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ABSTRACT To solve the analog fault diagnosis problem with fewer samples, a transformer based auxiliary
classifier generative adversarial network (ACGAN) is investigated for circuit fault diagnosis by constructing
both generator and discriminator in ACGAN with pure transformer components. The transformer has high
model generality due to its weak inductive bias, but it also increases the risk of overfitting on small datasets.
Therefore, we use ACGAN to generate sample data to enrich the dataset and mitigate the overfitting.
However, ACGAN is severely unstable during the training period, for this reason, a confidence mechanism
for the discriminator is added to improve the classification accuracy and a new layer normalization method
for the generator is studied to avoid the loss of conditional information. Take the sallen-key filter circuit
and the biquad high-pass filter circuit as the experiment objects. The experiment results indicate that the
transformer based ACGAN diagnosis method can effectively improve diagnosis accuracy, reach 96.22%
and 95.35%, respectively.

INDEX TERMS Transformer; analog circuit, neural networks, fault diagnosis, auxiliary classifier generative
adversarial network (ACGAN).

I. INTRODUCTION
In modern society, electronic equipment is widely used
in communications, military, network, consumer electron-
ics and medical industries. According to statistics, more
than 60% of electronic products are made with mixed
analog/digital integrated circuits. Currently, analog circuits
account for only 20% of hybrid circuits [1], [2], [3], [4], [5],
[6]. However, due to the complex fault state in analog circuits,
the continuity of response signals, the tolerance effect of fault
components, and the relatively mature development of fault
diagnosis in digital circuits, 80% circuit faults occur in analog
circuits [4], [7], [8]. The fault diagnosis of analog devices
plays a vital role in the stable operation of systems. Due to
the nonlinearity and tolerance of the circuit, the advancement
of analog circuit fault diagnosis methods is slow, and unable
to play a businesslike role in circuit maintenance. For this
reason, scholars over world have carried out a lot of research
in this area.
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A. CLASSIFICATION OF FAULT DIAGNOSIS METHODS
In recent years, regarding the fault diagnosis methods
of analog circuit, they can be mainly categorized into
analytical model-based methods, knowledge-based (qual-
itative empirical knowledge) methods and data-driven
techniques [9].

i. Model-based approaches require to process accurate
quantitative mathematical models, which are robust but tol-
erant of faults [10]; Concerning model-based methods, Atoui
and Cohen proposed a method of Bayesian classifier that
combines statistical decision making and fault feature matri-
ces to diagnose both single faults and a mixture of multiple
faults [11]. Geetha and Jerome proposed a model-based
approach for diagnosing the degree of application of arti-
ficial intelligence for dynamic nonlinear CSTR processes,
emphasizing the use of fuzzy logic for residual generation
and residual evaluation [12].

ii. knowledge-based approaches perform fault diagno-
sis of analog circuits through intelligent concepts and
processing methods [13]. Concerning knowledge-based
methods, Beaulah et al. developed a system-based expert
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solution to diagnose and detect faults [14]. The inference
part aims to check the consistency of the input signals and
faults; Nan et al. proposed a knowledge-based fault diagnosis
method that utilizes the valuable knowledge of experts and
operators, as well as real-time data from various sensors,and
reasoning is based on fuzzy logic [15].

However, model-based approaches and knowledge-based
approaches are more suitable for systems with fewer inputs,
outputs, or state variables, and are too costly to use for
systems with large amounts of data [16].

iii. Data-driven techniques do not rely on expert experience
and do not need to know the exact analytical model, but only
need to face an object data, thus greatly simplify the fault
detection workflow [9]. The data-driven based fault diagnosis
methods include machine learning and black-box data-driven
methods.

Research on conventional machine learning based fault
diagnosis is mature. For example, Yongkui et al. extracted
the fault features from the frequency domain response of the
circuit, and used an SVMmethod for fault classification [17].
Guo et al. used principal component analysis (PCA) as a tool
to extract fault features, and applied a wavelet support vector
machine (WSVM) to diagnose analog circuit faults [18].
Zhang et al. proposed a combined fault diagnosis method
of wavelet packet feature extraction, singular value decom-
position (SVD) and dimensionality reduction support vector
machine (SVM), which improves the fault diagnosis rate
of analog circuits, effectively reduces the amount of matrix
computation and accelerates the diagnosis speed [19].

B. DEEP LEARNING BASED FAULT DIAGNOSIS METHODS
Neural network based deep learning are applied in various
research and industry fields, such as emotion recognition
[20], brain source imaging analysis [21], text classification
[21], battery states estimation [22], [23], etc. Now it starts
to be used in the field of circuit fault diagnosis [24], [25].
Du et al. studied a convolutional neural network (CNN) based
circuit fault diagnosis method, which simplifies the fault
diagnosis process and improves the fault diagnosis rate [26].
Zhao et al. explored a deep belief network (DBN) based
fault diagnosis method for analog circuits, which adaptively
extracts features from the original time series signal and
automatically classifies fault modes [27]. Gong and Du pro-
posed an attentional mechanism and convolutional neural net-
work (CBAM-CNN) approach for fault diagnosis in analog
circuits [28]. Yang et al. proposed an end-to-end denois-
ing auto-encoder (EEDAE) based fault diagnosis method
which includes denoising autoencoder (DAE) and softmax
classifier [29].

C. THE MAIN CONTRIBUTIONS
Although the above methods have been widely used in ana-
log circuit troubleshooting, they all have certain limitations.
To solve the problems of insufficient training samples and
low fault diagnosis accuracy in analog circuit fault diagnosis,

FIGURE 1. Comparison between ordinary ACGAN and ACGAN with
confidence mechanisms.

this paper proposes a transformer based auxiliary classifier
generative adversarial network (ACGAN) for analog circuit
fault diagnosis to solve these problems.

Transformer is a new type of neural network with its
self-attention mechanism to extract features [30], which can
effectively obtain global information, and its multiplicity can
be mapped to multiple spaces to enhance the expressive
ability of the model. Due to the weak inductive bias, it has
a strong generalization ability, but it also increases the risk
of overfitting on small datasets. Therefore, we use ACGAN
to generate sample data to enrich the dataset and mitigate the
overfitting.

The main contributions of this paper are as follows:
(1) For an analog circuit fault diagnosis, a transformer

based auxiliary classifier generative adversarial net-
work (ACGAN) is studied by constructing both the
generator and the discriminator with transformer units;

(2) Transformer units in ACGAN utilizes the self-attention
mechanism to obtain global information, so as to
promote diagnosis accuracy and enhance the model’s
expression power.

(3) A layer normalization regularization method is inves-
tigated for the generator, which introduces noises and
labels into the computation of the LayerNorm;

(4) A confidence mechanism is added to the discriminator
loss function, and the discrimination accuracy of the
ACGAN discriminator is greatly improved;

(5) A sallen-key circuit and the biquad high-pass filter
circuit are used to verify the validity of the transformer
based ACGAN method.

II. THE ACGAN BASED FAULT DIAGNOSIS
A. THE AUXILIARY CLASSIFIER GENERATIVE
ADVERSARIAL NETWORK (ACGAN)
Shown in Fig. 1(a), the generative adversarial network (GAN)
consists of two important parts: a generator (abbreviated as
G) and a discriminator (abbreviated as D) [31], G strives to
generate as real samples as possible to make D indistinguish-
able true and fake, while D tries to distinguish between true
and fake data. G and D form a dynamic adversarial, with the
progress of training (confrontation), the data generated by G
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FIGURE 2. Overall structure.

is getting closer to the real data, and the level of D discriminat-
ing the data is getting higher. Since the original GAN cannot
control the category of generated data, conditional generative
adversarial network (CGAN) uses category labels as auxiliary
information of G to achieve control over the category of
generated data [32]. ACGAN further extends the function of
D on the basis of CGAN to achieve true-fake discrimination
and category differentiation (auxiliary classifier) [33]. Its
structure is shown in Fig. 1(b).
(1) The generator G outputs the corresponding category data

Xfake = G(noise, label) according to the given category
label and the noise signal;

(2) The discriminator D gives the probability distribution
of the input data (real and fake) and the probability
distribution on the class label;

(3) A confidence mechanism is added to the original
ACGAN, as shown in Fig. 1(c).

B. TRANSFORMER
Transformers break the limitations of recurrent neural net-
works (RNN) models, which cannot be computed in parallel,
by stacking multiple layers of self-attention and feed-forward
neural network layers to extract deeper features. The multiple
heads map it to multiple spaces and enhance the model’s
expression power. The key components of transformer
include self-attention, multi-head attention mechanism, and
layer normalization. Both the discriminator and generator
are constructed using transformers, which allow end-to-end

training to extract features without feature engineering. The
details are described in the following.
(1) Self-Attention

The self-attention mechanism in transformers allows
the model to dynamically weight each position based
on information from other positions in the sequence
when processing sequence data. It is able to cap-
ture the dependencies between different positions
in the sequence, and effectively model long-range
dependencies. It can be expressed as

headh(X ) = softmax(
QKT
√
dh

)V (1)

where X∈ Rn×dX is input, n denotes the length of the
input sequence; Q = XWQ, K = XWK , V = XWV ;
WQ, WK , WV ∈ RdX×dmodel denotes the projection
matrix; dh denotes the dimension of the h-th attention
head.

(2) MultiHead-Attention
The transformer model contains multiple parallel atten-
tion heads, each of which learns different attention
weights. It can be expressed as

MultiHead(X ) = concat(head1, . . . headh)WO (2)

where headh ∈ Rn×dmodel denotes the output of the
h-th attention header; WO ∈ Rhdmodel×dmodel denotes the
linear transformation matrix.

(3) Layer normalization
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FIGURE 3. Comparison of generated and real samples.

The effect of batch normalization is related to the batch
size, and the dataset of the fault diagnosis simulation
is a small dataset, the effect of batch normalization is
not good, so we use layer normalization which is com-
monly used in transformer. The LayerNorm formula
can be written as:

LayerNorm(x) =
x − E[x]
√
var[x]+ ϵ

∗ γ + β (3)

where x is the input, E[x] is themean of the input, var[x]
is the variance of the input tensor, ϵ is a very small
constant used to prevent dividing by zero, and γ and
β are learnable tensors used to control the mean and
variance of the input tensor.

C. THE DISCRIMINATOR D
The network architecture of discriminator is shown in
Fig. 2(a), which consists of transformer unit, positional
encodinng, patch embedding, multilayer perceptron (MLP),
and two outputs. The transformer block is shown in Fig. 2(b),
and each transformer block in the discriminator consists of
MSA, residual shortcut, MLP, and layer normalization. The
biggest difference between this transformer neural network
and the common neural network is that there are two outputs:
• The first output ‘O1’ is used to determine the source of
the sample, and the activation function uses the Sigmoid
function:

f (xj) =
1

1+ e−xj
(4)

FIGURE 4. The experiment circuits.

FIGURE 5. Laboratory bench.

• The second output ‘O2’ is used for classification and the
activation function uses the SoftMax activation function:

f (xj) =
e−xj∑
c=1 e

−xc
(5)

D. THE GENERATOR G
The framework of the generator is shown in Fig. 2(a), the
generator mainly consists of transformer blocks, upsampling
layer, and MLP. The transformer blocks in the generator is
shown in Fig. 2(b). Noise and label are not only used as
inputs, but also used to modulate the layer normalization, and
their action are:

w = Mapping network(concat(noise, label)) (6)
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TABLE 1. The fault types of the TC1.

TABLE 2. The fault types of the TC2.

TABLE 3. Comparison of different models for TC1.

TABLE 4. Comparison of different models for TC2.

TABLE 5. Comparison of different classifiers on TC1.

The LayerNorm formula can be rewritten as:

LayerNorm(x) =
x − E[x]
√
var[x]+ ϵ

∗ γ (w)+ β(w) (7)

The generator network can generate specific types of sam-
ple data by inputting Gaussian white noise and labels to the
discriminator for identification to enhance the discriminator’s
ability to extract features and improve the discriminator’s
classification ability. Fig. 3 shows that the fake samples gen-
erated by the trained generator network are very similar to the
real samples in the dataset.

The two classifiers share a feature extraction network, and
this paper uses the dummy data generated by G to contin-
uously strengthen the ability of the D-network to extract
features, thus greatly improving the classification ability of
the discriminator for analog circuit faults, while avoiding the
overfitting phenomenon of the network to a certain extent.

TABLE 6. Comparison of different classifiers on TC2.

TABLE 7. ACGAN accuracy under different γ on TC1.

TABLE 8. ACGAN accuracy under different γ on TC2.

E. THE LOSS FUNCTION OF THE ACGAN
Referring to Fig. 1 and its notes, the log-likelihood of the
correct source is

LS = E[logP(S = real|Xreal)]+ E[logP(S = fake|Xfake)]

(8)

The log-likelihood of the correct class of the ordinary
ACGAN is

LC = E[logP(C = c|Xreal)]+ E[logP(C = c|Xfake)] (9)

The loss function of the generator is defined as

LG = LC − LS (10)

The loss function of the discriminator is defined as

LD = LC + LS (11)

The rule of the generator and the discriminator is to max-
imize the LG and LD, respectively. The main goal of the
ACGAN network is to train the generator that can generate
the specified type of data.

In order to train the discriminator with higher classification
accuracy, a confidence mechanism is added to the discrimi-
nator loss function. The discriminator probability distribution
to determine whether the data source is real is

PFS = P
(
S = real|Xfake

)
(12)

The log-likelihood of the correct class with confidence
mechanism is defined as

LCC = E
[
logP (C = c|Xreal)

]
+ E

[
logP (C = c|PFS > γ )

]
(13)
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FIGURE 6. Loss of different models on TC1 and TC2.

FIGURE 7. The spatial distribution of the output data of the TC1.

The discriminator loss function with confidence
mechanism as

LD = LS + LCC (14)

When the discriminator determines that the fake data output
by the generator is true and the probability of being true
exceeds the confidence level, the classification loss function
of the false data will affect the discriminator, otherwise it will
have no effect on the discriminator.

F. ADAPTIVE MOMENT ESTIMATION (ADAM)
The weight update of G and D networks uses an adaptive
moment estimation algorithm, which is widely used for deep
learning because of its computational efficiency and ease of
use.

Assume t be time step; β1 and β2 denote the decay fac-
tors of the first and second moment estimation, respectively;
LM (θM ) is the objective function (M ← G,D) and its
parameter θM , its gradient with respect to θM at timestep t is

gt = ∇LM (θM ,t−1) (15)

Then the first momentum at time step t can be written as

mt = β1mt−1 + (1− β1)gt (16)

The second momentum at time step t is

vt = β2vt−1 + (1− β2)g2t (17)

The modified first momentum is

m̂t = mt/(1− β t1) (18)

The modified second momentum is

v̂t = vt/(1− β t2) (19)

The estimated model parameters can be obtained by

θM ,t = θM ,t−1 − α
m̂t√
v̂t + ϵ

(20)

where t represents timestep; L(θt ) represents objection func-
tion with parameters θ ; β1 and β2 denote the decay factors of
the first and second moment estimation, respectively.

VOLUME 11, 2023 86829



Y. Zheng, D. Wang: ACGAN Based Fault Diagnosis for Analog Circuit

FIGURE 8. The spatial distribution of output data of the TC2.

FIGURE 9. Loss of different models on TC1 and TC2.

III. EXPERIMENT
A. THE EXPERIMENT OBJECTS
In the experiments of this paper, the sallen-key filter circuit
(TC1) [34], [35], [36], [37] and the biquad high-pass filter
ciruit (TC2) [34], [35], [36], [37] are taken as the objects,
as shown in Fig. 4. The actual circuit experiment bench is set
up, as shown in the Fig. 5. The conditions are as follows.

• The excitation source input adopts a pulse wave with a
duratio of 10us and an amplitude of 10V , and the fault
time domain response signal is sampled at the output
point.

• The tolerance range of the resistor in the circuit is set to
5% [38], and the tolerance [39] range of the capacitor is
set to 10%.

• When the parameter value of a component in a circuit
departs from the normal value by 25%, the component
can be considered to have an early fault. The types
of faults for the two circuits under test are shown in
Tables 1 and 2.

• 40 Monte Carlo (Gaussian distribution) simulations
were implemented for each fault class, and the

sample length collected for each simulation analysis is
500 points.

• The dataset is split using the hold-out method, with 60%
dataset as a training set and 40% dataset as a test set.

B. COMPARATIVE EXPERIMENT
1) CIRCUIT FAULT DIAGNOSIS WITH DIFFERENT MODELS
Taking TC1 and TC2 circuits as experiment subjects, under
different number of datasets, compare fault diagnosis accu-
racy of the proposed transformer based ACGANmethod with
the other two methods as follows.

(1) In [40], [41] mentioned two methods, the number of
samples per fault type is 100; while in the proposed
method, that is 40.

(2) Tables 3-4 show that the proposed method achieves
96.22% and 95.35% respectively on the two test
circuits, which are better than the other two methods.

(3) From the training validation loss in Fig. 6, it can also be
seen that the training effect of the proposed transformer
based ACGAN is better than the other two methods.
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FIGURE 10. Loss of different confidence levels on TC1 and TC2.

(4) The proposed transformer based ACGAN gets better
performance on small dataset.

2) FEATURE EXTRACTION
To demonstrate the feature extraction capability of the pro-
posed method, Figs. 7 and 8 visualize the original data and
the features extracted by the ACGAN. T-distributed stochas-
tic neighbor embedding (T-SNE) dimensionality reduc-
tion on the collected circuit output features, extracted two
principal components and visualized them, as shown in
Figs. 7(a) and 8(a). The data of various types of faults
have obvious overlap, which is not conducive to the fault
classification.

T-SNE reduces the features extracted by Discriminator in
Fig. 2(a) to 2 dimensions, and draw its spatial distribution as
shown in Figs. 7(b) and 8(b). It can be clearly seen that after
the features being extracted by the Discriminator, all kinds
of fault feature data are distributed independently, with good
aggregation and far distribution.

C. THE ABLATION TEST
1) FAULT DIAGNOSIS WITH/WITHOUT THE ACGAN
ARCHITECTURE
To further validate the effectiveness of our designed ACGAN
architecture constructed from pure transformer units (with
a discriminator and a generator), We compared it with a
general classifier constructed from transformer units, which
only has the discriminator (without the generator) on abla-
tion experiments using the TC1 and TC2 as objects. The
experiments are conducted under threshold γ = 0.2 and
γ = 0.6, the results are shown in Tables 5-6, and the training
validation loss function is shown in Fig. 9.We have the follow
conclusions

• Training with general classifier (only with Discrimina-
tor), the average accuracy of the classifier for five tests is
only 93.20% and 93.12% on test circuits TC1 and TC2;

• Training with ACGAN model (Discriminator and
Generator), the average accuracy of the classifier for
five tests reach 96.22% and 95.35%, an improvement of
3.02% and 2.23%, respectively.

• The results indicate that ACGAN effectively improves
the classification accuracy of the discriminator with
limited samples.

2) CIRCUIT FAULT DIAGNOSIS WITH DIFFERENT
CONFIDENCE LEVELS
In this part, the classification accuracy influence of the thresh-
old (γ ) in formula (6) is studied. Under 6 thresholds γ=0, 0.2,
0.4, 0.6, 0.8 and 1.0, we take 5 simulations on each threshold
and take the average value as results. The experiment results
are shown in Tables 7-8, the training validation loss function
is shown in Fig. 10.

The result analysis is as follows:
• When the γ = 0, it is an ACGAN network without
confidence mechanism, the fault diagnosis accuracy of
the ACGAN network classifier are 95.09% and 93.68%,
which is even inferior to the general transformer model.
The reason is the bad influence of generated data with
low confidence level on the discriminator classifier
training.

• When the threshold value γ = 0.2, the accuracy reaches
95.35% on test circuit TC2, which is 1.67% improve-
ment than γ = 0. This show that different γ has a great
impact on the accuracy.

• When the threshold value γ = 0.6, the accuracy reaches
96.22% on test circuit TC1, which is 1.13% than γ = 0.

• When the γ = 1, the fault diagnosis accuracy of the
ACGAN network classifier are 95.09% and 94.42%.
At this time, the network system is the same as CGAN.

IV. CONCLUSION
For nonlinear analog circuits, a confidence mechanism aided
transformer based ACGAN network is investigated to diag-
nose their faults with high diagnosis accuracy. Take the
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sallen-key filter circuit and the biquad high-pass filter circuit
as the experiment objects. The results show that the modified
ACGAN based diagnosis method can effectively improve the
diagnosis accuracy, reaching 96.22% and 95.35%, respec-
tively. From the experiments, the following conclusions are
obtained.
• The discriminator built by pure transformers has strong
feature extraction capability.

• The improved LayerNorm can effectively avoid the loss
of conditional information, so that the generator can
produce data with specific labels.

• The ACGAN system constructed by pure transformers
avoids model overfitting caused by too few samples, and
the fake samples produced by the generator enhances the
classification ability of the classifier to a certain extent,
and the accuracy is improved by 3.02% and 2.23%,
respectively.

• The confidence mechanism included in the correct loss
function for classification avoids the detrimental effect
of low confidence in the generated data on classifica-
tion. By choosing an appropriate threshold, the accuracy
can be improved to some extent, such as by 1.13% on
TC1 and 1.67% on TC2 over the model without the
confidence mechanism.
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