time to complete a migration relative to
the other VMs allocated to the host. The migration time
is estimated as the amount of RAM utilized by the VM
divided by the spare network bandwidth available for the
host.

• MU: The VM with the lowest CPU utilization is chosen
for migration.

• MPCM: The MPCM method selects VMs that have a
minimum product of RAM and CPU utilization.

• MUMA: The MUMA method selects VMs with the
highest amount of resource utilization and the lowest
amount of allocated resource.

Fig.4–6 show the experimental results.
Fig.4 shows the average EC values for ten workloads under

different VM selection policies. Compared to the MMT,

FIGURE 4. Comparison of average EC for ten workloads – exp2.

FIGURE 5. Comparison of average SLAV for ten workloads – exp2.

FIGURE 6. Comparison of average number of VM migrations for ten
workloads – exp2.

MU, MPCM, and MUMA methods, the proposed SS-CAU
method reduces EC by an average of 5.33%. Fig.5 shows
that the SLAV of SS-CAU is slightly above average but
still in the acceptable range.Fig.6 shows that the SS-CAU
method reduces the number of VMs migrated by an average
of 14.46%.

3) EXPERIMENT 3 - EVALUATION OF IEABF METHOD
Experiment 3 uses the PABFD, TPSA [42], ALBA [43],
HPNBFD [44], SABFD [45], AntPu [46], and AntAc [46] as
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comparison methods to evaluate the IEABF method. In this
experiment, different methods were used for the destination
host determination phase. LR and MMT methods were used
for the migration timing determination and VM selection
phases, respectively.

• PABFD: All VM are sorted according to the descend-
ing order of their current CPU utilization. Each VM is
allocated to the host with the least increase in power
consumption caused by the allocation.

• TPSA: Take advantage of TOPSIS as a multi-criteria
algorithm that considers five criteria depicted (power
increase, available capacity, number of VMs, resource
correlation, and migration delay) in its decision process.
This policy computes the scores of all the hosts which
candidate for hosting a VM and selects the PM with the
highest score.

• ALBA: This method is based on the best-fit decreasing
algorithm, which uses learning automata theory, corre-
lation coefficient, and ensemble prediction algorithm in
VM allocation. Also, the proposed approach uses two
measures to decrease the SLAV: the first one is the ade-
quacy of resources, and the second one is the minimum
correlation coefficients between the current VMs and the
host VMs.

• HPNBFD: The sorted components at module, rack, and
host levels are evaluated hierarchically, starting from the
top (module level) and ending at the bottom (host level).
If a module is predicted to have a high or low load, it is
immediately excluded as a potential destination for the
migrating VM during the first evaluation. This process
is repeated until a suitable module is found based on its
predicted future load.

• SABFD: The VMs selected to migrate are sorted in
decreasing order of CPU utilization. The hosts which
have enough resources in MIPS will be estimated for the
first VM. Then, the host with minimum available MIPS
after the VM is placed will be selected to migrate this
VM to.

• AntPu: VMs placement was done using the max-min ant
system technique. Predicted utilization of host resource
is incorporated to design the heuristic information and
cost function.

• AntAc: VMs placement was done using the max-min ant
system technique. In which available capacity (available
capacity is used in most of the Ant-based solutions as
heuristic information) of host resource is used to design
the heuristic information and cost function.

Fig.7–9 show the experimental results of EC, SLAV, and
the number of VM migrations when executing all workload
samples under different host selection techniques.

As shown in Fig.7, the proposed IEABF algorithm out-
performs existing algorithms by reducing EC by an average
of 22.19%. Fig.8 shows that the SLAV is in an average
medium position. Additionally, as shown in Fig.9, the pro-
posed IEABF algorithm significantly reduces the number

FIGURE 7. Comparison of average EC for ten workloads – exp3.

FIGURE 8. Comparison of average SLAV for ten workloads – exp3.

FIGURE 9. Comparison of average number of VM migrations for ten
workloads – exp3.

of VM migrations by an average of 66.02%. These results
demonstrate that the IEABF algorithm effectively reduces EC
while significantly improving the QoS.

4) EXPERIMENT 4 - COMPREHENSIVE EVALUATION
To evaluate the combined effect of the ADT-EC, SS-CAU,
and IEABF algorithms, results are compared with the
related state-of-the-art methods, including DTHMF [47],
MMSD_FS [48], EPA_AMLA [39], EQ_DVMCA [49], and
PPAVP [50], in addition to four baselines: THR_MMT_
PABFD, LAOD_MMT_PABFD, LR_MU_PABFD, and
LR_MUMA_PABFD.
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TABLE 6. The statistical analysis of results.

FIGURE 10. Comparison of average EC for ten workloads – exp4.

• DTHFM:A combined strategy using the best fit decreas-
ing bin packing method and multi-pass optimization in
VM placement for an efficient VM consolidation.

• MMSD_FS: A Fuzzy VM selection method, which
incorporates migration control, can enhance the per-
formance of the selection strategy. An overload detec-
tion algorithm has also been proposed based on the
mean, median, and standard deviation of the utilization
of VMs.

• EPA_AMLA: The analysis phase predicts the future
workload using an ensemble prediction method com-
posed of simple exponential smoothing, double expo-
nential smoothing, and polynomial regression models
to proactively handle workload fluctuation. In the plan-
ning phase, utilize the learning automata algorithm as a
decision-maker that tunes the weight of the heuristics to

FIGURE 11. Comparison of average SLAV for ten workloads – exp4.

obtain the self-optimizing decisions for virtual machine
selection.

• EQ_DVMCA: Based on balancing EC and QoS to
achieve the efficient consolidation of virtual resources.
Propose a hybrid load detection algorithm for determin-
ing migration timing. Propose a VM selection algorithm
based on CPU and memory perception. Propose a VM
placement algorithm based on resource-demand scaling.

• PPAVP: The penalty-aware and cost-efficient method
considers cloud resourcemanagement as a cost problem.
In this method, parameters such as user budget, penalty,
and host energy consumption cost play an important role
in minimizing operational cost which leads to higher
profit for cloud providers.

Fig.10–12 show the experimental results.
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FIGURE 12. Comparison of average number of VM migrations for ten
workloads – exp4.

The proposed algorithms reduced the EC by an average
of 15.49% (Fig.10), the SLAV by an average of 7.85%
(Fig.11), and the number of VM migrations by an average of
83.32% (Fig.12) in comparison to the related state-of-the-art
methods and benchmark algorithms. These results show that
the proposed methods outperform other techniques for VM
migration, even when the workload necessitates a significant
number of VMs or a greater amount of CPU resources.

E. DISCUSSION
In this discussion sub-section, we will analyze and discuss
the results of our work, highlighting the advantages of our
approach and acknowledging the limitations of our research.

The results are compared with the state-of-the-art methods.
In the comparison, statistical analysis of results showed the
performance improvement of the proposed methods. The
details are shown in Table 6.

1) ADVANTAGES
• Determining Migration Timing:
Compared to existing methods, our ADT-EC method

demonstrates superior performance in EC optimization and
reduces unnecessary VMmigrations. By dynamically adjust-
ing the migration trigger threshold based on EC lev-
els, resource situations, and data center conditions, our
method achieves better adaptability and more effective EC
optimization.
• Selecting VMs to Migrate Out:
The SS-CAUmethod prioritizes computing tasks with high

load correlation and small comprehensive load values for
migration. This strategy enables quick restoration of the host
to a normal load state, minimizes performance loss during
migration, and reduces migration costs. Although the SLAV
of SS-CAUwas slightly above average, it remained within an
acceptable range.
• Selecting Destination Hosts:
The IEABF algorithm contributes to EC reduction and

enhances load balancing to some extent, leading to improved
resource efficiency. It combines simplicity in implementation

with fast convergence, providing an efficient solution for host
selection during VM consolidation migration.
• Combined Effect and Comparison:
When evaluating the combined effect of the ADT-EC,

SS-CAU, and IEABF algorithms, our proposed methods out-
performed related state-of-the-art methods and benchmark
algorithms. The combined effect resulted in an average reduc-
tion of EC by 15.49%, SLAV by 7.85%, and the number of
VM migrations by 83.32%.

These results demonstrate the effectiveness of our pro-
posed approaches in enhancing the efficiency, adaptability,
and cost-effectiveness of VM consolidation migration. Our
methods show superior performance even when dealing with
a significant number of VMs or a greater amount of CPU
resources.

2) LIMITATIONS
While our proposed approaches have shown promising
results, certain limitations should be acknowledged:

The comparison with existing methods was based on
simulated experiments, and the performance in real-world
implementations may vary. Nonetheless, the experimental
dataset comprehensively covers a wide range of application
scenarios, and the representative data it contains can still
effectively illustrate the problem at hand.

The proposed approaches primarily focus on VM con-
solidation migration and may not address other aspects of
virtualized environments or cloud computing systems.

V. CONCLUSION
This study focuses on optimizing the EC of CDCs by dividing
the VM migration tasks into three parts: determining migra-
tion timing, selecting the VMs to migrate out, and finding
the destination hosts to migrate in. To accomplish this, three
algorithms were proposed: ADT-EC, SS-CAU, and IEABF.
Using the CloudSim toolbox, four simulation experiments
were conducted.

The experimental results clearly demonstrate that our pro-
posed algorithms outperform the benchmark algorithms in
three significant ways. Firstly, they achieve an average reduc-
tion in EC of 15.49%, indicating their effectiveness in min-
imizing energy consumption. Secondly, there is an average
reduction in SLAV of 7.85%, highlighting the improvement
in meeting the desired QoS. Lastly, the algorithms success-
fully reduce the number of VM migrations by an average
of 83.32%, which is crucial for minimizing system overhead
and migration costs. The results of our experiments validate
the superiority of our approaches over benchmark algorithms,
showcasing their potential for enhancing energy efficiency
and overall system performance.

Our future work will focus on the following three aspects:
• VM consolidation migration entails multiple objectives
such as load balancing, performance optimization, and
cost reduction. Future studies can explore the applica-
tion of multi-objective optimization techniques to find
optimal trade-offs among these objectives.
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• To validate the effectiveness and practicality of our
proposed approaches, further evaluation in large-scale
real-world deployments is necessary. This can provide
insights into the challenges and benefits of implement-
ing these approaches in production environments.

• As container technology is becoming more popular for
resource virtualization, we plan to enhance themigration
algorithm developed in this study to make it compatible
with containers.

APPENDIX
Code and data are available from https://github.com/Yutong
Liu0110/VMC-for-Optimizing-Energy.
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