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ABSTRACT Inconsistent hand and body features pose barriers to sign language recognition and translation
leading to unsatisfactory models. Existing recognition models are built up on the spatial-temporal depth
Sp features. Finding suitable expert features for the Sp model is challenging especially for dynamic sign
words because many inconsistent features exist across hand motions and shapes. In this article, we propose
IDF-Sign: an efficient and consistent Sp model from a spatial-temporal multivariate pairwise consistency
feature ranking (PairCFR) approach. The temporal features are obtained by computing the 3D position
vector of skeletal hand joint coordinates, while the spatial features were obtained by taking every ten spatial
coordinates in the 3D video frames and averaging it and doing so until the end of the frames. The PairCFR
was used to rank and select the best Sp model features at different feature thresholds. We employed a
threshold selection to compute a mid-point value of each ranked feature according to its weight. The receiver
operating characteristics (ROC) scheme was employed to identify the relationship between the sensitive
parameters and the Sp features, and the obtained values were utilized as modeling inputs. To verify the IDF-
Sign, we design a real-life experiment with a leap motion sensor (LMS) consisting of ten signers with a
total of ninety dynamic sign words. LMS provides the depth videos, since depth videos are too dense for
the Sp model to treat directly, we read the depth videos in comma-separated files in real time. Extensive
IDF-Sign evaluations using machine learning on ASL, GSL, DSG, and ASL-similar datasets prove the
Optimized Forest achieved an average recognition performance of 95%, 78%, 65.07%, and 95% of the top-1,
respectively.

INDEX TERMS Automatic sign language recognition, depth sensor, feature selection, hand gesture, pattern
recognition, image processing, 3D video processing.

I. INTRODUCTION
The need for effective sign language and hand gesture models
is rising due to the rapid increase in the hard-of-hearing
population of over four hundred million (>400) [1] and
the downstream activities such as sign language translation,
biometric verification system, human action recognition, and
touch-less interfaces. Existing sign languagemodels achieved
good performance using either single or/and multiple-depth
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spatial and temporal (Sp) models of raw hand information
or/and reconstructing this information to achieve Sp models.
Sp models are suitable to recognize sign language because
sign language transcribing is a three-dimensional (3D) activ-
ity, however, the recognition performance of Sp models is
decreasing to dynamic sign words (Sign). For this article, the
3D features are referred to as depth features. A sign is the sig-
nificant constructing unit of sign language sentences. The
decrease in the Sign performance was due to the presence of
many inconsistent features in the Sp models. Inconsistent fea-
tures pose significant barriers to sign language applications
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FIGURE 1. Shows dynamic sign word:(a) ASL word Fork. (b) ASL word
Jump. (c) ASL word Hey (d) ASL word Child. The ASL word in (b) is
misclassified with the word in (a), thus as well (c) is misclassified as (d).
This happens because of many inconsistent features that provide similar
information across the words.

such as misclassification, highly time-consuming network
learning, and similarity problems. These problems draw
the attention of many researchers for over a decade [2].
Cooper et al. [2] designed depth features using a Microsoft
Kinect depth sensor and the features were treated as 3D
information using sequential sub-units. Sequential sub-unit
models returned an accuracy of 54%. A method to improve
this model is known as sequence pattern boosting with a
discriminative feature selection strategy [3]. This strategy
of feature selection in the Sp sub-units model improved
the recognition accuracy to 76%. Still, this method suffers
outliers and inconsistent features. Recently, an improved low-
cost leap motion sensor is extended to capture 3D skeletal
hand joints of Sign [4]. As shown in Fig. 1, the American
Sign language (ASL) words [4]; ‘‘Fork’’, ‘‘Jump’’, ‘‘Hey’’,
and ‘‘Child’’ are captured by the leapmotion sensor as eighty-
four 3D skeletal hand joint coordinates. These coordinates are
used to compute the hand shape and motion of the sign char-
acteristics. In their method [4], similar Sign words are treated
as clusters of 3D sequences, where each cluster contains
two words with similar characteristics in shape and motion.
Similar characteristics are addressed using the generated
temporal dependencies of the 3D fisher vector known as FFV-
Bi-LSTM. This 3D Fisher vector sequence contains many
inconsistent features which limit the recognition performance
of the Bidirectional long-short-termmemory (Bi-LSTM) net-
work. Because of the presence of inconsistent features in the
FFV-Bi-LSTM model, the model returned a low recognition
performance of 91.02% for similar signs, which indicates the
significant need for improvement.

Addressing the inconsistent features in the depth mod-
els, the feature ranking and selection method demonstrate
good performance to better exploits the Sp context [1], [5].
The method achieves promising performance however, eas-
ily drops consistent features when fed with complex sign
word features as shown in Fig. 1. As shown in Fig. 1,
this phenomenon may generate more false positives leading
to classification errors. In this article, we extend pairwise

consistency feature ranking (PairCFR) capability with the
threshold value selection (TV)method to address the problem
of inconsistent depth features in the spatial and temporal (Sp)
depth model known as IDF-Sign. The temporal features are
obtained by computing the 3D position vector of the skeletal
hand joint depth coordinates, while the spatial features were
computed by taking every ten coordinates in the 3D video
frames and averaging it, and doing so until the end of the
frames. This is to highlight the gap between the previous
and the subsequent frame which is correlated with spatial
hand joint indices. The PairCFR was used to rank and select
the best Sp model features at different feature thresholds.
We employed a threshold value from the threshold selection
algorithm to compute the mid-point value of each ranked
depth feature according to its weight, in which less significant
features will be dropped unbiasedly. The scores provided by
the PairCFR-based TV method can be expanded to make
selected depth features swing between 0 and 1. This is a
significant achievement for the depth features. The benefit
of using the PairCFR method is that it yields a score within a
narrow range which controls training complexity and uncer-
tainty in modeling.

The receiver operating characteristics (ROC) scheme was
computed to identify the relationship between the effective
values and the Sp dynamic sign features, and the resulting
values were utilized as modeling weights. According to the
PairCFR algorithm, the most consistent features in dynamic
sign modeling are the hand orientation, velocity, Metacar-
pophalangeal joints, Proximal joints, and Inter-distal joints.
To verify the IDF-Sign, we design a real-life experiment
with ten signers with a total of ninety dynamic sign words
while suspending the leap motion sensor across their chest
to capture the depth videos. We read the depth videos in
comma-separated files in real-time using the Laboratory Vir-
tual Instrument Engineering Workbench (LabView) circuit.
Extensive IDF-Sign model evaluations using tree-based bag-
ging machine learning classifiers across the public domain
data sets demonstrate that the Optimized Forest achieved
the best average recognition performance. We itemize the
following contributions:
(i) We propose IDF-Sign: efficient and consistent spatial-

temporal depth Sp model from a multivariate pairwise
consistency feature ranking (PairCFR) using a low-cost
depth sensor.

(ii) We improved the PairCFR ranking by integrating the
threshold value from the threshold selection algorithm
to compute the mid-point value of each ranked depth
feature according to its weight, in which less significant
features will be dropped unbiasedly.

(iii) The receiver operating characteristics (ROC) scheme
was used to determine the relationship between the
effective parameters and the Sp dynamic sign features,
and the resulting weights were employed as modeling
inputs.

(iv) Since depth video frames are too heavy for the model
to treat directly, then each frame is automatically
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read in comma-separated value files in real-time using
programs-subroutines in LabView, without affecting the
semantic features of the depth videos.

(v) We treated each depth video frame as a feature instead
of using only the segmented features as in the existing
methods, this enables us to compute and average every
ten coordinates in the 3D video frames and do so until
the end of the frames by obtaining a new coordinate.

(vi) We extensively evaluate the proposed IDF-Sign method
on challenging 3D GSL, ASL similar and non-similar
dynamic sign words as well as 40 phonetically bal-
anced German Sign subsets of HamNoSys phonemes.
We achieve state-of-the-art 3D sign word recognition
performance.

The sections of this article are as follows: Section II intro-
duces related works, Section III provides problem analysis,
inconsistent depth features generation, PairCFR formulation,
threshold value selection, and the IDF-Sign recognition is
given in Section IV-E. Section IV provides experimental
analysis and evaluation. Discussion formed Section V. Con-
clusions are given in Section VI.

II. RELATED WORK
The challenges of estimating consistent features across video
sign language models have been considered for a couple
of decades. To identify suitable hand motion features from
noisy raw video information, dynamic sequential hand ges-
ture trajectories-based models [6] investigate human hand
trajectory feature challenges using sub-unit. Each sub-unit is
composed of several correlated consecutive frames. Finally,
a dynamic time-warping method was used to obtain a less
expensive warping path from the two sub-units. Works [7],
[8] proposed a skin blob for hand shape detection, where a
threshold was set for skin color. Kurakin et al. [9] introduced
sequential hand trajectory recognition using silhouette vector.
The hand is tracked from 360 sequences using an action
graph, hence graph vertices were considered as themodel fea-
tures. Likewise, the minimum jerk model for dynamic hand
movement tracking is adopted in [10] and [11]. However,
this model suffers frame-to-frame errors because of hand
motion across the frame. Lim et al. [12] proposed a particle
filter; the background model is designed from median and
mode filters across video frames. Besides, the foreground
model is fed into the serial particle filter, thus the models
are used to compute the covariance matrix for optimum hand
features.While hand trajectories are considered as parameters
buried on the Riemannian manifold of shape space used by
Smedt et al. [13]. The Riemannian formulation enables con-
sistent hand shape variation estimation. Reference [14] learn
trajectories feature vector via Support vector machine (SVM)
algorithm. In [15] proposed dynamic signword recognition of
hand trajectory features using the Hidden markov model with
Gaussian (HMM-Gauss) method, where each hand is tracked
using a region growing scheme. Likewise, Parelli et al. [16]
obtain a descriptive motion from the human joint detector

by deploying deep convolution pose models. In their work,
OpenPose tools provide image pixel coordinates of the hand
and body. While Liu et al. [17] propose shifts of hand center
and fingertips to represent the hand actions. Recently, many
related techniques of hand motion modeling is proposed for
sign words such as Camshift [18], [19] to provide a suit-
able representation of the hand shape and motion, though
were limited to shorter segments, as a result, give frame
distortion. Convex hull is adopted for effective hand action
modeling in [20]. Most of the existing methods contain
features that ignore the characteristics relationship of the fea-
tures. The constraint poses an inevitable challenge for the Sp
models to leverage the depth feature context representation.
Jesú et al. proposed a Spanish Sign language recognition
using Dynamic Time Warping algorithm to implement a
3D LMS-based pattern learning [21]. Besides, researchers
are increasingly exploring the use of feature dimensionality
reduction in real-life for depth sign language recognition,
such as maximal information correlation (MIC) Abdullahi
andChamnongthai [1], and selection of the best subset of gen-
erated weights using K-tournament grasshopper optimization
(KTGOA) Rim and Kanoun [22]. The former extended the
3D Kalman filter for dynamic hand tracking across the 3D
video frames and MIC was used to select the correlated
features. While the latter designed a myography force-based
ASL signal and used the KTGOA to reduce the size of
the Extreme learning machine (ELM) network. However,
the former may easily drop consistent features when fed
with complex sign word features. This may generate more
false positives leading to classification errors. Whereas the
latter may ignore the importance of the feature which are
the most significant aspect to sign recognition and may lead
to a very large network. Das et al. [23] proposed a hybrid
model Transfer learning-based convolution neural network
(TL-based CNN) with an ensemble tree for the recognition
of isolated digits and characters respectively. In the feature
vector, a background elimination algorithm is designed that
removes the background image features from the sign images.
Therefore, a summary of some of the best existing models of
sign word recognition is provided in Table 1.

III. MATERIALS AND METHODS
In this section, we describe the strategies for realizing the
proposed IDF-Sign method. The proposed method is divided
into the generation of depth features for IDF-Sign, the Pair-
CFR method for feature ranking, threshold value selection
to improve the PairCFR ranking, and IDF-Sign recognition
which describes the metaheuristic and ensemble tree capabil-
ities. The summary of the proposed IDF-Sign is illustrated in
Fig. 2.

A. GENERATION OF DEPTH FEATURES FOR IDF-SIGN
In this section, we explain the hand depth information, how
it is generated, and its location across the 3D leap motion
sensor. This study generated a set of three-dimensional X,
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TABLE 1. Summary of some of the existing sign language models.

FIGURE 2. Procedure of the proposed IDF-Sign.

Y, and Z (where each coordinate is a subset of x, y, and
z) features from leap motion sensor that reflect the human
daily sign language actions. For the purpose of this study,
the 3D features are referred to as depth features. The depth
features consist of the following’s skeletal hand and finger
joint motion and shape coordinates Table 2.

In total, we generate twenty-seven 3D skeletal hand and
finger joint coordinates including the tip-to-tip coordinates
as presented in Table 2. The first column entitle feature
describes the features that leap motion sensor extract while
the second column entitle Coordinates shows the location

TABLE 2. Hand depth features.

where each skeletal and finger joints are extracted, which is
making a total of eighty-four depth features ((3 × 27) + 3) at
different time stamps to achieve the hand temporal features.
For an effective sign language model development, we design
the temporal and spatial models from the listed 84 features as
described in the following section.

1) TEMPORAL DEPTH FEATURE MODEL
In this section, we describe the generation of temporal fea-
tures and their model development. Section III-A, provides
the skeletal hand and finger joints of a total of eighty-four
depth coordinate features at different time stamps as a func-
tion time to achieve the hand temporal features. These fea-
tures are vectorially summed up to obtain a temporal model
of the hand pattern and motion. The vectors are obtained
from the temporal depth skeletal hand joint coordinates by
exploiting the 3D position vector operation. The hand shape
χt is computed using the Eq. (1).

χt (x, y, z)=
∑

i∈{x,y,z}
j∈{x,y,z}
i==j

[[PYR]i, [HA]i, [PW ]i, [M3]i, [P3]i,

×[IP3]i, [D3]i, [PI3]i, [ID3]i + [PN + Dir]j]

(1)
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where 3 denotes the hand finger capsule which contains the
Thumb, Index, Middle, Ringy, and Pinky fingers respectively
within a set of x,y,z. Where i == j denotes the index of
the set which compares the right side with the left side.
Where PYR,HA,PW ,M3,P3, IP3,D3,PI3, ID3,PN and
Dir denotes pitch-yaw-roll, hand-arm direction, palm-wrist,
metacarpophalangeal, proximal, inter-phalangeal, Distal,
proximal interphalangeal, inter-distal, palm-to-normal, and
hand direction joints, respectively. We compute motion fea-
tures M⃗t (xm, ym, zm) by combining the hand orientation
and hand velocity coordinates along the x,y, and z-axis as
described in Algorithm 1. The implementation is described
in STEPS 7 to 17 of Algorithm 1. The complete temporal
feature vector is a 42-dimension and 84-dimension vector for
a single-hand and double-hand, which is obtained as follows.

χ⃗t + M⃗t = (x, y, z)+ (xm, ym, zm)

= [x + xm, y+ ym, z+ zm] (2)

2) SPATIAL DEPTH FEATURE MODEL
In this section, we describe depth spatial information and
how it is generated. We generate the spatial and semantic
features of the consecutive frames in the temporal model
using the weight of frame motion coordinate to exploit the
benefits of visual hand features across 3D video frames. The
frame coordinate motion weight Eq. (3) defines each video
frame as a window W and takes the total sums of the pixel
coordinates Pf of the hand and finger joint of the selected
window

∑Lw
f=1. Using the selected window of hand and finger

coordinates, we calculate the weighted sum. However, the
selected window moves to the next video frame to perform
the same operation until it finally reads the last video frame
Lw. The weight of the frame coordinate motion yields new
features (that is, eighty-four features), these features are built
as the spatial model as described in STEP 19 of Algorithm 1.
The combination of the temporal and the spatial models gives
a comprehensive multiple spatial-temporal depth Sp model (
that is, 162 depth features). However, the Sp model consists
of one hundred and sixty-eight (168) depth features F in Eq.
(4) that are related and non-related sub-feature f to decide the
recognition of a sign language word as explained in STEPS
21-22 of Algorithm 1. The non-related features are known
as inconsistent depth features and were very insignificant
to the recognition performance. Therefore, the insignificant
features need to be identified and work accordingly.

Pf (x, y, z) =
1
Lw

.

Lw∑
f=1

Wf (X ,Y ,Z ) (3)

wherePf , Lw, andW denotes the spatial and semantic features
of the consecutive frames using the weight of the frame
coordinate motion, length of the window, and video frames
as windows.

F(x, y, z) =
{
{χ⃗ + M⃗}f + {Pf }

}
(4)

3) GENERATION OF INCONSISTENT DEPTH FEATURES
Inconsistent depth features are defined as the depth coordi-
nates of two or more depth information that contribute to
yielding an undesired sign word pattern compared to the orig-
inally intended sign word pattern. The major challenges for
identifying and correcting inconsistent depth features were
not limited to (1) observing the relationships among depth
features which may lead to high computation and (2) drop-
ping undesired inconsistent depth features without removing
the significant features which may lead to an unconstrained
search. For example, the dynamic sign word FORK and
JUMP as shown in Fig. 1 and their feature distribution
statistics are illustrated in Fig. 3, which contains depth video
frames V = f1, · · · , fk that have similar information Ik
and coordinates c. These words are from different classes
but exhibit many frames with similar inconsistent depth
features, leading to similarity problems. These problems
can be expanded in multivariate consistency feature ranking
(MCFR) space.MCFR is a heuristics approach needed to con-
strain the search for inconsistencies to a set of depth features
that would provide interesting recognition performance. The
MCFR is comprehensively written as a PairCFR function.

B. PairCFR METHOD
From the literature [26], a set of depth features is inconsistent
when two or more samples have the same values but different
classes. For example, in Fig. 3, the samples of the ASL
word Fork consist of ThumbMetacarpal, PinkyProximal,
PinkyDistal, and RingyProximal joint coordinates belong to
class Fork, as well as sample values of ThumbMetacarpal,
PinkyProximal, PinkyDistal, RingProximal joint coordinates
belong to class Jump are inconsistent. Therefore, there is a
need to drop inconsistent features and harvest the consistent
features according to consistency measure. The consistency
measure is defined in the multivariate consistency feature
ranking (MCFR) [27]. The MCFR discriminates the redun-
dant features using inconsistency measure I. The MCFR is
comprehensively written as pair consistency feature ranking
(PairCFR) function 0u

k when n ∈ {1, · · · , z} and z denotes
depth input features, which can be given as [27]:

0u
k (n) =

1
z− 1

.
∑

m∈{1,··· ,z}

0k ({n,m}) (5)

where k denotes a set of depth features having a subset of
output class u. Where 0k ({n,m}) = 1 − Ik ({n,m} denotes
the consistency metric of the subset established by the depth
features n and m, which is restricted at m ̸= n.

Corollary; The inconsistency features Ik (f ) have a depth
subset feature f within a depth video frame V as given in
Eq. (4), where k is obtained from the total sum of all the
inconsistency count Ih for all the depth patterns divided by the
total number of the depth sequences in k. However, in each
given depth pattern (scores of the selected depth features
without class), Ih is computed as the total number of the same
depth patterns in the depth information minus the number
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FIGURE 3. Shows distribution of depth features: (left; vertical axis) shows
ThumbMetacarpal, PinkyProximal, PinkyDistal, RingProximal joint
coordinates, and (bottom; horizontal axis) show their corresponding joint
coordinates from another sign word Jump. The coordinates at the top
within each frame indicate that the hand shape coordinate is a function
of all other parameters.

of depth sequences of the majority class of the pattern. The
final features are analyzed using the threshold value selection
(TV), to select the consistently ranked features. To obtain the
suitable threshold value of the ranked features, thus a depth
feature analysis is performed. The summary of the PairCFR
method is shown in Fig. 17.

C. DEPTH FEATURE ANALYSIS
In this article, a feature analysis is conducted to visualize the
contribution of each feature within the set. Figs. 3-4 examines
the data set by looking at the joint distribution of some pairs
of depth features with their instances or sequence length. The
instance of the feature suggests that the finger joint feature
is a function of all the other parameters. The other features
indicate they are functions of each other.Whereas the features
concentrated across each frame show that these instances are
functions of each other. Thus, the depth features need to be
carefully analyzed to avoid dropping significant features.

Therefore, the feature analysis highlights that the ranked
PairCFR features are functions of each other to decide the
correct classification of the depth skeletal hand joint coordi-
nates. The PairCFR can highlight the solution of recognizing
a feature of Jump higher than the feature of Fork as shown
in Figs. 5-7. The blue dots lies in between the top and
bottom of the diagonal blue solid line. The closeness of
these dots towards the diagonal line shows effective fitness,
otherwise not well-fitted. The plot indicates that the model
recognizes good with the ROC = 0.5. The plots determine the
deviation toward the correct recognition of similar features.
Therefore, it provides effective decision thresholds, that may
increase the number of true positives. In this regard, we build
the model within the tree-bagging classification algorithm.
The PairCFR algorithm finds the best ranking and scores of
each feature to measure its quality. We improve the ranking

FIGURE 4. Shows distribution of depth features: (left; vertical axis) show
ThumbMetacarpal, PinkyProximal, PinkyDistal, RingProximal joint
coordinates, and (bottom; horizontal axis) show their corresponding joint
coordinates from another sign word Fork. The features concentrated
across each frame show that these instances are functions of each other.

FIGURE 5. Shows fitness of the recognition values versus true values of
the depth features: the circle of blue solid shapes lies between the single
diagonal blue solid line in the center.

fairness of the PairCFR method using the threshold value
selection.

D. THRESHOLD VALUE SELECTION
Threshold value selection is a method of computing the
mid-point value of each given depth feature according to its
weight using a Threshold value (TV). A TV is computed from
the Threshold selector algorithm (TSA). For the purpose of
this paper, the TSA algorithm is a heuristics approach that
can work by giving a constant TV. The TSA influences the
decision of the ensemble tree classification to compute the
true positive values equal to or greater than the TV which
is set to 0.5. The proposed IDF-Sign method uses the new
computed TV as explained in Algorithm 1. We observe the
recognition performance of a PairCFR feature matrix with
an optimized ensemble forest classification to obtain the
suitable TV value. This is done by analyzing the ROC curve
to determine the effective probability scores suitable for depth
features as shown in Fig. 5. However, the scores that achieve
1 are settled as the final TV to distinguish between the right

88516 VOLUME 11, 2023



S. B. Abdullahi, K. Chamnongthai: IDF-Sign: Addressing Inconsistent Depth Features for Dynamic Sign Word Recognition

FIGURE 6. Shows fitness of the recognition features versus true depth
features: the circle of blue solid shapes lies between the single diagonal
blue solid line in the center.

and wrong signs. The ROCmeasures the rate of true positives
against false positives.

E. IDF-SIGN RECOGNITION
In this section, we explain the design of the recognition algo-
rithms in the proposed IDF-Sign. We design tree classifiers
from the decision tree-based approaches due to their recog-
nition capabilities. Tree models, such as the decision tree,
random forest tree, optimized forest, and rotation forest, are
widely applied in sign language recognition [23], [28], [29].
A notable advantage of tree classifiers is that they require
the least fine-tuning to settle for the best performance in
contrast to Deep Learning classifiers. The main limitation
of the tree-based approaches is the restriction while pruning
the trees to overcome overfitting. Therefore, large trees fit
the noise present in the underlying depth information and
hence lead to a low bias and high variance. A decision tree
(DT) is the most typical tree classifier which utilized a single
decision tree that overfits the training data. Because any slight
change in training depth features may lead to a serious change
among the resulting decision trees which were generated
from the original and modified depth features. To address
these trending problems, an ensemble of two or more trees
is proposed as a solution in the literature. Thus, we design
an ensemble of decision trees to learn logical rules than a
single tree. However, when we plant a lot of trees and the
final recognition is an average of the output of all the trees
in the ensemble, we avoid these problems. However, a large
number of trees lead to large memory occupancy and compu-
tational overhead [30]. These costs can be crucial for real-life
applications such as sign language and hand biometric recog-
nition. It is revealed that not all trees are equally contributed
during recognition, meanwhile, some trees may contribute to
a downgrade in the average recognition performance of the
forest. Therefore, obtaining a subforest (a subset of trees) via
the pruning approach may lead to an effective performance
than the entire forest [31], [32]. Thus, rotation forests (ROF)
can achieve similar or better performance with less number
of trees and ensembles. Therefore, we design an optimized

FIGURE 7. Shows fitness of the recognition features versus true features
of the depth features: the circle of blue solid shapes lies between the
single diagonal blue solid line in the center.

Forest (OF) classifier with ROF. The OF classifier is obtained
through the strength of the Genetic Algorithm (GA) to obtain
an optimal sub-forest from a random forest bagging [31]. The
major benefits of bagging with tree methods are (1) Feature
scaling has no impact on the structure of the trees (2) The
missing values do not affect decision trees (3) The effect of
the outliers is very minimal on a decision tree (4) We do not
need to do explicit feature transformations to accommodate
depth feature interactions.

Bagging generates a new set of depth features F̂t from
the raw depth features Ft . The F̂t comprised the same num-
ber of features and samples as in Ft . However, the samples
are generated according to the bootstrap strategy in which
more than sixty percent of the samples in Ft were chosen.
Corollary: a predefined sample c generated during bagging
in F̂t = ˆFt,1, ˆFt,2, · · · , c samples, where F̂t is summarily
written as ˆFt,n with n = 1, 2, · · · , c to generate c number of
trees for the forest. A random subspace algorithm randomly
draws a subset of features f from the whole feature set F to
determine the splitting feature for each node of the DT. Let’s
assume that a forest has R trees, there exist 2C −1 subforests.
The most effective way for obtaining the optimal subforests
is to train them on the depth training set which improves
the generalization performance. Training the subforest by
exhaustive search is not realizable as the number of subforests
increases substantially. A heuristic is designed to choose a
partial search method to effectively search for the best sub-
forests with limited computation capacity [33]. We propose
to use a genetic algorithm (GA) that exhibits a high proba-
bility to select close-to-optimal subforests, irrespective of the
number of actual forests [30], [32]. GA exploits an effective
solution through ease-to-use chromosomesQ, which is obtain
from the populations W. In the article, the initial population
W of GA is fed from high-quality trees R which proved to
provide more effective results [30]. Therefore, we intend to
compare the recognition performance of the three tree-based
bagging classifiers (that is, Random forest, Rotation forest,
and Optimized forest) as follows.
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FIGURE 8. Procedure of PairCFR for IDF-Sign.

(i) Random forest [31]; An RF classifier comprised a
number of tree-structured classifiers {8(F, ϱt , t =
1, · · · , n)}. Where ϱt denotes random vectors that are
independently identically distributed. However, a tree
can cast a unit vote for the most famous class at sign
feature vector F. The RF provides a feature selection
during the training of the basic classifier.

(ii) Optimize Forest [30]; OF is an ensemble tree-based
approach, where a base classifier is optimized from the
initial population search of the GA. The structure of
the GA is exploited to achieve optimal subforests as
explained in Algorithm 2.

(iii) Rotation forest ROF [32]; is defined as an ensemble
tree scheme, which prevents the defects of the bagging
methods to a certain extent. It is assumed that any basic
classifier can be developed in ROF.

IV. EXPERIMENTAL ANALYSIS AND EVALUATION
A. EXPERIMENT
The IDF-Sign is experimentally verified to show the perfor-
mance of the system on real-life sign language recognition.
The experiment is conducted with ten signers, who are tasked
to perform ninety signs ten times each. The signers are
between the age of 24 to 40 years and most of them were
right-handed. The signers were requested to hang a leap
motion sensor (LMS) at their chest as shown in Fig. 9. The
LMS provides the 3D videos of 3D coordinates from com-
plete skeletal hand joints, for details readers are referred to
Table 3 and [4]. The LMS is implemented using Microsoft
Visual Studio (MS Visual Studio at × 86 target platform)
and.Net framework versions 4.8 and 2.0, which are enabled

Algorithm 1 PairCFR Feature Learning Algorithm
1: start
2: set χ (x, y, z) {hand pattern}
3: set i, j, f ,Lw {feature indices}
4: set Pt ,Ft (x, y, z) {Target features}
5: output 0u

k (n)
6: repeat
7: while i, j = 1 · · · n is detect for
8: −→ set i ∈ {x, y, z}
9: −→ set j ∈ {x, y, z}

10: −→ compare i == j
11: end while
12: compute χ (x, y, z) in Eq. (1)
13: while M⃗ ∈ (x, y, z) :
14: −→ if χ⃗ ∈ (x, y, z) :
15: −→ Compute χ⃗ + M⃗ in Eq. (2)
16: end while
17: compute Pt (x, y, z) in Eq. (3)
18: get Ft (x, y, z) = ({χ⃗ + M⃗} + {Pf ,t }) from Eq. (4)
19: compute Ft (x, y, z) from Eq. (4)
20: return Ft (x, y, z)
21: for m, n ∈ Ft :
22: −→ if m, n ∈ (1, · · · , z)
23: −→ for ∀m ̸= n
24: −→ compute 0u

k (n) in Eq. (5)
25: update Ft in Eq. (4)
26: until Ft is ranked
27: return 0u

k (n)
28: end

via the LabView environment as shown in Fig. 10. The com-
plete implementation allows us to address the inefficient data
acquisition and processing problems by offering a new 3D
video streaming platform with real-time recording compu-
tation. The experiment is implemented in three steps. In the
first step,We exploit the LeapCwhich is a C-style application
programming interface (API) in the LMS’s Software Devel-
opment Kit (SDK) using the C# binding. LeapC is designed
for accessing tracking data from the Hand Tracking Service,
as well as creating bindings to C# language as shown in sub-
block 1 of Fig. 10. The language bindings are implemented
in the native communication (COM) interfaces and the Babel
Framework (which is part of Visual Studio SDK). The COM
interfaces aremanaged using the set of wrappers andVSPack-
ages. In the second step, the setup provides the best memory
reduction by converting the 3D video frames into a stream of
comma-separated files (CSV) in real-time using LabVIEW
software as shown in sub-block 2 of Fig. 10. LabVIEWmakes
system development fast and easy for all. Since 3D videos are
too dense for the Sp model to treat directly, thus we consider
only the CSV frames in building off the Sp models. We uti-
lized a frame rate of 64 frame-per-second (fps) which is taken
along the x, y, and z dimensions. The videos are automatically
evaluated using the 3D vector operation as explained in Eq.
(2) to capture the hand shapes of the signs. The weight of
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FIGURE 9. Real-life experimental set-up.

the frame motion coordinate function as explained in Eq.(3)
was used to generate the spatial frame features. We obtain
the complete hand features as given in Eq. (4) to achieve a
spatial-temporal hand feature vector. The combined features
are scaled using the scaler function to control outliers as given
in Eq. (6) and the evaluated frames are readily fed into the
PairCFR for feature ranking and selection. In the third step,
the selected frames are fed into the PairCFR for the feature
ranking and selection. The selected features are built into
the bagging classifier for recognition. We further performed
experiments with some of the depth baseline data sets to claim
the performance of the proposed IDF-Sign across different
public domains. Finally, probability scores from the classi-
fiers are evaluated using state-of-the-art evaluation metrics.

B. DATASETS
To claim the effectiveness of the proposed IDF-Sign method,
we publicly evaluate this method on the available challenging
depth data set as follows.

(i) Cooper et al. [3] depth data; The depth data is a Greek
Sign Language (GSL) which comprised of 20 dynamic
word signs randomly collected from similar and non-
similar signs. The data set is performed by six signers,
with an average of seven times per sign. Signers were
directed to stand in front of an MS Kinect sensor, and all
were captured at the same positions.

(ii) Hanke and Schimaling [2], [34] depth data; com-
prised of 40 Deutsche Gebardens-German Sign Lan-
guage (DGS) performed by fifteen non-native signers
for an average of five times each. The depth data is
captured with a mobile system with OpenNI to obtain
the motion of human skeletal joints during DGS per-
formance. The DGS is the selected subset of balanced
HamNoSys phonemes.

(iii) Abdullahi and Chamnongthai [4] depth data; com-
prised of 20 similar dynamic American sign language
(ASL) words which are performed by ten signers ten
times each. The ASL words are captured using an LMS
sensor during motion (That is, the sensor is suspended
on the signer’s chest).

C. DEPTH FEATURE NORMALIZATION
The selected depth features are further scaled with a func-
tion S(F) in between the minimum (mn.(F)) and maximum

FIGURE 10. Block diagram of experimental implementations.

TABLE 3. Experimental environment.

(mx.(F)) feature values to effectively control the effect of
some outliers within the depth features F, thus improving
the recognition accuracy as given in Eq. (6). In addition, the
normalization will prevent the effects of loss of significance,
that is the catastrophic cancellation. We complete the final
stage of the IDF-Sign method, which is the classifier training.

S(F) =
(

F − mn.(F)
(mx.(F)− mn.(F))

)
[mx.(F) − mn.(F)]+ mn.

(6)

D. CLASSIFIER TRAINING
The classifiers are trained in an end-to-end fashion using
the Adam optimizer on a single CORE i7-9th Gen CPU.
The classifiers are written in Python 3.10 language with the
scikit-sklearn package http : //scikit − learn.org/stable/.
We pass the data set as a data frame in the first six steps of
Algorithm 2. In lines 8 to 11 we create the random subset
of the depth features. The function takes the feature index
to compute the number of subsets needed as parameters
and outputs f-subsets. With our nth depth features, we set
a f − value to be n, thus we need non-overlapping feature
indices and nth iterations. Therefore, the number of iterations
(iter) needed is saved in a limit variable in line 13. In such
case where the required subset is less than the total number
of features, we adopt the first f-entries in the iterable as
described in lines 14-19. With the shuffling strategy, we will
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TABLE 4. Machine learning settings.

be returning different volumes at different times. Since we
select the subset, thus the available subset in the iterable is
deleted to avoid non-overlapping features. Since the subsets
are ready, we built our rotationmatrixMR. The rotationmatrix
is n × n and develop complete trees to implement the forest
performancewith the generated depth data frames.We further
divide and bootstrap the data frames into training (ftrn) 65%
and testing (ftst ) 35% split to evaluate the performance of the
developed models. In line 32 of Algorithm 2, we computed
the principal component (PCA) depth features hn,c on the n-
th subset in f for every c in the R-th subset to reduce the
large instances of the data frame. We further computed the
linear combination of the consistent features to introduce
the correlation among the features. The repeated features are
considered inconsistent features dropped randomly from both
the consistent and redundant features of lines 6 to 10. For
the OF, we denote R as the number of trees. Each tree is
iterated until we achieved the complete R trees. The achieved
h is memorized for each subset. We design an optimized
matrix of sizeM ×M , whereM denotes the number of depth
features. We built the h into the matrix to match the position
of the depth features in the raw training set f. In addition,
we do the projection f̃ of the f on the optimized matrix
via the matrix multiplication. We develop the decision tree
with the f̃ depth features. Finally, we memorized the tree as
well as the optimized matrix. Therefore, we select 20, 1, 20,
and 100, for a number of iterations, random seed, size of
the population, and batch size, respectively as illustrated in
Table 4. One hundred is chosen as the Size of each bag, as a
percentage of the training set size. One hundred is resolved
as the Batch size since the base learner is a Batch predictor Y.
One hundred is chosen as the number of trees in the ensemble.
We have chosen Rotation forest (RF) as the base classifier in
the OF. In the OF classifier, we set the number of randomly
chosen features using Eq. (7). The OF is designed without
representing copies of instances using weights rather than
explicitly. The design did not store the out-of-bag recognition.
The maximum depth of the trees was set to unlimited. We did
not compute attribute importance through mean impurity
decrease rather we utilized the row-selected features. The
three classifiers are trained with the bagging algorithms. The
performance of the classifiers is evaluated using the accuracy
and area under the receiver’s operating characteristics (AUC

Algorithm 2 IDF-Sign Recognition Algorithm
1: start
2: set R {No. of trees}
3: set Q,W {chromosomes and populations}
4: set f , n,TV ,ROC {training subsets}
5: set g, r {crossover and mutation}
6: set hn,c {Target features}
7: repeat
8: while f = 1 · · · n:
9: −→ set ftst = 0.35× f

10: −→ set ftrn = 0.65× f {TrainFeat}
11: −→ set hg,r {genetic-inspired operator}
12: end while
13: compute subset = 0, iter = 0, limit = len(iter)

f

14: −→ compute limit = len(iterable)
f

15: −→ compute G from Eq. (6)
16: while iter < limit :
17: −→ if f ≤ len(iter) :
18: −→−→ Set subset ←− f
19: −→ else subset = len(iter)
20: end while
21: repeat iter ++
22: return subsets
23: for W ∈ Q :
24: adopt hg,r
25: Wnew←− hg,r
26: Qnew = 1 · · ·Wnew
27: select best Qnew
28: return Q_new
29: for n ∈ u :
30: −→ compute e = dv(ftrn, ftst )
31: for subforests ∈ Qnew :
32: −→ compute h = pca(subsets)
33: −→ train pca.fit(subset)
34: train model = fit(divide(subsets), subforests)
35: return model
36: −→ classify h = model.classify(ftst )
37: −→ select TV using TSA.classify(ftst )
38: −→ build k, h, f = buildOF(f̃ ,model,R)
39: compute ROC,TP,AUC
40: until ROC ≥ 0.5
41: return model
42: end

ROC). Accuracy fails most of the time to imbalance depth
features whereas AUC ROC is a good choice.

RNF = int(log2(Y )+ 1). (7)

where RNF and Y denotes a randomly chosen number of
features and a number of available predictors.

E. IDF-SIGN RECOGNITION RESULTS
In this section, we present the recognition results of IDF-
Sign. The results of the evaluation metrics are achieved from
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TABLE 5. Recognition results of the tree-based classifiers on ASL data set.

the unseen (test) depth features and are presented in aver-
age values and the excellent values are emphasized through
bold-face. Since we are treating the multi-classification prob-
lem, we adopt the One-versus-the-Rest (OvR) multi-class
strategy which consists of evaluating a ROC curve per num-
ber of sign classes. Always a considered sign is seen as
a positive class while the rest a negative class. We use a
function [sklearn.preprocess] to binarize the target by one-hot
encoding in an OvR fashion. We performed the classification
using three different methods as explained in section III.
The recognition results of the three classifiers are compared
and presented in Table 5. It shows that the OF achieves the
best recognition performance on the selected PairCFR-based
features of the newly proposed ASL data set. Therefore,
we extend the classification of the OF across three differ-
ent methods. The first method is trained with raw depth
features and achieved recognition accuracy of 88.94%, and
89.55% for the complete 84-by-168 single-by-double hand
depth features and 84-by-168 single-by-double hand depth
features with improved TV-based ROC guide. The IDF-Sign
computed an average AUC of 86% as shown in Fig. 11.
We analyze the fitness of the modeling parameters as shown
in Fig. 12. It shows that the selected features are robust but did
not fit well with the chosen modeling classifier. The second
method is trained with selected PairCFR depth features and
achieved recognition accuracy of 92.77% and 95.24% for
the ranked 41 depth features and 41 depth features with an
improved TV-based ROC guide as shown in Figs. 13 and
14, respectively. In the ROC evaluations, the IDF-Sign return
an average AUC evaluation of 91.02% and 94% for the
41 ranked features and 41 ranked PairCFR features using the
TV-based modeling selection. The summary of the IDF-Sign
recognition on individual dynamic sign words is illustrated
in Table 6. It shows the average computed TPR and ROC of
0.951 and 0.948, respectively. We analyze the fitness of the
modeling parameters as shown in Fig. 15. It shows that the
selected features are robust and fit well with the chosen mod-
eling classifier. The third method is trained using publicly
available depth data sets. Since the best model is achieved
from the PairCFR-based feature ranking with OF. The OF
achieved the average recognition accuracy of 95.93%, 78%,
and 65.07%, for the ASL, GSL, and DSG data sets, respec-
tively as shown in Figs. 16-19.

F. COMPARISON WITH SOME STATE-OF-THE-ART
METHODS
We compare the recognition performance of IDF-Sign with
some best existing methods on publicly available depth
sign language data sets. The evaluation in Eq. (3) is per-

FIGURE 11. Shows the recognition results of 90 ASL words with improved
TV modeling using the ROC evaluation curve: the black solid line indicates
the ROC margin at 0.5, while the orange solid line indicates the
micro-averaging of the single class versus all other classes.

FIGURE 12. Shows the fitness of the classifier parameters across the
84-by-168 depth features with TV-based modeling: the blue solid line
indicates the separation between the features, while the blue solid circles
indicate the fitness of the data points.

formed across the public data sets to achieve the spatial
information. The recognition results of the three data sets
are compared with the proposed IDF-Sign. As a result,
we achieve the best ensemble tree-based classifier as shown
in Tables 7-10. Table 7 presents the individual recognition
results of 20 similar dynamic ASL sign words. The results
show that the IDF-Sign achieves the best accuracy com-
pared to the FFV-BiLSTM method except at some dynamic
sign words; Embarrass, Eight, and Excuse, respectively,
where FFV-BiLSTM returns the best accuracy of 100%.
Table 8 presents the comparison results between the proposed
IDF-Sign and the best existing methods across the DGS data
set. The proposed IDF-Sign outperforms the three existing
methods [2], [3], [35]. We increase the accuracy up to 2%.
The results of comparison between the proposed IDF-Sign
and the existing best methods [2], [3], [35] across GSL data
sets are provided in Table 9.

The sensitivity of the OF parameters is evaluated using the
ROC curve as shown in Figs. 18-19. It is shown that the OF
with improved PairCFR manipulations achieves ROC AUC
of 0.96, 0.92, and 0.81 for the ASL-similar, GSL, and DGS
data sets, respectively.
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FIGURE 13. Shows the recognition results of 90 ASL words with
PairCFR-based modeling using the ROC evaluation curve.

FIGURE 14. Shows the recognition results of 90 ASL words with
PairCFR-based TV-based modeling using the ROC evaluation curve.

FIGURE 15. Shows the fitness of the classifier parameters across the
selected PairCFR depth features with TV-based modeling.

The recognition loss of the trained and tested depth features
is illustrated in Figs. 20-22.

Conventional method [3], utilized two strategies for depth
feature recognition. The first strategy is the Markov model
which uses the feature vector as a whole (that is, 26 fea-
tures). The second strategy, Sequential Pattern (SP) Boosting
performs discriminative feature selection. The SP discrim-
inatively selects the best features from the weak learners.
The resulting tree-search method is integrated into a boost-
ing framework; resulting in the SP-Boosting algorithm that
combines a set of unique and optimal SPs for a given clas-
sification problem. Though the number of selected features

TABLE 6. Recognition performance of IDF-Sign across 90 dynamic ASL
words.

FIGURE 16. Shows the first recognition performance of selected depth
features: the blue solid line indicates the recognition loss at 100 epochs,
while the orange solid line indicates the validation loss.

of SP boosting is not clearly known by the readers. For this
work, classifiers are built in an OVR manner and the results
are aggregated for each sign class. The process in Eq. (3)
is performed across the GSL data set to obtain other spatial
information. However, our proposed IDF-Sign selected the
best 14 features which return an average recognition perfor-
mance of 78% at top-1. It shows that the IDF-Sign is better
than the three existing methods [2], [3], [35]. However, the
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TABLE 7. Recognition Results of 20 similar dynamic ASL words [4] using
IDF-Sign.

FIGURE 17. Confusion matrix of similar ASL datasets.

FIGURE 18. Shows the recognition performance of selected depth
features of the GSL data set: the blue solid line indicates the recognition
loss at 100 epochs, while the orange solid line indicates the testing loss.

TABLE 8. Results of comparison between IDF-Sign with SOT methods on
DGS data set at top-1.

analysis of the two employed strategies to show the sensitivity
of the proposed method is provided in Table 10.

G. ABLATION STUDIES
The resulting ROC curves of the OF are analyzed according
to the similar feature count, that is TSA substituted the scores

FIGURE 19. Shows the recognition performance of selected depth
features of the DGS data set: the blue solid line indicates the recognition
loss at 100 epochs, while the orange solid line indicates the testing loss.

FIGURE 20. Shows the ROC evaluation curve of the ASL data set: the black
solid line indicates the ROC margin at 0.5, while the orange solid line
indicates the micro-averaging of the single class versus all other classes.

FIGURE 21. Shows the evaluation results of the ROC curve using the one
versus rest strategy on the GSL data set: the black solid line indicates the
ROC margin at 0.5, while the orange solid line indicates the
micro-averaging of the single class versus all other classes.

with 0.5. We repeated this method to all the considered sign
scores. Therefore, a distinct classifier is realized that recog-
nize sign from the same family according to the mid-point
score of 0.5 to distinguish the TP rate from the false pos-
itive rate (FP) rate as shown in Fig. 14. The improved OF
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FIGURE 22. Shows the first ROC evaluation curve of the DGS data set: the
black solid line indicates the ROC margin at 0.5, while the orange solid
line indicates the micro-averaging of the single class versus all other
classes.

TABLE 9. Results of comparison between IDF-Sign with SOT methods on
GSL data set at top-1.

TABLE 10. Results of comparison between IDF-Sign with SOT methods on
GSL-20 data set with two strategies.

algorithm is achieved using bagging with an ensemble forest
scheme. The improved OF provides a number of soft decision
boundaries which makes the number of TP rates higher in the
depth feature recognition as shown in Table 6. This strategy
is employed for the public depth data sets which improved
the recognition accuracy of 2%, 2%, and 5% for the GSL,
DSG, and ASL data sets, respectively. The resulting ROC
curve is evaluated using the similar feature frequency, that is
for each value in the curve, the equivalent distinct probability
score is utilized to count the frequency of similar features
present with score ≥ TV. The frequency is the reflection of
the number of wrongly classified classes. We employed the
ROC evaluations to determine the bias from class imbalances
and the influence of the FP rates. The developed depth feature
models are trained in three different methods as explained
in Table 11. The first method employed the 168 raw depth
features in the ensemble tree model using OF, which achieve
a recognition accuracy of 89.55% with an inference time of
850ms. The secondmethod adopted 41 ranked depth features
from the PairCFR using the OF, which return a recognition

accuracy of 92.77%with an inference time of 65ms. The third
method is built up using the selected 41 features of PairCFR-
ranked base-TV selection and 95.21% recognition accuracy
is achieved with OF. It is demonstrated that the third method
returns the best performance when compared to the second
and first methods, respectively.

We perform the signer dependence (SD) and signer inde-
pendence (SI) evaluation strategies to evaluate the effective-
ness of the proposed IDF-Sign. For fairness, we adopt the
same method of using Top-1 and Top-4 strategies as in [3].

1) SD
To verify the robustness of the proposed IDF-Sign in the
SD setting, we randomly divided the datasets into the 65%
sample frames for the training, and the 35% are referenced
for testing, respectively. Table 10 shows the performance of
the IDF-Sign across the six signers. The column at the bottom
contains the average recognition results and the IDF-Sign
achieves an accuracy of 95.3% and 98.99% at the Top-1
and Top-4 respectively, which is higher than the results of
the Markov model and SP-boosting. The proposed IDF-Sign
increases the recognition accuracy to 16% and 3.3% at TOP-1
compared to the existing Markov and SP-boosting, respec-
tively. The IDF-Sign increases the recognition accuracy to
6% and conforms with the existing results compared to the
92% of Markov and 99.9% of SP-boosting. It is evident
from Table 10 that IDF-Sign achieves a higher accuracy rate
compared to existing methods.

2) SI
In a signer-independent strategy, a leave-one-out scheme is
utilized to verify the accurate recognition performance of
IDF-Sign. This strategy investigates the capability of the clas-
sifier in recognizing new depth sign features. The recognition
accuracy analysis of the proposed IDF-Sign and state-of-the-
art methods are presented in Tables 6, 7, and 10 with the SI
setting. Specifically, IDF-Sign attains an increase in accuracy
rate from 54% to 78% on Top-1, 75% to 97% on Top-4, 76%
to 78% on Top-1, 95% to 97% on Top-4, over GSL data set
on Markov and SP-boosting respectively. Furthermore, IDF-
Sign yields a 24% and 2% increase as compared to Markov
and SP-boosting on the GSL dataset. The results analysis
shows that the raw depth model and PairCFR model suffer
from underfitting due to the limited size of the datasets.

V. DISCUSSION
It is observed that the three developed models have different
performances. The first model is developed from the depth
features alone. The second model is developed from the
selected PairCFR depth features. The third model is achieved
from the optimized selected pairCFR depth features using
the TV selection guide. As shown in Fig. 11, the ensemble
classification on the raw depth Sp model may generate more
false positives leading to classification errors. Because of the
low bias and high variance within the raw depth Sp model.
Therefore, an improved Sp model is achieved using PairCFR
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TABLE 11. Different depth features learning for various IDF-Sign model.

ranking, where features are ranked according to their weights.
The Sp-based PairCFR model improved the recognition per-
formance up to 3%. It is noticed that some features were
not determined effectively, because of the nature of decision
boundaries by the classification algorithms. We improved
the PairCFR capability using the threshold value selection
(TV) from the TSA method. The newly obtained TV values
improved the recognition performance of Sp up to 6%.

The recognition performance of these algorithms is limited
by the high variance and low bias during the training process.
To overcome this problem, we apply bagging-based machine
learning from an Optimized forest to asses the PairCFR with
TV scores. The bagging is introduced in the OF using the
decision-based scheme to introduce diversity in the training
process, thereby decreasing the level of variance and low bias
(over-fitting). The resulting ROC curve is evaluated from the
recognized similar feature frequency, however, the discrimi-
nant score is employed to read the number of similar features
present. The recognition results show that the introduced
tree-based bagging scheme can choose optimal subforests
that are lesser than the actual forests at the expense of best
recognition results than the actual forests.

For signs with recognition scores equal to the TV, TSA
substituted the scores with 0.5. We repeated this method to
all the considered sign scores. Therefore, a distinct classifier
is realized that recognize sign from the same family according
to the mid-point score of 0.5 to distinguish true positive
rate (TP) of the model from the false positive rate (FP) as
shown in Fig. 6. It can be seen that the ROC evaluations
determine the threshold of choosing effective recognition
scores that may yield the intended depth features. The ROC
maps the relationship between the TP of the model and the
FP. The ROC produces scores that range from 0.5 to 1 where
1 is the best score and 0.5 means the model is as good as
random. We further compute the AUC metrics to determine
the proposed IDF-Sign model’s true positive rate and the
true negative rate, as this metric demonstrate state-of-the-art
performance in machine learning. The score ranges from 0%
to 100%, where 100% is a perfect score and 0% is the worst.
These evaluations are presented in Table 6.

The following sign words return low TP rate; Hear, and
Live; whereas Hot, Introduce, Live, Mother, Nephew, Read,
and Small, return low ROC, respectively. However, it is
observed that the dynamic sign words with low TP rate
happen because the information that was utilized as features
was not sufficient enough to determine the recognition of
these words. We suggest in future research to generate other
motion features since these words are highly dynamic in
their nature. In addition, dynamic sign words such as Big

and Small still exhibit the same class of features that bring
wrong recognition results, there is a five-times chance that
the dynamic sign word Small appears as Big. The dynamic
sign word Read appears six times as Dance. For the problem
of wrong recognition because of similar features, we further
suggest being addressed by either creating other features at
the pixel levels or introducing other methods to reduce the
variance of these features.

VI. CONCLUSION
This article is cost-effective because an LMS provides 3D
features that are able to transcribe a sign’s meaning from
simple configuration. The LMS is simple to interface because
of non-skin contact surface to interact with the signer. The
introduced PairCFR algorithm in the LMS data set leads
to achieving low-cost consistent models from the multi-
variate pairwise-consistency feature ranking of spatial and
temporal Sp features. According to the pairwise consistency
algorithm, most consistent features in dynamic sign model-
ing are the hand orientation, velocity, Metacarpophalangeal
joints, Proximal joints, and Inter-distal joints in dynamic
sign inconsistency modeling. The proposed temporal and
spatial information is found very correlated with hand gesture
depth indices. The ROC curve analysis was employed to
find the spatial-temporal relationship between the effective
parameters and the frequency of inconsistency, which is learnt
in the ensemble forest classifiers. In the ensemble forest,
it is found that optimized forests (OF) demonstrate the best
performance. Extensive IDF-Sign model evaluations using
Optimized Forest on ASL, GSL-20, and DSG-40 datasets
achieved state-of-the-art performance at top-1. The proposed
IDF-Sign can be deployed and extended into online sign
recognition and translation. In the future, we intend to intro-
duce other computer vision techniques to reduce the variance
effect on the depth features.

ACKNOWLEDGMENT
This research is supported by King Mongkut’s University
of Technology Thonburi’s Postdoctoral Fellowship Under
Research Project ID 27180. We are also grateful to anony-
mous IEEE Access reviewers for their potential reviews and
insightful comments.

REFERENCES
[1] S. B. Abdullahi and K. Chamnongthai, ‘‘American sign language words

recognition of skeletal videos using processed video driven multi-stacked
deep LSTM,’’ Sensors, vol. 22, no. 4, p. 1406, Feb. 2022.

[2] E.-J. Ong, H. Cooper, N. Pugeault, and R. Bowden, ‘‘Sign language
recognition using Sequential Pattern Trees,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2012, pp. 2200–2207.

VOLUME 11, 2023 88525



S. B. Abdullahi, K. Chamnongthai: IDF-Sign: Addressing Inconsistent Depth Features for Dynamic Sign Word Recognition

[3] H. Cooper, E.-J. Ong, N. Pugeault, and R. Bowden, ‘‘Sign language recog-
nition using sub-units,’’ in Gesture Recognition (The Springer Series on
Challenges in Machine Learning), vol. 13. Cham, Switzerland: Springer,
2014, pp. 89–118.

[4] S. B. Abdullahi and K. Chamnongthai, ‘‘American sign language words
recognition using spatio-temporal prosodic and angle features: A sequen-
tial learning approach,’’ IEEE Access, vol. 10, pp. 15911–15923, 2022.

[5] S. B. Abdullahi and K. Chamnongthai, ‘‘Intelligent fuzzy network for
dynamic sign words recognition from spatial features,’’ in Proc. 19th Int.
Conf. Electr. Eng./electron., Comput., Telecommun. Inf. Technol. (ECTI-
CON), May 2022, pp. 1–4.

[6] J. Han, G. Awad, and A. Sutherland, ‘‘Modelling and segmenting subunits
for sign language recognition based on hand motion analysis,’’ Pattern
Recognit. Lett., vol. 30, no. 6, pp. 623–633, Apr. 2009.

[7] M. M. Zaki and S. I. Shaheen, ‘‘Sign language recognition using a combi-
nation of new vision based features,’’ Pattern Recognit. Lett., vol. 32, no. 4,
pp. 572–577, Mar. 2011.

[8] N. B. Ibrahim, M. M. Selim, and H. H. Zayed, ‘‘An automatic arabic sign
language recognition system (ArSLRS),’’ J. King Saud Univ.-Comput. Inf.
Sci., vol. 30, no. 4, pp. 470–477, Oct. 2018.

[9] A. Kurakin, Z. Zhang, and Z. Liu, ‘‘A real time system for dynamic hand
gesture recognition with a depth sensor,’’ in Proc. 20th Eur. Signal Process.
Conf. (EUSIPCO), Aug. 2012, pp. 1975–1979.

[10] S. Igari and N. Fukumura, ‘‘Sign language word recognition using via-
point information and correlation of they bimanual movements,’’ in Proc.
Int. Conf. Adv. Inform., Concept, Theory Appl. (ICAICTA), Aug. 2014,
pp. 75–80.

[11] J. Simmering, S. M. Z. Borgsen, S. Wachsmuth, and A. Al-Hamadi,
‘‘Combining static and dynamic predictions of transfer points for human
initiated handovers,’’ in Proc. Int. Conf. Social Robot. Cham, Switzerland:
Springer, 2019, pp. 676–686.

[12] K. M. Lim, A. W. C. Tan, and S. C. Tan, ‘‘A feature covariance matrix
with serial particle filter for isolated sign language recognition,’’ Exp. Syst.
Appl., vol. 54, pp. 208–218, Jul. 2016.

[13] Q. D. Smedt, H. Wannous, and J.-P. Vandeborre, ‘‘3D hand gesture
recognition by analysing set-of-joints trajectories,’’ in Proc. Int. Workshop
Understand. Hum. Activities Through 3D Sensors. Cham, Switzerland:
Springer, 2016, pp. 86–97.

[14] S. Y. Boulahia, E. Anquetil, F. Multon, and R. Kulpa, ‘‘Dynamic hand
gesture recognition based on 3D pattern assembled trajectories,’’ in Proc.
7th Int. Conf. Image Process. Theory, Tools Appl. (IPTA ), Nov. 2017,
pp. 1–6.

[15] S. G. Azar and H. Seyedarabi, ‘‘Trajectory-based recognition of dynamic
Persian sign language using hidden Markov model,’’ Comput. Speech
Lang., vol. 61, May 2020, Art. no. 101053.

[16] M. Parelli, K. Papadimitriou, G. Potamianos, G. Pavlakos, and P. Maragos,
‘‘Exploiting 3D hand pose estimation in deep learning-based sign language
recognition from RGB videos,’’ in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2020, pp. 249–263.

[17] J. Liu, Y. Liu, Y. Wang, V. Prinet, S. Xiang, and C. Pan, ‘‘Decoupled
representation learning for skeleton-based gesture recognition,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 5750–5759.

[18] Y.-B. Li, X.-L. Shen, and S.-S. Bei, ‘‘Real-time tracking method for
moving target based on an improved Camshift algorithm,’’ in Proc. Int.
Conf. Mech. Sci., Electr. Eng. Comput. (MEC), Aug. 2011, pp. 978–981.

[19] P. P. Roy, P. Kumar, andB.-G. Kim, ‘‘An efficient sign language recognition
(SLR) system using Camshift tracker and HiddenMarkovmodel (HMM),’’
Social Netw. Comput. Sci., vol. 2, no. 2, pp. 1–15, Apr. 2021.

[20] Y. Li, D. Ma, Y. Yu, G. Wei, and Y. Zhou, ‘‘Compact joints encoding
for skeleton-based dynamic hand gesture recognition,’’ Comput. Graph.,
vol. 97, pp. 191–199, Jun. 2021.

[21] J. Galván-Ruiz, C. M. Travieso-González, A. Pinan-Roescher, and
J. B. Alonso-Hernández, ‘‘Robust identification system for Spanish sign
language based on three-dimensional frame information,’’ Sensors, vol. 23,
no. 1, p. 481, Jan. 2023.

[22] R. Barioul and O. Kanoun, ‘‘K-tournament grasshopper extreme learner
for FMG-based gesture recognition,’’ Sensors, vol. 23, no. 3, p. 1096,
Jan. 2023.

[23] S. Das, M. S. Imtiaz, N. H. Neom, N. Siddique, and H. Wang, ‘‘A hybrid
approach for Bangla sign language recognition using deep transfer learning
model with random forest classifier,’’ Exp. Syst. Appl., vol. 213, Mar. 2023,
Art. no. 118914.

[24] V. Belissen, A. Braffort, and M. Gouiffès, ‘‘Dicta-sign-LSF-v2: Remake
of a continuous French sign language dialogue corpus and a first baseline
for automatic sign language processing,’’ in Proc. 12th Conf. Lang. Resour.
Eval. (LREC), May 2020, pp. 6040–6048.

[25] M. A. Ahmed, B. B. Zaidan, A. A. Zaidan, M. M. Salih, Z. T. Al-Qaysi,
and A. H. Alamoodi, ‘‘Based on wearable sensory device in 3D-printed
humanoid: A new real-time sign language recognition system,’’ Measure-
ment, vol. 168, Jan. 2021, Art. no. 108431.

[26] M. Dash and H. Liu, ‘‘Consistency-based search in feature selection,’’
Artif. Intell., vol. 151, nos. 1–2, pp. 155–176, Dec. 2003.

[27] F. Jiménez, G. Sánchez, J. Palma, L. Miralles-Pechuán, and J. A. Botía,
‘‘Multivariate feature ranking with high-dimensional data for Classifica-
tion tasks,’’ IEEE Access, vol. 10, pp. 60421–60437, 2022.

[28] T. S. Dias, J. J. A. Mendes, and S. F. Pichorim, ‘‘Comparison between
handcraft feature extraction and methods based on Recurrent Neural
Network models for gesture recognition by instrumented gloves: A case
for Brazilian Sign Language Alphabet,’’ Biomed. Signal Process. Control,
vol. 80, Feb. 2023, Art. no. 104201.

[29] M. J. Hussain, A. Shaoor, S. A. Alsuhibany, Y. Y. Ghadi, T. A. Shloul,
A. Jalal, and J. Park, ‘‘Intelligent sign language recognition system for e-
learning context,’’Comput.,Mater. continua, vol. 72, no. 3, pp. 5327–5343,
2022.

[30] M. N. Adnan and M. Z. Islam, ‘‘Optimizing the number of trees in a
decision forest to discover a subforest with high ensemble accuracy using
a genetic algorithm,’’ Knowl.-Based Syst., vol. 110, pp. 86–97, Oct. 2016.

[31] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[32] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, ‘‘Rotation forest: A new
classifier ensemble method,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 10, pp. 1619–1630, Oct. 2006.

[33] R. Balamurugan, A. M. Natarajan, and K. Premalatha, ‘‘Stellar-mass black
hole optimization for biclustering microarray gene expression data,’’ Appl.
Artif. Intell., vol. 29, no. 4, pp. 353–381, Apr. 2015.

[34] T. Hanke, ‘‘Sign language notation system,’’ in Proc. 4th Lang. Resour.
Eval. Conf. (LREC), vol. 4, Lisbon, Portugal, May 2004, pp. 1–6.

[35] S. Tornay, O. Aran, and M. M. Doss, ‘‘An HMM approach with inherent
model selection for sign language and gesture recognition,’’ in Proc. 12th
Lang. resour. Eval. Conf., May 2020, pp. 6049–6056.

SUNUSI BALA ABDULLAHI (Member, IEEE)
received the B.Sc. and M.Sc. degrees in elec-
tronics from Bayero University Kano (BUK),
Nigeria, and the Ph.D. degree in electrical and
computer engineering from the King Mongkut’s
University of Technology Thonburi, Thailand. His
research interests include computer vision, artifi-
cial intelligence, digital image processing, nonlin-
ear optimization and their applications in human
motion analysis, data analysis, and social signal
processing.

KOSIN CHAMNONGTHAI (Senior Member,
IEEE) received the B.Eng. degree in applied
electronics from The University of Electro-
Communications, in 1985, the M.Eng. degree in
electrical engineering from the Nippon Institute
of Technology, in 1987, and the Ph.D. degree
in electrical engineering from Keio University,
in 1991. He is currently a Professor with the
Department of Electronic and Telecommunica-
tion Engineering, Faculty of Engineering, King

Mongkut’s University of Technology Thonburi. His research interests
include computer vision, image processing, robot vision, signal processing,
and pattern recognition. He is also a member of IEICE, TESA, ECTI,
AIAT, APSIPA, TRS, and EEAAT. He is also the Vice President of the
Conference of APSIPAAssociation (2020–2023). He has served as an Editor
for ECTI E-Magazine, from 2011 to 2015, and an Associate Editor for
ECTI-EEC Transactions, from 2003 to 2010, and ECTI-CIT Transactions,
from 2011 to 2016. He has served as the Chairperson for the IEEE COMSOC
Thailand, from 2004 to 2007, and the President for the ECTI Association,
from 2018 to 2019.

88526 VOLUME 11, 2023


