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ABSTRACT The consequences of clotting formation during hemodialysis are highly consequential, high-
lighting the need for a clotting detection technology that offers real-time responsiveness and high accuracy
to monitor clotting in the context of hemodialysis. Currently, clotting detection primarily relies on visual
observation by medical workers and offline testing following scheduled blood sampling, which falls short in
providing real-time insights into clotting status. In this study, we present a clotting detection device based on
the MS-UNet++ framework, capable of identifying clotting areas and assessing the clotting levels in real
time through venous pot images within the hemodialysis circuit. Clinical experiments have demonstrated
that this model achieves an accuracy of 84.0% in classifying the clotting levels. Furthermore, when it comes
to alerting for clotting levels exceeding the threshold, the model exhibits a sensitivity of 100%. These
results affirm the ability of the MS-UNet++ framework to accurately identify clotting levels during the
hemodialysis process and provide timely warnings when necessary. The stability and applicability of the
neural network model in clotting detection have been verified, offering novel insights and approaches for
real-time clotting monitoring during hemodialysis.

INDEX TERMS Clotting level, MS-UNet++, image segmentation, clotting alarm.

I. INTRODUCTION
Hemodialysis is a common clinical treatment for end-stage
renal disease (ESRD) [1], [2], [3], [4]. It involves the purifi-
cation of blood through an extracorporeal circuit by removing
uremic toxins, including small molecules such as urea, creati-
nine, uric acid, and middle molecules like β2-microglobulin
[5], [6], [7], [8], [9], [10]. During hemodialysis, activation
of platelets, leukocytes, and the coagulation cascade can lead
to clotting formation [11], [12], [13], [14], [15], [16]. The
consequences of clotting during hemodialysis are severe.
If clotting are limited to the dialyzer fibers without affecting
the extracorporeal circulation, the effective surface area of
the dialyzer is reduced, impacting treatment efficacy [17].
However, if clotting obstructs blood flow from the dialysis
circuit back to the patient, significant blood loss can occur.
In severe cases, immediate termination of dialysis is required,
posing potential life-threatening risks. Therefore, detecting
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clotting during hemodialysis is of paramount importance.
Medical workers find it challenging to continuously monitor
clotting in all patients within the hemodialysis facility, neces-
sitating a clotting detection technique with high real-time
responsiveness and accuracy to monitor clotting during the
procedure.

Currently, there are two types of clotting detection tech-
niques used in hemodialysis. In 2012, Aniort et al. [18]
introduced a method that relies on visual observation of the
percentage of dark red stripes on the dialyzer to assess the
patient’s clotting level after hemodialysis [19]. However, this
method can only determine the clotting level of the dialyzer
after the completion of hemodialysis, following rinsing with
saline solution, and it fails to observe clotting changes during
the actual procedure. Moreover, each observation requires the
presence of specialized medical workers.In order to assess
clotting activation during hemodialysis, François et al. [20]
conducted experiments by collecting blood samples at var-
ious time points, including before and 5, 15, 30, 90, and
240 minutes after the initiation of the blood pump. In the
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study, clotting activation was evaluated based on markers
such as thrombin-antithrombin complex (TAT), prothrom-
bin fragment 1+2 (PF1+2), activated factor XII (FXIIa),
kallikrein, activated factor XI (FXIa).This approach requires
offline laboratory testing and cannot provide real-time mon-
itoring of clotting levels. Therefore, there is a pressing
need for an online method to assess clotting levels during
hemodialysis.

Image segmentation has become a common approach in
medical image processing in recent years, serving as a crucial
step for feature extraction and classification during medical
analysis. Segmentation refers to the partitioning of an image
into multiple categories or regions with shared character-
istics, allowing for the extraction of regions of interest in
medical applications [21], [22], [23], [24]. In the extracorpo-
real circulation during hemodialysis, the venous pot images
can be captured and analyzed. Due to changes in blood tur-
bidity during the clotting process, noticeable variations occur
in the venous pot images, which can be utilized for feature
extraction of clotting areas usingmedical image segmentation
methods. Traditional algorithms in medical image segmen-
tation include OTSU, edge detection, and K-means, among
others [25], [26]. Although these methods can accomplish
simple segmentation tasks, they demonstrate unsatisfactory
performance in identifying clotting areas. Therefore, a neural
network-based method for medical blood coagulation image
segmentation was designed to address this issue.

In recent years, there have been numerous examples in
the field of biomedical engineering that utilize deep learning
algorithms for image segmentation [27], [28], [29], [30], with
the U-Net [31] architecture proving to be highly effective.
The U-Net framework is based on Fully Convolutional Net-
work [32]. The U-Net framework achieved an Intersection
over Union of 77.5% in microscope cell segmentation tasks.
Zhou et al. [33] designed the U-Net++ framework to address
the need for more accurate segmentation in medical images.
The encoding and decoding subnetworks are interconnected
through a series of nested and dense skip connections, achiev-
ing an Intersection over Union of 82.9% in liver segmentation
tasks and 77.2% in lung nodule segmentation tasks. The
U-Net and U-Net++ frameworks have been widely applied
in biomedical engineering for segmentation tasks, demon-
strating excellent performance while adapting to the scarcity
of medical image datasets, requiring minimal data. How-
ever, there is still significant room for improvement when it
comes to clotting images within this network. Therefore, it is
proposed to develop a model based on this framework specif-
ically for medical clotting image segmentation to address the
segmentation task, as well as classify the severity based on
the clotting area.

The method proposed in this study is capable of assessing
clotting levels at various time points during the hemodialysis
process, not only at the end of the procedure. It eliminates
the need for offline detection after blood sampling and pro-
vides alerts when the clotting level exceeds a threshold. The
approach has been applied and tested during hemodialysis

FIGURE 1. The experimental setups of clotting detection:
(a) Experimental schematic diagram of the clotting detection. (b) Portable
Experimental System.

sessions with different patients, and the experimental results
confirm the stability, universality, and scalability of the neural
network algorithm in clotting image detection.

II. METHODOLOGY
A. EXPERIMENTAL SETUP
The measurement device shown in Fig. 1 (a) was constructed
using the following components: near-infrared CMOS cam-
era (1280 × 1024 pixels), near-infrared LED (wavelength:
850 nm, power: 15 W), filter (cut-off wavelength: 850 nm,
bandwidth: 50 nm), touch screen (7 inches, 1024 × 600 pix-
els), embedded system (Raspberry Pi 4 Model B with 8 GB
of memory).

In this experiment, the near-infrared LED light source,
which provides the light, is positioned directly above the
near-infrared CMOS camera to eliminate ambient light inter-
ference. The filter is placed in front of the lens of the
near-infrared CMOS camera to improve the clarity and accu-
racy of the imaging results. The captured venous pot images
by the near-infrared CMOS camera are stored in the PC and
converted into grayscale and pseudo-color images, which are
then displayed on the touch screen. The settings input through
the touch screen are sent to the PC, which outputs control
signals to the near-infrared LED light source. The system
is fixed at the clamp of the venous pot and can be adjusted
in all directions through a mechanical arm to support the
positioning of the LED light source and the CMOS camera.

The apparatus diagram is presented in Fig. 1 (b). The
constructed device is initially fixed at the clamp of the venous
reservoir. The position of the near-infrared light source
and the camera’s acquisition position are adjusted using a
mechanical arm, followed by the adjustment of the camera’s
focal length and aperture. The goal is to achieve clear and
evenly illuminated images.

Once the device is activated for measurement, the acqui-
sition frequency is set to 30 seconds. Fig. 2 shows the
venous pot images obtained at three different time points
during hemodialysis. The images have a resolution of 1280×

1024 pixels. The clotting areas appear darker than the normal
blood area and can be visually observed and identified. They
may appear at different locations within the venous pot and
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FIGURE 2. The venous pot images at different time points.

exhibit various shapes. The specific locations of the blood
clotting areas in the three images are highlighted with red
boxes.

B. DATASET
The present study comprised a cohort of 103 patients diag-
nosed with ESRD who had been receiving dialysis treat-
ment for a minimum of three months at Naval Medical
Center of PLA. All patients are aware of the purpose of
image acquisition. The cohort consisted of 53 male and
50 female patients. The dialysis machines employed in the
study were the Fresenius 4008B and Fresenius 4008S, with
a dialyzer surface area ranging from 1.4-1.8 square meters.
The patients underwent three dialysis sessions per week,
each session lasting 3.5-4 hours. The blood flow rate ranged
from 200 to 260 mL/min, and the dialysate flow rate was
set at 500 mL/min. The dialysate contained a sodium con-
centration of 140 mmol/L and a bicarbonate concentration
of 35 mmol/L. The anticoagulation protocol involved admin-
istering low-molecular-weight heparin at a dosage of 60-80
U/kg or sodium citrate at a rate of 300-400 mL/h. Patients’
exclusion criteria were as follows: patients aged 78 years and
above, those with contraindications to heparin, severe liver
disease, chronic inflammatory diseases, hematological dis-
orders, vascular dysfunction, or those taking ciprofloxacin,
warfarin, or antiplatelet drugs. The patients did not exhibit
any distinctive characteristics.

In order to obtain images that reflect clotting in the venous
pot, the aforementioned experimental setup was used to cap-
ture images of the venous pot throughout the entire process
of patients hemodialysis. During the process of hemodialysis,
clotting formation and expansion often occur rapidly. The
image capture frequency was set to capture an image of the
venous pot every 30 seconds, allowing for a complete record
of the clotting process in the venous pot. The captured images
using the aforementioned setup had a pixel resolution of
1280 × 1024.

The acquired raw images are preprocessed to enhance
their quality. Firstly, the original images are converted to
grayscale to reduce the parameter count and facilitate sub-
sequent processing steps. The environmental lighting in the
hemodialysis room introduces significant interference in the
images, leading to uneven illumination in the venous pot
images. This is characterized by non-uniform brightness and
color distribution across the entire image. To address this

FIGURE 3. The production process of clotting area dataset.

issue, gamma correction is applied as a preprocessing step to
adjust the grayscale images [34]. Gamma correction employs
a nonlinear transformation to adjust the brightness of the
images, enhancing their quality and effectively mitigating the
impact of uneven lighting conditions.

Based on the preprocessed images, the pixel points within
the clotting area and venous pot area are used to calculate
the ratio between these two regions. This ratio is then uti-
lized to determine the level of clotting. To obtain accurate
masks for the venous pot area and clotting area, experienced
clinical physicians create the dataset masks. The specific
process is illustrated in Fig. 3. Medical experts annotating
the venous pot images may provide significantly different
results in certain cases. Some may classify the same region
as normal blood, while others may classify it as a clotting
area. The boundaries of the venous pot area are distinct, with a
shape resembling a rectangle, similar in size and position. The
distinct boundaries make it easier to determine. The mask for
the venous pot area is created with reference to the results of
traditional algorithms, but with improvements incorporated.
On the other hand, the boundaries of the clotting area are not
well-defined, and the shape and size can be complex. During
hemodialysis, normal blood exhibits flow within the venous
pot, while clotting does not. To determine the clotting area,
the dataset is created by three professional clinical physicians
who compare images from different time points and collec-
tively select the region that best approximates the true area of
clotting.

C. MS-UNET++ FRAMEWORK
U-Net is specifically designed to handle small datasets and
has been widely applied in medical image segmentation [31].
In the collected venous pot images, the color of the patient’s
blood varies, resulting in significant differences in grayscale
values in the obtained grayscale images. The clotting area
appears as an irregular shape with a darker center and lighter
color in the surrounding regions, forming at arbitrary posi-
tions. The surrounding areas have lighter colors, similar to the
color of the surrounding normal blood, and their boundaries
are relatively blurred. In the case of clotting images of the
venous pot, the U-Net structure tends to perform poorly in
capturing the edge information of clotting images due to the
significant semantic gap between the feature maps of the
encoder and decoder. Zhou et al. proposed the U-Net++

framework, which introduces a series of nested and dense
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FIGURE 4. Principle of multi-scale convolution.

FIGURE 5. Principle of spatial attention mechanism.

convolution blocks along the skip connections of U-Net [33].
The U-Net++ framework reduces the semantic gap between
the feature maps of the skip connections and achieves better
edge information extraction for clotting image features com-
pared to U-Net. However, the performance of U-Net++ in
handling the varied irregular shapes and sizes of the clotting
areas is limited. AlthoughU-Net++ utilizes skip connections
for feature fusion, there is still room for improvement in
extracting edge information for clotting image features during
the segmentation process.

To address the uncertainty in the shape and size of clotting
areas in input clotting images, a multi-scale convolution is
employed to replace the VGG module in the U-Net++ for
feature extraction [35]. Themulti-scale convolution structure,
as shown in Fig. 4, applies convolutional kernels of three
different scales to extract feature maps with varying receptive
fields in clotting images. The three different feature maps
obtained are then interpolated to the same size and resolution,
concatenated together to form a complete multi-scale feature
map. The multi-scale convolution may generate feature maps
with a larger depth. To reduce the number of parameters
and computational complexity, 1 × 1 convolutional kernels
are concatenated after obtaining the feature maps to reduce
their depth to a smaller dimension. The formula for the entire
module is shown in (1).

Fout = (Fin × K1 + Fin × K3 + Fin × K5) × K1 (1)

where Fin represents the input image, Fout represents the
output feature map. K1,K3,K5 refer to the convolutional
kernels of sizes 1 × 1, 3 × 3, and 5 × 5.

FIGURE 6. Principle of MS module.

To address the challenges of extracting unclear and com-
plex features in clotting images, a spatial attention mecha-
nism is employed to focus on the relevant information in
the feature map [36]. The structure of the spatial attention
mechanism is illustrated in Fig. 5. After performing convo-
lution, dilated convolution, and convolution operations on
the input image, the extracted features are aggregated in the
channel dimension using maximum and average pooling.
The CxWxH (channel∗width∗height) feature map is com-
pressed into 1xWxH information. Attention information is
then extracted through convolution with attention weights.
Finally, if it is a single-branch structure, a sigmoid function is
applied to ensure non-negative attention weights. For multi-
branch structures, softmax is used to ensure non-negative
attention weights. The formula for the spatial attention mech-
anism is shown in (2).

MS (F) = σ (f 7×7([AvgPool (F) ,MaxPool (F)])) (2)

Based on the multi-scale convolution and spatial attention
mechanism, an MS module is designed to address the seg-
mentation problem of irregular and complex clotting areas.
The structure of the MS module is depicted in Fig. 6, where
the spatial attention mechanismmodule is connected after the
multi-scale convolution. The image is initially processed with
three different scales of convolution kernels to obtain three
distinct feature maps. These feature maps are then concate-
nated to form a complete multi-scale feature map, which is
further dimensionally reduced using a 1× 1 convolution ker-
nel. The spatial attention mechanism is subsequently applied
to extract relevant positional information.

The MS module is introduced into the U-Net++ frame-
work, resulting in the proposed MS-UNet++ framework.
This structure is more suitable for complex and irregular
clotting areas. Fig. 7 illustrates the MS-UNet++ framework
along with the input and output of feature region recognition.
The clotting image data is input to the MS module at X0,0,
and the resulting feature map is passed through downsam-
pling and skip connections to enter the next MS module. L1
to L4 represent the network structures after 1 to 4 down-
sampling and upsampling operations. The final feature map
is obtained through a series of encoding and decoding pro-
cesses and is output fromX0,4. In theMS-UNet++ structure,
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FIGURE 7. Principle of MS-UNet++.

FIGURE 8. Experimental results of comparison between dialyzer and
venous pot: (a) First-degree clotting level. (b) Second-degree clotting
level. (c) Third-degree clotting level. (d) Fourth-degree clotting level.

downsampling is performed using a 2 × 2 Max Pooling
Layer, upsampling is performed using a 2× 2 Deconvolution
Layer, and featuremap concatenation is achieved usingmerge
layers.

D. EVALUATION INDEX
Julien et al. first introduced the percentage of dark red stripes
in the post-flush dialyzer as a medical evaluation indicator
for clotting in hemodialysis [18]. In order to investigate the
correlation between clotting in the venous pot and clotting in
the dialyzer, a medical standard experiment was conducted
to compare the degree of clotting in the venous pot and the
dialyzer. The proportion of dark red stripes in the dialyzer
to the total dialyzer was used as the clotting level for the
dialyzer, while the proportion of clotting in the venous pot
to the venous pot was used as the clotting level for the venous
pot.

Fig. 8(a)-(d) depict a comparative analysis of clotting areas
in the venous pot and the dialyzer for four clotting levels. The
dark red clots in the venous pot represent areas of clotting,
while the dark red stripes in the dialyzer indicate areas of clot-
ting. In Fig. 8 (a), both the dialyzer and the venous pot show
clotting percentages less than 10%, indicating a first-degree
clotting level. In Fig. 8 (b), the clotting percentages in both
the dialyzer and the venous pot range from 10% to 25%,
representing a second-degree clotting level. In Fig. 8 (c), the
clotting percentages in both the dialyzer and the venous pot
range from 25% to 50%, indicating a third-degree clotting
level. Lastly, in Fig. 8 (d), the clotting percentages in both

TABLE 1. Clotting scale.

the dialyzer and the venous pot exceed 50%, indicating a
fourth-degree clotting level.

Medical standard experiments have demonstrated a high
correlation between clotting levels in the dialyzer and the
venous pot. Recognizing the extent of clotting in the venous
pot can effectively reflect the degree of clotting in the dia-
lyzer. The percentage of clotting areas in the venous pot
relative to its total area can also serve as an evaluation indi-
cator for clotting during hemodialysis. The four levels of
medical clotting evaluation criteria are shown in Table 1.

In the feature extraction results of the venous pot area
and the clotting area, we aim to analyze the accuracy of the
segmentation obtained by the model. Additionally, we intend
to classify the segmented images into different levels based on
the area method and evaluate the final classification accuracy.

In the evaluation of venous pot segmentation and clotting
area segmentation performance, for each image, the ground
truth mask and the predicted mask are compared, and the
pixels of the two masks are determined. Then, the following
twometrics are used to evaluate the image segmentation: Dice
Similarity Coefficient (DSC) and Intersection over Union
(IoU). These metrics are defined by the following equations:

DSC =
2TP

2TP+ FP+ FN
(3)

IoU =
TP

TP+ FP+ FN
(4)

In this context, TP represents the number of pixels cor-
rectly classified by the model as clotting areas, FP represents
the number of pixels mistakenly classified by the model
as clotting areas when they are not, and FN represents the
number of pixels that were not classified as clotting areas but
actually belong to clotting areas.

DSC, also known as the F1 score or F-measure, and IoU,
sometimes referred to as the Jaccard index, are two evalua-
tion metrics used in image segmentation. DSC measures the
overlap between the predicted segmentation and the ground
truth segmentation, emphasizing the similarity between the
two. On the other hand, IoU calculates the ratio of intersection
to union, focusing on the consistency between the predicted
and ground truth segmentations. DSC provides a stricter
evaluation of the segmentation results, while IoU tends to pri-
oritize the consistency between the predicted and ground truth
results. Both metrics are commonly used in medical image
segmentation tasks. A higher value of DSC and IoU, closer
to 1, indicates a smaller difference between the extracted
results and the labels, indicating higher accuracy. Conversely,
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a value closer to 0 indicates a larger difference and poorer
performance of the segmentation results.

For the segmented images, the number of pixels in the
venous area and the clotting area are calculated separately.
The pixel counts are compared using the area method to
determine the clotting level, which is categorized into four
classes. The performance of the model’s classification is
evaluated using the Accuracy, Macro-Precision, and Macro-
Recall metrics, defined by the following equations:

Accuracy =
TP1 + TP2+TP3 + TP4

ALL
(5)

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

Macro-Precision =
P1 + P2+P3 + P4

4
(8)

Macro-Recall =
R1 + R2+R3 + R4

4
(9)

The Accuracy metric measures the overall prediction per-
formance on the entire dataset. To address data imbalance,
Precision and Recall are introduced for evaluation. For multi-
class tasks, Precision and Recall need to be calculated
separately for each class, and then averaged using the Macro-
averagemethod. TP1, TP2, TP3 and TP4 represent the number
of correctly classified samples in the four classes of clotting.
ALL represents the total number of samples. P1, P2, P3,
and P4 represent the Precision of each individual category,
while R1, R2, R3, and R4 represent the Recall of each individ-
ual category. The values of Accuracy, Macro-Precision, and
Macro-Recall closer to 1 indicate smaller differences between
predicted and true results, indicating higher accuracy. Values
closer to 0 indicate larger differences between predicted and
true results, indicating lower accuracy.

Based on the evaluation metrics of neural networks, the
performance of the classification task is analyzed to assess
the accuracy of the neural network model in classifying the
degree of clotting. The evaluation is conducted using met-
rics such as Accuracy, Macro-Precision, and Macro-Recall.
By comparing the metrics obtained from the neural network
with the actual clotting levels assessed by medical evaluation
metrics, the accuracy of the classification task can be deter-
mined. The accuracy of the classification obtained from this
model can be used to evaluate the accuracy of the clotting
level in medical evaluation metrics during hemodialysis.

For clinical applications, it is crucial to determine whether
clotting has occurred and issue appropriate alarms. The accu-
racy of clotting detection is assessed using Sensitivity and
Specificity measures. They are defined by the following
equations:

Sensitivity =
TP

TP+ FN
(10)

Specificity =
TN

TN + FP
(11)

FIGURE 9. Segmentation results of the venous pot. Results of K-means
algorithm and MS-UNet++ algorithm for venous pot segmentation: In the
obtained results, the white regions represent the venous pot, while the
black regions correspond to the background.The yellow regions is used
for a more pronounced contrast between the segmentation results of
OTSU and K-means.

Sensitivity refers to the proportion of true positive cases
correctly identified among all individuals who actually have
the condition, indicating the true positive rate. Specificity,
on the other hand, refers to the proportion of true negative
cases correctly identified among all individuals who do not
have the condition, indicating the true negative rate. Sensi-
tivity and Specificity are complementary measures that are
often considered together. A higher value for Sensitivity
and Specificity indicates a smaller discrepancy between the
extracted results and the labels, resulting in higher accuracy.
Conversely, a lower value indicates a larger discrepancy and
poorer performance.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. SEGMENTATION OF THE VENOUS POT AREA
Accurately segmenting the size of the venous pot is essential
for subsequent calculation of clotting levels using the area
method. By comparing the segmentation results of the venous
pot using traditional image segmentation algorithms with
the MS-UNet++ framework, different regions of the venous
pot were obtained as shown in Fig. 9. It demonstrates the
venous pot segmentation results of five different images using
the OTSU method, K-means method, and MS-UNet++.
From the obtained venous pot segmentation results, it can
be observed that using neural networks for venous pot seg-
mentation yields results that are closer to the true venous pot
mask compared to traditional methods. It effectively removes
interference from shadows in the background and dialysis
tubing, accurately locating the true region of the venous pot.

The adoption of the traditional image segmentation
algorithm, namely the OTSU algorithm, enables automatic
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TABLE 2. Performance of different algorithm in segmenting the venous
pot area.

selection of an appropriate threshold for binary segmen-
tation of grayscale images [25]. The image segmentation
algorithm based on K-means clustering, with the number
of cluster centers set to 2, can automatically segment the
venous pot area [26]. These two traditional algorithms can
generate an approximate image of the venous pot. However,
due to uneven lighting conditions in the hemodialysis room,
the background of the obtained grayscale image is prone to
shadow areas. The dialysis tubing itself consists of many
elongated tubes, which are likely to appear in the back-
ground and are difficult to avoid in practical clinical settings.
Although this portion shares the same color as the venous pot,
it is not within the range we need to calculate. The traditional
OTSU algorithm and K-means clustering algorithm perform
poorly in recognizing shadows and dialysis tubing during
venous pot segmentation, often mistakenly identifying them
as part of the venous pot. In contrast, MS-UNet++ addresses
this issue.

The 50 test images from data1 were segmented using three
different methods and compared with the ground truth masks.
The obtained IoU coefficients are presented in Table 2. With
the increase in training epochs, the MS-UNet++ framework
achieved the highest IoU coefficient of 98.4% on the test set
and a DSC of 97.36%, outperforming traditional algorithms.
This validates the suitability of the neural network model for
venous chamber segmentation tasks.

B. SEGMENTATION OF THE CLOTTING AREA
The differences in clotting areas and other blood regions
within the venous pot are minimal, making it challenging
for traditional methods such as binarization and clustering to
segment the clotting areas accurately. To address this limita-
tion and overcome the inability of traditional algorithms to
segment the clotting areas, three neural network models were
employed to perform segmentation tests on data1 in order to
find the optimal weights.

Fig. 10 shows the comparison of IoU and DSC of
three network models as training progresses. It can be
observed that with increasing training iterations, both the
IoU and DSC of MS-Unet++ outperform those of U-Net
and U-Net++. Table 3 presents the optimal values obtained
within 100 epochs, where the DSC of MS-UNet++ reaches
83.25% and the IoU coefficient reaches 84.35%, indicating
higher segmentation accuracy compared to the U-Net and
U-Net++.

The boundary between flowing blood and the clotting area
exhibits minimal differences, making it challenging for the

FIGURE 10. The change of DSC and IoU with the epoch.

TABLE 3. Performance of different framework in segmenting the clotting
area.

U-Net and U-Net++ to effectively handle this edge informa-
tion. Moreover, these models struggle to accurately identify
the irregular shapes of the clotting areas. In contrast, the
improved algorithm of the MS-UNet++ framework, specif-
ically designed for segmenting clotting areas, enhances the
perception capability for these areas and enables better cap-
ture of edge information within the images.

Fig. 11 illustrates partial results of image segmentation
using MS-UNet++. Five images with different positions and
shapes were selected from the test dataset. The combined
image highlights the following areas: white for predicted
and actual clotting areas, green for predicted clotting but
actual non-clotting areas, black for predicted and actual non-
clotting areas, and purple for predicted non-clotting but actual
clotting areas. It is evident from the combined images that
MS-UNet++ accurately identifies the locations of clotting
areas and effectively handles edge information. Even in cases
where the clotting areas closely resemble the background
color, the framework successfully delineates the boundaries
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FIGURE 11. Segmentation results of the clotting area. The combined
image highlights the following areas: white for predicted and actual
clotting areas, green for predicted clotting but actual non-clotting areas,
black for predicted and actual non-clotting areas, and purple for
predicted non-clotting but actual clotting areas.

of the clotting areas. These results validate the improved
performance of MS-UNet++ in clotting area segmentation.

C. CLASSIFICATION OF CLOTTING
The above experiments resulted in the predicted masks for
the venous pot and the clotting area using the model. First,
it is determined that the mask of the clotting area should be
contained within the venous pot mask. Therefore, the masks
of the clotting area that are not within the venous pot mask are
removed. The pixel count of the clotting area mask and the
venous pot mask is then calculated to obtain their respective
areas. These areas are divided into four categories based
on the ratio between them. The first-degree clotting level
represents 0-10%, the second-degree clotting level represents
10-25%, the third-degree clotting level represents 25-50%,
and the fourth-degree clotting level represents 50-100%.

The partial results of data classification are shown in
Fig. 12. The ‘‘Area’’ represents the proportion of the clotting
area, ‘‘Predicted Level’’ indicates the predicted level, and
‘‘True Level’’ represents the actual clotting level. No. 1 and
No. 2 belong to the fourth-degree clotting level, No. 3 andNo.
4 belong to the third-degree clotting level, and No. 5 belongs
to the second-degree clotting level. All five images can be
accurately classified into their corresponding levels. Even if
there are errors in segmenting the clotting area, there are
instances where accurate classification into the correspond-
ing level is still possible during level classification, thereby
reducing the impact of segmentation errors.

Fig. 13 shows the confusion matrix of the 50 clotting
images classified from the automatically randomized test set.
Level 2 and Level 3 data are more abundant compared to

FIGURE 12. Classification results of the clotting images.

FIGURE 13. Confusion matrices for classifying data1.

Level 1 and Level 4. Based on the confusion matrix, various
evaluation metrics are calculated. The results show Accuracy
of 84.0%, Macro-precision of 86.7%, and Macro-recall of
83.8%. All metrics achieve precision exceeding 80%, demon-
strating the model’s good performance in the classification
task and its effectiveness in the four-class classification. The
higher macro-precision than accuracy and the slightly lower
macro-recall compared to accuracy indicate a certain data
imbalance issue, especially with the abundance of Level 2 and
Level 3. However, the overall model’s classification accuracy
remains reliable.

To verify the generalization capability of the model, the
trained model was used to classify the clotting levels in data2.
The resulting confusion matrix is shown in Figure 14. The
evaluation metrics were computed as follows: Accuracy =
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FIGURE 14. Confusion matrices for classifying data2.

FIGURE 15. Confusion matrices for classifying data2 to two class.

86.8%, Macro-Precision = 87.8%, and Macro-Recall =

82.9%. Data2 still contains a larger proportion of Level 2 and
Level 3 samples. The higher macro-precision than accuracy
and the slightly lower macro-recall compared to accuracy
indicate the presence of data imbalance. However, the overall
classification accuracy of the model remains reliable. When
facing entirely new data, the model demonstrates consistent
or even improved performance, indicating its generalization
capability across different datasets.

D. CLOTTING THRESHOLD SETTING AND ALARM
In the clinical application of hemodialysis, the ability to
detect and alert the occurrence of clotting is of paramount
importance. Researchers define clotting with a level higher
than 2 and an area larger than 10% as significant clotting,

FIGURE 16. ROC curve of clotting alarm.

which often requires early termination of dialysis to avoid
potential harm. Clotting that occurs during the hemodialysis
process is irreversible, and it is clinically recognized that any
clotting of level 2 or higher within 180 minutes after the start
of dialysis should trigger an alarm. This alarm alerts health-
care professionals to perform real-time interventions such as
saline flushing or additional anticoagulant administration to
prevent further enlargement of the clotting area. Failure to
intervene may lead to the development of level 4 clotting,
necessitating early termination of dialysis.Therefore, clotting
records are classified as follows: 0 for level 1 clotting and no
clotting, indicating no action required; 1 for levels 2, 3, and
4 clotting, indicating the need for an alarm to alert healthcare
workers for intervention. By applying a threshold of 10%
clotting area, the results obtained from data2 are divided
into two classes. The resulting confusion matrix is shown in
Fig. 15, and the accuracy is calculated as 97.3%. However,
there is a significant class imbalance in the data, which can
be addressed by calculating sensitivity and specificity. The
ROC curve in Fig. 16 demonstrates a sensitivity of 100%,
specificity of 75%, and an area under the curve of 88%. In this
task, considering the potential harm caused by clotting, it is
crucial not to miss any clotting cases. Therefore, identifying
the proportion of true clotting cases that are successfully
detected is of greater importance, emphasizing the signif-
icance of sensitivity. In this case, the sensitivity is 100%,
confirming the reliability of the model in clotting detection.

IV. CONCLUSION
This study introduces a novel approach to classify the clotting
level during hemodialysis directly based on the grayscale
images of the venous pot. Regarding the segmentation task,
MS-UNet++ demonstrates significant improvements over
traditional image segmentation algorithms. It effectively
eliminates interferences such as shadows and blood vessels,
resulting in more accurate segmentation of the venous pot
area. The accuracy of segmentation has been increased from
75% with traditional algorithms to 98% with MS-UNet++.
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When comparing the two U-Net architectures with MS-
UNet++, it is observed that the latter performs well even
with small batch data, particularly in handling irregular and
varying shapes of clotting areas. The best DSC on the test set
has been improved to 83.25%. Regarding the classification
of clotting levels, the model achieves an accuracy of 84.0%
based on the area-based classification method. Consider-
ing the data imbalance, the model is evaluated comprehen-
sively achieving a Macro-Precision of 86.7%. On data2, the
model maintains a high level of accuracy without significant
decrease. The reliable classification accuracy and high gen-
eralization capability of the model enable it to adapt to new
data effectively.

For medical clinical applications, using a threshold of 10%
clotting area, the model achieves an accuracy of 97.3% based
on the confusion matrix and ROC curve analysis. The sen-
sitivity is 100%, specificity is 75%, and the AUC is 88%.
These results confirm that the model can accurately identify
clotting occurrences during hemodialysis and trigger alarms.
This significantly reduces the risk of blood loss and prema-
ture termination of dialysis, thereby alleviating the workload
and pressure on healthcare professionals in the hemodialysis
department. The findings have significant practical implica-
tions in clinical settings.

This study offers a new method and approach for real-time
clotting detection during hemodialysis, thereby providing
valuable assistance in medical research.
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