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ABSTRACT Text-to-graphics systems encompass three types of tools: text-to-picture, text-to-scene and
text-to-animation. They are an artificial intelligence application wherein users can create 2D and 3D scenes
or animations and recently immersive environments from natural language. These complex tasks require the
collaboration of various fields, such as natural language processing, computational linguistics and computer
graphics. Text-to-animation systems have received more interest than their counterparts, and have been
developed for various domains, including theatrical pre-production, education or training. In this survey
we focus on text-to-animation systems, discussing their requirements, challenges and proposing solutions,
and investigate the natural language understanding approaches adopted in previous research works to solve
the challenge of animation generation.We review text-to-animation systems developed over the period 2001-
2021, and investigate their recent trends in order to paint the current landscape of the field.

INDEX TERMS Natural language interface, natural language understanding, computer graphics, semantic
parsing, visual semantics.

I. INTRODUCTION
Creating graphical resources is a fastidious and time-
consuming task, it requires expertise in computer graphics
and programming. Graphical resources are however very use-
ful in various tasks, like advertising, entertainment [1], and
education [2]. While discussing the importance of animation
in education, Jancheski highlights the difficulty of creating
such resources for classroom use, and cites as a challenge that
the skills needed to create such resources are beyond a single
teacher’s domain of knowledge [3]. This makes it desirable
to develop a paradigm wherein graphical resources can be
created from natural language.

Various research works targeted graphics generation from
natural language. They come in two types: text-to-scene and
text-to-animation. On the one hand, text-to-scene systems
generate 3D scenes from natural language input [1]. The
challenges in such systems are related to the spatial relation-
ships between objects, which are usually expressed through
prepositions [1]. Text-to-animation systems, referred to here-
after as TTA, on the other hand, are systems that generate
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2D or 3D animations from natural language, they extend
text-to-scene systems by adding dynamicity to the scenes
[4], [5]. The challenge in such systems is related mainly
to the visualization of events, which are usually expressed
through verbs [4]. In their efforts to map natural language to
the semantic representation of animations, TTA systems face
many challenges related to natural language input, graphics
generation, or to the connection between them [4]. The
efforts are however worthwhile, as TTA systems can be very
useful in the education and entertainment industry. Education
can benefit from TTA systems to create animations to support
classroom activities, such as digital storytelling.

Systems that offer the capability of animation generation
consist mainly of two separate modules: A Natural Language
Understanding NLU module, and a graphics module [6], [7].

It is difficult to categorize TTA systems due to the inter-
disciplinary nature of the research supporting them. But
the underlying generic architecture allows us to characterize
these systems as a connection between Natural Language
Processing NLP and computer graphics [6], as shown in
Figure 1.
In this paper, we aim to investigate TTA systems from a

natural language understanding perspective, by systematically
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FIGURE 1. A basic architecture of a TTA system.

reviewing TTA research works from the literature published
between 2001 and 2021. We define TTA systems as types
of systems where the users can describe the environment,
the actors, the actions and the props via natural language
descriptive prose. Consequently, research works that describe
either systems where the user can control an avatar in a
virtual environment, as in [8], or systems where the user
communicates with a conversational agent as in [9] have been
excluded due to the different natural language processing
challenges they present.

The rest of this paper is organized as follows. In Section II,
we outline the methodology we employed for conducting this
review, elaborating on the inclusion and exclusion criteria and
explaining our extraction scheme. In Section III, we present
the previous research works, attempting to classify text-to-
graphics systems and how and where those efforts crosscut
with the present paper. Section III continues by discussing
the challenges related to the task of TTA, and Section IV
leverages these challenges to study the selected works in
further depth. We discuss our results in Section V and draw
up our conclusions in Section VI.

II. REVIEW STRATEGY
This review adheres to the guidelines established by Kitchen-
ham and Charters [10]. To access the scientific databases and
the reviewed material, we relied on the search services of the
University of Eastern Finland library’s electronic resources.

To begin our review, we examined previous surveys that
addressed text-to-graphics systems, namely [6] and [11]. The
existing literature recognizes the difference between text-to-
scene and text-to-animation tools, yet none of the reviews
focuses exclusively on TTA systems. We have, thus, decided
to study this category of text-to-graphics systems, with an
emphasis on their requirements, challenges while studying
and evaluating the effectiveness of the existing solutions.

A. SPECIFYING THE RESEARCH QUESTIONS
By reviewing the existing TTA systems, this review aims to
answer the following research questions:

• What are the requirements of a reliable text-to-
animation system?

• What challenges have to be solved to enable the anima-
tion generation capability?

• How do the existing TTA systems approach and fare
against the identified challenges?

To address the research questions, we conducted a com-
prehensive analysis of the current text-to-animation systems
from different perspectives. We first started by identifying
the specific requirements and challenges associated with each
system, taking into account the diverse domains in which the
TTAs are applied. We, subsequently, delved into understand-
ing the processes and pipelines of semantic parsing within
the TTA systems, seeking to comprehend the underlying
mechanisms and techniques employed in extracting meaning
from the input descriptions. Lastly, the study focused on the
rendering process, exploring how the generated animation
informationwas communicated and transformed into visually
adequate animations through the collaboration between the
NLU and the rendering modules.

B. REVIEW PROTOCOL
Kitchenham and Charters suggest that a review protocol
is essential to conduct a systematic review [10]. By cre-
ating a review protocol in advance, the likelihood of a
research bias can be reduced, such as the possibility of
the researcher selecting particular studies based on personal
biases. We developed a review protocol based on Kitchen-
ham’s guidelines. Our protocol included the research ques-
tions, inclusion and exclusion criteria, search strategy, data
extraction and synthesis methods.

C. SEARCH STRATEGY
We conducted a comprehensive literature search using the
following databases: ACMDigital Library, IEEE Xplore Dig-
ital Library, ScienceDirect, and Google Scholar. We used
phrases comprising different combinations of the terms ‘‘ani-
mation generation’’, ‘‘natural language visualization’’, ‘‘text-
to-animation’’, ‘‘natural language animation’’, ‘‘text-to-
graphics’’, ‘‘animation’’, ‘‘language visualization’’, ‘‘graph-
ics generation’’, and ‘‘natural language description visualiza-
tion’’.

D. STUDY SELECTION
The inclusion criteria were carefully formulated to ensure
the relevance of the selected studies. We took into account
English-language peer-reviewed journal articles, conference
papers, books, and dissertations published between 2001 and
2021. We focused on publications that reported on TTA sys-
tems that fulfilled the following requirements:

• input natural language, and
• output 2D, 3D or immersive visualizations, and
• have an explicit NLU stage, and
• are implemented and not mere designs.

Figure 2 displays a flowchart depicting the selection crite-
ria process. We conducted a thorough review of all identified
publications, including their titles, abstracts, keywords, and
contents. We selected articles that appeared relevant to visu-
alizations based on natural language for further analysis. We,
however, excluded research on TTA systems based on end-
to-end neural networks, including those that involve inputting
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FIGURE 2. Flow Diagram of the review process.

raw motion capture (mocap) data (as seen in [12], [13], [14])
or systems that input natural language, such as TGANs-C [15]
and CRAFT [16]. This exclusion stems from the absence
of an explicit NLU stage in such approaches. Additionally,
we excluded articles that concentrated on controlling avatars
through speech or text commands. Research on face anima-
tion and talking heads was also excluded from this review
due to the different NLU challenges it tackles. Initially,
91 research papers were identified through the predefined
search keywords on the four databases. However, after apply-
ing the inclusion and exclusion criteria, only 21 articles met
the selection criteria, as shown in Table 2.

E. DATA EXTRACTION
To facilitate the process of data extraction from the reviewed
papers, we established an extraction scheme which focused
on three dimensions, human interaction, NLU and rendering.

On the human interaction aspect, we extracted information
on the supported input languages, the application domain
(education, theatrical preproduction, etc.), and we looked
at how the domain influenced the nature of the sentences
used (imperative vs. declarative). From the NLU aspect, our
extraction focused on the algorithms used to perform the
semantic parsing task, which is critical to understand which
animation to generate. This has been augmented with an
extraction phase of the various knowledge bases that the TTA
systems use to augment the input and fill in the blanks the user
might leave out while describing an animation. Lastly, in our
rendering perspective, we sought to extract the information
related to the graphics engines or libraries used to create the
animations as well as extract the formal languages the NLU
module uses to communicate with the rendering engine.

Before we proceed to the results obtained from these
extraction processes in IV, we set out to present the require-
ments and challenges of animation generation systems in III.

III. REQUIREMENTS AND KEY CHALLENGES IN
ANIMATION GENERATION
Text-to-graphics systems have been a hot topic of research
recently. The progress made in both the fields of NLP and
computer graphics have facilitated the design and develop-
ment of such technology. Prior to entering into a detailed
review of individual research works we set out the require-
ments that an animation generation system must satisfy and
the challenges encountered in building one. We partially base
this exposition and the subsequent discussion on existing
surveys, adding research that was not previously reviewed
and creating a new framework within which to examine prior
work.

A. PRIOR AND CURRENT REVIEWS
Hassani et al. reviewed 26 text-to-graphics systems, distin-
guishing between text to-picture systems, which generate 2D
images in response to some natural language query, text-to-
scene systems, which generate 3D scenes, and TTA systems,
which generate 2D or 3D animations from natural language
[6]. The TTA systems were reviewed from a user-interaction
and NLP/NLU perspectives [6]. Similarly, Zakraoui et al.
reviewed 10 text-to-picture systems from a user-interaction
and technical perspectives [11]. They used the term text-to-
picture to encompass text-to-picture, text-to-scene and TTA
systems.

The current review targets research works that have been
published between 2001 and 2021, which means that it
overlaps with some of the systems surveyed in both [6]
and [11]. As shown in Figure 3, we have surveyed 21 TTA
systems (blue), eight of which have already been reviewed
in [6] (orange), and one has been reviewed in both [6]
and [11](green). In this review, we place an emphasis on the
challenges to TTA systems, as well as the requirements and
tasks of such systems. Our review of both the challenges and
the systems is seen from a storytelling perspective. We have
used the identified challenges to rate the TTA systems, and
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FIGURE 3. Crosscut with previous reviews.

assess how capable the research works examined were of
providing reliable text-to-animation.

B. OVERVIEW OF REQUIREMENTS AND COMPONENTS
OF TTA SYSTEMS
To generate an animation from natural language text, the sys-
tem should be able to ground natural language into a formal
description that can be mapped to an animation, including all
the information required for the animation to be complete.
Our research focuses more on verbs, considering that verbs
are the essence of event visualization. Hassani et al. identified
three requirements for text-to-graphics systems [6]:

• A graphics engine to render the output.
• A natural Language interface able to convert natural
language input into a formal description.

• An architecture to put together the two previous require-
ments of the output.

Hanser et al. identified six tasks for TTA systems [5]:
• Interpret natural language input and extract semantics
with a focus on the emotional aspects essential for visu-
alization.

• Integrate a knowledge base for common sense reason-
ing, affective reasoning and decision rules.

• Map language elements to visual elements.
• Generate the virtual scenes, with 3D scenes and audio
and non-audio speech.

• Coordinate the timing of different media.
• Apply cinematography principles to adjust lighting and
camera positioning, etc.

The tasks identified above have a specific focus, that is
emotions. We, however, believe that the tasks identified are
key to TTA systems in general regardless of their domains or
foci.

In their efforts to create a TTA system to convert Chinese
children stories into computer animations, Lu and Zhang
developed SWAN. It relies on amethodologywhich they refer
to as FLICA that divides the process of animation generation
into 8 stages, as follows [7]:

• Understanding natural language text and grounding it
into a formal semantic representation.

• Doing the story analysis and commonsense reasoning.
• Qualitative planning of display elements: characters,
environments, props, etc.

• Director planning.
• Qualitative camera planning.
• Qualitative light and color planning.
• Quantitative camera, light and color planning.
• Cartoon generation based on the quantities identified in
the previous step and a knowledge base.

It is worth noting that Lu and Zhang’s system, SWAN,
allows the user to intervene during the animation generation
process [7].

TTA systems (that fulfill the requirements identified by
Hassani and Lee, that can provide the tasks as speci-
fied by Hanser et al., and that follow the stages iden-
tified by Lu and Zhang) face a number of challenges
occurring at various stages of the process of animation
generation.

We extracted the challenges from the research works sur-
veyed in this article, and provided a classification of these
challenges based on the architectural component that tackles
them. We classify the challenges as either related to the
natural language input, the animation generation or the con-
nection between the two, which we refer to in this article as
visual reasoning challenges. Refer to Figure 4 below for a
taxonomy of TTA challenges, which are further detailed in
the subsections below.

C. CHALLENGES WITH NATURAL LANGUAGE INPUT
Our focus in this section is on NLP issues related solely
to TTA systems; consequently, typical NLP issues like co-
reference resolution, syntactic parsing [17], etc., are excluded
from this analysis. Some issues with the input in TTA systems
relate to the domain for which they are developed, and the size
of the input provided (single or multiple sentences). These too
are not treated.

Furthermore, some of the issues identified at the input level
may have repercussions at other levels in the TTA systems
architecture, as is the case with ‘‘underspecification’’ which
generates an endless list of problems at the level of the visual
reasoning entity.

1) IDENTIFICATION OF SENTENCES FOR ANIMATION
In trying to map a sentence to its visual representation (or one
of its possible visual representations), an effort is dedicated
to converting the input to a formal language that captures the
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FIGURE 4. TTA challenges by component.

essence of the visual elements it describes. For instance, if the
user enters a very forward and simple example such as ‘‘John
reads a book’’, a basic NLP module should be capable of
generating the following XML representation:

<actor>John</actor>
<action>read</action>
<object>book</object>
In this case, it is possible to map the sentence to a visual
representation with an actor reading a book. Other examples
present the challenge of verbs describing states, such as
‘‘want’’, ‘‘love’’ or ‘‘hate’’, in which visualization becomes
a more difficult task. Consider for example the sentence
‘‘John wants a book’’. Unlike action verbs, such as ‘‘read’’,
‘‘walk’’ or ‘‘talk’’, stative verbs, such as ‘‘want’’, ‘‘love’’
or ‘‘hate’’ denote no visual change in an object’s state, the
visualization of which might prove difficult or impossible in
some cases.

A bigger challenge to animation generation stems from
the use of abstract nouns, as in ‘‘John wants justice’’, and
figures of speech, like metaphors. When pointing to some-
one’s cowardice, one might use the expression ‘‘the man
was a chicken’’. Rendering the sentence literally does not
convey the intention. In general, a main issue in animation
generation is identifying sentences that cannot be mapped to
animations.

2) MODAL VERB AND SUBJUNCTIVE MOOD VISUALIZATION
Modal verbs such as ‘‘could’’, ‘‘should’’, ‘‘would’’, etc. can
introduce events in a possible or imaginative world. An ani-
mation for ‘‘John can read a book’’ is different from ‘‘John
reads a book’’, as the latter describes an ongoing event whilst
the former describes a possible event [4]. Similarly, the
subjunctive mood which is used to explore hypothetical situ-
ations poses a similar challenge. A sentence such as ’’If John
could read a book’’ should yield a different output than the
affirmative statement ‘‘John reads a book’’.

The polysemic nature of modal verbs adds to the com-
plexity of handling this class of verbs in a TTA system.
Ruppenhofer and Rehbein worked on annotating the sense
of English modal verbs in order to create a dataset for NLP
models to be trained on [18]. They distinguish between six
senses, shown in Table 1, that the modal verbs can take.

Unlike TTA systems designed for storytelling, whose
inputs typically include modal verbs, a TTA system that pro-
cesses instructional texts (e.g., generating animations from
recipes) is less likely to process sentences with modal verbs.

3) NOUN VISUALIZATION
Nouns in sentences can be mapped to 4 different entities,
actors, scenes, props or time. While the ability to visualize
any of these entities relies mainly on the database of graphical
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TABLE 1. Senses of modal verbs.

resources the TTA uses, one of the challenges is related to
a distinction that needs to be made between abstract and
concrete objects. Consider as an example the two sentences,
‘‘John is approaching’’ and ’’the deadline is approaching’’.

4) ADJECTIVE VISUALIZATION
For visualization tasks, adjectives can be classified in two
types: Visually observable or visually unobservable. Visu-
ally observable attributes can be object’s states or attributes,
human attributes such as feelings (happiness, anger, etc.)
or others (old, young, etc.). Some visually unobservable
attributes can be perceivable by audio means, such as noisy or
calm. They can also be perceivable by haptic modalities such
as cold, hot, etc. as much as they can be abstract modalities
like good, kind or mean, etc. [4]. Some of the latter could
be given stereotypical visualizations, as in comic strips, but,
in general, the system should be able to distinguish adjectives
that can be mapped to an object/actor property and adjectives
that cannot be visualized through the animation.

5) UNDERSPECIFIED SENTENCES
Underspecification [4] concerns sentences with correct syn-
tax and semantics but that fail to explicitly communicate
every aspect needed for the generation of an animation.
Consider the same sentence: ‘‘John reads a book’’. The sen-
tence fails to deliver information on the location of John,
the book he’s reading, how far is he in the book or even
what does John look like [7]. Despite the triviality of the
character’s appearance, in contextualization efforts–that is
when a TTA system is to be used in a specific context
(country and target audience)–the looks of John will gain
in importance. For example, portraying John as a man from
western countries could be accepted if the animation is
targeted to a western setting, but using an eastern char-
acter (Yemeni for example) might just fall short in meet-
ing the believability criteria of the animation (if any are
set). The contrary may be true if the setting of the story
is Yemen.

D. TEMPORAL REASONING
1) DURATIVITY AND PUNCTUALITY OF EVENTS
Vendler classifies verbs based on their temporal semantic
features. He suggests classes which not only contrast stative

verbs to dynamic (action) verbs, but also studies the dynamic
verbs and how they behave over the time axis [19]. Vendler
describes stative verbs as verbs denoting events with no
change. Vendler then classifies dynamic verbs based on
their telic or atelic features. He consequently distinguishes
between verbs with an endpoint (telic), such as ‘‘build a
house’’ or ‘‘paint a wall’’, wherein the action of building
ends when the house is built and the action of painting
ends when the wall is painted. This kind of actions Vendler
contrasts to actions with no end point (atelic), like ‘‘walk’’,
‘‘run’’, or ‘‘drive a car’’, wherein the walking, running or
driving actions do not necessarily have an endpoint. Atelic
verbs can become telic under specific conditions, for exam-
ple ‘‘walk’’ is an atelic verb while ‘‘walk to’’ is telic [19].
A problem that TTA systems need to address is distinguishing
such temporal semantic features to determine the duration
of animations depicted by eventive verbs. In TTA systems
which process single sentences at a time, atelic verbs are
less of a challenge. The user decides the duration in which
the action will be executed, as they can interrupt it by enter-
ing a new sentence. The problem becomes however more
challenging for TTA systems that process multiple sentences
at a time, and so the animator needs to decide how long
an atelic verb will be running before the next sentence
gets run.

2) VERB ENTAILMENT
An entailed meaning can be inferred from a logical sequence
of verbs, in a way that a verb referring to an action cannot
be used without the other [20]. For instance, the action of
‘‘waking’’ up entails a prior state of ‘‘sleep’’, ‘‘divorce’’
implies a prior state of ‘‘marriage’’.

3) NON-LINEAR NARRATIVES
When users are allowed to input multiple sentences into a
TTA system, a space is created for the challenge of non-
linear narratives. That is, a story input by the user may contain
events that do not necessarily happen in a sequential order,
or that can happen simultaneously. Consider the following
input, ‘‘Before John read his book, he had to find his glasses.’’
In this effort, a study of the temporal expressions is nec-
essary to be able to infer the order of events over the time
axis.
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4) VERB TENSES
Tenses of verbs used in a sentence can present a greater chal-
lenge in animation generation than they do in text-to-scene
or text-to-picture systems, consider the following sentences:
- John reads a book.
- John read a book.
- John is reading a book.
- John has been reading a book.
If these sentences are provided to a TTA system, they would
result in the same animation, but problems will arise if any
of these sentences is provided in a sequence of events as
expected in a multiple-sentence input. Consider the example
‘‘John drinks a soda. John bought the drink when he was at
the store.’’ The TTA system should be able to reorganize the
actions accordingly on the time axis. In the absence of the
temporal expressions, the verb tenses give a clear indication
on which action precedes which.

5) SIMULTANEOUS ACTIONS
The NLU is not the only challenge to animation generation;
even animated sentences present a challenge in visualization.
Consider the following sentence: ‘‘Sara reads a book while
John walks the dog.’’ The NLP module should be able to
convert the NL representation of the sentence to its corre-
sponding XML representation for which two animations can
be generated for both sentences. The XML representation
should also tag that the two animations overlap on the time
axis. The display, however, should happen simultaneously,
which means that there should be a mechanism to either show
both animations in a split screen or focus on the actions of the
main character.

E. CHALLENGES IN THE CONNECTION BETWEEN NL AND
GRAPHICS: VISUAL REASONING
1) COMMON SENSE REASONING
The key task of the NLU module in a TTA system is ground-
ing natural language into a machine readable representation
of the visual elements required to map the NL description
to an adequate visualization. TTA systems use various tech-
niques to extract visual elements from texts. Most of the
systems reviewed below analyze the parse tree of NL sen-
tences and assign visual semantic roles to each element they
are able to render in the animated scene.

Even a successful semantic analysis leaves out some infor-
mation necessary for the animation. In the SWAN system,
Lu and Zhang draw the example of the Snow-White Story,
from which they quote ‘‘The new queen killed Snow White
with a poisonous apple.’’ The NL description, according to
the SWAN system, leaves many questions unanswered, for
example, where did the killing took place or what was the
color of the apple. A common problem with TTA systems,
or with text-to-graphics in general doesn’t only concern the
visual elements the descriptions of which are missing, but
involves also visual elements that were not included in the

text in the first place, like what was the weather like or was
there any sort of dialogue involved between the characters,
did the queen convince snow white to eat the apple, etc. [7].

Issues in underspecification, as stated above, go beyond
missing information in the text, but crosscut with ambigu-
ity. The example drawn in SWAN raises issue on how the
‘‘killing’’ or ‘‘rescuing’’ actions were performed, as the verbs
used to describe these actions are generic. Ma provides a
solution for this problem by specifying a Level of Detail
(LoD), and distinguishes three levels for an event. A high
level to which she refers as the ‘‘event level’’ (‘‘to go’’ for
example), a middle level which is also known as ‘‘manner
level’’ (‘‘to walk’’), and finally a lower level which identifies
the ‘‘troponymy level’’ (’’to swagger’’) [4].

TTA systems that input single sentences add a different
challenge compared to systems that take multiple sentences.
For instance, a small paragraph like ‘‘John saw an animal
in the zoo which he didn’t recognize. He asked his sister
Sara about it and she told him it was a rhino.’’ In visualizing
the input sentence by sentence, the graphics engine wouldn’t
know which animal to render as a response to the first
sentence, the identity of the animal remains unknown until
the next entry of the text. TTA systems processing multiple
sentences are able to infer such information by analyzing the
whole text.

SWAN goes further in analyzing the challenges in visual
reasoning, by drawing the attention of the TTA researchers to
issues related to the lighting in the scene, coloring and camera
planning [7].

2) QUANTIFICATION PROBLEM
Ruqian et al. identified a set of issues with TTA systems
relating to the quantities of objects in a given scene [21]. The
authors examined problems related to quantification while
developing the ‘‘Shakespeare’’ system, a cartoonification tool
that takes Chinese children stories as input and generates
their corresponding animations [21]. In sentences like ‘‘There
were cars parked on the street’’, the number of objects is
left undetermined in the text, leaving the decision to the
common-sense reasoning module. Quantification problems
concern also issues like exaggeration as in ‘‘There were like
a billion people out there’’, or even accurate statements like
‘‘There are 1.5 billion people in China’’. A system cannot
instantiate that many objects in a scene as they wouldn’t fit in
and it would be a huge load on the device’s processing and co-
processing units. The Shakespeare system identified further
issues with quantification to identify non-countable entities.
For instance, sentences like ‘‘There were 2 kilograms of apple
on the table’’ present a challenge to the animation process
though the weight presents an accurate measure, it cannot be
visualized except as an explicit label.

Uncertainty presents another challenge, where according
to Ruqian a sentence like ‘‘there are two fathers and two sons’’
can mean that there are 4 characters in the scene, as well as
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3 if you consider that there is a father, a grandfather and a
grandchild in the scene [21].

3) CAMERA PLANNING
Ruqian and Zhang highlight that viewers can see a plot
from different angles and viewpoints. Such a possibility can
only be afforded by planning multiple cameras accordingly.
In scenes with multiple actors, and props, camera positioning
dictates what you see of the scene from where and when [7].
This problem is not trivial and has been tackled elsewhere in
the scientific literature, as in [22], [23], [24], and [25].

4) MOTION AND PATH PLANNING
When describing events in an animation, it is often the case
that a simple description of a movement does not describe
how the movement is carried out in space. Ruqian and Zhang
draw the example of describing a cat’s movement from the
window to the top of a tree. While it might be befitting
to simply write Run(cat, under(window), top(tree)), such a
command however is ineffective when there are obstacles in
between the tree and the window [7]. Examples of these are
known glitches in video games, wherein players can walk
through objects (walls, trees or other players) due to problems
in the objects’ colliders. Path planning is key to generate
natural, believable animations.

IV. ANALYSIS OF THE SYSTEMS
The metrics we decided upon to analyze the identified TTA
systems draw from their generic architecture. Every TTA
system has a NLU module, which grounds the natural lan-
guage input into a machine-readable representation, usually
a semantic a representation, a task wherein semantic parsing
plays a crucial role. TTA systems also rely on a graphics
module, which renders the animation, and lastly a visual
reasoning module which connects both modules.

To analyze the NLU module, we study how each system
performs the semantic parsing task. We start by looking at
how the syntactic analysis is performed, and then how each
visualization element is captured. Table 3 provides the results
of this analysis. Semantic parsing is usually not enough to
convert text to animation. We wanted to look at how (parts of)
the visual reasoning are carried out in the TTA tools, so we
studied the knowledge base (or bases) each system uses to
feed in information absent from the text (underspecification)
but required for the animation. The results of this analysis are
also detailed in Table 3.
The graphics module has been studied from two main

perspectives: which markup language is used to identify the
visualization elements (background, action, actor, etc.) and
which graphics library or graphics engine is used to actually
render the animation to the user. We focus on markup lan-
guages to identify how the NLU passes animation elements
to the graphics engine, and to study whether the markup
language is sufficiently human-readable to allow the user
to modify the output as they see fit before the animation is
rendered. The results of this analysis are captured in Table 4.

To the graphics, NLU and visual reasoning aspects,
we have added a fourth dimension: user interaction. In this
dimension, we studied how users interact with each system,
in which language, for what purpose (domain) and using
which type of sentences. Figures 5-7 illustrate the user inter-
action aspect of this study. While Table 2 identifies the
systems by name, and provides a description of each system
very briefly.

A. OVERVIEW OF TTA SYSTEMS
In this section we provide a brief overview of existing TTA
tools. Table 2 shows the names of the reviewed systems (if
not named, we provide the name of the authors), with the year
of publication and a brief description of what the animation
tool does. Our results show that the interest in TTA systems
increased in the mid-2000s, but subsequently dimmed by the
end of the first decade. Another surge was recorded around
the mid and late 2010s.

The 21 TTA systems reviewed in this study are of two
types: automatic and semiautomatic. While the former allows
the user to input natural language input and receive a 2D
or 3D animation as an output, the latter allows the user
to make modifications in at least one stage of the conver-
sion. SWAN [7], for instance, allows the user to correct
the output of the semantic parsing task and to intervene in
the camera planning, light and color planning stages, while
CONFUCIUS allows only interaction before the animation
is generated [4]. Our results show that 18 of the surveyed
systems do not allow the user to perform any changes to the
output, restricting the interaction with the system to the NL
input, whilst three systems allow the user to make modifica-
tions throughout the various stages of the conversion process.

The animation tools surveyed have been developed for a
variety of topics, including instructional videos for exercis-
ing or cooking or to generate simulations, with storytelling,
applied in children education and theatrical/cinematographic
preproduction systems, dominating. Figure 6(a) shows that
other domains like healthcare, sports and television have also
received a fair share of interest from researchers.

Figure 6(b) shows that more than three quarters of the
surveyed tools input English sentences, while the rest of the
systems use either Japanese, Chinese or Swedish.

Figure 7 (a) shows that most animation tools produce
3D animations from NL input. Interest in 2D animation
has dimmed since 2006, with the exception of text-to-
dialogue [26]. The decreasing interest in 2D can be explained
by the scarcity of ready-to-use resources needed to generate
the animation. 3D resources, models and animations, are
available in abundance online.

Figure 7 (b)also shows that two thirds of the animators
restrict the input to single sentences, while the remaining
seven systems allow the user to input multiple sentences.
Such a design choice entails that the developers either enforce
a template on the user to use a linear narrative or provide
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FIGURE 5. Types and publication year of TTA systems.

FIGURE 6. Domains and input of TTA systems.

a mechanism for temporal reasoning able to deal with non-
linear narratives.

The issue of linear or non-linear narratives is nonexis-
tent in systems that deal with imperative sentences, whereas
declarative sentences may generate this issue. It is expected
that the commands or instructions expressed using imperative
sentences are linearly ordered. Figure 7 (c) shows that while
three systems deal with imperative sentences, the rest of the
systems uses declarative sentences.

The following section briefly describes each system in
Table 2 from an NLP/NLU perspective, using the same
chronological order.

B. NLP/NLU PERSPECTIVE
To assign the visual semantic roles to the input tokens, most
systems adopt a rule-based approach which starts by syntacti-
cally parsing the input sentences. Accordingly, in this section,
we look at how the TTA systems perform the syntactic pars-
ing, how they assign the visual roles to the leaves of the parse
trees and what knowledge base or bases they use to augment
the extracted information before rendering the animation to
the users.

Table 3 summarizes the findings of this section.

1) CARSIM
Carsim [27] initiates the NLU process by using regular
expressions to identify verb patterns in the input. The pro-
cess is followed by using a syntactic parser to extract the
dependents of the verb. Carsim then uses Wordnet [28] to
classify the extracted words according to a Wordnet internal
hierarchy. The output of these sub-processes is then fed to an
XML template which organizes it in three classes of elements:
static objects, dynamic objects and collisions.

2) SWAN
SWAN [7], which was built to illustrate the feasibility of
the FLICA methodology, uses a small subset of the Chinese
language based on children stories and referred to as Moon
Light. The subset has been made large enough that a large
class of children stories can be created with it. Stories fed
to the SWAN system are first checked for commonsense
using the CSU grammar, which is short for CommonSense
oriented Unification grammar. A context sensitive parser is
then invoked to parse the Moon Light input and then match it
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TABLE 2. Overview of TTA systems.

to a series of case frame CFs known as Golden Forest. SWAN
uses one case frame per sentence and assumes that these
are linear in the input, subsequently it disallows flashbacks
without using special keywords to indicate them. Parsing and
commonsense checking phases feed the CF with informa-
tion on characters (as roles), objects, environments, and the
actions involved, as described in the Moon Light sentence.
SWAN invokes two different knowledge bases, Pangu for
commonsense reasoning, and SWANLAKE which is a pro-
fessional knowledge base geared towards director, lighting
and color planning in animation generation systems.

3) Web2TV/Web2Talkshow
The idea behind Web2TV/Web2Talkshow [29] is to augment
TV programs with content fetched from the web. The system
was designed to convert content from web pages into a TV
show style format, simply by showing the media on screen
and using a Text-to-Speech (TTS) to convert the text into
an audio modality. Another feature in the system allows the
textual content in the fetched web pages to be converted
into dialogue, which is then rendered on screen by two vir-
tual agents. To convert a web page content into dialogue,
a rule-based approach is adopted to extract the subject and
content of the web page. The subject or subjects are extracted
by looking at the keywords with the highest frequencies,
and the corresponding contents are those terms with a high
co-occurrence relationship with a specific subject term in the
page. Human intervention is then allowed to create an XML

template for the dialogue. To render the animated dialogue to
the user, the system relies on TV program Making Language
(TVML) [30].

4) E-HON
E-hon [31] uses two predefined tables for animation and
background, against which it checks the information, which
is extracted using a dependency parser, Cabocha [32], and
tagged using semantics tags of time, space, weather and
object. E-hon identifies the semantic categories with the use
of a morphological analyzer and a Japanese lexicon. Once the
tagged information has been checked against the aforemen-
tioned tables, an animation is invoked from a list of registered
animations. An ontology is used to further explain texts
presented as dialogues, for instance the system can convert
‘‘Antatanarivo in Madagascar’’ to ‘‘The city of Antatanarivo
in the nation of Madagascar’’. As E-hon targets simplifying
concepts to children, the use of the ontology helps clarify
concepts to the users.

5) ScriptViz 1.0
Using the Applie Pie Parser [33], ScriptViz 1.0 [34] starts
by syntactically analyzing the input. This phase outputs a
parse tree which is analyzed to extract the animation ele-
ments. ScriptViz 1.0 uses a high-level planning module
to convert the semantic information into a plan of action,
which is represented as Parameterized Action Representation
PAR.
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FIGURE 7. Input size and type and output of TTA systems.

6) CONFUCIUS
CONFUCIUS [35] and its successor SceneMaker rely on a
syntactic parser (Connexor’s Functional Dependency Gram-
mar parser [36]) to parse the input, then extract the visual
elements from the resulting parse tree. They can extract up
to three elements in visual valency. For instance, a sen-
tence like ‘‘John gave Sarah a book’’, defines an action verb
‘‘Give’’, with three visual valency elements:‘‘John’’, ‘‘Sarah’’
and ‘‘Book’’. A simpler input like ‘‘John laughs’’ identi-
fies one visual valency element ‘‘John’’ for the action verb
‘‘laugh’’. The systems fill a Lexical Conceptual Structure
(LCS) template with the extracted information, before pass-
ing the output in Virtual Reality Markup Language (VRML)
to the graphics engine [37].

7) NLP STORY MAKER
Microsoft’s NLP Story Maker [38] is comprised of a NLU
module and a graphics engine. To extend its vocabulary,
NLP Story Maker uses WordNet [28] to take into account
synonyms of the actions supported by the system. The authors
do not however report on the details of the semantic parsing
or the rendering engine.

8) Text2Dialogue (T2D)
Text2Dialogue (T2D) [26], uses a different approach than a
typical TTA system. Similarly to E-hon, it converts any type
of text to a dialogue, which can then be performed by two vir-
tual agents. T2D uses a Discourse Analyzing System (DAS),
which builds Rhetorical Structure System (RST) structures.
A mapper is then invoked, able to map these structures to
DialogueNet Structures, before a presenter module trans-
lates them into Multimodal Presentation Markup Language
(MPML3D) formal script [39], which can then be performed
by the 3D agents.

9) CAMEO
CAMEO [40] takes an easier approach to generating an ani-
mation, in the sense that it asks the user for three inputs.
The UserScript schema stores the scenarios. The ScreenShot
schema contains information about 3Dmodels to be shown in
the resulting animation, including settings, characters, props,

alongside the lights and cameras. The MediaStyle schema
defines the genre, rhythm, atmosphere, and actors’ character-
istics. The system relies on a set of XML schemas to represent
the different types of inputs necessary for 3D animation gen-
eration, and combines all three different XML files in a larger
XML file referred to as the SceneScript. CAMEO’s contribu-
tion is a knowledge base on direction techniques which was
accumulated through conversations with real world experts.

10) SceneMaker
SceneMaker [5] is the successor of the CONFUCIUS TTA
system. It extends it by adding emotional analysis and expres-
sions through the use ofWordnet-Affect. Like CONFUCIUS,
the system uses the Machinese Connexor POS Tagger, and
type dependency analysis to identify the visual roles in
the input sentence. Architecturally, SceneMaker exploits a
client/server architecture, wherein the server is tasked with
the NLU tasks, and the client does the rendering for the users.

11) OSHITA’S SYSTEM
Oshita’s system [41] initiates the NLU process by invoking a
syntactic parser, which converts plain text to a tree structure
with phrases tags and dependencies. A semantic analysis
phase is then started to extract the information about motions
described in the input text from the tree structure. A Query
Frame (QF) indicates which information the ‘‘motion search’’
should fetch from the ‘‘motion database’’. Temporal con-
straints are also extracted from the input text, and fed to the
motion scheduling to determine the execution order of each
motion captured as required by the QF.

12) Web2Animation
Web2Animation [42] narrows the vocabulary it works with
to that of recipes. Web2Animation uses the Phoenix parser,
a rule-based parser that relies on manually constructed
semantic grammars [43]. The input is then converted to
a sequence of semantic frames, in this case capturing the
action, instrument and ingredient for each step in the recipe.
A domain-specific ontology is then used to map the actions
to the suitable graphical representation, and a user-specified
dialogue is added to explain the recipe.
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TABLE 3. NLU and knowledge bases used in TTA systems.

13) Vist3D
Vist3D [44] exploits three elements to achieve its TTA capa-
bility. It first uses a narrative parser developed in PHP that
relies on regular expressions to extract temporal information
from the input and populate the temporal database. When
no temporal information is left to be extracted, the narra-
tive parser searches the input for basic sentence structures
consisting of subject, verb and object. In the second stage,
an analyser is used to create the scenario files by exploiting
the Temporal Database (TD), the stored model and the ter-
rain files to create the visualizations. The final stage allows
rendering the animations in Panda3D [45] or VRML [37].

14) TEXT-TO-VISION
Text-to-vision [46] relies on the Flexible Interpretation
Loader (FIL) as an intermediary between the natural language
input and the rendered animation, details on how FIL per-
forms the conversion are however omitted.

15) CHIMMALGI’S SYSTEM
Chimmalgi’s system [47] uses the Stanford Parser [48] to
generate a parse tree for input sentences. A dependency anal-
ysis takes place to determine the actions and the involved
body parts as described in the sentence, and referred to in
the system as ActionInfos. A matchscore is calculated based
on bag-of-word approach, where common words between
actioninfos are counted, added together and averaged. In a
database of animations and models, an animation search is
performed to retrieve the matching animations and mod-
els before being rendered to the user in a Unity-based
viewer.

16) SIDDLE ET AL. SYSTEM
Siddle’s system [49] starts the TTA process by using a
deontic analysis able to capture forbidden and recommended
deontics in sentences. An action recognition stage is then per-
formed where a number of Finite States Transition Networks
(FSTNs) are run against the sentences to extract actions,
slot values (state of patient) and special instances. Common
sense knowledge is then invoked to add information on the
basic physics of the actions extracted in the previous stage.
In the pre-final stage of the animation process, a mapping
is created between the actions identified in stage 2, and the
default action of the template, which results in the default
template being updated to match the output of stages 2 and
3. Finally, the modified template is passed to the Unreal ani-
mation engine, which contains parametrized scripts updated
according to the provided templates.

17) AUI STORY MAKER
AUI Story Maker [50] uses OpenNLP for syntactic pars-
ing, it then analyzes the parse tree to identify the visual
roles in the input sentence using Rusu’s triplet extraction
algorithm [51]. Similarly to CONFUCIUS and SceneMaker,
AUI Story Maker uses an LCS template to further extract
elements missing from the triplet extraction stage before
submitting the resulting analysis to a Unity-based engine for
rendering the output to the users.

18) CARDINAL
Developed by Disney Research, Cardinal [52] uses Stan-
ford CoreNLP to perform a semantic analysis of the action
text. It performs co-reference resolution first, then the main
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parsing task starts by extracting relation triples, subjects,
relations (verbs) and objects. Cardinal is also able to extract
verb modifiers, such as adverbs. The captured information is
used to create affordances, which define a possible action in
the TTA system. Architecturally, a segregation between the
graphics and NLU engines is provided using a client/server
architecture, so the input is sent for processing to the server,
which transmits back the extracted triple. If the subject is
available in the graphics engine, the corresponding affor-
dance is retrieved. Cardinal uses the ADAPT framework
based on the Unity 3D game engine to render the animation
to the script writers.

19) TAPE
TAPE [53] begins the NLU process by using Stanford Parser
for the syntactic parsing stage. It then uses custom rules fed to
the Stanford parser for semantic information extraction, from
which custom frames are filled with relevant information
on actions, involved body parts and destination. To reason
about the feasibility of the actions captured in the semantic
analysis stage, a Bayesian network is used to infer the hidden
information not explicitly denoted in the input case frames.
The result of this stage is forward to the Artificial Social
Agent Platform ASAP in Behavior Markup Language BML
format and the animation is generated.

20) ZHANG ET AL. SYSTEM
Zhang’s system [54] extends Cardinal by adding a sen-
tence simplification module, making the system able to
handle complex sentences. The process of sentence simplifi-
cation is rule-based and relies on a Spacy-based dependency
parser [55]. The sentence simplifier has two components,
‘‘Identify’’ which checks whether a given sentence matches
a predefined grammatical structure, and a ‘‘Transform’’ com-
ponent which proceeds to perform the actual simplification.
The system then invokes an information extraction module
which fills the visual elements into a predefined key-value
pair structure referred to as Action Representation Fields
(ARF), inspired by Badler’s Parametrized Action Represen-
tation (PAR) [56]. The information extraction module relies
on a pre-trained semantic role labeler [57] that inputs the
sentence and output the values for the ARF keys. Cardinal’s
animation pipeline is then invoked to render the output to the
user.

21) MASHAD AND HAMED SYSTEM
The process of animation generation begins with Named
Entity Recognition (NER) stage allowing the system to iden-
tify the characters involved [58]. A co-reference resolution
stage follows in which the system decides the actors and
props in each input sentence. The TTA then the proceeds
to extract the Subject-Action-Object (SAO) triplet from each
given sentence by analyzing the dependency trees returned
by the Stanford Parser [48]. The system uses a word2vec-

based similarity check to map the unsupported actions to the
closest system-supported actions [59]. The SAO elements are
then communicated to a Unity-based graphics engine which
proceeds to render the animation.

C. GRAPHICS ANALYSIS
In this section, we present the various graphics engines that
existing TTA systems use to render the animations. Our
results show that earlier systems relied on low-level graphics
libraries such as OpenGL, its Java wrapper GL4Java or their
Microsoft equivalent Direct X SDK. Carsim [27] relied on
a higher-level graphics API, namely, Java3D. Up to 2015,
2/3Dmarkup languages such as VRML, TVML orMPML3D
were also used to create the animations. These languages have
specialized software able to parse and render the described
characters and motions.

As game engines gained in popularity, TTA tools have
shifted to rely on such technology. Game engines provide a
separation between the characters, animations, backgrounds
and props (referred to as assets) and the scripts that allow
these elements to interact in the animation. It’s also relatively
easy to script an animation, provided access to these assets.

The majority of the systems we surveyed allow users to
interact using NL only, and disallow any further interaction
through the process of NLU and reasoning. The vast majority
of the systems rely on amarkup language that sits between the
NLU and the graphics engine, which, in some cases, allows
the users room to edit the output before it is rendered as
animation to the user.

Table 4 summarizes the findings of this analysis.

V. DISCUSSION AND EVALUATION
Despite the numerous research works available in the field of
TTA systems, none of them are available online, and none
have been widely used in any of the domains they have
been designed for. The same cannot be said for text-to-scene
systems. For example, WordsEye provides a web application
that the general public can use to create 3D scenes [1]. The
complexity of the challenges underlying TTA systems is
however higher than that of text-to-picture or text-to-scene
tools, as it encompasses temporal reasoning challenges and
spatio-temporal reasoning (objects position through time),
in addition to the study of spatial relationships.

A. DOMAINS AND LANGUAGES
Amongst the surveyed animation tools, 90% have been tar-
geted towards a specific domain, either storytelling or instruc-
tional animations. Given that TTA systems rely on a database
of graphics used to instantiate the required objects into the
2D or 3D scene, the restriction of the context is crucial to
the success of the animation process. Restricting the con-
text however does not necessarily entail the restriction of
the vocabulary, as (some of) the NLU modules may rely
on lexical databases, such as Wordnet, which are able to
provide synonyms for words not included in the vocabulary
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TABLE 4. Graphics analysis of TTA systems.

of the TTA tool. We will argue here that the grammatical
structures are not domain dependent, despite the differences
in the grammar used for example by a child and that of an
adult. With the exception of Carsim, which handles input in
three languages, Swedish, English and French, the remaining
TTA systems are monolingual. A work-around solution for
multilingualism could be to use a translation module before
the NLU intercepts the input. This may generate some prob-
lems if the translation is not accurate, further complexifying
the work of the TTA tool.

B. NATURAL LANGUAGE UNDERSTANDING
Around 60% of the surveyed systems rely on a syntactic
parser that outputs a parse tree where syntactic roles are
later replaced by semantic roles. Another 20% of the TTA
systems skips the syntactic parsing and adopts more basic
information extraction approaches such as bag of words
or regular expressions, before assigning relevant candidate
tokens visual semantic roles in their targeted visualizations.
While it is hard to evaluate howwell these approaches work in
extracting the visual semantic roles from the natural language
input, we know that the NLU stage itself is not enough to
produce an adequate animation for an input text. The process
has to be augmented with visual reasoning to address the
plethora of issues we discussed in Section III. In that, 30% of
the surveyed systems overlook visual reasoning as a whole,
and choose to lay the task of completing the animations on
the shoulder of the user. The remaining systems attempt to
address various problems at the reasoning level, either by
relying on generic ontologies or knowledge bases (Wordnet,
ConceptNet, PDDL, etc.), by developing animation-specific
knowledge bases such as Pangu, SwanLake, or even through
the use of Bayesian networks.

C. INPUT SIZE AND INTERACTIVITY OF TTA SYSTEMS
It is difficult to map natural language texts to the adequate
animations, this is made especially more complex with the
‘‘underspecification’’ problem discussed in Section III, and
the ambiguity usually tied to natural language. This stresses
the need for more user-centered designs of TTA systems,
which has not been adopted in 85% of the surveyed systems,
as users are not allowed in 18 systems to alter the output
of the sub-processing in the pipelines of TTA systems. Such
user involvement is possible in at least 15 of the surveyed
systems, as these rely on a markup language which transmits
the animation data from the NLU module to the graphics
engines or libraries. These markup languages are human-
readable, and at the exception of the two systems designed
for children, [38] and [50], the users can easily alter any
mistakes made by the NLP modules before this is forwarded
to the graphics engine for rendering. Another limitation these
systems raise relate to the input size, as two thirds of the
surveyed systems allow only single-sentence input, rendering
the process of animation generation rather slow, and time-
consuming, as for example in digital storytelling, the users
will have to decompose the story into sentences first, and
re-order them to ensure the linearity of the narrative.

D. AN EVALUATION OF THE TTA SYSTEMS OVER THE
CHALLENGES
We have studied the 21 reviewed systems and looked at how
they address the three classes of challenges we identified in
Section III: NLU, temporal and visual reasoning. We looked
at the various mechanisms and algorithms these systems have
provided to solve the identified challenges. We assigned a
binary rating to each of these algorithms. This allowed us
to gain an overview of how broadly the reviewed systems
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FIGURE 8. TTA systems performance on the challenges.

deal with TTA challenges. Figure 8 shows the results of the
evaluation. Only one system, SWAN, attempted to solve the
five challenges in visual reasoning, though it only dealt with
two challenges in temporal reasoning and three on the NLU
side. The remaining systems have concentrated on solving
the most basic issues on every dimension. This assessment
testifies to the complexity of the problem itself, as each of
the dimensions is composed of five problems (see Figure 4)
each of which builds on the other and requires much research
to be solved, in this context, on its own.

Our assessment is however biased towards TTA systems
designed for storytelling, as we do not expect a system
that generates animations from cooking recipes or physical
exercise descriptions to tackle the issues related to temporal
reasoning. Such systems do not handle inputs with tem-
poral expressions, or inputs where the verb tenses might
suggest a non-linear narrative. We expect also that quan-
tification problems and camera planning are not relevant
issues for systems handling instructional texts or systems
that output the NL input as a dialogue between virtual
characters.

VI. CONCLUSION
By setting some rigorous inclusion criteria, we have been
able to isolate systems that generate animations from natural
language input, focusing on those that perform some natural
language understanding and are not purely data-driven.

Our findings can be summarized as follows: Despite a
space for user interaction throughout the conversion process,
most systems chose to conclude the process without any user
intervention. Such a limitation, can result in the wrong ani-
mation being generated, worsened by the inherent ambiguity
of natural language.

The visual semantic parsing task has proven to be
rule-based in most of the reviewed systems, despite its
reliance on statistical tools for either syntactic parsing or part-
of-speech tagging.

The core of the problem of animation generation goes
beyond that of semantic parsing, and lies, as discussed,
in visual reasoning, a task that is made more complex by
the problem of underspecification. While a number of sys-
tems deal with the issue through various knowledge bases
and ontologies, or in some cases Bayesian networks, other
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systems choose to hardcode the visual reasoning in the body
of the animator.

Among our recommendations for TTA systems is closing
the domain of the system and its vocabulary, in order to
address the issue of the absence of props, actions or actors
in the animator’s database. TTA systems should also offer
a space for the users wherein they could fix or supple-
ment the output of the NLU process. The use of a more
human-readable language sitting between the NLU engine
and the graphics engine will allow less tech-savvy people to
intervene in the animation process.
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