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ABSTRACT The increasing prevalence of vascular diseases encourages the development of minimally
invasive approaches to assess tissue perfusion. A significant challenge facing current state-of-the-art methods
is their validation against clinical data. In this study, we introduce an open-source database designed to
evaluate tissue perfusion during the application of an occlusion protocol. The database comprises sequences
of multi-spectral images (visible and near-infrared region) from the subjects’ predominant hand and their
photoplethysmography data for validation. Our study recruited 45 healthy participants, including 21 females,
with an age range between 18-24 years old (standard deviation equal to 1.73). The database was evaluated
using two methods for estimating skin perfusion parameters based on multi-spectral images: a Kubelka-
Munk model, and a linear regression. Meanwhile, for validation purposes, the changes in oxygenated and
deoxygenated hemoglobin were evaluated by photoplethysmography data as baseline perfusion parameters.
The Pearson correlation between plethysmography-based perfusion parameters and those extracted from
multi-spectral images was evaluated in all cases as a validation metric. Our findings demonstrated a strong
Pearson correlation (ρ > 0.7) between changes in oxygenated and deoxygenated hemoglobin and multi-
spectral based perfusion parameters, suggesting that the database is useful for further research related to
in-vivo perfusion assessment. The primary objective of this database is to provide open-source data from a
controlled occlusion protocol to evaluate new approaches based on multi-spectral images in the visible and
near-infrared regions. In addition, the validation by photoplethysmography data facilitates the development
and assessment of innovative tissue perfusion estimation techniques.

INDEX TERMS Tissue perfusion monitoring, multi-spectral image processing, functional monitoring and
imaging, tissue oxygenation, microcirculation.

I. INTRODUCTION
The human body runs on oxygen, nutrients and immune
factors, which are transported by the circulatory and lym-
phatic systems, in a process known as tissular perfusion.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhen Ren .

Poor blood perfusion may cause problems such as ischemia,
and additional complications may lead to organ damage
or even failure. Impaired blood flow also affects wound
healing [1], which can lead to infections in open wounds.
In fact, this scenario is critical for diabetic patients, whose
blood vessels in the lower extremities are usually affected by
their condition [2].
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At clinical level, physicians pay attention to variables
that reflect the general state of perfusion throughout the
body. It is common practice to evaluate temperature, skin
color, and even perform some simple tests to assess capillary
refill time by applying pressure to a fingernail [3]. Modern
methods available may require the use of contrast agents,
such as thermography, laser speckle contrast analysis [4],
and indocyanine green fluorescent imaging [5]. In some
cases, techniques such as magnetic resonance imaging [6],
computer tomography [7], laser doppler imaging [8], multi-
spectral optoacoustic tomography [9] and surface electrode
approaches [10] can provide information about regional per-
fusion. There are perfusion tests available for specific organs,
such as myocardial perfusion imaging, cerebral oximetry,
renal scintigraphy, and hepatic vein characterization, just to
name a few [11]. Nonetheless, there is a growing interest in
the development of minimally invasive methods for perfusion
estimation in large tissue regions. Such methods aim to
characterize tissular perfusion at multiple positions up to the
microcirculatory level [12]. Non-invasive imaging tests are
generally safe, painless, and require minimal preparation.
They serve as an initial screening tool and offer valuable
information about organ function and health. However, they
may have limitations in terms of resolution and sensitivity
compared to invasive tests.

In this context, a common approach is to use imaging
techniques, either reflectance or absorbance of light, from
different portions of the spectra to measure a perfusion
parameter. For instance, PulseCam [13] estimates maps of the
pulsatile component (AC) of blood flow in the skin by using
an RGB camera and reference photoplethysmography (PPG)
values. The authors in [13] test their method by applying
occlusion on healthy participants (vascular occlusion at
70 mmHg, and total occlusion at 140 mmHg) using a blood
cuff on the arm. They evaluated a total of 12 participants with
various skin tones (Fitzpatrick skin types I to V [14]).

Another approach using visible spectra is detailed in [15].
The proposed method estimates a video output correspond-
ing to variations in finger blood perfusion on non-Euro-
Americans subjects. Authors validate their approach by
identifying ischemia in 10 volunteers, who underwent an
occlusion test. This test lasted 10min, 3minwithout pressure,
and 7 more with a tourniquet-induced occlusion.

Spectral imaging techniques capture radiation across
multiple wavelengths, they are not restricted to the vis-
ible spectrum [16]. This includes infrared, multispectral,
and hyperspectral modalities. These techniques can reveal
properties not discernible with standard imaging approaches.
As such, spectral imaging can provide insight into the
biochemical composition of samples in a non-invasive
manner. A primary challenge lies in extracting meaningful
information from the large volumes of data generated through
spectral imaging [17], [18]. Originally developed for remote
sensing purposes [19], advancements in technology have
enabled the proliferation of spectral imaging into diverse
fields. These include precision agriculture [20], food quality
evaluation [21], and medical applications [22], among

others. Perfusion imaging represents one novel and promising
application [23]. By noninvasively measuring physiological
information, perfusion imaging may allow for the evaluation
of organ function and disease monitoring.

The proposal in [24] employs multi-spectral imaging
(MSI) and compares their results against tissue oxygen
saturation (StO2) from near-infrared reflectance spectroscopy
(NIRS). The authors measure local tissue desaturation and
reperfusion during two consecutive vascular occlusion tests.
However, no detailed information exists on the methodology
for estimating the MSI perfusion parameters. A total of
58 volunteers participated in this study, and the subject’s
systolic pressure was used as a control parameter. The
authors induced a total occlusion by applying 30 mmHg
above systolic pressure, and then the cuff was released
until oxygen saturation was below 40%, according to NIRS
measurements. Pearson’s correlation was used to evaluate the
level of agreement between the MSI and NIRS perfusion
parameters. According to their results, the correlation was
moderate (r = 0.42).

Other approaches are based on the combination of different
systems, such is the case of [25]. In this study, the authors
propose a laser speckle incorporated multispectral system
to estimate StO2 and a relative blood perfusion parameter.
The multispectral channels in the green portion of the
spectrum (530-570 nm) were utilized, and a model based
on the Extended Beer Lambert Model was fitted using light
attenuation. The authors assessed the application of this
approach for monitoring the healing progression of skin
grafting in patients with diabetic ulcers. Over a span of
two years, approximately four sessions were conducted. The
results were validated by comparing the outcomes between
individuals with type II diabetes and foot ulcers, and a
healthy control group. The participants were divided into two
groups: one with positive healing and the other with impaired
healing. However, the findings related to StO2 revealed only
a small mean absolute difference in comparison to the control
group.

Hyper-spectral (HS) images is another technique that can
measure reflectance data in the visible and near-infrared
(VIS-NIR) range but with more wavelength bands available.
These systems are also non-destructive, representing a great
option for biomedical applications. Such is the case of in-
vivo tumor boundary delimitation [26]. The authors built a
database of HS images during neurosurgery procedures. They
collected 36 HS images from 22 participants. The images
were labeled by neurosurgeons to identify four classes of
tissue: normal, primary, and secondary cancer, and a fourth
class containing blood-vessels and background elements.
In [27], the authors employ a commercially available system
for clinical use that can record images with a spatial
resolution of 640 × 480, and 100 spectral channels with a
processing time of around 30 seconds. However, many of
these approaches rely on prior information such as absorption
and scattering coefficients [28]. In addition, they do not
actually use all the available spectral information. The
methods proposed in [29] can estimate perfusion parameters
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in a clinical setting such as StO2, hemoglobin, and water
indexes. In this research line, the work in [30] established
a key contribution, where the authors applied two different
models and their inverses to obtain perfusion parameters.
They used Markov-chain [31] and Kubelka-Munk models to
estimate skin’s parameters [32]. Hence, a hyper-spectral input
image was used to estimate concentrations of melanin, blood
volume, and blood-oxygen fractions along with the depth of
the skin layers.

The main problem in estimating perfusion parameters
through imaging methods is the lack of a proper validation.
In-vivo validation is challenging due to ethical considera-
tions, variability between populations and the sample size,
as well as limited control of experimental conditions. Several
diagnostic tests that, although they may be specific, are
highly invasive, such as arterial blood gas analysis [33].
This exam requires a blood sample, from which oxygen
levels, pH, and other information about tissue perfusion
can be extracted. These tests are the gold standard for the
calibration of oximetry devices [34]. To evaluate perfusion,
another option is the application of occlusion tests to induce
ischemia. These tests consist of the temporal restriction
of blood flow to an area of interest. When applied to a
limb, a simple tool such as a blood cuff, a tourniquet,
or even a rubber band can be used for blood vessel blockage.
When the pressure applied only restricts the blood flow in
the veins, it is called venous occlusion. A total occlusion
occurs when the blood circulation stops completely. When
the blockage is released, the restoration of blood flow is
called reperfusion. This condition can lead to hyperemia,
which is a rapid and exaggerated reperfusion to the organs
affected by ischemia [35]. The changes in oxygen levels
might be useful to validate reperfusion parameters. However,
perfusion parameters based on pulseoximetry might not
register accurate readings during blood occlusion [36].
In contrast, it is possible to correctly measure these abrupt
oxygen changes using NIRS or PPG readings [37].
Thus, our work introduces an open-source database for

evaluating perfusion parameters in an upper limb. The
database comprises sequences of multi-spectral images of
the hand palm and PPG data from the thumb. The latter
is used for validation purposes through the estimation of
baseline perfusion parameters (changes in oxygenated and
deoxygenated hemoglobin). The data is recorded in-vivo
during the application of a occlusion protocol, inducing
changes in the dominant hand palm for approximately 10min.
for each subject. In addition, we have conducted an initial
evaluation of the data by using two well-known regression
techniques: the Kubelka-Munk method and a linear model
for monitoring skin perfusion parameters. These methods
provide valuable insight into the data and can be used to
validate perfusion MSI-based techniques.

The rest of the manuscript is organized as follows.
A description of the experimental protocol and hardware,
as well as the details of the processing algorithms and the vali-
dation stage, are provided in Section II. The characteristics of
the database, and the results obtained to estimate hemoglobin

FIGURE 1. Summary of the methodology used to capture the database,
highlighting key hardware components (MSI camera and PPG sensor). The
field of view (FOV) and position of the sensors are depicted in the top
image. The demographics of the study and an overview of the content of
the database are listed in the left-bottom. In the right-bottom, a diagram
of the five-stage occlusion protocol shows the acquisition sequence,
including start time and applied pressure for each stage.

changes during the induced hyperemia, are described in
Section III. To conclude, the results are discussed, and the
final remarks are presented in Section IV

II. METHODOLOGY
In this section, we describe the experimental protocol
used to generate the database, as well as the hardware
employed for PPG and MSI data acquisition. We present
the methodology to estimate different perfusion parameters
with both acquisition approaches. Hence, the proposed
methodology is summarized in Fig. 1.

A. EXPERIMENTAL PROTOCOL
This work aims to generate an open-source database to
evaluate changes in tissue perfusion. To do so, we reproduced
the protocol from [36], to induce key changes in blood
oxygen levels. This protocol uses a blood pressure cuff to
partially occlude the blood flow in an upper limb. This
protocol is considered safe and was performed in line with
the principles of the Declaration of Helsinki. We followed
the guidelines of our institution for experiments involving
human subjects and submitted the protocol to be reviewed
by the Ethics Committee ‘‘Comité Institucional de Bioética’’
of the Universidad Autonoma de Aguascalientes in Mexico.
The protocol was approved with the code: CIB-UAA-37.
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Furthermore, the protocol was explained to each participant,
and they were required to sign an informed consent to be
included in this study. Participants were excluded according
to the following criteria: any individual with a history of
vascular disease or chronic conditions such as diabetes
mellitus and hypertension was not eligible to participate.
In addition, those with skin infections or abnormalities were
also excluded to maintain the integrity of the study and to
ensure an accurate assessment of tissue perfusion.

Before starting the protocol, the participants were given
a minimum of 10 minutes to rest in a room set to ambient
temperature. All testing was conducted between 9:00 and
15:00 hours, ensuring consistency. Each measurement stage
was carried out in a unified laboratory setting, deliberately
isolated from sunlight. The participants were seated and
their superior limbs extended on a table. The blood pressure
cuff, as well as all sensors, were placed in their dominant
hand, which was recorded by the multi-spectral camera.
A pulseoximeter was placed on the index finger while the
PPG device on the thumb. These sensors and their cables
were covered with black pasteboard to avoid reflections
on the camera. First, the participant’s systolic and diastolic
pressures were sampled. Each experiment lasted 10 min.
and the protocol was divided into five stages of two min.
each one. During the first stage, data acquisition begins and
no pressure is applied through the sphygmomanometer. The
vascular occlusion (VO) stage starts at 2:00 min., where a
fixed and constant 60 mmHg pressure is applied manually
using the blood pressure cuff. At the beginning of the rest
stage (4:00 min. mark), the pressure is released, and no
pressure is applied. The total occlusion (TO) stage starts at
6:00 min., where pressure is constantly applied for the whole
twomin. This pressure is set to 20mmHg above the registered
systolic pressure for the participant. At the 8-min. mark, the
pressure is released at the hyperemia stage, where the subject
is allowed to rest. The experiment ends at ten min.

B. PHOTOPLETHYSMOGRAPHY DATA
Photoplethysmography data is used to obtain baseline perfu-
sion parameters. For this goal, the PPG sensor MAX30102
is used [38]. This device is a transmittance PPG sensor
that emits light using red (660 nm) and infrared (880 nm)
LEDs. The light is sampled with a photodetector with a
spectral range of sensitivity between 600 and 900 nm.
The PPG sensor was controlled using an Arduino Mega
microcontroller, through the I2C interface. The sampling
rate was fixed to 80 Hz. The components DC and AC were
obtained according to the methodology in [39]. First, the
supply voltage interference is filtered from both, red and
infrared PPG channels. Then the signal peaks are localized
to identify each cycle in the PPG measurements. The DC
component is removed from the pulse baseline by a low-
pass filter. Once the DC component is extracted from each
PPG signal, the AC component is calculated as the difference
between maximum and minimum values in a single PPG
cycle. The components AC and DC of each PPG signal are
the basis for estimating multiple perfusion parameters [40].

We estimated the ratio of absorbances defined as:

RPPG =
ACRed/DCRed
ACIR/DCIR

, (1)

where sub-index Red represents the PPG component
recorded at 660 nm, and IR represents the measurement at
880 nm. There are several models in the literature to estimate
peripheral capillary oxygen saturation (SpO2), in this work
we used the following definition from [39]:

SpO2 = −45.06R2PPG + 30.354RPPG + 94.845. (2)

The perfusion index measures the relationship between the
AC and DC components [41]. In this work, we employed a
definition based only on the IR measurement [40], according
to the formula:

PIIR =
ACIR
DCIR

× 100. (3)

Given the DC signal for each PPG channel, the light
attenuation was calculated as:

1ARed = ln
(
DCRed (0)
DCRed

)
, (4)

1AIR = ln
(
DCIR(0)
DCIR

)
, (5)

where the index (0) represents the initial measurements
during the protocol. In this work, we employed the average of
the first 100 samples for eachDC signal in every experiment.
Next, we employ the solution proposed by [36] to estimate
baseline perfusion parameters by the changes in oxygenated
hemoglobin 1[HbO2] and deoxyhemoglobin 1[Hb], which
were calculated as:

1[HbO2] =
1ARedεHbIR − 1AIRεHbRed

ε
HbO2
Red εHbIR − ε

HbO2
IR εHbRed · d · DPF

, (6)

1[Hb] =
1AIRε

HbO2
Red − 1ARedε

HbO2
IR

ε
HbO2
Red εHbIR − ε

HbO2
IR εHbRed · d · DPF

, (7)

where the molar extinction coefficients for eachmolecule and
wavelength (εHbRed , ε

HbO2
Red , εHbIR , ε

HbO2
IR ) were taken from [42].

As a result, these parameters were set to εHbRed =

3.4408 Mm−1cm−1, ε
HbO2
Red = 0.3346 Mm−1cm−1, εHbIR =

0.8412 Mm−1cm−1, and ε
HbO2
IR = 1.2846Mm−1cm−1.

Meanwhile, parameter d in (6) and (7) represents the distance
between the light emitter and the detector, while DPF is
the differential path factor. This data is not available for the
MAX30102 sensor. Therefore, to estimate the changes pro-
portional to [absolute concentration] × [optical pathlenght],
we followed the methodology by Abay et al. [36], [37].

C. MULTI-SPECTRAL IMAGING DATA
In this work, we used a nine channels multi-spectral camera
(SILIOS Technologies SA., France) model CMS-V1-C-
EVR1M-USB3. The camera measures eight wavelength
channels centered at

3 = {558, 594, 632, 672, 714, 751, 791, 827} nm. (8)
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The full-width half-maximum values for the camera channels
are 26, 24, 25, 25, 27, 28, 31, 34 nm. The 9th channel records
the average response from the other 8 channels. However,
this information was not employed in our study. The scene
was illuminated with a 150 W halogen light (Fiber-lite Mi-
150 Illuminator Series, DolanJenner Industries, Boxborough,
MA, USA). The camera was equipped with a polarizer
(PS1000 VIS/SWIR Wire Grid Linear Polarizer Film), and
the raw spatial resolution of each spectral image is 339 ×

426 pixels. The camera was set to record multi-spectral
images at a rate of 4.10 Hzwith an exposure time of 16.70ms.

At the processing stage, the images were cropped to
320 × 400. A mask was calculated to process pixel
positions corresponding only to the subject’s hand. To do
so, we calculated the maximum value of the Euclidean norm
of each image along the spectral dimension, and for every
pixel with a value lower than 25%, this position was masked.
Furthermore, pixels in the boundary regions of the limb
were removed by applying morphological erosion with a disk
kernel of ratio three. The set of all available pixels in the mask
for a multi-spectral image is denoted as P ⊂ Z × Z.

A multi-spectral image at pixel position p and wavelength
channel λ is denoted as I (p, λ), where p ∈ P and λ ∈ 3.
The reflectance at channel λ and pixel p is obtained by a
normalization step:

R(p, λ) =
I (p, λ) − ID(p, λ)
IW (p, λ) − ID(p, λ)

∀p ∈ P, λ ∈ 3 (9)

where IW (p, λ) and ID(p, λ) denote the corresponding white
and dark reference images. In this work, we employed a
polytetrafluoroethylene (PTFE) plate to generate the white
reference IW (p, λ) [43]. The dark reference ID(p, λ) was
captured by taking images with the lens cap on. Some
methods to estimate perfusion parameters are based on the
absorbance, which is defined as:

A(p, λ) = − ln (R (p, λ)) ∀p ∈ P, λ ∈ 3. (10)

D. ESTIMATION OF MSI PERFUSION PARAMETERS
To demonstrate the value of the presented database, we eval-
uated two methods to estimate perfusion parameters based
on regression techniques and multi-spectral images. These
methods use reference spectral responses, i.e., tabulated spec-
tral absorption coefficients measured in laboratory conditions
or approximations [28], [44]. We analyzed a linear model
based on absorbance [45], [46], [47], [48], and a non-linear
model [30], [32], [49], [50] which is based on reflectance
images. For this evaluation, we quantified perfusion parame-
ters related to the contribution of hemoglobin in oxygenated
HbO2 and deoxygenated Hb forms using the MSI data. The
results obtained were contrasted against the baseline PPG
perfusion parameters.

The spectral absorption coefficients at λ wavelength
channel were approximated [50] as:

µa.HbO2 (λ) = ln (10) · eHbO2 (λ) · G/M [cm−1] ∀λ ∈ 3,

(11)

µa.Hb(λ) = ln (10) · eHb(λ) · G/M [cm−1] (12)

where G represents the weight in grams per liter, and M is the
gram molecular weight of hemoglobin. In these experiments,
we set G = 150 g/l and M = 64, 500 g/mol [50]. The
values for the molar extinction coefficients eHbO2 and eHb in
[cm − 1/(moles/liter)] were taken from [44] at the closest
values tabulated for our wavelength channels in 3.
The most common chromophore present in human skin

is melanin, whose spectral absorption coefficient can be
approximated by the next equation [32], [50]:

µa.mel(λ) = 6.6 × 1011λ−3.33[cm−1] ∀λ ∈ 3. (13)

1) LINEAR-MODEL
This model considers a minimal contribution of chro-
mophores other than HbO2 and Hb, and it has been used
to evaluate oxygenation changes in hands occlusion [46],
tumors [48] and validated in-vivo in an animal model [45].
According to this model, the estimated absorbance of incident
light ALM at channel λ is a linear combination of the
chromophores:

ALM (CHbO2 ,CHb, α,λ) = CHbO2 · µa.HbO2 (λ)

+ CHb · µa.Hb(λ) + α (14)

where (CHbO2 ,CHb, α) are scaling coefficients. In this work,
we employed the absorption coefficients µa.HbO2 and µa.Hb
from eqs. (11) and (12), respectively. This model concentrates
the contribution from other chromophores in the bias term
α. Given a subset of channels 3A ⊂ 3, we estimate the
optimal parameters (CHbO2 ,CHb, α) at each pixel p ∈ P by
minimizing the following cost function:

JLM =

∑
λ∈3A

[
A(p, λ) − ALM

(
CHbO2 ,CHb, α,λ

)]2
, (15)

where A(p, λ) is the sampled absorbance from the multi-
spectral camera in (10).

2) KUBELKA-MUNK MODEL
The Kubelka-Munk model was designed to describe light
interactions in a multi-layer medium [51]. It is employed to
estimate light reflectance based on the spectral absorption
and scattering coefficients, and thickness of the materials.
When applied to human skin, these layers correspond to
the epidermis and dermis. The former contains melanin
and other minor chromophores such as bilirubin, collagen,
keratin, and carotene. However, melanin is the most abundant
chromophore in the human skin, while the rest only present
a minor contribution in healthy subjects. At wavelength
channel λ, the optical absorption coefficient of the epidermis
layer µa.epi(λ) is characterized as:

µa.epi(λ) = fmel · µa.mel(λ) + (1 − fmel)µa.baseline(λ), (16)

where fmel is a free parameter. In (16), we employ the spectral
absorption of melanin µa.mel(λ) defined in (13), and for the
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baseline µa.baseline(λ), we employ the definition from [32]
and [50]:

µa.baseline(λ) = 0.244 + 85.3 exp
(

−[λ − 164]
66.2

)
[cm−1].

(17)

Since the dermis contains blood vessels, this layer also
presents hemoglobin-based chromophores. At wavelength
channel λ, the dermis spectral absorption coefficient
µa.der (λ) is defined as:

µa.der (λ) = fblood · (Coxy · µa.HbO2 (λ))

+ fblood · (1 − Coxy) · µa.Hb(λ)

+ (1 − fblood ) · µa.baseline(λ)), (18)

where fblood and Coxy are free variables. In the case of
the scattering coefficients of both layers, we employ the
definition of [50], where they are considered the sum of the
Mie and Rayleigh scattering coefficients at λ channel:

µs.Mie(λ) = 2 × 105 × λ−1.5 (19)

µs.Rayleigh(λ) = 2 × 1012 × λ−4 (20)

µs.epi(λ) = µs.der (λ)

= µs.Mie(λ) + µs.Rayleigh(λ). (21)

According to the Kubelka-Munk model, the absorbances
from eqs. (16) and (18) and the scattering coefficients
from (21) determine the amount of light moving in two
opposite directions within the skin layers. The backward flux
K and the forward flux variables β of each layer are defined
as

Kepi(λ) =

√
µa,epi(λ)

(
µa,epi(λ) + 2µs,epi(λ)

)
(22)

Kder (λ) =

√
µa,der (λ)

(
µa,der (λ) + 2µs,der (λ)

)
(23)

βepi(λ) =

√
µa,epi(λ)

µa,epi(λ) + 2µs,epi(λ)
(24)

βder (λ) =

√
µa,der (λ)

µa,der (λ) + 2µs,der (λ)
. (25)

The reflectances Repi, Rder and the light transmitted from the
epidermis to the dermis Tepi have the following expressions
(26)–(28), as shown at the bottom of the next page, where
variables Dder and Depi represent the thickness of each layer
in the skin. The total reflectance [32], [50] measured at the
surface of the skin RKM is a function of the form

RT (λ) = Repi(λ) +
Tepi(λ)2Rder (λ)

1 − Repi(λ)Rder (λ)
. (29)

Given a fixed set of wavelengths 3R ⊂ 3, the
Kubelka-Munk models the light based on the absorption and
scattering coefficients. Consequently, the total reflectance
can be considered a function of the parameters given a set
of frequencies

RKM
(
fmel, fblood ,Coxy ,Ddermis ,Depi, λ

)
= RT (λ) ∀λ ∈ 3R. (30)

Themodel parameters are estimated by fitting a reflectance
sample (9) to the Kubelka-Muk reflectance model, such as
equation (3) in [50]. The cost function used to identify the
perfusion parameters is described next:

JKM =

∑
λ∈3R

[
R(p, λ)

−RKM
(
fmel, fblood ,Coxy ,Ddermis ,Depi, λ

)]2
(31)

where R(p, λ) is the sample reflectance from the multi-
spectral camera in (9). Hence, the optimal parameters(
fmel, fblood ,Coxy ,Ddermis ,Depi

)
are obtained at each pixel

p ∈ P by minimizing the cost function in (31).

E. COMPARISON AND VALIDATION
The open-source database presented in this work consists
of a video sequence of multi-spectral images and PPG
data recorded in-vivo from multiple subjects. The PPG data
serves as a reference for estimating perfusion parameters
from the thumb. These values were compared against MSI
perfusion parameters from the fingertip of the middle finger.
We selected these locations based on the accuracy of the
perfusion parameters measured in these positions, such as
SpO2 [52]. Due to the 10 min. duration of the occlusion
protocol (see Fig. 1), maintaining a static posture for the
subjects is challenging. Consequently, we implemented a
tracking algorithm to monitor a region of interest (ROI)
around the middle fingertip in the multi-spectral images and
compare it with the thumb PPG data. This section elaborates
on the ROI tracking and on the evaluation of the models for
monitoring skin perfusion.

1) ROI AND TRACKING
In this study, we employed the Kanade-Lucas-Tomasi (KLT)
feature tracking algorithm to track the fingertip movements
of the participants [53]. We used the point tracker implemen-
tation fromMatlab (Mathworks, Inc., Natick, Massachusetts,
U.S.; v2020b). Initially, we manually selected a rectangular
ROI surrounding the middle fingertip in the first frame for
each participant video sequence. The features employed for
tracking were corners detected using the features from the
accelerated segment test (FAST) algorithm [54]. We con-
ducted tracking on all participants every four frames through-
out the entire experimental protocol. The ROI obtained from
the tracking algorithm was multiplied with the energy mask
(as described in Section II-C) to isolate and process only
the middle fingertip region for estimating the MSI perfusion
parameters.

2) EVALUATION OF REGRESSION METHODS
We estimated skin perfusion parameters by fitting the linear
and Kubelka-Munk models to the input absorbance and
reflectance signals, respectively. The perfusion parameters
(CHbO2 ,CHb, α) in (14) were estimated using least squares
regression. In a similar fashion to [45], we set all negative
solutions to zero, as no constraints were applied. Meanwhile,
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TABLE 1. Parameter ranges employed for the perfusion parameters
estimated from the Kubelka-Munk model.

to solve the regression problem in (31) for the perfusion
parameters

(
fmel, fblood ,Coxy ,Ddermis ,Depi

)
, we employed

a particle swarm optimization method. We used the Matlab
implementation provided with the optimization toolbox.
The boundaries employed for each perfusion parameter in
the Kubelka-Munk model are detailed in Table 1. The
optimization method was configured to work with a swarm
size of 50, 20 maximum simulations, and an error tolerance
of 10−6. All the signal processing was implemented in a Dell
Precision 3660 workstation, equipped with a 12th generation
Intel Core i7-12700K processor, and 16 GB of RAM. The
preprocessing stages, as well as the implementations, were
performed in Matlab.

In this way, there are three perfusion parameters that
can be estimated from (15), and five from (31). However,
we could not obtain reference values for melanin or other
chromophores, nor the thickness of the skin layers. Therefore,
we only perform a particular analysis of perfusion parameters
related to hemoglobin, namely (CHbO2 ,CHb, fblood ,Coxy ).
This study aims to evaluate if these parameters correlate with
the measurements obtained by the PPG sensor.

In these identification processes of skin perfusion param-
eters, one important challenge is the selection of wavelength
bands 3A and 3R. The regression methods in (15) and (31)
are sensitive to prior information, since the spectral absorp-
tion and scattering coefficients are functions of the available
wavelength bands 3.

In this work, we perform an analysis to evaluate the Pear-
son correlation between MSI and PPG perfusion parameters
during the application of the occlusion protocol. Our goal is to
select the wavelength channels with better correlation against
the PPG reference data, for both the linear model in (14)
and the Kubelka-Munk in (30). The PPG reference values of
1[HbO2] in (6) and 1[Hb] in (7) were interpolated to match

the MSI framerate. Every four multi-spectral images, these
values were correlated against (CHbO2 ,CHb, fblood ,Coxy )
using different wavelength configurations. We evaluated
the perfusion parameters by employing different subsets
in 3. The linear model in (14) requires at least a couple
of wavelength channels; however, feasible solutions were
achieved using the following subsets:

31
A = {594, 632, 672} nm,

32
A = {632, 791} nm,

33
A = {632, 827} nm,

34
A = {672, 791} nm,

35
A = {672, 827} nm. (32)

In contrast, the Kubelka-Munk model in (30) predominantly
exhibits accurate results for human skin when utilizing data
in the visible range, so we used the following subsets:

31
R = {558, 594, 632, 672} nm,

32
R = {558, 594, 632, 672, 714} nm,

33
R = {558, 594, 632, 672, 714, 751} nm,

34
R = {594, 632, 672, 714} nm,

35
R = {594, 632, 672, 714, 751} nm. (33)

III. RESULTS
The open-source database presented in this work com-
prises records from 45 subjects who provided informed
consent. The age of the participants ranged from 18 to 24
(mean = 20.17, SD = 1.73), with a majority being right-
handed (44/45) and having Fitzpatrick Skin Type III (26 par-
ticipants) and Type IV (19 participants). The information for
each participant is summarized in Table 2.
Sequences of the multi-spectral images and PPG data from

all recruited subjects are accessible in the following reposi-
tory in Zenodo https://doi.org/10.5281/zenodo.7860900. The
database contains at least 2,445 MSI for each participant, see
Fig. 2. Each multi-spectral image consists of the nine single
channels in PNG format, as detailed in subsection II-C. We
opted for the PNG format due to its lossless compression
and user-friendlymetadatamanagement, particularly for non-
technical users like those in the medical field. This choice
aligns with our goal of creating a database accessible to
multidisciplinary research teams. Full hand and finger masks
obtained from the tracking process are available. The raw

Repi(λ) =

(
1 − β2

epi(λ)
)

×

(
eKepi(λ)Depi(λ) − e−Kepi(λ)Depi(λ)

)
(
1 + βepi(λ)

)2 eKepiDepi − (
1 − βepi(λ)

)2 e−Kepi(λ)Depi(λ) (26)

Rder (λ) =

(
1 − β2

der (λ)
)
×

(
eKder (λ)Dder (λ) − e−Kder (λ)Dder (λ)

)
(1 + βder (λ))2 eKder (λ)Dder (λ) − (1 − βder (λ))2 e−Kder (λ)Dder (λ)

(27)

Tepi(λ) =
4βepi(λ)(

1 + βepi(λ)
)2 eKepi(λ)Depi(λ) −

(
1 − βepi(λ)

)2 e−Kepi(λ)Depi(λ) (28)
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TABLE 2. Participants data in the experimental protocol, where the table presents information from each subject, identifiable by a unique code. Age,
gender, and skin type (as per the Fitzpatrick scale) are reported. The systolic pressure recorded before the start stage of the protocol is also presented for
each subject. In the following columns, the number of multi-spectral images per patient, each composed of nine channels, along with the length of data
collection in minutes, seconds, and milliseconds are detailed. The last column indicates the occurrence of reactive hyperemia, marked by a decrease in
1[HbO2] and an increase in 1[Hb] during the TO stage, as well as an inverse trend following the pressure release. The participants who presented high
movement during the experiment are marked with a symbol *.
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FIGURE 2. Infographic of the data available online upon request [55].
Raw data files for all the 45 participants, including PPG files and
reference MSI data are available for the evaluation of novel perfusion
parameters estimation methods.

PPG data is also included as simple comma-separated value
files. Reference white material MSI data is also available to
test different calibration methods.

Examples of multispectral images obtained for a single
participant, at two different times (start and TO stages),
during the occlusion protocol are displayed in Fig. 3.
The perfusion parameters estimated at each location of
the MSI can be arranged to obtain perfusion maps. These
images provide spatially localized quantitative information
that can assist physicians in diagnosing and monitoring
tissue conditions without a biopsy. Examples of perfusion
maps obtained for a single patient at different stages of the
occlusion experiment are displayed in Fig. 4. While changes
in CHbO2 , CHb, and fmel are evident, the magnitude of these
changes is measured by evaluating the correlation between
the values obtained from the middle finger and the reference
PPG signals from the thumb.

For the initial evaluation of the database, the participants
who presented excessive movement during the protocol (P17,
P38, and P39) were excluded. Additionally, subjects who did
not exhibit hyperemia during the occlusion protocol were also
excluded (participants: P4, P5, P18, and P22). Consequently,
the validation experiments presented in the subsequent
subsections are based on data from 38 participants.

A. PPG PERFUSION PARAMETERS
The measurements obtained are shown in the Figs. 5 to 7.
Figure 5 A) illustrates the range and mean values for the
estimations of ACRed and ACIR by (4) and (5) in the thumb,
respectively. The observed data aligns with measurements
reported by Abay et al. [36], wherein a considerable decrease
in AC values occurs during total occlusion (8:00 to 10:00
min). As depicted in Fig. 5 B), the DC components are also
affected by the occlusion stages, with considerable inter-
subject variability, particularly in the red component. Both
DCRed and DCIR components exhibit a decline during the
VO stage. However, during TO,DCRed decreases, whileDCIR
increases above nominal values.

The resulting ratio of absorbances RPPG in (1) is presented
in Fig. 5 C). This perfusion parameter displays high
variability throughout the entire experiment, with multiple
peaks occurring even in stages without blood cuff pressure.
As observed during the protocol, the average value of RPPG
rises during occlusion stages at 2:00-4:00 min. (VO) and
6:00-8:00 min. (TO).

The SpO2 range and mean values, as calculated from
equation (2), are displayed in Fig. 6 A). This perfusion
parameter also exhibits variability in the absence of applied
pressure. It is worth noting that, according to the liter-
ature [56], values below 70% for SpO2 are considered
unreliable. This threshold is reached during occlusion stages,
which is why this parameter is not included in the evaluation
against MSI perfusion parameters. Next, Fig. 6 B) illustrates
the estimation of PIIR by (3). This perfusion parameter
is sensitive to reperfusion occurring after each occlusion
stage, particularly around 4:00 and 8:00 min. During total
occlusion, the values of PIIR drop considerably.
Figure 7 presents the changes in hemoglobin contribution

1[HbO2] and 1[Hb] by (6) and (7), respectively. These val-
ues exhibit low inter-subject variability, particularly during
the start (0:00-2:00 min.) and rest (4:00-6:00 min.) stages.
The sampled signals are tolerant to occlusion protocols,
as reported by Abay et al. [37]. Both range and mean signals
decline during the VO stage and return to normal during
the resting one. During TO (6:00-8:00 min.), the mean
value of 1[HbO2] decreases, while 1[Hb] increases. Upon
the release of blood cuff pressure, the hyperemia stage
(8:00-10:00 min.) is characterized by a rapid increase in
1[HbO2] levels and a decrease in1[Hb]. Hence, the changes
in these PPG perfusion parameters were utilized for the
evaluation of MSI parameters.

B. MSI PERFUSION PARAMETERS CORRELATION
In this preliminary analysis, we sought to validate the
effectiveness of MSI data for assessing the estimation of
in-vivo perfusion parameters during an occlusion protocol.
According to the literature [40], and the obtained PPG
measurements (see Fig. 7, the parameters least prone to
inconsistencies during an occlusion are1[HbO2] and1[Hb].
Nonetheless, the estimated signals for each parameter display
a similar trend throughout the initial three stages of the
protocol (start, VO and rest). In fact, during the VO stage
(2:00-4:00 min.), both 1[HbO2] and 1[Hb] tend to increase
and subsequently revert to a baseline state during the rest
stage (4:00-6:00 min). To avoid potential inaccuracies in
the Pearson correlation-based evaluation, we focused on
assessing the correlation outcomes for the signals 1[HbO2]
and 1[Hb] during the latter half of the experiment, starting
from the 5:00 min. mark until the end.

1) CORRELATION BETWEEN 1[HbO2] AND MSI PERFUSION
PARAMETERS
The 1[HbO2] reference measurements were obtained from
the thumb of each participant, based on the PPG measure-
ments (see Fig. 1). They were estimated by (6) and are shown
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FIGURE 3. Four single channel images recorded for Participant #1. Each column displays the reflectance at 558, 632, 714 and 791 nm,
respectively. The images on the bottom were recorded at 1 minute and 8 seconds from the start of the experiment (Start). Meanwhile, on the
top, the images were recorded at 7 minutes and 48 seconds, near the end of the TO stage.

FIGURE 4. Perfusion Maps of 4 parameters related to hemoglobin and obtained during the Start (top row) and TO (bottom row) stages. The first
and second columns depict the CHbO2

and CHb maps estimated with the linear model. The third and fourth columns show the fblood and Coxy
maps estimated with the Kubelka-Munk model, respectively.

in Fig. 7. We evaluated the Pearson correlation of this signal
against the perfusion parameters (CHbO2 ,CHb, fblood ,Coxy )
from the linear and Kubelka-Munkmodels. These parameters
were extracted from a ROI surrounding the middle fingertip,
which was tracked throughout the occlusion protocol. The
correlation calculated for the 38 participants, during the rest,
TO, and hyperemia stages, employing the wavelength subsets
in (32) and (33) are illustrated in violin plots in Figs. 8
to 11 [57].

First, the hemoglobin perfusion parameters (CHbO2 ,CHb)
from the linearmodel in (14) exhibitedmostly strong negative
correlation values, with medians ranging from -0.5 to -0.7,
as shown in Figs. 8 and 9. Nevertheless, a strong positive
correlation was observed for CHbO2 with a median of 0.8,

using the subset 32
A. This value represented the highest

correlation with 1[HbO2] among all the MSI perfusion
parameters evaluated. Next, we evaluated the blood perfusion
parameters (fblood ,Coxy) from the Kubelka-Munk model in
(18). The estimated values of fblood for different subsets 3R
show weak negative correlations, see Fig. 10, with median
values around -0.3. Meanwhile, according to the findings in
Fig. 11, only three configurations yielded moderate to strong
positive correlations with Coxy.

2) CORRELATION BETWEEN 1[Hb] AND MSI PERFUSION
PARAMETERS
The correlation results for the PPG parameter 1[Hb]
in (7) and shown in Fig. 7, in relation to MSI perfu-
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FIGURE 5. Range and average values of reference parameters measured using the PPG sensor throughout the occlusion protocol. Panel A) displays
the ACRed and ACIR components, which are sensitive to the total occlusion applied at the beggining of the 8:00 minute mark. Panel B) shows the
DCRed and DCIR signals, which do not register a considerable reduction during the occlusion stages. Panel C) shows RPPG estimated by (1).

FIGURE 6. Panel A) displays the range and mean values of SpO2 estimated using equation (2) throughout the occlusion experiment. SpO2 values
above the black dotted line are considered to be within an acceptable range. Panel B) shows PIIR estimated using equation (3).

sion parameters, are presented in Figs. 12 to 15. The
results for the linear model parameters (CHbO2 ,CHb) are
illustrated in Figs. 12 and 13. A strong negative correla-
tion between 1[Hb] and CHbO2 was anticipated; however,
this trend was only observed for the subset λ1

A, while

the remaining configurations demonstrated strong positive
correlations.

The correlation results with CHb were all highly positive,
exhibiting median values around 0.8 for all wavelength
subsets, which is consistent with expectations.
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FIGURE 7. Range and mean values of 1[HbO2] and 1[Hb] estimated by (6) and (7), respectively, for the 38 participants included in this analysis.
These perfusion parameters are tolerant to total occlusion and illustrate the hyperemia and reperfusion phenomena
around 08:00 min.

FIGURE 8. Distribution of the correlation results for 1[HbO2] vs CHbO2
from the linear model 15. The median value is displayed with a magenta
marker.

FIGURE 9. Distribution of the correlation results for 1[HbO2] vs CHb from
the linear model 15. The median value is displayed with a magenta
marker.

On the other hand, the fblood parameter from the Kubelka-
Munk model demonstrated a strong positive correlation
(0.72-0.82) across all wavelength subsets when compared
with 1[Hb], see Fig. 14. No clear trend emerged from the

FIGURE 10. Distribution of the correlation results for 1[HbO2] vs fblood
from the Kubelka-Munk model 31. The median value is displayed with a
magenta marker.

FIGURE 11. Distribution of the correlation results for 1[HbO2] vs Coxy
from the Kubelka-Munk model 31. The median value is displayed with a
magenta marker.

multiple implementations with Coxy from the Kubelka-Munk
model, see Fig. 15. However, these results are consistent with
the results reported for1[HbO2] in Fig. 11. This is, the results
obtained for 1[Hb] have an opposite sign to those obtained
for 1[HbO2].
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FIGURE 12. Distribution of the correlation results for 1[Hb] vs CHbO2
from the linear model 15. The median value is displayed with a magenta
marker.

FIGURE 13. Distribution of the correlation results for 1[Hb] vs CHb from
linear model 15. The median value is displayed with a magenta marker.

FIGURE 14. Distribution of the correlation results for 1[Hb] vs fblood
from the Kubelka-Munk model 31 The median value is displayed with a
magenta marker.

FIGURE 15. Distribution of the correlation results for 1[Hb] vs Coxy from
the Kubelka-Munk model 31.The median value is displayed with a
magenta marker.

IV. DISCUSSION
In this study, we developed an open-source database
to measure changes in hemoglobin concentrations by a
sequence of multi-spectral images. These changes were

induced by a controlled occlusion protocol that lasts 10
min. During the protocol, MSI data from the hand palm
and PPG measurements from the thumb were simultaneously
recorded. The database comprises records from 45 test
subjects who provided informed consent. The database
can be accessed upon request via Zenodo [55]. We also
conducted a preliminary evaluation of the database. Our
analysis of the PPGmeasurements revealed certain parameter
failures during the occlusion stages, particularly concerning
SpO2. The findings corroborate those of Abay et al. [36],
demonstrating that 1[HbO2] and 1[Hb], as estimated from
PPG sensors, are sensitive to occlusion stages and capable of
tracking phenomena such as reperfusion and hyperemia after
blood cuff pressure release.

In an initial evaluation of the MSI data, we tested two
regression approaches for estimating perfusion parameters.
These methods are based on prior knowledge, particu-
larly spectral absorption and scattering coefficients for the
most prevalent chromophores in human skin. Our results
confirmed strong correlations, both positive and negative,
between PPG and MSI-based perfusion parameters. The
preliminary outcomes indicate that MSI-based perfusion
parameters can effectively measure changes in both oxy-
genated and deoxygenated hemoglobin. Additionally, the
database provides valuable data for validation purposes,
which is often challenging to obtain experimentally and is
available for evaluating alternativeMSI-basedmethodologies
under a standardized protocol and controlled conditions.
We anticipate that this database will be useful in validating
novel methods based on MSI for in-vivo estimation of
perfusion parameters. Finally, the study population is young
and representative of the Mexican inhabitants, which exhibits
minimal variation in skin phenotypes. However, the sample
does not consider younger or older subjects. Owing to
acquisition limitations, the evaluation was conducted using
only a subset of the actual data. A total of 38 subjects with
clean PPG data and observable hyperemia following the
total occlusion stage were included in the analysis. Future
research will be committed to the development of practical
perfusion monitoring in clinical settings. Moreover, we aim
to estimate perfusion parameters without prior information,
such as assumptions about the sample population.

REFERENCES
[1] P. Shaw, A. K. Sharma, A. Kalonia, and S. K. Shukla, ‘‘Vascular perfusion:

A predictive tool for thermal burn injury,’’ J. Tissue Viability, vol. 29, no. 1,
pp. 48–50, Feb. 2020.

[2] R. K. Rogers, M. Montero-Baker, M. Biswas, J. Morrison, and J. Braun,
‘‘Assessment of foot perfusion: Overview of modalities, review of
evidence, and identification of evidence gaps,’’ Vascular Med., vol. 25,
no. 3, pp. 235–245, Jun. 2020.

[3] Y. Monteerarat, R. Limthongthang, P. Laohaprasitiporn, and T. Vathana,
‘‘Reliability of capillary refill time for evaluation of tissue perfusion in
simulated vascular occluded limbs,’’ Eur. J. Trauma Emergency Surg.,
vol. 2022, pp. 1–7, Jan. 2022.

[4] B. Ruaro, M. G. Nallino, A. Casabella, F. Salton, P. Confalonieri,
A. De Tanti, and C. Bruni, ‘‘Monitoring the microcirculation in the diag-
nosis and follow-up of systemic sclerosis patients: Focus on pulmonary
and peripheral vascular manifestations,’’ Microcirculation, vol. 27, no. 8,
pp. 1–12, Nov. 2020.

VOLUME 11, 2023 87555



O. Gutierrez-Navarro et al.: Multi-Spectral Image Database for In-Vivo Hand Perfusion Evaluation

[5] R. Kumar, R. J. Gush, C. E. Murdoch, and N. Krstajić, ‘‘Simultaneous
white light and laser speckle contrast imaging for in-vivo blood flow
imaging during laparoscopic surgery: An alternative to fluorescence-based
endoscopy,’’ Proc. SPIE, vol. 11937, Mar. 2022, Art. no. 1193702.

[6] R. Aughwane, N. Mufti, D. Flouri, K. Maksym, R. Spencer, M. Sokolska,
G. Kendall, D. Atkinson, A. Bainbridge, J. Deprest, T. Vercauteren,
S. Ourselin, A. David, and A. Melbourne, ‘‘Magnetic resonance imaging
measurement of placental perfusion and oxygen saturation in early-onset
fetal growth restriction,’’ BJOG, Int. J. Obstetrics Gynaecol., vol. 128,
no. 2, pp. 337–345, Jan. 2021.

[7] C. Huang, J. Liang, X. Lei, X. Xu, Z. Xiao, and L. Luo, ‘‘Diagnostic
performance of perfusion computed tomography for differentiating lung
cancer from benign lesions: A meta-analysis,’’Med. Sci. Monitor, vol. 25,
pp. 3485–3494, May 2019.

[8] G. Dinsdale, S. Wilkinson, J. Wilkinson, T. L. Moore, J. B. Manning,
M. Berks, E. Marjanovic, M. Dickinson, A. L. Herrick, and A. K.
Murray, ‘‘State-of-the-art technologies provide new insights linking skin
and blood vessel abnormalities in SSc-related disorders,’’ Microvascular
Res., vol. 130, Jul. 2020, Art. no. 104006.

[9] A. Karlas, M. Kallmayer, N. Fasoula, E. Liapis, M. Bariotakis, M.
Krönke, M. Anastasopoulou, J. Reber, H. Eckstein, and V. Ntziachristos,
‘‘Multispectral optoacoustic tomography of muscle perfusion and oxy-
genation under arterial and venous occlusion: A human pilot study,’’ J.
Biophotonics, vol. 13, no. 6, pp. 1–6, Jun. 2020.

[10] W. Li, J. Xia, G. Zhang, H. Ma, B. Liu, L. Yang, Y. Zhou, X. Dong, F. Fu,
and X. Shi, ‘‘Fast high-precision electrical impedance tomography system
for real-time perfusion imaging,’’ IEEE Access, vol. 7, pp. 61570–61580,
2019.

[11] W. Huber, R. Zanner, G. Schneider, R. Schmid, and T. Lahmer,
‘‘Assessment of regional perfusion and organ function: Less and non-
invasive techniques,’’ Frontiers Med., vol. 6, p. 50, Mar. 2019.

[12] I. N. de Keijzer, D. Massari, M. Sahinovic, M. Flick, J. J. Vos,
and T. W. L. Scheeren, ‘‘What is new in microcirculation and tissue
oxygenation monitoring?’’ J. Clin. Monitor. Comput., vol. 36, no. 2,
pp. 291–299, Apr. 2022.

[13] M. Kumar, J. W. Suliburk, A. Veeraraghavan, and A. Sabharwal,
‘‘PulseCam: A camera-based, motion-robust and highly sensitive blood
perfusion imagingmodality,’’ Sci. Rep., vol. 10, no. 1, pp. 1–17,Mar. 2020.

[14] V. Gupta and V. K. Sharma, ‘‘Skin typing: Fitzpatrick grading and others,’’
Clinics Dermatol., vol. 37, no. 5, pp. 430–436, Sep. 2019.

[15] S. Rahman, A. Iskandarova, M. E. Horowitz, K. K. Sanghavi, K. T. Aziz,
N. Durr, and A. M. Giladi, ‘‘Assessing hand perfusion with Eulerian
video magnification and waveform extraction,’’ J. Hand Surg., vol. 2022,
pp. 1–22, Aug. 2022.

[16] Y. Garini, I. T. Young, and G. McNamara, ‘‘Spectral imaging: Principles
and applications,’’ Cytometry A, vol. 69A, no. 8, pp. 735–747, 2006.

[17] M. Wang, D. Hong, Z. Han, J. Li, J. Yao, L. Gao, B. Zhang, and
J. Chanussot, ‘‘Tensor decompositions for hyperspectral data processing
in remote sensing: A comprehensive review,’’ IEEE Geosci. Remote Sens.
Mag., vol. 11, no. 1, pp. 26–72, Mar. 2023.

[18] Y. Xu, Q. Du, and N. Younan, ‘‘Particle swarm optimization-based band
selection for hyperspectral target detection,’’ in Proc. IEEE Int. Geosci.
Remote Sens. Symp. (IGARSS), Jul. 2016, pp. 5872–5875.

[19] P. Wang, L. Wang, H. Leung, and G. Zhang, ‘‘Super-resolution mapping
based on spatial–spectral correlation for spectral imagery,’’ IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 3, pp. 2256–2268, Mar. 2021.

[20] A. Mancini, E. Frontoni, and P. Zingaretti, ‘‘Satellite and UAV data for
precision agriculture applications,’’ in Proc. Int. Conf. Unmanned Aircr.
Syst. (ICUAS), Jun. 2019, pp. 491–497.

[21] X. Xia, W. Liu, L. Wang, and J. Sun, ‘‘HSIFoodIngr-64: A dataset
for hyperspectral food-related studies and a benchmark method on food
ingredient retrieval,’’ IEEE Access, vol. 11, pp. 13152–13162, 2023.

[22] N. T. Clancy, G. Jones, L. Maier-Hein, D. S. Elson, and D. Stoyanov,
‘‘Surgical spectral imaging,’’ Med. Image Anal., vol. 63, Jul. 2020,
Art. no. 101699.

[23] A. Schmidt, F. Nießner, T. vonWoedtke, and S. Bekeschus, ‘‘Hyperspectral
imaging of wounds reveals augmented tissue oxygenation following cold
physical plasma treatment in vivo,’’ IEEE Trans. Radiat. PlasmaMed. Sci.,
vol. 5, no. 3, pp. 412–419, May 2021.

[24] A. A. Bruins, D. G. P. J. Geboers, J. R. Bauer, J. H. G. M. Klaessens,
R. M. Verdaasdonk, and C. Boer, ‘‘The vascular occlusion test using
multispectral imaging: A validation study,’’ J. Clin. Monitor. Comput.,
vol. 35, no. 1, pp. 113–121, Feb. 2021.

[25] S. P. Philimon and A. K. C. Huong, ‘‘Laser speckle integrated multispectral
imaging system for in-vivo assessment of diabetic foot ulcer healing:
A clinical study,’’ IEEE Access, vol. 9, pp. 23726–23736, 2021.

[26] H. Fabelo et al., ‘‘In-vivo hyperspectral human brain image database
for brain cancer detection,’’ IEEE Access, vol. 7, pp. 39098–39116,
2019.

[27] M. Dietrich, S. Marx, M. von der Forst, T. Bruckner, F. C. F. Schmitt,
M. O. Fiedler, F. Nickel, A. Studier-Fischer, B. P. Müller-Stich, T. Hackert,
T. Brenner, M. A. Weigand, F. Uhle, and K. Schmidt, ‘‘Bedside hyperspec-
tral imaging indicates a microcirculatory sepsis pattern—An observational
study,’’Microvascular Res., vol. 136, Jul. 2021, Art. no. 104164.

[28] S. L. Jacques, ‘‘Optical properties of biological tissues: A review,’’ Phys.
Med. Biol., vol. 58, no. 11, pp. R37–R61, Jun. 2013.

[29] A. Holmer, J. Marotz, P. Wahl, M. Dau, and P. W. Kämmerer,
‘‘Hyperspectral imaging in perfusion and wound diagnostics—Methods
and algorithms for the determination of tissue parameters,’’ Biomed. Eng.,
vol. 63, no. 5, pp. 547–556, Oct. 2018.

[30] L. Annala and I. Pölönen, ‘‘Kubelka–Munk model and stochastic model
comparison in skin physical parameter retrieval,’’ in Computational
Sciences and Artificial Intelligence in Industry (Intelligent Systems,
Control and Automation: Science and Engineering), vol. 76, T. Tuovinen,
J. Periaux, and P. Neittaanmäki, Eds. Cham, Switzerland: Springer, 2022,
doi: 10.1007/978-3-030-70787-3_10.

[31] L. Annala, S. Äyrämö, and I. Pölönen, ‘‘Comparison of machine learning
methods in stochastic skin optical model inversion,’’ Appl. Sci., vol. 10,
no. 20, p. 7097, Oct. 2020.

[32] R. Jolivot, Y. Benezeth, and F. Marzani, ‘‘Skin parameter map retrieval
from a dedicated multispectral imaging system applied to dermatol-
ogy/cosmetology,’’ J. Biomed. Imag., vol. 2013, p. 26, Jan. 2013.

[33] J. B.West, D. L.Wang, G. K. Prisk, J. M. Fine, A. Bellinghausen,M. Light,
andD. R. Crouch, ‘‘Noninvasivemeasurement of pulmonary gas exchange:
Comparison with data from arterial blood gases,’’ Amer. J. Physiol.-Lung
Cellular Mol. Physiol., vol. 316, no. 1, pp. L114–L118, Jan. 2019.

[34] I. Badiola, V. Blazek, V. J. Kumar, B. George, S. Leonhardt, and
C. H. Antink, ‘‘Accuracy enhancement in reflective pulse oximetry
by considering wavelength-dependent pathlengths,’’ Physiolog. Meas.,
vol. 43, no. 9, Sep. 2022, Art. no. 095001.

[35] G. Bade, D. S. Chandran, A. Kumar Jaryal, A. Talwar, and K. K. Deepak,
‘‘Contribution of systemic vascular reactivity to variability in pulse volume
amplitude response during reactive hyperemia,’’ Eur. J. Appl. Physiol.,
vol. 119, no. 3, pp. 753–760, Mar. 2019.

[36] T. Y. Abay and P. A. Kyriacou, ‘‘Reflectance photoplethysmography as
noninvasive monitoring of tissue blood perfusion,’’ IEEE Trans. Biomed.
Eng., vol. 62, no. 9, pp. 2187–2195, Sep. 2015.

[37] T. Y. Abay and P. A. Kyriacou, ‘‘Photoplethysmography for blood volumes
and oxygenation changes during intermittent vascular occlusions,’’ J. Clin.
Monitor. Comput., vol. 32, no. 3, pp. 447–455, Jun. 2018.

[38] Max30102 High-Sensitivity Pulse Oximeter and Heart-Rate Sensor for
Wearable Health, Maxim Integrated, San Jose, CA, USA, Jan. 2018.

[39] S. K. Longmore, G. Y. Lui, G. Naik, P. P. Breen, B. Jalaludin, and
G. D. Gargiulo, ‘‘A comparison of reflective photoplethysmography for
detection of heart rate, blood oxygen saturation, and respiration rate
at various anatomical locations,’’ Sensors, vol. 19, no. 8, p. 1874,
Apr. 2019.

[40] T. Y. Abay and P. A. Kyriacou, ‘‘Comparison of NIRS, laser Doppler
flowmetry, photoplethysmography, and pulse oximetry during vascular
occlusion challenges,’’ Physiolog. Meas., vol. 37, no. 4, pp. 503–514,
Apr. 2016.

[41] M. Coutrot, E. Dudoignon, J. Joachim, E. Gayat, F. Vallée, and F. Dépret,
‘‘Perfusion index: Physical principles, physiological meanings and clinical
implications in anaesthesia and critical care,’’ Anaesthesia Crit. Care Pain
Med., vol. 40, no. 6, Dec. 2021, Art. no. 100964.

[42] M. Cope, The Development of a Near Infrared Spectroscopy System and
Its Application for non Invasive Monitoring of Cerebral Blood and Tissue
Oxygenation in the Newborn Infants. London, U.K.: University of London,
1991.

[43] M. S. Shaikh, K. Jaferzadeh, B. Thörnberg, and J. Casselgren, ‘‘Calibration
of a hyper-spectral imaging system using a low-cost reference,’’ Sensors,
vol. 21, no. 11, p. 3738, May 2021.

[44] S. Prahl. (1999). Optical Absorption of Hemoglobin. [Online]. Available:
https://omlc.org/spectra/hemoglobin/

[45] N. T. Clancy, S. Arya, D. Stoyanov, M. Singh, G. B. Hanna, and
D. S. Elson, ‘‘Intraoperative measurement of bowel oxygen saturation
using a multispectral imaging laparoscope,’’ Biomed. Opt. Exp., vol. 6,
no. 10, pp. 4179–4190, 2015.

87556 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-030-70787-3_10


O. Gutierrez-Navarro et al.: Multi-Spectral Image Database for In-Vivo Hand Perfusion Evaluation

[46] K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, ‘‘Visible
reflectance hyperspectral imaging: Characterization of a noninvasive, in
vivo system for determining tissue perfusion,’’ Anal. Chem., vol. 74, no. 9,
pp. 2021–2028, May 2002.

[47] S. P. Nighswander-Rempel, R. A. Shaw, V. V. Kupriyanov, J. Rendell,
B. Xiang, and H. H. Mantsch, ‘‘Mapping tissue oxygenation in the beating
heart with near-infrared spectroscopic imaging,’’ Vibrational Spectrosc.,
vol. 32, no. 1, pp. 85–94, Aug. 2003.

[48] B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst,
‘‘Hyperspectral imaging of hemoglobin saturation in tumor microvascu-
lature and tumor hypoxia development,’’ J. Biomed. Opt., vol. 10, no. 4,
2005, Art. no. 044004.

[49] L. Gevaux, C. Adnet, P. Séroul, R. Clerc, A. Trémeau, J. L. Perrot, and
M. Hébert, ‘‘Three-dimensional maps of human skin properties on full face
with shadows using 3-D hyperspectral imaging,’’ J. Biomed. Opt., vol. 24,
no. 6, 2019, Art. no. 066002.

[50] C. Li, V. Brost, Y. Benezeth, F. Marzani, and F. Yang, ‘‘Design and
evaluation of a parallel and optimized light–tissue interaction-based
method for fast skin lesion assessment,’’ J. Real-Time Image Process.,
vol. 15, no. 2, pp. 407–420, Aug. 2018.

[51] R. R. Anderson and J. A. Parrish, ‘‘The optics of human skin,’’
J. Investigative Dermatol., vol. 77, no. 1, pp. 13–19, Jul. 1981.

[52] G. Basaranoglu, M. Bakan, T. Umutoglu, S. U. Zengin, K. Idin, and
Z. Salihoglu, ‘‘Comparison of SpO2 values from different fingers of the
hands,’’ SpringerPlus, vol. 4, no. 1, p. 561, Dec. 2015.

[53] B. D. Lucas and T. Kanade, ‘‘An iterative image registration technique with
an application to stereo vision,’’ inProc. 7th Int. J. Conf. Artif. Intell., vol. 2,
Aug. 1981, pp. 674–679.

[54] E. Rosten and T. Drummond, ‘‘Fusing points and lines for high
performance tracking,’’ in Proc. 10th IEEE Int. Conf. Comput. Vis. (ICCV),
2005, pp. 1508–1515.

[55] O. Gutierrez-Navarro, L. Granados-Castro, A. R. Mejia-Rodriguez,
and D. U. Campos-Delgado, ‘‘A dataset for evaluating and validating
blood perfusion monitoring during an occlusion protocol: Multi-spectral
and plethysmography data (1.0),’’ Zenodo, 2023, doi: 10.5281/zenodo.
8157100.

[56] E. D. Chan,M.M. Chan, andM.M. Chan, ‘‘Pulse oximetry: Understanding
its basic principles facilitates appreciation of its limitations,’’ Respiratory
Med., vol. 107, no. 6, pp. 789–799, Jun. 2013.

[57] Jonas. (2023). Violin Plots for Plotting Multiple Distributions
(distributionPlot.m). MATLABCentral File Exchange. Accessed: Mar. 15,
2023. [Online]. Available: https://www.mathworks.com/matlabcentral/
fileexchange/23661-violin-plots-for-plotting-multiple-distributions-
distributionplot-m

OMAR GUTIERREZ-NAVARRO (Member,
IEEE) received the Bachelor of Science degree
in electronics engineering from Universidad
Autónoma of San Luis Potosí (UASLP), Mexico,
in 2007, the Master of Science degree in
computer science and industrial mathematics from
Centro de Investigacion enMatematicas (CIMAT),
Guanajuato, Mexico, in 2010, and the Ph.D.
degree in electronics engineering from UASLP,
in 2015, concentrating on numerical methods for

characterizing in-vivo tissue through time-resolved fluorescence lifetime
imaging microscopy data. In 2012, he was awarded with the Fulbright-
Garcia Robles Grant, facilitating his research as a Visiting Scholar
with the Biomedical Engineering Department, Texas A&M University.
He joined the Biomedical Engineering Department, Universidad Autonoma
de Aguascalientes, in 2015. His research interests include signal processing,
machine learning, and multi/hyperspectral imaging applications within food
science and biomedical engineering.

LILIANA GRANADOS-CASTRO received the
B.Sc. degree in biomedical engineering and the
M.Sc. degree in computer science and arti-
ficial intelligence from Universidad Autónoma
de Aguascalientes, Aguascalientes, Mexico, in
2017 and 2020, respectively. She is currently pur-
suing the Ph.D. degree in biomedical engineering
with Universidad Autonoma de San Luis Potosi,
San Luis Potosi, Mexico. She made a research
stay from Universidad Tecnológica de Panama,

in 2019, and Universidad de Las Palmas de Gran Canaria, in 2022. Her
research interests include photoplethysmography, pulse-oximetry, spectral
imaging, and blood perfusion on large body areas.

ALDO RODRIGO MEJIA-RODRIGUEZ received
the B.S. and Master of Science degrees in
biomedical engineering from UAM-I, Mexico
City, Mexico, in 2006 and 2009, respectively,
and the Ph.D. degree in bioengineering from
Politecnico di Milano, Milan, Italy, in 2013.
Since June 2014, he has been a Faculty Member
of biomedical engineering and the Postgraduates
Programs on Electronic Engineering and Life
Sciences with the School of Sciences, Universidad

Autónoma de San Luis Potosi (UASLP). His research work focuses mainly
on the processing and analysis of medical images for clinical applications,
and the design and analysis of biomedical instrumentation for wearable
devices and support systems in clinical decision making. He was involved
in the organization of conferences related to biomedical engineering, such
as ENIBET 2018 and 2019 (Conference Chair), CLAIB 2019 (Scientific
Challenge Chair), CNIB 2020 (Conference Chair), EMBC-IEEE 2021
(Theme Chair–Biomedical Imaging and Image Processing), and CNBI
2023 (Theme Chair–AI, Modeling and Simulation of Biological Systems,
Bioinformatics and Computational Biology). He was an Associate Editor
of the Mexican Journal of Biomedical Engineering (Revista Mexicana de
Ingeniería Biomédica—RMIB), from January 2020 to December 2021.

DANIEL U. CAMPOS-DELGADO (Senior Mem-
ber, IEEE) received the B.S. degree in electronics
engineering from Universidad Autónoma of San
Luis Potos (UASLP), Mexico, in 1996, and the
M.S.E.E. and Ph.D. degrees in electrical engineer-
ing from Louisiana State University (LSU), USA,
in 1999 and 2001, respectively. In 2001, he joined
the School of Science, UASLP, as a Professor.
From July 2016 to June 2020, he was the Head
of the School of Science. Since January 2021,

he was appointed as the Director of the Institute for Optical Communication
Research, UASLP. He has been an advisor or a co-advisor of 27 bachelor’s
thesis projects, 22 master’s thesis works, and eight Ph.D. dissertations. His
research interests include estimation and detection, optimization algorithms,
fault diagnosis, artificial intelligence, and signal processing. He is currently
a member of theMexican Academy of Sciences (AMC). In 2001, the College
of Engineering, LSU, granted him the Exemplary Dissertation Award. In
2009 and 2013, he received awards as a Young Researcher from UASLP and
AMC. From May 2019 to September 2022, he was an Associate Editor of
IEEE Latin America Transactions (ISSN: 1548-0992). Since October 2022,
he has been the Deputy Editor-in-Chief of IEEE Latin America Transactions.

VOLUME 11, 2023 87557

http://dx.doi.org/10.5281/zenodo.8157100
http://dx.doi.org/10.5281/zenodo.8157100

