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ABSTRACT Table-based fact verification requests parsing table and statement structure and performing
numerical and logical reasoning. Previous methods may select erroneous programs and ignore the inter-
pretability of table-based fact verification. Thus, we propose a double graph attention network reasoning
method based on filtering and program-like evidence (DGMFP). In detail, we initially obtain the filtering
evidence based on tables and the program-like evidence based on logical forms to incorporate the semantic
and symbolic information of evidence. Then, we construct an evidence graph with statement-evidence pairs
as nodes and use the kernel in graph neural network to conduct more fine-grained joint reasoning and
improve the interpretability of table-based fact verification. We also construct a connected graph with all
entities and functions in the program-like evidence as nodes and use the graph attention network (GAT) to
capture more fine-grained relationships within the program-like evidence. Finally, we connect the outputs
of two GAT models and BERT model to predict labels. Experimental results on TABFACT show that
DGMFP outperforms all baselines with 76.1% accuracy. Ablation studies further indicate that constructed
two graphs, filtering evidence, and program-like evidence play an important role in better understanding the
semi-structured table.

INDEX TERMS Natural language inference, table-based fact verification, GAT, filtering evidence, program-
like evidence.

I. INTRODUCTION
Fact verification is important to examining fake news [1],
[2], [3], rumors [4], [5], as well as scientific fact-checking [6].
Most existing research has focused on unstructured text infor-
mation [7], [8], [9], [10], [11], which are meaningful facts.
Structured or semi-structured information, such as tables or
databases, are also ubiquitous. Recently, table-based fact ver-
ification with authenticity measured by two labels, namely,
ENTAILED or REFUTED, which demonstrates statements
are correct/incorrect through the given semi-structured table,
has received considerable attention. Figure 1 shows an
example.
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Table-based fact verification involves linguistic inference
and symbolic operations (e.g., counting, addition or sorting),
which brings challenges to the verification. Pre-trained mod-
els (e.g., BERT [12]) show excellent performance to verify
simple statements, but tend to fail when statements with
complex logical reasoning characteristics, such as greater
than and total, are encountered. For example, the table in
Figure 1 shows that given a statement, 4.0 is the lane total
when rank is 3, we can infer that the label is refuted because
the actual lane is 3.0. Therefore, learning complex logical
reasoning features in statements is crucial in this task.

To address these challenges, we summarize the exist-
ing approaches into two categories: (1) program enhanced
approaches [13], [14], [15], [16], which mainly utilize pro-
grams (i.e., logical forms) generated by the semantic parser to
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FIGURE 1. Example of table-based fact verification.

represent the statement as prior information and employ the
graph neural network (GNN) to acquire inexplicit relation-
ships. And (2) table-based pre-trained approaches [17], [18],
which mainly utilize elaborate model structure TAPAS [19]
and pre-training tasks [20], [21], [22] to improve the reason-
ing ability of semi-structured information. Unlike program
enhanced approaches, table-based pre-trained approaches
based on BERT’s encoder to encode tables without generating
programs. Despite the significant progress of previous works,
several challenges still remain in table-based fact verification.

The weakly supervised programs are generated from the
semantic parser, which inevitably contain noise. Due to the
weak supervised signals in the semantic parser, program
enhanced models may select erroneous programs that return
the true label. Ideally, a natural approach to use programs is to
regard logical forms with mathematical operations as supple-
mentary evidence for tables. Previous approaches also ignore
the interpretability of table-based fact verification, focusing
on improving the accuracy of validation, which consequently
resulted in untrustworthy outcomes.Thus, the table-based fact
verification becomes an extremely demanding task because
of the need for fine-grained reasoning ability to judge that
the statement is correct/incorrect.

Based on these considerations, the aim of our work is build-
ing a table-based fact verification model, performing more
fine-grained reasoning and provide interpretability during the
reasoning process. Thus, we newly define table-based fact
verification task as a multi-stage task and propose a dou-
ble graph attention network (GAT) reasoning method based
on filtering and program-like evidence, namely, DGMFP.
In detail, given a statement and the corresponding table,
to incorporate the semantic and symbolic information of
evidence, we retrieve the filtering evidence by using the table
itself as part of the evidence and obtain the program-like evi-
dence from logical forms according to a rule-based method.
Then, we concatenate the statement, table caption, filtering
and program-like evidence as the statement–evidence pair for
the first time. We use BERT to generate the initial representa-
tions of statement–evidence pairs, as well as the initial repre-
sentations of entities (such as reiko nakamura) and functions

(such as eq1) in the program-like evidence. Subsequently,
to fully explore the fine-grained relations between each piece
of evidence and increase the interpretability of table-based
fact verification, we construct an evidence graph with
statement–evidence pairs as nodes and use the kernel [23] to
carry out feature propagation between nodes. We also con-
struct a connected graph by using the structure of program-
like evidence, and use GAT [24] to catch implicit relations
among different nodes. Finally, we connect the outputs of two
GAT models and pre-trained BERT model to predict labels.
We find in experiments that this output combination method
can improve the model’s performance as much as possible.

We conduct widespread experiments on a large-scale
dataset TABFACT [13] to show that the proposed model.
Generally, experimental results indicate that DGMFP can
outperform all baseline systems in terms of label accuracy.
Ablation studies and quality analysis also verify the effective-
ness of DGMFP and the ability of DGMFP to select pivotal
evidence.

This work’s contributions are summarized in three folds:
(1) We newly define table-based fact verification task as a

multi-stage task and design a double GAT reasoning method
based on filtering and program-like evidence, helping to
incorporate the semantic and symbolic information of the
evidence and capture fine-grained relationships between and
within the evidence.

(2) We propose to use the neural matching kernel for evi-
dence representation learning of table-based fact verification
for the first time, which helps to improve the interpretability
of table-based fact verification by propagating clues among
the pieces of evidence through multi-layer graph attention.

(3) We assess the proposed method through widespread
experiments on TABFACT dataset and verify the effective-
ness of DGMFP relative to baselines. DGMFP outperforms
all baseline systems.

II. RELATED WORK
A. NATURAL LANGUAGE INFERENCE
The aim of natural language inference (NLI) is to reason a
natural language hypothesis as either entailment, contradic-
tion or neutral based on a natural language premise. Many
fact verification systems utilize NLI techniques [25], [26],
[27], [28] to verify the claim. Chen et al. [25] demonstrated
that LSTM-based inference methods outperform all existing
methods. Peters et al. [26] improved six challenging natural
language processing problems by using contextualized word
representations that are easy to incorporate into models.
Tay et al. [27] designed a new NLI model that uses fac-
torization layers, enhancing the representations of words.
Ghaeini et al. [28] coded the relationship between hypothe-
ses and premises, significantly improving final predictions.
Recently, more and more text frameworks have included

1The function eq indicates that the cell value is equal to the given number,
as detailed in the appendix of Reference [13]. not_eq, filter_eq, and and hop
in Section III are also described in detail in Reference [13].
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structured or semi-structured information, for instance,
knowledge graphs [29], tables [30], [31] or images [32], [33].
Table-based fact verification is also relevant to NLI task,
where the premises are presented by the semi-structured
tables composed of text.

B. TABLE-BASED FACT VERIFICATION
Table-based fact verification serves as a meaningful task
because it provides reliable information and prevents the
spread of structured and semi-structured disinformation.
Chen et al. [13] proposed a TABFACT dataset and designed
two different models: Latent Program Algorithm (LPA) and
Table-BERT. Based on Table-BERT, which encodes tables
and statements, Zhang et al. [34] considered only the cor-
responding row and column in the representation of each
cell through masking, proposing the structure-aware trans-
former (SAT). However, they fall short in the symbolic rea-
soning aspects. A series of works use logical forms generated
by the LPA for validation given that logical forms can bring
substantial prior information to understand the statement.
Ou and Liu [35] defined a operation-oriented tree based on
LPA, mining structure features. Zhong et al. [14] used GNN
to encode heterogeneous graphs containing logical forms
and relevant table cells. Shi et al. [15] and Yang et al. [16]
used program selection module to select the best logical
forms. Program nodes, table nodes, and statement nodes were
introduced into a heterogeneous graph to predict the label
in [15], and different sources of evidence from the state-
ment, table and program tree are integrated into GAT in [16].
Shi et al. [36] designed a graph-based verification network
using processed logical forms as evidence. However, weakly
supervised logical forms are generated from the semantic
parser, which inevitably contains noise.

In addition, Yang et al. [37] designed a framework with
strict robustness to row and column order perturbations,
namely, TABLEFORMER. TAPAS-based models, such as
[17], [18], [20], [21], and [22], encoded the features of
rows and columns of a table and utilized data augmenta-
tion as intermediate evidence to enhance table-based fact
verification models. However, while better models such as
TAPAS have emerged for table-based fact verification task,
TAPAS-based models require high requirements because
pre-training requires significant computing resources,
and they ignore the interpretability of table-based fact
verification.

C. GRAPH NEURAL NETWORKS
Knowledge of the field of GNNs [38], [39], [40], [41] is
required to provide connections between different evidence
nodes and statement nodes. Key idea about GNN [42], [43]
is learning node embedding from the aggregation of neigh-
borhood features information. Velickovic et al. [24] first pro-
posed GAT, which implicitly assigns different weights to
neighbor nodes. Kipf and Welling [44] designed graph con-
volutional network to semi-supervise the classification of

graph structure information. However, these methods fail to
learn more fine-grained relationships among the pieces of
evidence and the corresponding statement. Wang et al. [45]
designed a heterogeneous GNN, which utilizes hierarchi-
cal attention to generate node representations by aggregat-
ing features from meta-path-based neighbors. Hu et al. [46]
introduced a novel information aggregation method, named
heterogeneous graph transformer, based on meta-relational
learning and heterogeneous attention. Fu et al. [47] aggre-
gated intra-metapath and inter-metapath features, generating
node representations. However, the above approaches do not
apply when no clear relationship or meta-path exists between
nodes.

Liu et al. [48] proposed the kernel graph attention net-
work (KGAT), which enables more fine-grained reasoning
through kernel-based attentions. The neural matching kernel
can learn the interaction of words or phrases in the embedding
layer, so leveraging the neural matching kernel is an effective
method to model text matches [23], [49]. Reference [50] had
also shown that the correlation between query and docu-
ments can be better modeled through the integration of the
kernel with contextualized representations (i.e., BERT [12]).
In view of the advantages of these methods, we innova-
tively introduce the idea of the neural matching kernel into
table-based fact verification, using KGAT and GAT to cap-
ture more fine-grained relationships between and within the
evidence.

D. PRE-TRAINED LANGUAGE MODELS
Models for pre-trained language representations (e.g.,
ELMo [26] or OpenAI GPT [51]) have been proven to be
very efficient in NLI tasks. BERT [12] is a new method
for pre-trained language representation and pre-trains deep
bidirectional representations through jointly tuning the right
and left context in embedding layer. We use BERT to encode
text in this work.

III. METHODOLOGY
A. PROBLEM DEFINITION
Given an unidentified sentence called a statement s and the
corresponding table T , we newly define table-based fact
verification as a multi-stage task. It initially collects a set
of programs P related to the statement by LPA [13], then
generates evidence set E = {e1, e2, . . . , en} from the table
and programs according to a rule-based method, and finally
predicts the statement label y ∈ {ENTAILED, REFUTED}

based on the evidence, as in Equation (1).
FLPA(s,T ) → P
Fretriveal(s,T ,P) → E
Fpredict (s,E) → y

(1)

Notably, a successful table-based fact verification should
satisfy two criteria: 1) The predicted result of label y is true;
2) At least one sentence is included in set E .
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FIGURE 2. Overall architecture of DGMFP.

B. PIPELINE
Figure 2 shows the overall framework of DGMFP, con-
sisting of three components, i.e., the evidence retrieval,
sentence encoding, and fact verification component. In the
upper section, we first use the evidence retrieval module
to obtain evidence for table-based fact verification. Then
we use BERT [12] to generate the initial representations
of statement-evidence pairs, as well as the initial repre-
sentations of entities and functions in the program-like
evidence. In the lower section, to predict the final label,
we construct two graphs based on the statement-evidence
pairs and the program-like evidence for propagating and
aggregating the representations of the statement and
evidence.

C. EVIDENCE RETRIEVAL
1) FILTERING EVIDENCE
In order for the evidence to contain both semantic and sym-
bolic information, we include the table itself as part of the
evidence. Based on the number of words that each row of
the table shares with the corresponding statement, we only
retain the top five rows of the table related to the statement
as the filtering evidence to reduce the memory space and
shorten training time. Considering that the counting oper-
ation account for a large proportion, we also improve our
model’s performance through converting counting operation
into the semantic matching question. In detail, the frequency
of repeated cell contents in each column is calculated as a
summary cell, resulting in a summary row that is filled to
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the end of the table. Take the fourth column in Figure 1 as
an example, and its summary cell is count: japan, 2, great
britain, 2.

2) PROGRAM-LIKE EVIDENCE
Programs have rich logical operations. We consider that log-
ical forms can provide valuable information beyond tables
for table-based fact verification. In this work, to obtain
the program-like evidence, we follow LPA [13] to synthe-
size valid programs with pre-defined functions, denoted as
P = {(Pi,Ai)}Ni=1, where Pi represents the i-th program and
Ai represents the label returned by the program executed on
the table, i.e., True or False. Then we follow Shi et al. [36]
to select logical forms with a returned label of True and
decompose logical forms containing function and into two
separate pieces, while removing logical forms that contain
functions with negative meanings (such as not_eq). Finally,
we integrate the program-like evidence into the dataset
TABFACT [13] to enhance our model’s ability to understand
semi-structured tables.

D. SENTENCE ENCODING
For sentence encoding, we make use of BERT [12] to
generate the token representations of statement and evi-
dence. Specifically, for table-based fact verification task,
we concatenate the statement s, table caption t , filtering
and program-like evidence e as the statement-evidence
pair (s, evi) (where evi is t # e) for the first time to form the
input sequence x:

x = [[CLS]; s; [SEP]; t # e; [SEP]]. (2)

where [CLS] and [SEP] are the identifiers for BERT. Then,
we feed sequence x into BERT to generate the token repre-
sentations of x, represented as C ∈ RL1×d1 :

C = BERT (x). (3)

where d1 is the size of BERT hidden states, as well as
L1 represents the length of x. The initial representation of
the statement-evidence pair can be represented by the repre-
sentation of the first token ([CLS]) as C0 ∈ RL1×d1 , and the
remaining sequences C1:m+n ∈ RL1×d1 indicate the statement
and evidence representations. The statement representations
are C1:m ∈ RL1×d1 , and the evidence tokens are Cm+1:m+n ∈

RL1×d1 .
At the same time, similar to Equations (2) and (3), we sepa-

rately feed the program-like evidence into BERT to generate
the token representation of the program-like evidence. The
initial representation of the program-like evidence can be
represented by the representation of the first token ([CLS]) as
E0 ∈ RL2×d1 , where L2 represents the length of the program-
like evidence.

E. FACT VERIFICATION
This section describes our double GAT and its application in
table-based fact verification. Figure 2 shows that the double
GAT model includes two components, i.e., KGAT and GAT.

1) KGAT
To fully explore the fine-grained relationships between each
piece of evidence, we adopt the neural matching kernel
in GNN to carry out feature propagation between pieces
of evidence. Based on previous research [48], we ini-
tially construct an evidence graph with statement-evidence
pairs as nodes, as well as connect all statement-evidence
pairs with edges to obtain a fully-connected evidence graph
N = {n1, n2, . . . , nr } with r nodes.
The evidence feature propagation in KGAT [48] is per-

formed through edge kernel, integrating information from
neighbors through a hierarchical attention mechanism. It uses
token level attentions to generate the representation of nodes,
then uses sentence level attentions to integrate information
from neighbors. In particular, we take the former as an exam-
ple, at the t-th step, the representations of t − 1 layer nodes
are known, i.e., N (t−1)

= {n(t−1)
1 , n(t−1)

2 , . . . , n(t−1)
r }.

a: TOKEN LEVEL ATTENTION
This work uses token level attention to obtain a more
fine-grained token representations n̂b of neighbor node n

(t−1)
b .

To obtain the i-th token attention weight αb→a
i in n(t−1)

b ,
we initially construct the translation matrixM , and each of its
elements is the cosine similarity of the token representations
between a-th node and b-th node, denoted asM (i, j):

M (i, j) = cos(Cb
j ,C

a
i ). (4)

whereCb
j ∈ RL1×d1 is the j-th token representations of node b,

as well as Ca
i ∈ RL1×d1 is the i-th token representations

of node a. Subsequently, for Equation (4), we extract the
matching feature K⃗ (M (i, ·)) with a K -dimensional vector by
K kernels [49], [50], [52].

K⃗ (M (i, ·)) = {K1(M (i, ·)),K2(M (i, ·)), . . . ,

KK−1(M (i, ·)),KK (M (i, ·))}. (5)

The effect of each kernel Kk (M (i, ·)) in Equation (5) is
decided by kernel used. Our proposal uses Gaussian kernel
to extract features, as in Equation (6):

Kk (M (i, ·)) = log
∑
j

exp(−
(M (i, j) − µk )2

2δ2k
). (6)

where δk is the width of k-th kernel, as well as µk is the mean
of k-th kernel [23].
Then, this work utilizes a linear layer to calculate the i-th

token attention weight αb→a
i in n(t−1)

b :

αb→a
i = softmaxi(Linear(K⃗k (M (i, ·)))). (7)

The more fine-grained token representations n̂b of the neigh-
bor node n(t−1)

b can be obtained from the combination of the
attention weights in Equation (7), as follows:

n̂b =

m+n∑
i=1

αb→a
i · Ca

i . (8)
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FIGURE 3. Example of the program-like evidence graph.

b: SENTENCE LEVEL ATTENTION
This work uses sentence level attention to integrate infor-
mation from neighbors to node n(t)a . Integration is conducted
through the attention mechanism, the same as in the previous
work [6]. According to the a-th node n(t−1)

a , we initially com-
pute attention weight βb→a of node n(t−1)

b , as in Equation (9):

βb→a
= softmaxi(MLP(n(t−1)

a ∥n̂b)). (9)

where ∥ denotes the concatenate operator.
Subsequently, this work updates the a-th node representa-

tions through combining neighbor’s node representations n̂b,
denoted as n(t)a :

n(t)a = (
r∑

b=1

βb→a
· n̂b)∥n(t−1)

a . (10)

2) GAT
Given the retrieved program-like evidence, according to the
previous study of Shi et al. [36], we construct a connected
graph with all entities and functions by using the structure
of program-like evidence. An example is shown in Figure 3.
In detail, to learn more fine-grained relationships within the
program-like evidence, we consider each function and entity
as a graph node, and add edges from the entity pointing to the
function between entity nodes and the corresponding function
node. To convert the graph to a connected graph, we add edges
between each entity node that has the same content.

In sentence encoding, while outputting the representation
of the program-like evidence node from BERT [12], we out-
put the start index and length of each logical form, as well as
the information required to encode the program-like evidence
graph (i.e., start and end index of edge, node type, the entity
node corresponding to the start index of edge, the entity node
corresponding to the end index of edge). For the node with
multiple word pieces in the program-like evidence graph,
we conduct average pooling for the corresponding position.

After the graph construction and node initialization, our
inference network is designed based on GAT [23] to catch
implicit relations among different nodes. The nodes in
the graph are either pre-defined functions in LPA [13],
or entities linked to the table or statement, Thus, we model
different types of nodes during messaging. In order to get
different types of node representations, we combine the

representations of each different type of node as follows:

hui = Wu(oi) + bu. (11)

hi = [hqi ∥h
s
∥hui ]. (12)

where oi ∈ RU is a one-hot vector that presents node types
(i.e., function node or entity node), as well as Wu ∈ RU×d1

and bu ∈ Rd1 are trainable parameters.U is set to 2, indicating
the kinds of node types. hqi and hs in Equation (12) are
obtained through the node initialization process of BERT.
hqi represents node representation, and h

s represents statement
representation.

We note that many nodes in the program-like evidence
graph are semantically independent of statements, for
instance, filter_eq, hop and all_rows. Thus, this work uses
a node pruning method, automatically pruning and filtering
these nodes. An example is shown in Figure 4. We initially
obtain correlation scores between nodes and the correspond-
ing statement as in Equation (13):

si = σ (Wϕ[h
q
i ∥h

s] + bϕ). (13)

where Wϕ ∈ R2d1×d1 and bϕ ∈ Rd1×d1 are trainable parame-
ters. Subsequently, based on the scores of nodes, we remove
nodes with a score less than probability θ . At last, considering
a removed node, we add edges between its parent node and
child nodes, forming a new graph.

In particular, we take the former as an example, at the
t-th step, the representations of t − 1 layer nodes are known,
i.e.,H (t−1)

= {h(t−1)
1 , h(t−1)

2 , . . . , h(t−1)
v }. We update the node

representations as follows:

p(t)ij = LeakyReLU (W T
Φ [h(t−1)

i ∥h(t−1)
j ]). (14)

η
(t)
ij = softmax(p(t)ij ) =

exp(p(t)ij )∑
k∈Ni

exp(p(t)ik )
. (15)

h(t)i =
Z
∥
z=1

σ (
∑
j∈Ni

η
(t)z
ij W z

ζ h
(t−1)
j ) + h(t−1)

i . (16)

where W T
Φ ∈ Rd1×d1 and W z

ζ ∈ Rd1×d1 are trainable
parameters, as well as Ni indicates the neighbors of node i.
Z indicates the number of attention heads. η

(t)z
ij in

Equation (16) indicates the normalized attention coefficient
calculated by z-th attention head. h(t−1)

i and h(t−1)
j present the

representations of node i and node j at t−1 layer. h(t)i presents
the representation of node i at t layer.

3) LABEL PREDICTION
We first formulate the final representation of all nodes in
KGAT and GAT as N = {n1, n2, . . . , nr } and H =

{h1, h2, . . . , hv}, and concatenate the outputs of KGAT and
GAT and two [CLS] tokens from BERT model’s output to
improve DGMFP’s performance as much as possible. Then
we utilize an attention pool layer to obtain final representa-
tion g as follows:

g = FPooling(Fconcat (C0,N ,H ,E0)). (17)
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FIGURE 4. Example of the node pruning method. Figure (a) to Figure (b)
indicates removing filter_eq and adding edges between all_rows, lane,
4 and hop. Subsequently, Figure (b) to Figure (c) indicates removing
all_rows and hop and adding edges between lane, 4, rank and eq.

At last, we predict the accuracy of labels by feeding the
vector g in Equation (17) into a classifier.

IV. EXPERIMENTS
In this section, we first describe the datasets, experimental
settings, and baseline systems. Then, we compare DGMFP
with all baseline systems. Next, in order to obtain the effects
of different modules in DGMFP, we perform ablation studies.
Finally, by obtaining the attention weight entropy and dis-
tribution from KGAT, we explore how the neural matching
kernel captures fine-grained relationships between each piece
of evidence and increases the interpretability of table-based
fact verification.

A. DATASETS
Consistent with existing researches on table-based fact
verification task, we evaluate the DGMFP model on
TABFACT [13] dataset that has already been divided. The
dataset contains 118K statements and 16K tables, and each
sample is marked ENTAILED or REFUTED, indicating
statements are correct/incorrect through the given semi-
structured table. The TABFACT dataset is roughly divided
into train, validation (val), and test sets at a ratio of 8:1:1 by
stratified sampling to ensure that the samples in the divided
train, val, and test sets have similar distributions. Besides the
standard test, train and val sets, the dataset provides multiple
subsets. To distinguish the difficulty of the evaluation, the test
set is split into the complex and simple test sets. In addition,
a small test set is used to compare human evaluation and
machine evaluation. Table 1 shows the statistics of TABFACT
and lists the number of tables, statements, and labels for
different sets. In the train set, the number of positive samples
is slightly more than the negative samples. The val and test
sets both have rather balanced distributions on positive and
negative samples. Therefore, this work only uses the official
accuracy metric based on the previous work [13].

TABLE 1. Statistics of the TABFACT dataset.

B. EXPERIMENTAL SETTINGS
According to Chen et al. [13], we use BERT [12] as the
backbone to build our model. In our experiments, we use
Adam optimizer with a weight decay 2e−4 and a warmup
rate of 0.1. We run 20 epochs with a maximum sequence
length of 512, a batch size of 8, as well as an initial learn-
ing rate of 1e−5. The size of all hidden layers is 768,
the same as BERT-basemodel.We set the probability θ to 0.3.
According to the existing work [52], we set the kernel size
to 21. DGMPF is optimized using cross entropy loss. Our
experiments are run on a workstation equipped with 80GB
of INTEL and 2 A40 GPUs.

C. BASELINE SYSTEMS
We describe all advanced baselines for comparison with our
model.

• BERT-only [13]: The easiest way to infer using only
statements to train a BERT classifier;

• Table-BERT [13]: A BERT-basedmodel which considers
the table-based fact verification as a NLI task, using BERT to
encode the statement and table to predict the label;

• LPA [13]: A weakly supervised method which generates
the suitable programs for statements and sorts the candidate
programs based on the transformer [51];

• LogicalFactChecker [14]: A graph network model which
uses different semantic parsers to generate programs and
construct a heterogeneous graph to represent the programs;

• HeterTFV [15]: A heterogeneous graph-based reason-
ing approach which jointly encodes the statement, table and
logical forms into a heterogeneous graph to fuse different
information;

• SAT [34]: A structure-aware transformer [53] model
which masks partial tokens in the self-attention layers;

• ProgVGAT [16]: A graph network model which uses a
marginal loss-based program selection module to generate
optimal logical forms and employs GAT [23] for reasoning
to predict the label;

• SASP [35]: A structure-aware semantic parsing model
which defines an operation-oriented tree mining struc-
ture features and integrates structure features into program
generation;

• LERGV [36]: A graph-based reasoning network model
which views programs as additional evidence and employs
GAT [23] to perform reasoning.

D. EXPERIMENTAL RESULTS
Table 2 reports the number of parameters for each model and
lists our experimental results, where numbers in bold repre-
sent optimal performance. Compared to all baseline models,
the number of parameters of DGMFP is moderate. DGMFP
surpasses all baseline models with significant improvements,
achieving 76.1% accuracy on the test set.2

2We do not directly compare with TAPAS-based methods, because
DGMFP is evidence-centric, not table-centric. TAPAS-based methods can-
not take evidence-statement pairs as input.
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TABLE 2. Experimental results on TABFACT. Horizontal and Vertical represent the scanning strategies for table linearization. T and F represent the table
and statement, respectively. Template stands for the templates used to concatenate the table cells.

Table 2 shows that DGMFP is superior to LPA,
Table-BERT, and SAT by large margins, illustrating the
benefits of evidence that fully contains semantic and sym-
bolic information. We can also see that compared with the
approaches based on the semantic parser, namely, Logical-
FactChecker, HeterTFV, ProgVGAT and SASP, DGMFP’s
performance improves by 0.6%-4.4%. This indicates the
effectiveness of DGMFP, demonstrating its ability to capture
fine-grained relationships between and within the evidence
to better understand the semi-structured tables. In addi-
tion, our model outperforms LERGV by nearly 1 point
on complex set, demonstrating DGMFP’s ability to handle
complex statements. DGMFP also reaches competitive per-
formance on small set, reducing the gap between human and
machine evaluation to 13%. Therefore, the above conclu-
sions prove the usefulness of DGMFP for table-based fact
verification.

Subsequently, from Table 2, we zoom in all baseline
models’ performance. For models that do not use logical
forms, Table-BERT (65.1%) is the first baseline to linearize
the table and statement through BERT. Through masking,
SAT (73.2%) only considers the corresponding row and col-
umn in the representation of each cell, suggesting that under-
standing the table structure is critical for the BERT-based
approaches. For models that use logical forms, LPA (65.0%)
is the first baseline to generate lots of logical forms through
the semantic parser, and the performance is almost equiv-
alent to Table-BERT (65.1%). Other models perform joint
reasoning on logical forms, as well as the corresponding
statement and table, such as LogicalFactCachecker (71.7%),
HeterTFV (72.3%), ProgVGAT (74.4%), SASP (74.9%) and
LERGV (75.5%), which outperform LPA by large margins.
LERGV is the optimal approach in all baseline models,
suggesting that the generated logical forms as additional
evidence are important to improve the evaluation capabilities
for table-based fact verification models. We also observe
that DGMFP outperforms these models, demonstrating its
ability to capture more fine-grained relationships between
and within the evidence.

TABLE 3. Ablation study on TABFACT (%).

We use K -fold cross-validation for model evaluation and
report the model’s performance along with standard devia-
tion. We set K = 10 and use stratified sampling to randomly
and uniformly divide the dataset into 10 parts. Since it
will be costly to redivide the Test (Simple), Test (Complex)
and Small sets for each test set required for 10-fold cross-
validation, we only report the performance on the complete
test set. Table 2 shows the mean (76.31%) and standard
deviation (0.17%) of the 10-fold cross-validation. The results
indicate that the performance of the model using 10-fold
cross-validation is slightly better.

E. ABLATION STUDY
We remove additional corpus of GAT (expressed as
w/o GAT), KGAT (w/o KGAT), filtering evidence (w/o FEvi)
and program-like evidence (w/o PEvi) to analyse the effect
of different modules. Table 3 lists the detailed performance
of removing different subsets on TABFACT. In general, per-
formance variations on different sets show the differences of
these data. DGMFP achieves the best accuracy in all sets,
especially on complex set containing the most challenging
samples in the TABFACT dataset.

1) VALIDATION OF EVIDENCE
w/o FEvi and w/o PEvi reduce the accuracy of the val
set by 0.7%-5.1%, indicating that the evidence that ade-
quately contains semantic and symbolic information has
a great effect on the proposed method. The filtering evi-
dence and program-like evidence plays an important role
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FIGURE 5. Effectiveness of kernel in KGAT. (a). Attention weight entropy
from KGAT. For comparison, the entropy of uniform attention weights is
also shown. The smaller entropy indicates more focused attention.
(b). Attention weight distribution from KGAT, which includes both token
level attention weight and sentence level attention weight. Only the top
10% tokens are displayed, and the remaining 90% of tokens follow
standard long tail distributions.

in better understanding the semi-structured table. w/o FEvi
only retains the program-like evidence, and w/o PEvi only
retains the filtering evidence. Compared with w/o PEvi, after
deleting the filtering evidence, our model only retains logical
forms to be executed, resulting in a more significant perfor-
mance degradation, that is, a 5.1% decrease in the val set.
This result shows that although providing effective additional
information to tables is beneficial to improve performance,
information about the tables themselves are more important.

2) VALIDATION OF TWO GRAPHS
w/o KGAT or w/o GAT indicates using the concatenation
of the model input and graph node representation to replace
KGAT or GAT. This operation results in a 0.9%-1.6% drop
on the val set, demonstrating the effectiveness of KGAT and
GAT in capturing the fine-grained relationships between the
pieces of evidence and within the program-like evidence. w/o
KGAT only relies on GAT to present the performance of
DGMFP. Compared with w/o GAT, deleting KGAT module
results in a more significant performance degradation, that is,
a 1.6%decrease in the val set. This result further demonstrates
the advantage of the neural matching kernel for evidence
representation learning in table-based fact verification.

TABLE 4. Comparison of different heads of GAT with respect to their
effectiveness.

To further verify the effectiveness of GAT, this work com-
pares different heads of GAT and sets them to 0-4 heads.
The case with 0 heads in GAT is equivalent to removing the
GAT module from DGMFP. Table 4 lists the experimental
results for each case. It can be observed that DGMFP with
GAT modules consistently performed better than without
GATmodules, with the best performance being the four heads
improving the results by 0.52%.

F. EFFECTIVENESS OF KERNEL
This set of experiments further illustrates the effectiveness of
kernel in KGAT [48]. Kernel attentions are used to integrate
evidence cues in evidence graph. We study kernel attentions
through the entropy, which indicates the attention weight is
focused or dispersed. Considering the size of token level
attention and sentence level attention, we replace the token
level attention to a uniform distribution that obeys [0, 0.005]
and sentence level attention to a uniform distribution that
obeys [1,0]. Figure 5(a) shows token level attention’ entropy
and sentence level attention’ entropy in KGAT. It also shows
the entropy of replacing token level attention or sentence level
attention with uniform attention. Compared to the uniform
distribution, the token and sentence level attentions focus
on fewer tokens and have a smaller token attention entropy,
illustrating that KGAT can assign more weights to some
important tokens based on the kernel.

We also study attention weight distribution of the kernel,
including token level attention weights and sentence level

FIGURE 6. Graphs of sensitivity analysis. (a). The accuracy of val and test sets under different amounts of filtering evidence. (b). The accuracy of val and
test sets under different probability θ values.
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TABLE 5. An example statement whose verification requires multiple pieces of evidence. The table caption is ‘‘Swimming at the 2008 summer
olympics-women’s 100 metre backstroke’’.

attention weights. As shown in Figure 5(b), the kernel atten-
tions are focused on fewer words, rather than being dis-
tributed almost evenly across all words. When combining
evidence cues from multiple pieces, the kernel provides the
fine-grained and intuitive attention pattern in the quality
analysis.

V. DATA ANALYSIS
A. PARAMETER SENSITIVITY
The experimental results of this work show that the filter-
ing evidence improves the performance for table-based fact
verification. Since the amount of filtering evidence can be
selected, it is necessary to evaluate its sensitivity for different
parameter values. Considering that tables in TABFACT [13]
dataset have at least 6 rows, and accounting for the addition of
one summary row to each table, we set the parameter values
of filtering evidence to 0-7. Figure 6(a) shows that different
amounts of filtering evidence affect the final experimental
results. It can be seen that for both the val and test sets
of table-based fact verification task, the optimal amount of
filtering evidence is between 5 and 6. As the amount of
filtering evidence increases, DGMPF’s performance on val
and test sets rises and then decreases. This suggests that
adding a certain amount of filtering evidence can improve the
performance of DGMFP. We note that the model retaining
less filtering evidence performs more erratically than those
that retain more filtering evidence, which can infer that less
filtering evidence is not sufficient for graph reasoning.

A parameter θ has been introduced in the program-like
evidence graph for node pruning. Although the experimental
results in this work show that it improves the performance
of DGMFP, it is necessary to evaluate its sensitivity for
different parameter values. Figure 6(b) shows the accuracy
of the val and test sets, with probability θ values within
the range of [0.1, 0.9]. It can be seen that for both the val
and test sets of table-based fact verification task, the optimal
value for θ is between 0.3 and 0.4. The result indicates
that the use of node pruning method for many semantically
independent nodes in the program-like evidence graph can
improve the performance of DGMFP. It can be observed
that setting the value of probability θ too high or too low

FIGURE 7. Kernel attention weights on evidence tokens. (a). The token
attention distribution from the first evidence to the first evidence (α1→1

i ).
(b). The token attention distribution from the first evidence to the second
evidence (α2→1

i ). (c). The token attention distribution from the first
evidence to the sixth evidence (α6→1

i ). Due to space limitations, we have
omitted some of the evidence in the figure.

is not conducive to improving the performance of DGMFP.
Particularly, when the probability θ value is 0.9, the perfor-
mance of DGMFPwill even be lower than that of the baseline
model LERGV [36].

B. QUALITY ANALYSIS
We randomly select and introduce an example statement and
the evidence retrieved in relation to the statement. Based on
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the first evidence, the sentence level attention weights for six
pieces of evidence in Table 5 show that the pieces of evidence
(1), (2), and (6) are necessary for the given statement because
they have more than two times higher sentence level attention
weights than others. We mark the necessary evidence words
in red. Figure 7 shows the token attention distribution from
the first evidence to the first evidence (α1→1

i ), the first evi-
dence to the second evidence (α2→1

i ), and the first evidence to
the sixth evidence (α6→1

i ) in kernels. To get a graph of kernel
attention weights on evidence tokens, we sort the samewords,
e.g. lane_(1), lane_(2). Although the same words exist in the
statement and evidence, they represent different meanings.

The first evidence confirms the correlation among reiko
nakamura, rank , lane, name and 4. The edge kernels from
KGAT [48] accurately obtain the additional information from
evidence (2): reiko nakamura was in lane 4, and the number 2,
as well as supplementary information from evidence (6):
reiko nakamura ranked 2. This evidence effectively fills the
missing information needed to complete the entire reason-
ing. Interestingly, reiko nakamura and number 4 also receive
increased attention in the evidence (2), thereby verifying that
information in evidence (2) is related to the right person and
number 4. The reiko nakamura, in lane 4 and number 2 also
received increased attention in evidence (6), verifying that
information in evidence (6) is related to the right person, in
lane 4, and number 2. The kernel attention pattern is more
intuitive and effective.

VI. DISCUSSION AND CONCLUSION
Table-based fact verification is an extremely demanding
work because it essentially requests parsing table and state-
ment structure and performing numerical and logical reason-
ing. This work provides some contributions. Firstly, some
efforts have been made to utilize GNNs to construct graphs
of tables and statements in table-based fact verification
task [15], [16], [36]. However, there are no studies that
attempt to construct both statement-evidence pair graphs
and program-like evidence graphs, which can incorporate
the semantic and symbolic information of the evidence and
capture fine-grained relationships between and within the
evidence. Secondly, to the best of our knowledge, no studies
are made to solve the critical evidence selection problem by
the neural matching kernel for this task. This work is inspired
by the reasoning process of KGAT [48], we construct an
evidence graph with statement-evidence pairs as nodes to
conduct more fine-grained joint reasoning. Finally, this work
improves the interpretability of table-based fact verification
by employing neural matching kernels to select crucial evi-
dence, rendering the reasoning process of table-based fact
verification more specific.

This work proposes a double GAT [23] reasoning method
based on filtering and program-like evidence for table-based
fact verification, taking full advantage of more fine-grained
reasoning and performing interpretability during the rea-
soning process. In particular, we retrieve the filtering evi-
dence by using the table itself as part of the evidence

and obtain the program-like evidence from logical forms
according to a rule-based method, which aims to incorporate
the semantic and symbolic information of evidence. Subse-
quently, we construct a fully-connected evidence graph with
statement-evidence pairs as nodes and use the kernel in GNN
to carry out feature propagation between nodes, which aims
to conduct more fine-grained joint reasoning and increase
the interpretability of table-based fact verification. We also
construct a connected graph with all entities and functions in
the program-like evidence as a node and use GAT to learn the
importance between different nodes, thereby capturing more
fine-grained relationships within the program-like evidence.
Experimental results on TABFACT [13] show that DGMFP
outperforms all baselines. Ablation studies and analyses fur-
ther indicate the effect of DGMFP.Wewill further investigate
how to introduce intermediate evidence into model to enrich
evidence information. Applying the idea of the proposed
model to tasks related to other semi-structured information,
e.g., INFOTABS [31] and Tabular QA [54], is also a mean-
ingful direction.
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