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ABSTRACT The authentication of digital images poses a significant challenge due to the wide range of
image forgery techniques employed, with one notable example being a copy-move forgery. This form of
forgery involves duplicating and relocating segments of an image within the same image, often accompanied
by geometric transformations to deceive viewers into perceiving the forged image as authentic. Furthermore,
additional processing techniques like scaling, rotation, JPEG compression, and the application of Additive
White Gaussian Noise (AWGN) are frequently employed to further obscure any traces of forgery, making
the detection and verification process even more complex. This paper presents a novel approach for
detecting copy-move forgery in digital images using the self-supervised image keypoint detector, SuperPoint.
Our approach leverages the advanced capabilities of SuperPoint, which combines keypoint detection and
descriptor extraction, to identify and localize copy-move forgery accurately. One important aspect of our
approach is its ability to handle images with different textures, including smooth and self-similar structural
images. The proposed approach is able to produce stable results in images with various attacks, making
it a functional and reliable tool for detecting copy-move forgery in a diverse range of forged images.
Comparative analysis with existing forgery detection methods shows the superior performance of our
proposed approach. Furthermore, the computational efficiency of our algorithm enables real-time forgery
detection. Our approach using SuperPoint offers an effective solution for detecting copy-move forgery in
digital images, making it valuable for image forensics and authenticity

INDEX TERMS Multimedia forensics, digital image forgery, image forgery detection, copy-move forgery,
image duplication, keypoint detector, SuperPoint detector, deep learning.

I. INTRODUCTION
Digital images have become a primary source of information
in today’s world, with the widespread use of low-cost
digital cameras and social media platforms. However, this
has also led to the proliferation of image manipulation,
which raises doubts about the authenticity of digital images,
particularly in fields such as news reporting, research, and
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legal proceedings. However, the easy availability of powerful
image editing software like Photoshop, GIMP, Fireworks,
and Inkscape has made it easy to manipulate images without
leaving any discernible evidence of forgery, which poses a
significant threat to the authenticity and trustworthiness of
digital images. To address this problem, various techniques
have been developed, which can be broadly classified into
two categories: active and passive methods. Active methods
use digital watermarking or digital signatures to verify
the authenticity of images, but they require pre-embedded
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information, limiting their availability. In contrast, passive
methods, also known as blind authentication methods, do not
require any prior information and can detect copy-move
forgery. Passive approaches are more practical and widely
applicable, making them a popular area of research.

Copy-move forgery is a popular image forgery approach
where a portion from an image is copied and moved at
a different region on the same image, making it appear
as if the duplicated region is authentic. This approach is
used to exaggerate certain image information or to conceal
specific parts of an image. Forgery perpetrators employ a
variety of geometrical and post-processing techniques to
eliminate traces of forgery, rendering forgery detection a
challenging task. The extensive modifications made to image
features complicate the process of identifying and verifying
the authenticity of digital images. Figure (1) shows some
examples of images with copy-move forgery from CASIA
V2.0 and MICC-F220 datasets.

Traditional methods of copy-move forgery detection can
be categorized into two groups based on their reliance
on handcrafted features: block-based and keypoint-based.
Block-based methods extract local features from overlapping
patches, while keypoint-based methods focus on patches of
keypoints. We will discuss these techniques in detail in the
following subsections.

A. BLOCK-BASED METHOD
In block-based approaches, the image is split into overlapping
or nonoverlapping blocks of fixed size, and feature vectors
are determined for each block to identify forged images [1],
[2]. Various techniques have been developed for block-based
copy-move forgery detection. Emam et al. [3] used PCET
kernel with ANN searching along with LSH for finding the
similarity in the blocks. It results in the effective detection
of forgery in geometrical transformed copy-move images.
Wang et al. [4] employed Quaternion Exponent Moments
(QEMs) for block feature extraction, enabling the detection of
forgery in rotated and scaled images. However, this approach
falls short in detecting multiple copy-move instances within
an image. Bi and Pun [5] utilized local bidirectional
coherency as a technique for detecting copy-move forgery.
Thirunavukkarasu et al. [6] employed LL sub-band DSWT
(Discrete Stationary Wavelet Transform) and multidimen-
sional scaling to reduce the dimensionality of features in
their study. Chen et al. [7] utilized Fractional Quaternion
Zernike Moments (FrQZMs) along with patch-matching
techniques for detecting copy-move forgery in their study.
Yan et al. [8] employed circular PCET blocks ofmultiple radii
and lexicographic order matching to effectively detect forged
regions with large-scale rotation and scaling.

B. KEYPOINT-BASED APPROACH
Block-based approaches can detect ordinary copy-move
forgery without post-processing in images but are limited
in their ability to detect geometrical attacks and require
high computational costs. Keypoint-based methods extract

and match keypoints to detect a forgery in images [9].
Emam et al. [10] have used tow stage detection where a
scale-invariant feature operator and Harris corner detector
are used. Warif et al. [11] utilized the SIFT and Mirror SIFT
algorithms to handle variations in scale and image rotation.
Beijing Chen et al. [7] have proposed a method for detecting
copy-move forgery using fractional quantization moments
and a patch-match scheme. Chen et al. [12] have proposed
a copy-move forgery detection method based on SIFT
features and invariant moments. Liu et al. [13] have proposed
a combined feature extraction method using Local Intensity
Order Pattern (LIOP) and SIFT keypoint for copy-move
forgery detection. The nearest neighbor matching algorithm
is used to match keypoints. Elhaminia et al. [14] proposed
a probabilistic method for forgery detection using Markov
Random Fields. Their approach involves over-segmentation
of images, followed by clustering of similar regions,
and extraction of SURF and PCT features from labeled
keypoints. Emam et al. [15] have used SFOP detector and
MROGH descriptor to address copy-move with geometrical.
Emam et al. [16] have further used the MROGH descriptor
with the DoG operator to address copy-move forgery in the
smooth image where the number of keypoints is less. They
have addressed this problem effectively in their approach.
Meena and Tyagi [17] proposed a two-step method for copy-
move forgery detection, where the SIFT keypoint detector is
used for the textured region, and Fourier Miller Transform
(FMT) is used for the smooth region. Wang et al. [18]
proposed a forgery detection method that uses keypoint
detection and segmentation to address images with different
textures. The method uses SURF keypoints and PCET
features. However, the method struggles to detect forged
images with large-scale changes, and the time complexity
is high in some steps. Armas et al. [19] proposed a hybrid
method for detecting copy-move and splicing forgeries. The
method is based on two approaches: error level analysis
(ELA) and color filter array (CFA), which require both
modified and unmodified images.

But, these methods have limitations, such as the need
for robustness against image processing techniques and
computational inefficiency. This has led researchers to
explore deep learning models as an alternative, which have
shown promising results in improving the accuracy of
copy-move forgery detection. Several deep learning-based
methods have been proposed for copy-move forgery detec-
tion [20], including end-to-end deep neural networks, two-
branch architectures, adaptive attention, residual refinement
networks, and pyramid feature extractor blocks [21]. These
methods have different strengths and limitations, such
as their ability to detect accurate boundaries and small
forged regions [20], [22]. Deep learning approaches are
useful in making the detection approach time-efficient [23],
[24]. Some of the researchers used deep learning-based
methods for copy-move forgery detection [21], [25], [26].
Prelearn-trained neural networks can be used for a real-time
comprehensive forgery detection approach.
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FIGURE 1. Some example images depicting copy-move forgery: here the first row consists of an authentic image and the second row
consists forged image.

C. MOTIVATION
There are several limitations present in the existing
approaches for copy-move image forgery detection. Some of
them are mentioned below:

1) Sensitivity to image quality: Some methods may
be sensitive to variations in image quality, such as
compression artifacts, noise, and distortion. This can
lead to false positives or false negatives in forgery
detection.

2) Limited scalability: Some methods may not be scalable
to large datasets of images, or may have high computa-
tional complexity, which can limit their practical use.

3) Limited generalization: Many existing methods may
not generalize well to unseen or unknown types of
forgery, or to images with significant differences in
texture, lighting condition, blur, brightness change,
colour reduction, contrast adjustment, JPEG compres-
sion, noise addition, and non-affine transformation over
forged images.

4) Limited image type: The existing literature lacks
studies that specifically address the detection of forged
images with diverse properties, including variations
in image sizes, forged region sizes, and image file
formats. There is a notable research gap in the detection
of forged images with diverse characteristics.

D. OUR CONTRIBUTION
Our proposed technique for copy-move image forgery
detection utilizes a novel keypoint-based approach Super-
Point [27]. SuperPoint is a deep neural network that takes
an input digital image and produces keypoint and their
descriptors. SuperPoint is designed to be fast and efficient,
making it suitable for real-time applications. The SuperPoint
detector is used to extract keypoints from the image and
prepare descriptors for the detected keypoints. To identify
similar keypoints, the k-NN is used for the matching process,
and for the search technique we are using BBF with the
k-d tree. The forged region within an image is detected
using keypoint clustering, specifically employing the Fuzzy
C-Means clustering algorithm. To eliminate outliers in

the forgery detection process, RANSAC (Random Sample
Consensus) is utilized.

Some of the main contributions of the proposedmethod are
mentioned below:

1) Previous research has paid less attention to detecting
forged images that have been subjected to flip attacks,
and even fewer studies have addressed the detection
of forged images that suffer from combinations of
rotation, scaling, and other post-processing attacks.
In contrast, our proposed method demonstrates strong
capability in effectively detecting forged images sub-
jected to flip attacks, and a combination of scaling,
rotation, and other post-processing.

2) Our method is capable of detecting various novel
attacks, such as significant differences in texture,
lighting condition, blur, brightness change, colour
reduction, contrast adjustment, JPEG compression,
noise addition, and non-affine transformation over
forged images. Furthermore, our method demonstrates
effective detection of forged images that undergo
combined attacks with rotation, and scaling within the
forged region.

3) Our proposed approach for detecting copy-move image
forgery surpasses existing methods in terms of process-
ing time required.

4) Our approach demonstrates efficient detection of
forged digital images created from diverse datasets
using original images. These datasets have images with
different sizes, forged region sizes, and image file for-
mats. These datasets are CMFD, GRIP, MICC-F2000,
MICC-F220, MIC-F220, COVERAGE, CoMoFoD,
and CASIA V2.0. This demonstrates the versatility
and robustness of our approach in detecting copy-move
image forgery across different datasets.

In this paper, we propose a novel approach that combines
keypoint detection with a SuperPoint architecture to detect
copy-move forgery in digital images, with a focus on
improving the accuracy and robustness of detection in the
presence of various image manipulations.

The structure of this paper is as follows: In Section II, the
Methodology for copy-move forgery detection is discussed.
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In Section III, the SuperPoint detector and descriptor are
discussed. In Section IV, the proposed SuperPoint-based
approach is discussed. In Section V, the type of Copy-move
forgery and the evaluation metrics used are discussed.
In Section VI, Dataset used is discussed. In Section VII,
results and discussion is done. In Section VIII, we discuss
the conclusion.

II. METHODOLOGY FOR COPY-MOVE FORGERY
DETECTION
Our forgery detection method consists of six main steps:
Pre-processing, Extraction of Feature (Keypoint), Keypoint
Descriptor Computation, KeypointMatching, Keypoint Clus-
tering, and Affine Transformation Estimation. This section
briefly discusses the standard copy-move forgery detection
pipeline.

With the development of various approaches for forgery
detection, the workflow can be represented as follows:

• Pre-processing: Pre-processing is an optional step in
digital image forensics that is used for information
reduction of the digital image. Examples include RGB to
grayscale or YCrCb image conversion [28], and various
methods like HSV, LBP, filters, and transforms can be
used [29].

• Feature representation: Feature representation involves
extracting image keypoint feature descriptors. The
quality of the feature representation directly impacts
the accuracy and efficiency of the forgery detection
system. Different methods, such as filters, transforms,
and descriptors like SIFT and SURF, can be used to
extract feature vectors. This step is crucial as it reduces
the amount of data that needs to be processed while
retaining the relevant information for forgery detection.

• Keypoint matching: Keypoint matching involves finding
similarities between feature descriptors of duplicated
regions in an image. Different methods have been
used for this purpose, such as sorting, nearest neighbor
technique, hashing, hierarchical structure-based, and
segmentation-based approaches. The matching process
is critical in determining the accuracy and effectiveness
of the forgery detection system [30].

• Outlier removal: False matching can occur during the
feature matching process, where non-forged regions
may appear as forged. To address this, outlier removal
techniques are used. Some common techniques include
RANSAC, thresholds, constraints, and criteria-based
decisions. These techniques help to eliminate false
positives and increase the accuracy of the detection [31].

• Localization: Localization of the forged region’s accu-
rate boundary is crucial for understanding the extent of
the forgery, but limited research has been conducted in
this area [32].

• Optimization: Optimization is the process of refining
the detected forged region by removing false positives
and filling small holes or smoothing broken edges.
Morphological operations such as dilation, erosion,

opening, and closing are commonly used for this
purpose [33].

III. SuperPoint KEYPOINT DETECTOR AND DESCRIPTOR
SuperPoint is a self-supervised interest point detector and
descriptor that was proposed by DeTone et al. [27]. Unlike
traditional methods that require manual annotations or
pre-defined filters for feature extraction, SuperPoint learns
to detect and describe keypoints in an end-to-end manner.
It constructs a fully convolutional neural network (CNN)
that takes an image as input and outputs a set of keypoint
locations and descriptors. The network is trained in a
self-supervised manner by generating synthetic homographic
transformations of input images and computing ground-truth
correspondences between them. SuperPoint can handle
changes in illumination, viewpoint, and scale.

A. SuperPoint ARCHITECTURE
SuperPoint is a neural network architecture that can detect
interest points and produce descriptors of fixed length.
It operates on the whole image and has a shared encoder
that reduces the dimensionality of the input image. The
architecture is subsequently divided into two decoder heads,
one dedicated to interest point detection and the other focused
on interest point description. The network’s parameters
are mostly divided between detector and descriptor, unlike
traditional systems where interest points are first detected,
and then descriptors are computed separately. Efficient
sharing of computation and representation is enabled by this
approach, as the network’s parameters are mostly shared
between the two tasks.

B. SuperPoint AS DETECTOR
The SuperPoint detector is a fully convolutional neural
network that operates on an input image with full size and
outputs a set of interest point detection. It first processes
the input image using a shared encoder that reduces the
dimensionality of the input. Following the encoder, there
are two decoder heads in the architecture: one dedicated to
interest point detection, and the other focused on interest
point description.

The interest point detection head is responsible for
predicting a dense heat map of interest points for the input
image. The heat map is a 2D array with the same spatial
dimensions as the input image, where each pixel value
represents the probability of that pixel being an interest
point. The detection head predicts this heat map by applying
several layers of convolutional and pooling operations on the
encoded input image. Finally, a softmax function is applied to
the output to obtain the probability distribution over the pixel
values.

The mathematical formulation for the SuperPoint as a
detector can be summarized as follows:

Let I be an input image with dimensions H × W , and
let f (I ) be the output of the shared encoder network. The
detection head takes f (I ) as input and outputs a heat map M
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FIGURE 2. Working pipeline of copy-move forgery detection.

FIGURE 3. Architecture of SuperPoint self-supervised keypoint detector.

with dimensions H ×W :

M = Softmax(g(f (I ))) (1)

where g is a function that maps the output of the encoder to
the space of the heat map. The softmax function is applied to
obtain a probability distribution over the pixel values inM .
The detector then selects the N pixels with the highest

values in M as the interest points. These interest points
are further processed by the description head to obtain
fixed-length descriptors that can be used for matching and
registration.

C. SuperPoint AS DESCRIPTOR
SuperPoint generates descriptors by computing feature maps
and feature descriptors for each keypoint. The feature maps
are extracted using a series of convolutional layers, and the
descriptors are computed by pooling the feature maps around
each keypoint.

The feature maps are computed as follows:
Let I be the input image with dimensions H × W , and

fθ be the convolutional neural networkwith parameters θ . The
output of the network is a feature map F with dimensions

H
8 ×

W
8 × D, where D is the dimensionality of the feature

maps.
The keypoints are detected on the feature map F using

non-maximum suppression, resulting in a set of keypoints
K = kin, where each keypoint ki has a 2D location (xi, yi) and
a scale si.

The descriptors are computed as follows:
For each keypoint ki, a feature descriptor di is computed

by pooling the feature map F around the keypoint. Let pi,j be
the j-th pixel in a P × P patch centered at ki. The descriptor
di is defined as:

di =
1
p2

p2∑
j=1

fi,j (2)

where fi,j is the feature value at pixel pi,j in the feature
map F .

The resulting descriptor di is a vector of dimension-
ality D, which captures the local appearance around the
keypoint ki.
In summary, SuperPoint generates descriptors by first com-

puting feature maps using a convolutional neural network,
then detecting keypoints on the feature maps, and finally
computing descriptors by pooling the feature maps around
each keypoint.

D. HOMOGRAPHIC ADAPTATION OF SuperPoint
Homographic adaptation in SuperPoint is an important step
to refine the keypoints detected by the network. The goal of
homographic adaptation is to adjust the keypoints detected in
the source region of the image so that they aremore accurately
localized in the target image region, taking into account any
perspective distortion between the two.

To perform homographic adaptation, SuperPoint first
detects keypoints in both the source and target image regions
using the same neural network. Then, for each keypoint in
the source image region, the network predicts a descriptor
and a 2D coordinate location. Next, SuperPoint estimates
a homography matrix that maps the source image region
to the target image region, using the RANSAC algorithm.
This homography matrix takes into account any perspective
distortion between the two image regions.
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Finally, SuperPoint applies the homography matrix to the
2D coordinate locations of the keypoints detected in the
source image region, which adjusts them to be more accu-
rately localized in the target image region. The descriptors of
the keypoints remain the same. The homographic adaptation
step can be formulated mathematically as follows:

Let x be a 2D coordinate location of a keypoint in the
source image, and H be a homography matrix that maps the
source image to the target image. Then the adapted location
of the keypoint in the target image, x ′, can be computed as:

x ′
= H ∗ x (3)

where ∗ denotes matrix multiplication.
In practice, the homography matrix H is estimated using

RANSAC based on a set of correspondences between
keypoints detected in the source and target images.

IV. PROPOSED SuperPoint-BASED APPROACH
Our copy-move forgery detection method consists of three
main steps: keypoint Extraction and Descriptor Computation,
Matching of keypoints, and Clustering of keypoints. In the
keypoint extraction step, we use the SuperPoint algorithm to
extract keypoints from the image. keypoint descriptors are
then computed using the SuperPoint descriptor architecture.
To identify matched keypoint descriptors, we use the
Euclidean distance and a user-defined threshold. The BBF
search algorithm is used to efficiently search for the nearest
neighbors. Finally, the matched keypoints are clustered.

SuperPoint detector is a keypoint-based technique that
simplifies the process of computing image descriptors for
geometrically transformed images. In traditional keypoint-
based methods, affine transformation estimation is a crucial
step in detecting copy-move forgery in such images. How-
ever, with the SuperPoint detector, the need for additional
affine transformation calculations is eliminated, as it allows
for the easy computation of image descriptors for geometri-
cally transformed images. This simplifies the overall process
and improves the accuracy of the forgery detection method.

A. KEYPOINT MATCHING
In copy-move forgery detection, we first obtain a set of
keypoints P = k1, k2, k3, . . . , kn, where n is the total
number of keypoints in the image. Next, we compute
feature descriptors using which can be represented as
D = D1,D2,D3, . . . ,Dn, where each feature vector Di
corresponds to a keypoint ki.
To identify similar feature descriptors, we need to match

each feature vector Fi with all other feature descriptors fj,
except itself. However, if we only examine exact matches of
feature descriptors, there is a risk ofmissing numerous similar
feature descriptors in the forged region of the image that has
undergone additional post-processing operations.
Hence, we need to compute the Euclidean distance

between feature descriptors to effectively detect matched
feature descriptors. Therefore, it is essential to calculate the

Euclidean distance between feature descriptors in order to
accurately identify matched feature descriptors.
To match feature descriptors, we compare the Euclidean

distance between fi and its closest neighbor fj with the
distance between fi and its second-closest neighbor fk .
If the ratio of these distances is less than a user-defined
threshold Th, we consider fi and fj as a match. This is
represented by the equation:

|fi − fj|
|fi − fk |

≤ Th (4)

The choice of threshold Th during forgery detection plays
a crucial role in determining the accuracy of correct and false
matches obtained. A higher value of Th leads to more false
matches, while a smaller value of Th may result in some
homogeneous feature descriptors remaining undiscovered.

An efficiently search for nearest neighbors in high-
dimensional spaces, we use a k-d tree to store the feature
descriptors. The construction of a k-d tree involves com-
putational operations on the order of O(N log2 N ), where
N represents the total number of feature descriptors. The
Best Bin First (BBF) search algorithm consists of several
components that aid in the efficient nearest neighbor search.
The algorithm uses a bin structure to organize the feature
descriptors.

A set of pivot feature descriptors is chosen from the dataset.
These pivots divide the feature space into smaller regions,
aiding in efficient search and exploration. The BBF algorithm
employs a search strategy that prioritizes exploring the most
promising regions first. It begins with the nearest pivots
and progressively expands the search to other bins based on
calculated distances. Also, pruning techniques are applied
to eliminate unpromising regions or bins during the search
process. This helps reduce unnecessary distance calculations
and speeds up the search. To limit the number of queries,
a maximum query number Qmax is set. The algorithm drops
the query point without further searching for other matching
points once reaches Qmax .
By utilizing these components, the BBF algorithm effi-

ciently searches for nearest neighbors, providing accurate
results for applications like forgery detection.

B. KEYPOINT CLUSTERING
In the process of clustering matched keypoints we are
using Fuzzy C-Means (FCM) technique. FCM is a powerful
clustering technique capable of effectively grouping data
points into multiple clusters. To improve the efficiency of
FCM clustering, efforts are made to reduce the computational
time by minimizing the objective function. This ensures
that the clustering process is completed in a shorter period,
allowing for faster analysis and decision-making. The
objective function used in FCM is given by:

Fm =

n∑
i=1

V∑
j=1

umij
∣∣xi − cj

∣∣2 , 1 ≤ m < ∞ (5)
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In the given equation, m is a positive number larger than 1.
The total number of data points is represented by n, and
the clustering process has v number of clusters. In the given
equation, uij represents the degree of data point xi in cluster j.
Here, xi represents the ith component of the representative
data points, and cj is the cluster center. The ∥∗∥ denotes the
norm that is used to calculate the similarity between a specific
feature vector corresponding to the center.

To improve the FCM algorithm, fuzzy partitioning can be
used. Fuzzy partitioning utilizes the updation of membership
degree uij and the cluster centers cj as follows:

uij =
1∑v

k=1(
|xi−cj∥
|xi−ck∥

)
1

m−1

(6)

cj =

∑m
i=1 u

m
ij · xi∑m

i=1 u
m
ij

(7)

Here, umij represents the membership degree of data point
xi in cluster j after the mth iteration. The repetition of uij
stops when max ij(u

k+1
ij − ukij) < ϵ where ϵ represents the

termination value. Here k represents the number of iterations.
This step is used to calculate local minima for fm.
The descriptors of keypoints generated by SuperPoint

are compared using the FCM algorithm to cluster them.
The matching of center keypoints and their neighbors with
different center keypoints and their neighbor clusters leads
to a reduced need for analyzing all image keypoints, thereby
accelerating the forgery detection process. Each cluster
represents a group of keypoints that are similar to each other.
By clustering the matched keypoints, the forgery detection
process becomes faster and more accurate.

C. PARAMETER SELECTION
We need to take care of setting the parameters for the
SuperPoint detector in copy-move forgery detection. It is
important to note that parameter selection requires experi-
mentation and fine-tuning based on the specific dataset and
the forgery detection task at hand. Additionally, considering
the limitations and constraints of computational resources is
crucial for real-time or large-scale applications.

The threshold determines the minimum score required for
a detected keypoint to be considered valid. Setting a higher
threshold may result in fewer keypoints but with higher
confidence. It helps filter out weaker keypoints, reducing the
chance of false detections. However, a higher threshold may
also lead to missing some genuine keypoints. It is essential to
strike a balance between the number of keypoints and their
quality based on the specific forgery detection requirements.
We have selected this threshold on an experiment basis
keeping other parameters constant and finding responses for
different thresholds for all datasets used.

Non-maximum suppression is a technique used to remove
redundant keypoints. It helps to retain only the most salient
keypoints by suppressing those in close proximity with
similar scores. The suppression radius or distance threshold
determines how close two keypoints need to be to consider

them redundant. A larger suppression radius may result in
more keypoints being suppressed, while a smaller radius
may retain more keypoints but with a higher likelihood of
redundancy.

D. ALGORITHMIC STEPS OF COPY-MOVE DETECTION
The SuperPoint-based copy-move forgery detection algorithm
follows a series of steps to identify and locate forged
regions in an input image. Firstly, the input image I
undergoes pre-processing operations to enhance its quality
and normalize its characteristics, resulting in a preprocessed
image. Next, the SuperPoint architecture is employed to
detect keypoints in the image. These keypoints, represented
as K , are a set of distinct locations within the image
that exhibit significant visual features. Feature descriptors
are then extracted for the detected keypoints K using
the SuperPoint architecture, resulting in a set of feature
descriptors. These descriptors capture detailed information
about each keypoint, allowing for subsequent analysis and
comparison.

To cluster the keypoints based on their similarity, a clus-
tering algorithm such as Fuzzy C-Means (FCM) is applied.
The FCM algorithm groups the keypoints with similar feature
descriptors into clusters, generating a set of clusters denoted
as C. Each cluster represents a group of keypoints that exhibit
similar visual characteristics.

The matching and verification stage compares the feature
descriptors within and across clusters to identify potential
copy-move regions in the image. By analyzing the similarities
between the descriptors, matched keypoints or regions are
determined and represented as M. These matched keypoints
indicate areas within the image that are potentially manipu-
lated or duplicated.

In the forgery localization step, the exact regions that
have been forged are localized based on the matched
keypoints M . The boundaries of the forged regions are
determined by analyzing the distribution and arrangement of
the matched keypoints, allowing for the accurate delineation
of the copy-move forged areas within the image. Finally, the
algorithm generates an output image or report that highlights
the locations of the detected copy-move forgery providing a
visual representation or detailed information about the forged
regions in the input image.

Algorithmic steps for the proposed approach are given in
the algorithm 1.

V. TYPES OF COPY-MOVE FORGERY AND EVALUATION
METRICS USED
To ensure that our forgery detection method is robust and
effective in detecting all types of copy-move forgery, we have
conducted experiments on various types of copy-move forged
images. These include images with different sizes, resolu-
tions, additive noise, compression levels, blur, brightness
change, colour reduction, and contrast adjustment, as well
as images that have undergone different types of geometric
transformations such as rotation, scaling, flip, and combined
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TABLE 1. Details of the dataset used to collect images for experimental work.

Algorithm 1 Algorithm for SuperPoint Copy-Move Forgery
Detection
1: Input digital image (copy-move forgery image or authen-

tic image).
2: Input digital image to Key-point feature extraction.
3: Descriptor generation of the detected keypoints.
4: Clustring of the keypoints by FCM.
5: Affine transformation calculation.
6: Nearest neighbourhood calculation.
7: Feature matching based on set parameters.
8: Outliers and inliers are removed with RANSAC.
9: Binary mask crested for Copy-move forgery perdition

and localization.
10: Output image generated for forgery localization if any.

effect. We also tested our method on images that have been
subjected tomultiple copy-move operations or partial forgery.

A. TYPE OF FORGERY CONSIDERED
Copy-move forgery can be divided into four major categories
based on the approach forgery is created. They are:

1) Simple copy-move forgery involves copying and
pasting a part of an image into another part of
the same image. This can be a single instance or
multiple instances of the same copied part. The latter
is referred to as multiple copy-move forgery. There is
no post-processing applied to these forged images.

2) We conducted an analysis that encompassed forged
images subjected to post-processing in order to conceal
the forgery. In such instances, the post-processing
is often executed with a professional level of skill
to increase the difficulty of detecting forgery. Our
investigation included examining the impact of various
levels of JPEG compression and noise addition on these
manipulated images.

3) In addition to the primary post-processing techniques
used to conceal footprints of forgery, there are
other operations that significantly aid in hiding the

forgery. These techniques are difficult to detect as
they uniformly alter the image pixels. Some of these
techniques include Brightness change (BC), Colour
reduction (CR), Contrast adjustment (CA), and Image
blurring (IB).

4) Geometrical transformations are a popular technique
used in creating forged images, as they can produce
realistic copy-move forgery. Such transformations can
be applied in three ways: 1) copying a region and
moving it by rotating it, 2) scaling a copied region and
moving it, and 3) a combination of both scaling and
rotating. We particularly focus on flipped images that
have undergone a 180-degree rotation.

B. EVALUATION METRIC USED
The experiments conducted in our study focused on evaluat-
ing the performance at the pixel level. We used True Positive
(TP) to indicate the total number of pixels detected as forged,
that is actually forged, False Positive (FP) to indicate the
total number of pixels falsely detected as forged, and False
Negative (FN) to indicate the total number of pixels falsely
detected as not forged. Using these values, we calculated
Precision (P), Recall (R) or True Positive Rate (TPR), and F1-
Score metrics. The F1-Score is the primary evaluation metric
used to assess the efficiency of our proposed approaches
and compare them with other reported methods. Its value
ranges from 1 (best) to 0 (worst), and we have presented it
as a percentage by multiplying it by 100 in our paper. The
relationships between P, R or TPR, and F1-Score with TP,
FP, and FN are as follows:

P =
TP

TP+ FP
,

R = TPR =
TP

TP+ FN
,

F1 =
2TP

2TP+ (FP+ FN )
.

To assess the effectiveness of our method, we employed
various evaluation metrics including precision, recall (or true
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TABLE 2. Details of the range of different attacks applied on copy-move
forged images.

positive rate), and F1-Score. Precision indicates the ratio of
correctly identified positive detections to the total number
of detections. The recall represents the ratio of correctly
identified positive detections to the total number of actual
forged regions. The F1-Score, on the other hand, is the
harmonic mean of precision and recall, offering a balanced
measure of the overall performance of the algorithm. These
metrics provide valuable insights into the accuracy and
effectiveness of our method in detecting copy-move forgery
in images.

VI. DATASET USED
We have used seven open source datasets CMFD [34],
GRIP [35], CoMoFoD [36], MICC-F600 [37], MICC-
F220 [37], COVERAGE [38] and CASIA V2.0 [39]. The
tables provided give information about the different datasets
used in the study and the types of forgeries and their
corresponding levels. The datasets used for both training and
testing are listed in Table (1), while Table (2) provides a more
detailed breakdown of the different types of forgeries and
their levels.

1) CMFD: The dataset contains over 1.5K images
with various textures that have been subjected to
copy-move forgery with translation, rotation, scaling,
and combinations of these. Both forged and original
images have undergone post-processing with JPEG
compression and additive Gaussian noise, with nine
levels of compression (ranging from 100 to 20 with a
step of 10) and five levels of noise (ranging from 0.02
to 0.1 with a step of 0.02).

2) CASIA V2.0: The dataset comprises 7491 images,
including 5123 forged ones, with various forms of
forgery such as splicing and copy-move. From this
dataset, we selected 3274 copy-move forged images
with different manipulations and post-processing tech-
niques. These images involve translation, rotation,
and scaling manipulations, and some are subject to
post-processing techniques like JPEG compression and
edge blurring.

3) MICC-F220: The dataset comprises 220 images,
including both original and forged images. The forged
images are created using copy-move manipulation with
translation, rotation, scaling, or a combination of these
processes. Post-processing techniques, such as JPEG

compression and additive Gaussian noise, are applied
to the images to hide traces of forgery. Some images
have single copy-move forgery, while others have
multiple instances of copy-move forgery.

4) MICC-F600: The dataset consists of 600 images,
out of which 440 are original and the remaining
160 have been forged using similar manipulations and
post-processing as that of the MICC-F220 dataset.

5) CoMoFoD: The dataset comprises original images,
and forged images, with each accompanied by its
corresponding ground truth image. The forged images
are created using five different types of manipulations,
namely translation, rotation, scaling, combination, and
distortion, with 40 images per category. Moreover,
post-processing operations such as JPEG compression,
additive noise, brightness change, color reduction,
contrast enhancement, and image blur are applied to all
the forged images. In total, this dataset provides over
4,000 forged images for analysis.

6) Coverage: The dataset comprises 100 images, each
with an original and forged version, along with
corresponding ground truth images. The images feature
a common object and are captured both indoors and
outdoors. The forged images have undergone six
different types of manipulations, including translation,
rotation, scaling, illumination change, free form, and
a combination of any of these five. Additionally, the
dataset includes 20 images with a combination of
different copy-move forgeries.

7) GRIP: The GRIP dataset comprises 80 original and
80 forged images with their corresponding ground
truth images. The images feature a variety of textures,
including smooth, coarse, and self-similar structural
textures of monuments. The textural diversity of the
images makes this dataset particularly challenging.
It is worth noting that the GRIP dataset only includes
simple copy-move images without any post-processing
or geometrical transformation attacks.

The Table (3) provides details of the images used for
training and testing from different datasets in the context
of copy-move forgery detection. In Table (3), the ‘‘Training
Images’’ row indicates the number of images used for training
the copy-move forgery detection model from each dataset.
Similarly, the ‘‘Testing Images’’ row shows the number of
images used for evaluating the performance of the trained
model on unseen data.

VII. RESULTS AND DISCUSSION
The SuperPoint detector can extract robust and stable
keypoints from the images, even when the original features
have been altered. By comparing the extracted keypoints
from different regions of the image, the detector can
identify potential copy-move forgery. Additionally, the
SuperPoint descriptor can be used to match the extracted
keypoints and accurately determine the degree of geometric
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TABLE 3. Details of the image used for the training and testing phase of experimental work.

FIGURE 4. Single and Multiple Copy-move forgery detection results from all seven datasets.

transformation that has been applied to the copied region.
This information can then be used to localize and detect the
forgery.

Through our experiments and evaluation, we have shown
that our method is capable of accurately detecting copy-move
forgery in various types of images, including those that have
undergone different types of forgery and transformations.
Our evaluation metrics have demonstrated that our method
achieves high precision, recall, and F-measure scores. These
results indicate that our method is effective in detecting
copy-move forgery and can be a valuable tool in forensic
image analysis.

The Table (3) displays the number of images that
were utilized for training and testing from each of the
seven datasets: CMFD, CASIA V2.0, GRIP, COVERAGE,
MICC-F600, MICC-F220, and CoMoFoD. To conduct the
forgery detection, we evaluated the results separately for
each category of forged images. A detailed analysis of the
quantitative results for each category is further discussed in
the following subsections.

A. DETECTION OF SIMPLE COPY-MOVE
We are addressing simple copy-move forgery on images of all
the datasets. Experiments are carried out for two conditions
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TABLE 4. Comparison of our results (F1-Score) with recently published
works for simple copy-move forgery in images.

of simple copy-move, i.e., single and multiple copy-move.
Our proposed approach performed well in both situations.
In Figure (4), we have included some of the detected forgeries
for single and multiple copy-move cases. The proposed
approach maintains accuracy through various images with
different textures.

Table (4) presents the results obtained for simple
copy-move forgery detection. The results demonstrate con-
sistent performance across different datasets. Our pro-
posed approach outperforms the traditional keypoint-based
approach [41], [43] in the CMFD, CASIA V2.0, GRIP,
CoMoFoD, MICC-F600, MICC-220, and COVERAGE
datasets. However, in the GRIP dataset, the results are slightly
lower. This can be attributed to the presence of extremely
smooth images and images with intricate textures, such as
monuments with similar carvings. In smooth images, the
number of keypoints is insufficient for accurate detection
and localization of forgery. Conversely, in highly textured
images with self-similar structures, a large number of similar
keypoints can lead to false localization of forged regions.
It is important to consider these factors when analyzing the
performance of the proposed approach in specific datasets.

Similarly, experiments were carried out for multiple
copy-move forgery detection and localization. Results are
shown in Figure (4). If we compare these results with the
earlier keypoint-based approach, we readily can say that the
SuperPoint based approach is more efficient.

B. DETECTION OF POST-PROCESSED COPY-MOVE
When a forgery is carried out skillfully, the manipulated
image may undergo post-processing techniques to hide the
forgery. Our study analyzed several post-processing methods
such as JPEG compression, noise addition, brightness change
(BC), color reduction (CR), contrast adjustment (CA), and
image blurring (IB). Our proposed approach successfully
detected and pinpointed the location of the forgery, even in
images that had undergone post-processing. These operations
are often utilized to mask copy-move forgery in digital
images.

The SuperPoint detector is capable of extracting stable
and robust keypoints from these post-processed images, even
when the original features have been altered. By comparing
the extracted keypoints from different areas of the image, the
detector can identify possible copy-move forgery. Moreover,

TABLE 5. The average result of copy-move forgery detection for images
with various JPEG compression levels for CMFD and CoMoFoD datasets
and its comparison with traditional keypoint-based CenSurE
approach [43].

the SuperPoint descriptor can be employed to match the
extracted keypoints and precisely determine the degree of
geometric transformation applied to the copied region. This
data can then be utilized to detect and localize the forgery
accurately.

1) JPEG COMPRESSION
JPEG compression is a lossy compression technique that
reduces the file size of an image by removing some of
its details. This makes it difficult to detect forgery in such
images. SuperPoint works by detecting and describing the
distinctive features of an image, such as edges, corners,
and blobs. These features are detected using a convolutional
neural network, which learns to identify image patterns at
different scales.

To detect JPEG compression using SuperPoint, we first
extract keypoints and descriptors from the copied and moved
image regions using the SuperPoint detector. We then match
the keypoints between the two using a nearest-neighbor
search algorithm.

In our experiment, we used images with different lev-
els of JPEG compression, ranging from JPEG100 (least
compressed) to JPEG20 (most compressed). As shown in
Table (5), the results gradually deteriorated as the compres-
sion level increased. As expected, with higher compression,
the F1-Score decreased, but we still achieved good results
in all cases. It is known that with increasing compres-
sion, high-frequency information such as edges, corners,
and gradients of the image gradually gets smoothed out.
These high-frequency features are crucial for the keypoint
detector, which relies on them to detect robust and stable
keypoints.

When images are compressed using JPEG compression,
visual degradation and blocking artifacts become noticeable
when the compression level is below 50. These artifacts can
affect the detection of forgery in images that have undergone
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FIGURE 5. Copy-move forgery detection results for images with low to high JPEG compression and additive noise.

FIGURE 6. Copy-move forgery detection results for images with additional
post-processing, e.g., Brightness change (BC), Colour reduction (CR),
Contrast adjustment (CA), and Image blur (IB) for the CoMoFoD dataset.

higher levels of compression. The SuperPoint architecture
is capable of reducing the impact of higher compression
levels by detecting the low-level features of the image.
However, the impact of compression artifacts is evident in
the F1-Score and in the localization of the copy-move forged
region.

2) ADDITIVE NOISE
Additive noise is another common post-processing technique
used to hide image forgery. It involves adding random pixel
values to an image to make it more difficult to detect.
SuperPoint can be used to detect additive noise by comparing
the detected keypoints and descriptors of an original and
noisy image. To detect additive noise using SuperPoint,
we first extract keypoints and descriptors from the copied and
moved image regions using the SuperPoint detector. We then
match the keypoints between the two regions of the image
using a nearest-neighbor search algorithm.

The addition of noise to an image generates various
edges and corners, and as the noise level increases, it can
create a blur effect. These miscellaneous edges can have
a negative impact on the detection of keypoints. However,
the multi-level SuperPoint architecture can extract detailed
image features, which can aid in better detection and
localization of forgery. Hence, SuperPoint has resulted in a
better F1-Score compared to the keypoint-based approach.
The results for different levels of additive noise are shown
in Table (5), where it can be observed that the F1-Score for
images with higher levels of noise is degraded. This happens
due to the presence of fewer keypoints in the image, which
affects the localization of the forged region. Nonetheless,
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FIGURE 7. Copy-move forgery detection results for images with scaled transformation.

we were still able to detect the forged region in images with
higher levels of noise.

In both JPEG compressed and noise images, SuperPoint
is able to detect and localize the forgery by comparing the
distinctive features of the original and manipulated images.

3) ADDITIONAL POST-PROCESSING
Copy-move forgery can be hidden by various post-processing
operations, which make changes to the pixel level of the
image andmask the traces of forgery. Such operations include
colour reduction, contrast adjustment, brightness change, and
image blurring. For instance, an increase in the brightness
of the forged image reduces the contrast value and leads to
more false negatives, resulting in decreased recall and overall
detection accuracy (F1-Score). On the other hand, colour
reduction reduces the intensity level in all colour channels,
resulting in many colours being represented by the same
value, which expands edges and affects detection accuracy.

Our proposed SuperPoint-based approach can effectively
detect and locate forgery even in images that have undergone
various post-processing operations. We have conducted
experiments on additional post-processing approaches from
the CoMoFoD dataset, and the results show that our approach
can detect and localize forgery for different levels of
post-processing operations consistently, from soft (level1)
to harsh (level2). Results for additional post-processing are
shown in Figure (6). The SuperPoint detector retains similar-
ity in keypoints by clustering them, in addition to registering
local image features effectively through SuperPoint features.

C. DETECTION OF GEOMETRICALLY TRANSFORMED
COPY-MOVE
Detecting forgery in images becomes even more challenging
when the copied region is subjected to geometric transforma-
tions before being moved to a new location. In such cases,
the correspondence between the copied and moved regions
becomes significantly altered, especially when the degree
of rotation and scaling is large. Extracting similar features
from regions that have undergone extensive geometric
transformations is more difficult than in cases where the
transformations are small.

1) GEOMETRICAL TRANSFORMED COPY-MOVE
Detecting copy-move forgery in geometrically transformed
images is challenging because not all image features are
invariant to rotation and scaling. To address this, we used the
SuperPoint keypoint detector, which provides stable image
keypoints that are robust to rotation and scaling. Homography
adaptation in SuperPoint is useful for copy-move forgery
detection in geometrically transformed images because it
allows the detection and matching of keypoints even when
the forged region has undergone a geometrical transformation
(e.g., rotation, scaling, combination transformation).

When a forged region undergoes a homographic trans-
formation, the keypoints in the original and forged regions
will no longer match directly. However, by estimating the
homography matrix between the two regions, the keypoints
in the original region can be transformed to the coordinates
in the forged region, where they can be matched to the
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FIGURE 8. Copy-move forgery detection results for images with small rotation as a geometrical transformation.

keypoints detected in the forged region. This allows for
the detection of copy-move forgery in images that have
undergone homographic transformations.

The homography adaptation in SuperPoint involves
estimating the homography matrix between the keypoints in
the original and forged regions using the RANSAC algorithm.
The homography matrix can then be used to transform
the keypoints in the original region to the coordinates in
the forged region, allowing for matching between the two
regions.

The SuperPoint’s repeatability is advantageous for detect-
ing forgery in images with rotation. Its geometrical invariant
property, coupled with transformation calculation, allows
us to identify forgery even when the copy-move region
undergoes a scale change from small to large or large to
small. In our proposed approach, we leverage the benefits
of SuperPoint by extracting features from the model, which
helps maintain correspondence between copy-move images
with small to large-angle rotations.

Diwan et al. [43] rely on affine transformation calculation
for the detection of geometrically transformed copy-move.
They are making an affine homographic matrix based on the
copy-move region’s coordinate information and calculated
homographic matrix decomposition. The results shown in
Table (6 and 7) clearly represent the superior performance of
the proposed approach over results presented by the approach
using additional affine transformation prediction.

In Table (6) we can particularly see the effectiveness
in detecting forgery with large angle rotations, such as

TABLE 6. The average result of copy-move forgery detection for images
with various levels of angle rotation and its comparison with traditional
keypoint-based CenSurE approach [43].

TABLE 7. The average result of copy-move forgery detection for images
with various levels of scale factor and its comparison with traditional
keypoint-based CenSurE approach [43].

20◦, 40◦, 60◦, and 180◦. Our results also demonstrate con-
sistent performance for small degrees of rotation, including
2◦, 4◦, 6◦, 8◦, and 10◦. Figure (8) showcases some examples
of images with different rotation angles.

In Table (7) we can see the effectiveness of our
proposed approach over the approach presented in [43].
Results demonstrate that for a small level of scale change
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FIGURE 9. Copy-move forgery detection results for images combined geometrical transformation.

like 2, 4, and 6 the difference in result is significant. Figure (9)
showcases some examples of images demonstrating this
combination of rotation and scaling.

VIII. CONCLUSION
In conclusion, our research paper presents an end-to-end
trainable copy-move forgery detection approach that lever-
ages the SuperPoint architecture. Our method demonstrates
superior performance in detecting and localizing copy-move
forgery in digital images. The algorithm effectively handles
various types of forgery, including simple and multiple
copy-move, post-processed copy-move, and geometrically
transformed copy-move.

The experiments conducted on multiple datasets validate
the robustness and versatility of our approach. It outperforms
existing methods in terms of detection accuracy and stability
across different types of forged images. The algorithm’s
efficiency in processing time makes it suitable for real-time
forgery detection applications.

However, there are still some limitations to address. The
computational complexity of the SuperPoint-based approach
may pose challenges for large-scale applications or real-
time processing. Future research can focus on optimizing the
algorithm to reduce computational requirements and improve
scalability.

Furthermore, the combination of geometrical transforma-
tions with post-processing operations remains a significant
challenge in forgery detection. Addressing this complex

scenario would enhance the overall effectiveness of forgery
detection methods. Future directions could involve exploring
advanced feature extraction techniques, improving clustering
andmatching algorithms, and incorporatingmachine learning
approaches to handle the intricacies of combined attacks.

Our research paper contributes a powerful SuperPoint-
based approach for copy-move forgery detection. It offers
a comprehensive and reliable solution for detecting a wide
range of copy-move forgery in digital images. With further
optimizations and advancements, our approach holds great
potential for practical applications in image forensics and
security domains.
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