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ABSTRACT Accurate indoor positioning is crucial for many location-based services, but GPS accuracy is
significantly reduced due to issues such as signal penetration and accuracy in indoor scenarios. In contrast,
indoorWi-Fi positioning is emerging as a promising alternative in the field. This study proposes a model that
combines the k-nearest neighbor algorithm with the dynamic time regularization distance metric for indoor
Wi-Fi positioning, and investigates methods for optimizing this model. The traditional K-nearest neighbor
algorithm usually uses Euclidean distance for distance calculation, which has the disadvantage of being
affected by the length of the signal sequence, resulting in inaccurate calculation of the distance between
adjacent points with different time intervals. The dynamic time regularization is more suitable for signals of
different lengths likeWi-Fi, which can bend the time axis tomake the alignment of twoWi-Fi sequencesmore
accurate. Using DTW as the distance measure of KNN is DTW-KNN. In addition, to enhance the model’s
ability to handle large-scale data sets, We use Gaussian sum matrices instead of the distance matrix of the
traditional dynamic time regularization algorithm. Once again, the standard deviation sigma of the Gaussian
distribution and the distance hyperparameters of the K-nearest neighbors are optimally chosen for the most
suitable values of Wi-Fi signals. Finally, a fast recognition model based on intermittent downsampling and
an accurate recognition model with complete sampling are designed to cope with the focus on real-time and
accuracy in different scenarios. These two models can achieve 95.3% and 98% accuracy, respectively, on the
public dataset (Wireless Indoor Localization) of indoor Wi-Fi localization.

INDEX TERMS Indoor positioning, Wi-Fi signal processing, machine learning, model optimization,
dynamic time warping, Gaussian kernel matrix.

I. INTRODUCTION
Indoor positioning problem has been a persistent and chal-
lenging issue, which has yet to be fully resolved despite con-
siderable advancements in outdoor position aiding [1]. With
the growing interest in developing location-based services in
indoor environments [2], the importance of addressing this
issue has become increasingly apparent. While the principles
and technologies underlying indoor and outdoor position-
ing systems are analogous in many respects, the differences
between the two are significant. Unlike out-door positioning
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systems such as GPS [3], indoor positioning systems cannot
depend on high-precision satellite signals [4] or unobstructed
sky views. Instead, indoor positioning systems rely on other
means of signal propagation, which can include wireless
signals (Wi-Fi [5], Bluetooth [6], and RFID [7]), acoustic
signals [8], and optical signals (camera-based systems) [9].
However, indoor environments bring to the fore new chal-
lenges in the form of increased multipath propagation [10],
signal attenuation [11], and environmental changes [12].

The indoor positioning problem has been the subject of
extensive research over the past decade, with contributions
from a wide range of fields, including communication engi-
neering [13], electrical engineering [14], geography [15],
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and computer science [16]. The development of accurate
indoor positioning systems has the potential to benefit a
variety of environments, such as healthcare facilities [17],
retail stores [18], universities [19], and airports [20]. For
instance, in retail environments, indoor positioning systems
could enable targeted advertising [21], personalized promo-
tions [22], and enhance store layout design [23]. In healthcare
facilities, such systems could assist in the navigation of
patients and healthcare professionals [24], as well as help
locate equipment and supplies in real-time [25]. In airports
and universities, they could increase travel efficiency [26]
and help users navigate complex facilities [27]. Hence, the
resolution of the indoor positioning problem is of signifi-
cant importance and could unlock substantial benefits from
location-based services in indoor environments.

IndoorWi-Fi positioning is becoming an increasingly pop-
ular choice for indoor positioning, but currently has many
shortcomings. Further research and development are needed
to overcome these challenges and optimize indoor Wi-Fi
positioning for different indoor environments and use cases.
Traditional statistical methods and machine learning models
dealing with indoorWi-Fi localization mainly suffer from the
following problems:

1) In indoor Wi-Fi positioning, there may be large dif-
ferences in Wi-Fi signal strength at different locations,
which leads to differences in the transmission time and
delay of Wi-Fi signals [28]. In particular, at locations
far away from the router, the signal strength will be rel-
atively attenuated, resulting in extended transmission
delays of the signal, which in turn creates latency and
timing problems.

2) In indoor Wi-Fi positioning, the signal reaching the
mobile device may be significantly attenuated and
distorted due to factors such as distance, walls and
electronic devices [29]. These factors may cause the
collected data to contain noise or generate errors.

3) In indoor Wi-Fi localization, the metrics of general
methods are usually able to measure only the absolute
differences of values in the signals, but cannot reflect
information such as their relative positions and trends
at different point [30] in time, which leads to the loss
of features in the time dimension.

While various techniques have been proposed and utilized
in IPS, there is still a need for improved methods that can
handle the complexities of indoor environments, such as
multipath propagation, signal attenuation, and dynamic envi-
ronmental changes. To address these challenges, this study
focuses on the utilization of the K-nearest neighbor algorithm
(KNN) and the distance metric of dynamic time regulariza-
tion in the domain of indoor Wi-Fi positioning.

KNN offers several advantages in IPS [31], including
its simplicity, effectiveness in handling non-linear and non-
parametric data, and the ability to adapt to dynamic envi-
ronmental conditions. Dynamic time regularization, on the
other hand, is well-suited forWi-Fi signals of varying lengths,
as it facilitates accurate alignment of sequences and reduces

the impact of signal length on distance calculation. There-
fore, by combining KNN with dynamic time regularization,
we aim to enhance the accuracy and robustness of indoor
Wi-Fi positioning systems, especially in the presence of chal-
lenges commonly encountered in indoor environments.

To address the challenges mentioned above, this paper
proposes a recognition classification strategy for Dynamic
Time Warping - K-Nearest Neighbors algorithm (DTW-
KNN) embedded with Gaussian sum matrices. The strategy
integrates the strengths of Dynamic Time Warping (DTW)
[32] and k-Nearest Neighbor (KNN) [33] algorithms to over-
come the problems of Wi-Fi signal strength variations across
locations, multiple dimension features, and low robustness
and accuracy of traditional models. Specifically, KNN is used
to calculate the distance between twoWi-Fi signal sequences,
where DTW generates a distance matrix to account for the
gaps in sequences for KNN algorithm. Moreover, DTW is
used to address the polymorphic differences between time
sequences with the use of a Gaussian kernel function [34] to
solve the distance calculation problem.

The main contributions of this paper are as follows:
First, the combined use of KNN and DTW algorithms

can overcome the problem of Wi-Fi signal strength differ-
ences across various locations by considering the relationship
between Wi-Fi signal transmission delays, signal noise, and
distortion. This improves the temporal modeling ofWi-Fi sig-
nals and increases the accuracy of the model for localization
applications.

Second, the Gaussian kernel function of the DTW
algorithm is used instead of the traditional DTW distance cal-
culation method. This function effectively reduces errors and
noise caused by signal fading and deformation, thus improv-
ing the robustness and accuracy of the localization algorithm.
Consequently, more accurate localization of mobile devices
in indoor locations is achieved.

Third, the DTW algorithm can capture the polymorphic
differences between time series that are not easily measured
by conventional methods. By using the DTW algorithm in
combination with the KNN algorithm, the accuracy of Wi-Fi
signal localization is improved. The temporal characteristics
of Wi-Fi signals are better captured, and temporal data in
terms of trends and other features are extracted, resulting in a
more accurate and robust model.

Overall, the proposed DTW-KNN strategy embedded with
Gaussian summatrices is expected to address the weaknesses
of traditional models in indoor Wi-Fi localization. The pro-
posed strategy leverages the strengths of KNN and DTW
algorithms and the Gaussian kernel function to significantly
improve the accuracy, robustness, and efficiency of the local-
ization process.

The paper is organized as follows: section II presents
the theoretical basis of the proposed model in this paper.
Subsequently, in Section III, Fast DTW-KNN and fully down-
sampled DTW-KNN are designed based on the theoretical
rationale, and the effects of different distancemetric functions
are compared. In Section IV, we extend and discuss the
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experimental results. Section VI gives the conclusions of this
study.

II. RELATED WORK
Indoor positioning can be achieved using various technolo-
gies, includingWi-Fi [35], Bluetooth LowEnergy(BLE) [36],
range-free [37], fingerprinting techniques [38], RFID [39],
and ultrasound [40]. Each of these technologies has its advan-
tages and limitations [41], and no single technology can
provide a universal solution for indoor positioning.

BLE positioning, for example, is suitable for tracking small
objects and devices with low power consumption require-
ments [42], such as indoor navigation for shopping carts and
luggage. RFID positioning, on the other hand, can be used
for tracking assets within a confined space [43], such as a
warehouse [40] or manufacturing plant [44].
Ultrasound positioning relies on the time of flight measure-

ment of acoustic signals [45], which is susceptible to envi-
ronmental factors and can be affected by ambient noise [46].
Wi-Fi positioning, by contrast, utilizes the signal strength
of Wi-Fi access points within the environment and the geo-
metric distance between the user’s device and access points
to estimate the user’s location [47]. This technique can be
implemented with existing infrastructure [48] and does not
require additional hardware or infrastructure [49], making it
a cost-effective solution.

Compared with indoor Wi-Fi positioning technology, both
range-free and fingerprinting techniques have their limita-
tions. Range-free technology requires high AP density and
no obstructions, otherwise the positioning accuracy will
be affected [50]. Fingerprinting technology, on the other
hand, requires a complete fingerprint database [51], which
is relatively complex. Furthermore, both of these techniques
are sensitive to signal fluctuations and external interference
which can decrease the positioning accuracy.

In addition, some hybrid technologies are also worthy of
our attention. The combination of an IMU (inertial measure-
ment unit) and a camera is a common hybrid technology. The
IMU provides acceleration, angular velocity, and orientation
information, while the camera provides vision data. This
combined technique is useful for applications that need to
consider both visual scene and dynamic information. It is
widely used in scenarios such as augmented reality (AR),
indoor navigation, and virtual reality (VR). However, dis-
advantages of the IMU+camera [52] approach may include
higher requirements for precise calibration and sensitivity to
external light conditions. PDR (Gait Recognition) [53] com-
bined withWiFi signal is a commonly used hybrid technique.
PDR utilizes on-device inertial sensors such as accelerome-
ters and gyroscopes to estimate the user’s gait information
and trajectory. By integrating the WiFi signal, especially the
signal strength, the positioning accuracy of the PDR system
in the indoor environment can be improved. This technology
is widely used in areas such as indoor navigation, people
tracking and LBS (Location Based Services). However, the

disadvantages of PDR include the accumulation of errors
when used for a long time, the sensitivity to changes in steps
and attitudes, and the inability to provide absolute position
information.

Also worth mentioning is UWB (Ultra Wideband) tech-
nology [54], which is a wireless communication technology
based on short pulses. In indoor positioning, UWB technol-
ogy has the following characteristics: high precision, high
anti-interference, strong refraction transmission ability and
trackability. UWB can be used in areas such as indoor people
tracking, real-time positioning and object detection. How-
ever, the disadvantages of UWB technology include higher
equipment and infrastructure costs, and the need for addi-
tional deployment and calibration processes.

Compared to other indoor positioning techniques, Wi-Fi
positioning has some advantages. For example, it has a larger
coverage area [55] and better penetration capabilities [56],
which are essential for larger buildings [57] with complex
layouts. Wi-Fi signal is also the signal with the simplest
requirements on equipment, and it can even be realized
with only a mobile phone. Additionally, Wi-Fi signals are
less affected by environmental factors [47], making them
more reliable for positioning accuracy in real-world sce-
narios. Wi-Fi positioning can be integrated with a variety
of location-based services, such as advertising [58], social
networking [59], and search [60], which enables its use in
a wide range of applications.

III. MATERIALS AND METHODS
The localization method employed in this study is based
on the K-nearest neighbors (KNN) algorithm and dynamic
time warping (DTW) [61] technique, with the addition of a
Gaussian kernel function for computing the DTW matching
distance. Specifically, KNN algorithm is utilized for location
determination by measuring the similarity between the avail-
able Wi-Fi signals in the training dataset and the test data.
DTW is employed as the distance metric in KNN algorithm
to effectively handle the high dimensionality and complexity
caused by variations in time series such as misalignments
and differences in speed. The DTW algorithm generates a
distance matrix to handle gaps in the sequences, which is then
weighted using a Gaussian kernel function. This approach
effectively reduces errors and noise caused by signal atten-
uation and deformation, thereby improving the robustness
and accuracy of the localization algorithm. In summary, our
research method integrates the strengths of KNN and DTW
algorithms, resulting in improved accuracy, reliability, and
real-time capabilities of indoor localization.

A. KNN FOR CLASSIFICATION
K nearest neighbors (KNN) is a supervised classification
algorithm that is widely used in classification and regression
tasks. The basic principle of KNN is to use the K-nearest
neighbors in the training data set that are most similar to the
new input sample, and count the frequency of their labels
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to classify the sample. Specifically, for a given training data
set D, where the feature vector xi and the classification label
yi of each training sample are known, KNN algorithm finds
the K nearest training samples by calculating the distance
between the input sample u and all the training samples. Then,
the algorithm selects a final classification label based on the
frequency of the labels of these K training samples.

KNN algorithm can be represented by the following
Equation 1:

yu = argmaxcj
∑
i

Ind(yij = cj) (1)

where D = {(x1, y1), (x2, y2), . . . , (xm, ym)} represents the
training dataset, where xi is a length-p dimensional vector
representing the p-dimensional feature vector of the training
sample, and yi can be a discrete or continuous value label.
A classification training set can be represented as T ⊆ Rp×Y ,
where Y is a set of possible classification labels.

For a new input sample u ∈ Rp, KNN algorithm first
calculates the distance between the sample and each sample
in the training set, dist(xi, u), and then finds the K nearest
samples xi1, xi2, . . . , xik closest to u based on their distance.
The algorithm counts the frequency of their labels, and selects
the label with the highest frequency, yu, as the classification
result for u.

if yij = cj, Ind(yij = cj) = 1, otherwise = 0. (2)

From Equation 2, it can be seen that the implementation of
KNN algorithm mainly involves determining the value of K,
calculating the distance, and counting the classification label
of K neighbors, and finding the nearest neighbors to the new
sample. However, it should be noted that traditional distance
measurement methods may not adapt well to the diversity and
variation of time series data, and thus KNN algorithm may
encounter some problems in some time series-like problems.
Therefore, dynamic time warping (DTW) is introduced to
improve the performance of KNN algorithm. The algorithm
first calculates the DTW distance between the sample to be
classified and each sample in the training set to measure
their similarity more accurately. Then, select the K training
samples with the smallest distance as the nearest neighbors,
and make voting decisions according to their categories, and
predict the category of the samples to be classified, as shown
in Figure 1.

B. CALCULATE THE DISTANCE MATRIX BETWEEN TWO
WI-FI SIGNAL SEQUENCES BY DTW
The DTW algorithm can align signal sequences and calculate
the distance matrix between them. Specifically, the DTW
algorithm can be divided into the following four steps:

1) CALCULATE THE COST MATRIX
This Equation 3 describes the computation of the cost matrix
C by calculating the Euclidean distance between two Wi-Fi
signal sequences. The variable N represents the length of the

FIGURE 1. DTW distance matrix to calculate the distance between two
Wi-Fi sequences.

first signal sequence, whileM represents the length of the sec-
ond signal sequence. By calculating the Euclidean distance
between each pair of elements, a cost matrix C of size N xM
can be obtained. Here, C(i, j) represents the distance between
the i-th element of signal sequence A and the j-th element of
signal sequence B. The calculation is based on the Euclidean
distance formula, which involves subtracting two elements
and squaring the result.

First, for two Wi-Fi signal sequences of lengths N
and M , respectively, a N × M cost matrix C can be
obtained by calculating the Euclidean distance between them.
Here, C(i, j) represents the distance between the i-th ele-
ment of signal sequence A and the j-th element of signal
sequence B, i.e.,

C(i, j) = (A(i) − B(j))2 (3)

2) CALCULATE THE ACCUMULATED COST MATRIX
Then, by applying dynamic programming to the cost
matrix C , a N × M accumulated cost matrix D can be
obtained. The initial value of the cost matrix C is 0.
In Equation 4, D(i, j) represents the minimum cost required
to travel from the first element to the i-th element of signal
sequence A and from the first element to the j-th element of
signal sequence B. The calculation of D(i, j) is as follows:

D(i, j)=C(i, j)+min{D(i− 1, j),D(i, j− 1),D(i− 1, j− 1)}
(4)

3) CALCULATE THE DTW DISTANCE MATRIX
Next, a N × M DTW distance matrix can be obtained by
calculating the first row and column of the accumulated cost
matrix D, i.e. In the context of the DTW-KNN (Dynamic
TimeWarping-K Nearest Neighbors) algorithm, the accumu-
lated cost matrix D represents the minimum cost of reaching
each element in the cost matrix C .

D(1, 1) = C(1, 1)

D(i, 1) = D(i− 1, 1) + C(i, 1) for 2 ≤ i ≤ N

D(1, j) = D(1, j− 1) + C(1, j) for 2 ≤ j ≤ M (5)

Here, D(i, j) represents the minimum cost of aligning the
first i elements of sequence A with the first j elements of
sequence B. It is obtained by accumulating the cost values
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from previous alignments and considering the cost of the cur-
rent alignment. The dynamic programming approach used in
DTW ensures that the accumulated cost matrix D represents
the sum of the minimum costs for all possible alignments.

4) CALCULATE THE DTW DISTANCE
Finally, the DTW distance between two Wi-Fi signal
sequences can be calculated by flattening the DTW distance
matrix D into a vector, as shown in Figure 2. Specifically, all
the elements ofD can be flattened into a length-N×M vector
dDTW , which can then be used to calculate the Euclidean
distance between dDTW (Equation 6) and the same-length
vector dA,B, where dA,B(i, j) is a N × M matrix representing
the Euclidean distance between the i-th element of signal
sequence A and the j-th element of signal sequence B, i.e.,

dA,B(i, j) =

√
(A(i) − B(j))2 (6)

FIGURE 2. The backtracking process of DTW distance matrix calculation
distance.

C. USE GAUSSIAN KERNEL FUNCTION TO CALCULATE THE
DISTANCE OF DTW
Using Manhattan distances to calculate the DTW distance
matrix is a common practice, but has many drawbacks. One
of them is that the Manhattan distance only considers the
simple distance between points on the x and y axes, and does
not consider the connection between the points. In contrast,
indoorWi-Fi signal localization precisely uses the significant
relationship between individual sequences for distance calcu-
lation. Another point is that in the case of large-scale DTW
deformation, theManhattan distance may not correctly match
the true overlapping part of the deformed signal, which leads
to a decrease in localization accuracy. In contrast, usingGaus-
sian kernel function to calculate the DTW distance matrix
can better balance local similarity and deformation features,
and thus is more suitable for complex indoor localization

scenarios. Specifically, the following Equation 7 based on the
Gaussian kernel function can be used to calculate the DTW
distance:

dDTW (i, j)

= exp
(
(A(i, j) − A(i− 1, j))2 + (A(i, j) − A(i, j− 1))2

σ 2

)
(7)

Here, dDTW (i, j) is the value at position (i, j) in the
DTW distance matrix, A(i, j) is the cost matrix in the DTW
algorithm, and σ is the parameter of the Gaussian ker-
nel function, which determines the width of the Gaussian
distribution.

By using this method, the DTW distance matrix can be
transformed into a kernel matrix and then the kernel method
can be used for classification The kernel method is a tech-
nique for linearizing a nonlinear problem by transforming the
original data into a high-dimensional feature space, making
the Wi-Fi signal data linearly separable in the new feature
space.

IV. EXPERIMENTS
To highlight the effectiveness of the model, We experimented
with the commonly used Manhattan distance and our pro-
posed Gaussian kernel function in the distance metric of
the DTW algorithm, respectively. And the parameters are
optimized and adjusted for them.

Meanwhile, in order to cope with the sparsity and continu-
ity problems of Wi-Fi data in different scenarios, We have
also made a full classification discussion in feature selec-
tion. On the one hand, when targeting the data with good
continuity, feature selection and classification can be per-
formed quickly by intermittent downsampling, as shown in
Section IV-C. On the other hand, when targeting the more
sparse cases, the full data was directly used for testing,
as shown in Section IV-D.

A. DATA SET
To test the effectiveness of our model, We use the Wireless
Indoor Localization Data Set [62], a publicly available indoor
localization dataset used to study the performance of different
indoor localization algorithms. The dataset is published by
the UCI Machine Learning Repository’s machine learning
website.Wireless Indoor LocalizationData Set contains infor-
mation about the Wi-Fi signal strength in different indoor
rooms.

The dataset contains seven values representing the Wi-Fi
signal strength emitted by seven routers at the current loca-
tion. Each sample in the dataset also includes a label, which
indicates the indoor room in which the sample is located.

Using this dataset to assist researchers in their experiments
can be a good way to test the performance of different types
of algorithms, and the dataset is divided into a training set and
a test set according to 8:2.
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FIGURE 3. Correspondence between hyperparameter sigma and loss when the interval is 1 unit.

B. HYPERPARAMETER OPTIMIZATION AND SELECTION
OF DTW-KNN MODEL BASED ON GAUSSIAN KERNEL
MATRIX
1) SELECTION OF SIGMA HYPERPARAMETERS IN GAUSSIAN
KERNEL FUNCTION
Optimization and selection of sigma hyperparameters in
Gaussian kernel function In practical applications, we usually
hope to improve the performance of the model by optimizing
the hyperparameters of the model. In the distance measure of
DTW, we can use the Gaussian kernel function to weight the
sample distance, so that the samples with far distances have
less influence on the prediction results. A common parameter
of the Gaussian kernel function is the sigma value, which
represents the standard deviation of the Gaussian distribution
curve and is used to control the weight distribution ratio of
the distance.

In order to optimize and select the most suitable hyperpa-
rameters for indoor Wi-Fi scenarios, the sigma value setting
mainly includes two conditions: the first, the average value of
the data sample interval; the second, amultiple of the standard
deviation of the data distribution. Therefore, we first carried
out the primary selection of sigma to determine the approx-
imate range of the optimal solution. That is, by traversing
all values of sigma between 0 and 100, and then recording
the loss corresponding to the model, as shown in Figure 3.
It can be seen that the loss corresponding to sigma with a
value between 0 and 10 is the smallest. Therefore, the optimal
sigma value should be between 0 and 10. Based on this result,
I conduct further experiments.

It can be seen from the Figure 4 that because the sigma
value is too large or too small, the loss of the verification

FIGURE 4. The change of the verification set loss curve with the value of
sigma from 1 to 9 after applying the Gaussian kernel function.

set is also relatively large. This is because when the sigma
value is too large, the specified distance distribution affects
the data points too uniformly, making it impossible to effec-
tively distinguish the data points with a closer distance from
the data points with a longer distance, thereby affecting the
classification effect of the model. Conversely, if the sigma
value is too small, too much noise may be introduced, making
the model prone to overfitting. It can be seen that when the
sigma value is 4, the loss of the validation set is the smallest
and the model performs best.

2) SELECTION OF NEIGHBOR DISTANCE IN K-NEAREST
NEIGHBOR MODEL
When determining the range of neighbor distance, my idea is
to conduct data exploration and visual analysis first, deter-
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FIGURE 5. Variation of the validation set loss curve with the value of
n_neighbors from 1 to 9.

mine a rough distance range according to the distribution
of data and task requirements, and then gradually refine
and adjust it according to the experimental results. In prac-
tical applications, the common neighbor distance ranges
from 1 to 10. Figure 5 presents the performance of the
model with n_neighbors between 0 and 10. It can be seen
that when n_neighbors is equal to 2, the loss of the veri-
fication set reaches the minimum and the model performs
best.

C. INTERMITTENT DOWNSAMPLING OF DTW-KNN FOR
APPLICATIONS
High noise and continuity issues often occur when using
Wi-Fi signal strength for positioning. In order to solve this
problem, by default, each sample in the dataset will be
down-sampled on the basis of every 100 data, that is, every
100 points apart when sampling, a data input model is taken
to compress the data and make the dataset more compact.
Readability and interpretability.

1) FAST DTW-KNN RESULTS USING MANHATTAN DISTANCE
Faster DTW-KNN results using Manhattan distance, faster
than without downsampling, are shown in the table 1, which
we call Fast DTW-KNN (FDK). The FDK confusion matrix
is shown in Figure 6.

Specifically, the data in each sample are taken from the
RSSI readings of Wi-Fi devices and are sampled every
100 readings at the time of sampling in order to reduce the
amount of data in the sample, while also retaining the rep-
resentativeness of the sample data for subsequent processing
and analysis.

2) FAST DTW-KNN RESULTS USING GAUSSIAN KERNEL
MATRIX
In this experiment, based on the indoor Wi-Fi positioning
data set, the Fast DTW-KNN algorithm using the Gaussian
kernel matrix was tested, and themodel performance was also
evaluated. The results are shown in Table 2. Figure 7 is the
corresponding confusion.

TABLE 1. FDK results for Manhattan distance.

FIGURE 6. FDK confusion matrix using Manhattan distance.

TABLE 2. FDK results for Gaussian kernel matrix.

In order to see the classification of each room more intu-
itively, I drew a scatter plot of the real value and the predicted
value, as shown in Figure 8. The value on the vertical axis
represents the number of the room category, and the hori-
zontal axis represents the value of the sample. It can be seen
that only room 3 has a certain amount of misclassification,
and rooms 1, 2, and 4 have almost none. Intuitively, the
classification effect of FDK using Gaussian and matrix can
be seen that most rooms can be accurately distinguished.

3) DISCUSSION OF FAST DTW-KNN FOR DIFFERENT
DISTANCE METRICS
From the results of the two experiments, the following con-
clusions can be drawn:

Gaussian kernel function distance calculation is slightly
better than Manhattan distance calculation. By comparing
the results of the two experiments, it can be found that the
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FIGURE 7. FDK confusion matrix using Gaussian kernel matrix.

Gaussian kernel function distance calculation is better than
the Manhattan distance calculation in terms of precision,
recall and f1-score. For example, in Room1, the precision rate
and recall rate calculated by Gaussian kernel function dis-
tance are higher than those calculated byManhattan distance.

There is a certain degree of volatility in the evaluation
indicators. By comparing the weighted average of the two
experimental results, it can be seen that there is a certain
degree of volatility in the performance of the evaluation
indicators. For example, in the first experiment, the weighted
avg indicator is slightly lower than 95%; while in the second
experiment, the weighted avg indicator is slightly higher
than 95%. This shows that the performance of indoor Wi-Fi
positioning algorithms may be affected by different data sets
and experimental conditions, and needs to be optimized and
improved in practical applications.

In summary, the experimental results obtained by Gaus-
sian kernel function distance calculation are relatively better
than those calculated by Manhattan distance. FDK has good
performance and generalization ability in indoor Wi-Fi posi-
tioning, and can be adapted to the application scenario of
fast analysis, but the prediction effect in different rooms is
different.

D. DTW-KNN USING ALL SAMPLES
In Wi-Fi signal strength localization, the process of data
acquisition often has high noise and data sparsity problems.
In order to retain more data information, no downsampling
process was performed in the dataset, and the entire data was
directly used for acquisition and storage. Each sample in the
dataset contains the Wi-Fi signal strength values emitted by
seven routers in the indoor environment, and the information
of the room where each sample is located is labeled.

1) DTW-KNN RESULTS USING MANHATTAN DISTANCE
More useful information and more comprehensive data char-
acteristics can be obtained by using all the data, and the results
are shown in Table 3. Figure 9 is the corresponding confusion.

TABLE 3. DK results for Manhattan distance.

TABLE 4. DK results for Gaussian kernel matrix.

2) DTW-KNN RESULTS USING GAUSSIAN KERNEL MATRIX
In this experiment, based on the indoor Wi-Fi positioning
data set, the DTW-KNN algorithm using the Gaussian ker-
nel matrix was tested, and the model performance was also
evaluated. The results are shown in Table 4. Figure 10 is the
corresponding confusion.

In order to see the classification of each room more intu-
itively, I drew a scatter plot of the real value and the predicted
value, as shown in Figure 11. The value on the vertical axis
represents the number of room categories, and the horizontal
axis represents the value of the sample. It can be seen that
no room has too many misclassified samples. Among them,
the classification of Room 4 is all correct, and there is no
misclassified sample. In rooms 1, 2, and 3, there are only
sporadic misclassified samples that are not concentrated. The
DK model is the one with the best indoor Wi-Fi signal clas-
sification among all the models tested in this paper.

3) DISCUSSION OF DTW-KNN FOR DIFFERENT DISTANCE
METRICS
From Tables 1, 2, 3, and 4, it can be seen that the accuracy
of the indoor Wi-Fi localization algorithm derived from both
the Manhattan distance calculation and the Gaussian kernel
function calculation without downsampling is higher than the
accuracy of the previously downsampled data.

The experimental results without downsampling data are
more accurate. Since the downsampling operation reduces the
amount of data, which may lead to some degree of infor-
mation loss, the model is able to use more information to
improve the accuracy in the experiments without downsam-
pling.

The indicator fluctuations in these two experiments are
smaller than those in the FDK experiments, and this change
can be seen through the weighted avg indicator.
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FIGURE 8. Scatter plot of true and predicted values for FDK model using Gaussian and matrix.

FIGURE 9. DK confusion matrix using Manhattan distance.

V. RESULT AND DISCUSSION
In order to show the performance comparison of different
algorithms [63] more intuitively and make our algorithm
more convincing, we made the experimental results into a
visual bar graph, as shown in Figure 12.
As can be seen from Figure 12, our proposed algorithm

achieves good accuracy performance under different distance
calculationmethods, and only FDK usingManhattan distance
is slightly lower than FPSOGSA-NN compared with other
algorithms. both our proposed FDK using Gaussian kernel
function and DK have greater advantages.

In addition, the accuracy performance of FDK algorithm
and DK algorithm is relatively smooth under different

FIGURE 10. FDK confusion matrix using Gaussian kernel matrix.

FIGURE 11. Scatter plot of true and predicted values for DK model using
Gaussian and matrix.

distance calculation methods. In the field of indoor Wi-Fi
positioning, FDK algorithm and DK algorithm perform well
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FIGURE 12. Comparison of the accuracy of FDK and DK with other indoor Wi-Fi positioning algorithms [63].

after parameters such as distance calculation method and
constraint window length are optimized, and can be used as
An effective localization algorithm. At the same time, they
also have advantages in some specific scenarios, which can
expand the selection range of algorithms.

Although this study proposes some ideas for algorithm
selection and optimization from the experimental results and
analysis, there are still some limitations and deficiencies.
First, we only conducted experimental tests on the dataset
and did not verify it on data in other real scenarios, so the
applicability and performance of the algorithm may vary.
In addition, in the setting of algorithm parameters, we did
not optimize and debug the system, which may also affect
the performance of the algorithm.

Future research directions can be carried out from the
following aspects:

1) Expand datasets and test scenarios: test and verify the
applicability and performance of algorithms for differ-
ent indoor scenarios and datasets.;

2) Meticulous parameter tuning: For algorithms that
require parameter optimization, systematically opti-
mize and debug to improve the performance and sta-
bility of the algorithm.;

3) Combining machine learning methods: This study only
uses relevant strategies of machine learning. If meth-
ods such as deep learning are used, more accurate
and robust positioning models and algorithms may be
established.

VI. CONCLUSION
In this paper, we design a DTW-KNN model based on
Gaussian kernel function, and discuss the application and

optimization method of this model in the field of indoor
Wi-Fi positioning. Through the analysis of experimental data,
we found that the distance calculation method has an impor-
tant impact on the performance, accuracy and robustness
of the algorithm. In the comparison of distance calculation
methods, the indoor Wi-Fi positioning algorithm calculated
by theGaussian kernel function performs better than theMan-
hattan distance, and has better robustness and more flexible
calculation properties.

At the same time, we also compared the performance
gap between fast DTW-KNN (FKD) using downsampling
and DTW-KNN (DK) with full data, and tested it on public
datasets. In real-time and continuous data, it is recommended
to consider FDK; in the case of high accuracy requirements
and discrete data, it is recommended to consider DK; in prac-
tical applications, we need to consider specific scenarios and
data sets Select the appropriate distance calculation method
and algorithm to achieve better accuracy and performance.
In summary, using Gaussian kernel function to optimize the
distance metric of DTW-KNN is scientifically reasonable
and helps to improve the accuracy and efficiency of indoor
positioning technology.
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