
Received 18 July 2023, accepted 29 July 2023, date of publication 11 August 2023, date of current version 21 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3304329

On the Non-Approximate Successive Cancellation
Decoding of Binary Polar Codes With
Medium Kernels
ZHILIANG HUANG , (Member, IEEE), ZONGSHENG JIANG, SHUIHONG ZHOU,
AND XIAOYAN ZHANG
School of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China

Corresponding author: Zhiliang Huang (zlhuang@zjnu.cn)

This work was supported in part by the National Nature Science Foundation of China under Grant 61401399; in part by the Research Fund
of the National Mobile Communications Research Laboratory, Southeast University, under Grant 2016D05; and in part by the Zhejiang
Provincial Nature Science Foundation of China under Grant LY18F010017 and Grant LY17F010003.

ABSTRACT Polar codes constructed by large kernels can attain better finite length performance than
those originating from Arıkan’s 2 × 2 kernel. However, the successive cancellation (SC) decoding for
these polar codes is impractical even for relatively small kernel size of m because complexity of the kernel
computation grows exponentially with m. This research shows when m > 2, there exists a large amount
of like terms in the kernel computation which yields a ground for facilitating the decoding. By transferring
the kernel computation from the probability domain to the likelihood ratio domain (l-domain), the so-called
l-formula method provides an efficient way to combine the like terms in the kernel computation for kernels
up to size 11. However, the l-formula method becomes intractable for kernel size beyond 11. To further
reduce the computational complexity, this paper proposes aW -formula method which transforms the kernel
computation into the probability pair domain (W -domain). Advanced from the l-domain, the numerator and
denominator of the likelihood ratio are considered separately, which eases the restrictions of combining like
terms. The W -formula method can combine much more like terms resulting in a significant reduction on
the number of sub-formulas for medium kernels (m ≤ 16). Furthermore, in the W -domain, sub-formulas
become regular and there exist many common sub-formulas whose computations can be shared. Being able
to handle kernels of size up to 16, we show that the W -formula based SC decoding achieves a significant
complexity reduction over the existing non-approximate SC decoding (the l-formula based SC decoding).

INDEX TERMS Large kernel, medium kernel, polar codes, SC decoding,W -formula.

I. INTRODUCTION
Polar codes were invented by Arıkan [1] as the first family of
capacity-achieving codes with explicit construction method
and low encoding and decoding complexity over binary input
discrete memoryless channels (B-DMCs). The original polar
codes are constructed based on a 2 × 2 kernel matrix G2 =(
1 0
1 1

)
and its nth Kronecker power G⊗n2 corresponds to a

linear code with length N = 2n. The kernel matrix can be
replaced by larger matrices Gm where the kernel size m > 2.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zihuai Lin .

It has been know that polar codes constructed by large kernels
may obtain better finite length performance [2].

Given a kernel matrix, its finite-length analysis can be
assessed in terms of the error exponent [2] or the scaling
exponent [3], [4]. It was shown that the block error probability
of theG2 based polar codes under the successive cancellation
(SC) decoding is O(2−2

n(0.5−ϵ)
) for any ϵ > 0, where 0.5 is

called the error exponent of the kernel. The error expo-
nent can exceed 0.5 for large kernel matrix [2]. The scaling
exponent µ is a constant that depends only on the kernel
Gm and the channel W for which N = O((I (W) − R)−µ),
where I (W) is the symmetric capacity of W and R is the

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 87505

https://orcid.org/0000-0003-0876-063X
https://orcid.org/0000-0002-3299-0411

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

code rate [3], [4]. For the binary erasure channel, µ equals
to 3.627 for G2. In [3], Fazeli and Vardy constructed an
8 × 8 kernel with µ = 3.577 and a 16 × 16 kernel with
µ = 3.356.
Many work have been dedicated to designing large kernels

with larger error exponents [2], [5] [6] or smaller scaling
exponents [3], [4]. However, complexity of a straightfor-
ward SC decoder for a Gm based polar code behaves as
O(2mN logN) [2]. The straightforward SC decoder becomes
infeasible even with a moderate value of m.

There exist several work that address the complexity chal-
lenge of the straightforward SC decoder for polar codes with
large kernels. Thesework can be divided into three categories.
The first category is the approximate algorithm. An approxi-
mate decoding algorithm called the sequential decoding was
introduced by Miloslavkaya and Trifonov [7] for decoding
polar codes with an arbitrary binary kernel. The basic idea of
sequential decoding is to design a metric that can be used to
compare paths with different lengths. Because the designed
metric is an approximation, the sequential decoding is an
approximate algorithm. The window decoding [8] is another
efficient decoding technique for polar codes with large ker-
nels. Trifonov [8] introduced the window decoding for polar
codes with non-binary Reed-Solomon (RS) kernels. Trofim-
iuk and Trifonov [9], [10] extended the window decoding for
polar codes with some 2t × 2t binary kernels by exploiting
the relationship between the considered kernels and G⊗t2 .
Abbasi and Viterbo [11] further improved the work of [9] and
significantly reduced the computational cost of the window
decoding. One drawback of the window decoding is that the
block length of codes is limited to 2t where t is a positive
integer. Trifonov [12] proposed a universal method for kernel
processing based on the recursive trellis representation of the
codes. The window decoding and the recursive trellis based
decoding algorithms use themax operator to approximate the
summation operator in the computation of kernel processing.
Therefore, they are approximate algorithms. Gupta et al. [13]
proposed a polar list decoding for large polarization kernels
and this method can be used to process kernels of size up
to 64. Again, the polar list decoding is an approximate decod-
ing algorithm.

The second category is the non-approximate algorithm for
some special kernels. Buzaglo et al. [14], [15] proposed a
permuted SC decoder to efficiently decode a special type of
kernels called the permuted kernels. Two 16 × 16 permuted
kernels that have better scaling exponents than Arikan’s ker-
nel are presented in [15]. It was shown in [15] that polar codes
with the permuted kernels obtained slight improvement in
error performance compared with polar codes with Arikan’s
kernel.

The third category is the non-approximate algorithm for
general kernels (no limit to the kernels). Transforming
the computation from probability domain into the likeli-
hood domain (l-domain) is a common practice to reduce

computational cost in decoding polar codes. Some efforts
have been made to reduce the computational cost of the
kernel computation by transforming the computation into the
l-domain [16], [17] [18]. We refer the kernel computation in
the l-domain as l-formulas. The papers [16], [17], and [18]
are dedicated to obtaining l-formulas for large kernels. Bonik
et al. [16] and Wang et al. [17] presented the l-formulas for
the G3 and G4 kernels, respectively. Huang et al. [18] later
proposed a so-called l-formula method, which can obtain
l-formulas for any binary linear kernels. However, the ker-
nel computation computed by l-formulas remains complex
when the kernel size exceeds 11 [18]. It should be noted
that the kernel computation computed by l-formulas has no
approximation.

In this study, we follow the way of the third category. We
focus on the complexity reduction of the non-approximate
SC decoding for polar codes with general medium kernel,
i. e., 2 < m ≤ 16. The factor of 2m in the complexity of
the straightforward SC decoding is due to a simple summa-
tion over all possibilities for the kernel computation. This
research shows that a large number of like terms exist in the
kernel computation for large kernels. Basically, the l-formula
method provides an effective way to combine these like terms
resulting in significant reduction of computational cost for
small kernels (m ≤ 11). However, as the kernel size increases,
the relationship between terms becomes complex and makes
combining like terms less efficient in the l-domain. To further
combine like terms, we proposes aW -formula method, which
transforms the kernel computation into the probability pair
domain (W -domain). The W -formula method can combine
many more like terms over the l-formula method. Like the
operators in l-domain, we design similar operators which
are used to combine like terms in the W -domain. Compared
to the l-formula method, we consider the numerator and
denominator of the ratio separately in theW -formula method,
which eases the restrictions of combining like terms. In the
W -domain, many more like terms can be combined than
that in the l-domain leading to a significant reduction of
the computational cost. Another important advantage of the
W -formula method is that the formula in the W -domain
becomes regular resulting in many common computations.
In general, a formula consists of many sub-formulas and the
number of sub-formulas increases rapidly with increasing
the kernel size. Like the l-formula method, the kernel com-
putation in the W -domain is called the W -formulas and a
W -formula consists of many sub-formulas. The difference is
that many common sub-formulas (their computations can be
shared) appear in some W -formulas for large kernels. This
feature which does not exist in the l-domain results in a mul-
tiple times reduction of the computation. With the above two
advantages, our results show that the W -formula based SC
decoding achieves significant reduction of the computation
cost by comparing with the l-formula based SC decoding for
optimal medium kernels in the literature.

87506 VOLUME 11, 2023

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

The structure of this paper is organized as follows. In
Section II, we introduce polar codes with large kernels,
notations ofW -formula, and definitions of combination chan-
nel and its algebra. In Section III, we introduce advantages
and challenges of the l-formula method. In Section IV,
we describe in details how to obtain W -formulas for an
arbitrary binary kernel matrix. In Section V, we present how
to use W -formulas to do the kernel computation. Section VI
provides examples of W -formulas for some optimal kernels.
The advantages of the W -formula method are presented in
Section VII. In Section VIII, we present computational cost
analysis of the W -formula based SC decoder. We conclude
the paper in Section IX.

II. PRELIMINARIES
A. POLAR CODES WITH LARGE KERNELS
Let W : {0, 1} → Y denote a generic B-DMC with input
alphabet {0, 1}, output alphabetY , and transition probabilities
W (y|x), x ∈ {0, 1}, y ∈ Y . We use aN1 to denote a row
vector (a1, · · · , aN). For a general kernel matrix Gm,1 Wm :

{0, 1}m→ Ym is defined by

Wm(ym1 |u
m
1) ≜

m∏
i=1

W (yi|(um1 Gm)i), (1)

where (um1 Gm)i is the i-th element of um1 Gm.
The bit channels W (i)

m : {0, 1} → Ym × {0, 1}i−1, where
1 ≤ i ≤ m, are defined by

W (i)
m (ym1 , ui−11 |ui) ≜

1
2m−1

∑
umi+1∈{0,1}

m−i

Wm(ym1 |u
m
1). (2)

For simplicity, we omit the alphabet {0, 1}m−i of umi+1 in the
rest of the paper.

For the SC decoding, the basic recursive formulas are [1]

W (i)
m (ym1 , ui−11 |ui)

=
1

2m−1
∑
umi+1

W (y1|(um1 Gm)1) · · ·W (ym|(um1 Gm)m). (3)

Let vk = (um1 Gm)k , equation (3) can be rewritten as

W (i)
m (ym1 , ui−11 |ui) =

1
2m−1

∑
umi+1

W (y1|v1) · · ·W (ym|vm). (4)

For simplicity, we useW (i)
m (ui) to denoteW (i)

m (ym1 , 0i−11 |ui).
In (4), W (yk |vk) is referred as a channel expression

and
∑

umi+1
W (y1|v1) · · ·W (ym|vm) is referred as an expres-

sion. We use dim to denote the dimension of {0, 1}m−i

(alphabet of umi+1); that is dim = m − i for umi+1. And
we denote the dim of umi+1 as the dim of an expres-
sion

∑
umi+1

W (y1|v1) · · ·W (ym|vm). We sometimes denote an
expression as a letter E and dimE denote the dim of E .
Note that we ignore the constant 1

2m−1
in the computation of

W (i)
m (ym1 , ui−11 |ui) by W -formulas.

1All kernels used in this study are linear kernels given in [6].

The bit channel likelihood ratio is

l(i)m (ym1 , ui−11) =
W (i)
m (ym1 , ui−11 |ui = 0)

W (i)
m (ym1 , ui−11 |ui = 1)

, (5)

where i = 1, . . . ,m. Again, for simplicity, we use l(i)m to
denote l(i)m (ym1 , 0i−11).

Note that vk in (4) is a linear combination of some terms
in um1 , i.e., v1 = u5 + u6 + u7. Let Si and Sj denote the set of
variables contained in vi and vj, respectively. The operators
⊓, ⊏, =, and ⋖ are used to indicate the relationship between
vi and vj. Denote vi ⊓ vj = ∅ when Si ∩ Sj = ∅, vi ⊏ vj when
Si ⊂ Sj, vi = vj when Si = Sj, and ui ⋖ vk when ui ∈ Sk .
We also call vk contains ui for the last case. Denote == as
the equal to operator. Then, the value of vi == vj is true if
vi = vj and false otherwise. Let v2 = u7+u8. Then v1+v2 =
u5 + u6 + u8. Let vk = vk + 1. Denote 1vk=0 as the indicator
function of equation vk = 0; thus 1vk=0 equals 1 if vk = 0 and
0 otherwise.

B. NOTATIONS OF W -FORMULA
Let Byi ≜ (B(yi|0),B(yi|1)) = (W (yi|0),W (yi|1)). Because
there is a one-to-one correspondence between yi and i, we also
use Bi to denote Byi . Define

B−1i = (B(yi|1),B(yi|0))

L(Bi) = B(yi|0),

S(Bi) = B(yi|0)+ B(yi|1),

Bi ⋄ Bj = (S(Bi · Bj), S(B
−1
i · Bj)),

Bi · Bj = (B(yi|0)B(yj|0),B(yi|1)B(yj|1)).

The priority for operators−1, · and ⋄ is · < ⋄ < −1, i.e., Bi ·
B−1j ⋄ Bk = Bi · ((B

−1
j) ⋄ Bk).

C. COMBINATION CHANNEL AND ITS ALGEBRA
Two channel expressions in (4) can be combined as a com-
bination channel if they satisfy certain conditions. Basically,
we have two types of combination channel: the zero-variable-
type and the one-variable-type. For two given channel expres-
sions W (y1|v1) and W (y2|v2), if v1 == v2, they can be
combined as a combination channel of the zero-variable-type.
Let

W ((y21)z|v1) ≜ W (y1|v1)W (y2|v1), (6)

where z denotes the zero-variable-type. Then, B(y21)z
≜

(W ((y21)z|0),W ((y21)z|1)) = B1 · B2.
For two channel expressionsW (y1|v1) andW (y2|v2) in (4),

if v2 ⊏ v1 and v2 ⊓ vi = ∅, i = 3, . . . ,m, then they can be
combined as a combination channel of the one-variable-type.
For example, let

W ((y21)o|s1) ≜
∑
v2

W (y1|v1)W (y2|v2), (7)

VOLUME 11, 2023 87507

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

where o denotes the one-variable-type and s1 = v1− v2. The
equation (7) can be rewritten as

W ((y21)o|s1) ≜
∑
v2

W (y1|v2 + s1)W (y2|v2).

Then, B(y21)o
≜ (W ((y21)o|0),W ((y21)o|1)) = B1 ⋄ B2.

The combination channel can be combined again. For
example, let

W (((y21)o, y3)z|s1) ≜ W ((y21)o|s1)W (y3|s1), (8)

we will have B((y21)o,y3)z
= B(y21)o

· B3 = B1 ⋄ B2 · B3.

III. THE l -FORMULA AND ITS CHALLENGES
Our basic purpose is to reduce the computational cost of (3).
The complexity of straightforward calculation of (3) isO(2m).
In [18], an l-formula method is proposed to reduce the com-
putation cost of (3). The l-formula behaves well for kernels
with size up to 11. However, complexity of the l-formula
method increases fast with kernel size m and it becomes
unacceptable when m > 11.

A. THE l-FORMULA
In the l-formula method, we focus on the computation of l(i)m
in (5). It has been shown [18] that l(i)m can be computed by a
formula of l1, · · · , lm, which are connected by ⋄ and × for
an arbitrary kernel Gm and these formulas are called the l-
formulas. The ⋄ operator is the key factor that the l-formula
method can reduce the computational cost of (5). Basically,
the ⋄ operator is able to reduce the dimension of computation.
We use an example to illustrate the ⋄ operator. Consider

W (y21|u1) =
∑
u2

W (y1|u1 + u2)W (y2|u2), (9)

we have

ly21
≜
W (y21|0)

W (y21|1)
= l1 ⋄ l2. (10)

It can be seen that the summation of (9) can be simplified into
one ⋄ in (10).
For optimal binary kernels provided in [6], all the first bit

channels’ transition probabilities (at the kernel level) have the
following form

W (1)
m (ym1 |u1)

=

∑
um2

W (y1|u1 + · · · + um)W (y2|u2) · · ·W (ym|um), (11)

where m = 2, · · · , 16. By using the l-formula generating
procedures [18], we have

lym1 ≜
W (1)
m (ym1 |0)

W (1)
m (ym1 |1)

= l1 ⋄ l2 ⋄ · · · ⋄ lm. (12)

The complexity of computation (11) is O(2m), while the
l-formula of (12) reduces it to O(m). Certainly, the above

example is a perfect case for the l-formula method. In general
cases, the l-formula method has its challenges.

It should be noted that the definition of ⋄ in theW -formula
method reserves the advantage of ⋄ in the l-formula method.
Similar to (12), we have

Bym1 ≜ (W (1)
m (ym1 |0),W

(1)
m (ym1 |1)) = B1 ⋄ B2 ⋄ · · · ⋄ Bm.

(13)

B. CHALLENGES OF THE l-FORMULA
(1) Too many sub-formulas: An l-formula consists of

many sub-formulas. The computational cost of computing an
l-formula is determined by the number of sub-formulas that
it contains. In the l-formula generating algorithm, the num-
ber of sub-formulas of certain l-formula increases as we
increase the kernel size m. The total number of sub-formulas
makes the computation infeasible for optimal kernel Gm
when m > 11 [18]. Avoiding the rapid growth of the num-
ber of sub-formulas of l-formulas motivates the proposed
W -formula method.
(2) No common part in l-formula: Unfortunately, sub-

formulas in the l-formula are not in common and their
computation cannot be shared.

IV. W -FORMULAS
In this section, we propose a procedure to generate
W -formulas for an arbitrary kernel Gm. First, definitions of
the W -formula and sub-formula are provided. Second, the
outline of the W -formula Generating Algorithm is described
as a recursive algorithm and some functions are denoted.
Third, details and proofs of the functions are presented.
Fourth, the W -formula generating algorithm for any kernel
size is proposed by using these functions. Finally, an example
is provided to illustrate theW -formulaGeneratingAlgorithm.

A. DEFINITION OF THE W -FORMULA
Definition 1 (W-formula): The W -formula for a W (i)

m (ym1 ,

ui−11 |ui) is defined as a formula of B1, · · · ,Bm (B1, · · · ,Bm
may appear more than once) connected by operators −1,
L, S, ·, and ⋄, which can be used to compute the value of
W (i)
m (ym1 , ui−11 |ui).
Definition 2 (sub-formula): A sub-formula is defined as a

formula of B1, · · · ,Bm (B1, · · · ,Bm appear at most once)
connected by operators −1, ·, and ⋄.
Note that the result of computing a W -formula is a value

and the result of computing a sub-formula is a pair (two values
like Bi).
For G2, a straightforward calculation based on (3) results

in

W (1)
2 (y21|0) = S(B1 · B2),

W (1)
2 (y21|1) = S(B−11 · B2),

W (2)
2 (y21, u1|0) = L(B1−2u11 · B2),

W (2)
2 (y21, u1|1) = L(B−(1−2u1)1 · B−12),

which are called theW -formulas of G2.

87508 VOLUME 11, 2023

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

FIGURE 1. The recursive W -formula generating procedure.

B. OUTLINE OF THE W -FORMULA GENERATING
ALGORITHM
The W -formula Generating algorithm can be described as a
recursive algorithm (see Figure 1). The Generating proce-
dure starts from an expression

∑
umi+1

W (y1|w1) · · ·W (ym|wm)
which is the result of implementing the Early processing
(introduce later). The algorithm first implements the function
combineLikeTerms on the expression, which combines like
terms as much as possible. Suppose that the resulting expres-
sion is

∑
umj
W (y1|z1) · · ·W (ym|zm) (j ≥ i + 1) after imple-

menting the function combineLikeTerms. If j == m (dim =
1), then

∑
umj
W (y1|z1) · · ·W (ym|zm) can be expressed as a

sub-formula and the algorithm is finished; otherwise, the
algorithm implements the function fundamentalStep on the
resulting expression and it is broken into two short expres-
sions. The two short expressions have the similar form as the
original expression. Therefore, we can do the same procedure
on them (First, combineLikeTerms. Second, fundamental-
Step if necessary). By implementing the fundamentalStep
function for all 2i expressions in one level and generating 2i+1

expressions to the next level is called one iteration. Because
the dim of expressions for the next level decrease at least 1
(m − i becomes m − j, j ≥ i + 1), the algorithm will end
at most m − i − 1 iterations (After m − i − 1 iterations, the
dim of expressions become 1 and they can be expressed as
a sub-formula). In Figure 1, subi(Bj, · · · ,Bm) denotes a sub-
formula, which contains Bj, · · · ,Bm exactly once (different
in order). The number d is the depth of the tree. The value of
d is equivalent to the number of iterations (d ≤ m− i− 1).

Before going to the recursive algorithm described in
Figure 1, we can do the Early processing on (3) to simplify
subsequent processing (see Figure 2). The Early processing
contains two functions hideKnownValues and standardEx-
pressionTransform. The function hideKnownValues can
ignore the known values ui−11 at first and just consider them in
the final step. The function standardExpressionTransform
brings some benefits for the function combineLikeTerms.

FIGURE 2. Early processing.

C. DETAILS OF FUNCTIONS
The function combineLikeTerms involves two functions
zeroVariableCombine and oneVariableCombine. Next,
we will introduce hideKnownValues, standardExpression-
Transform, zeroVariableCombine, oneVariableCombine,
combineLikeTerms, and fundamentalStep in detail.

1) HIDE KNOWN VALUES
Consider the ith bit channel of a kernelGm. LetGA andGB be
the submatrices ofGm consisting of the first i−1 rows and the
last m− i+ 1 rows, respectively. We have W (yj|(um1 Gm)j) =
W (yj|aj + (umi GB)j), where aj = (ui−11 GA)j, j = 1, · · · ,m.

Consider the following equation

W (i)
m (ym1 , 0i−11 |ui)

=

∑
umi+1

W (y1|(umi GB)1) · · ·W (ym|(umi GB)m). (14)

Because ajs, j = 1, . . . ,m are known values, we can obtain
theW -formula of (14) instead of (3) at first. Then, we substi-
tute Bj by (Bj)1−2aj for each j in the obtainedW -formula and
the resultingW -formula is theW -formula of (3). This fact is
given in the following proposition.
Proposition 1 (Hide Known Values): Assume aW -formul

a of W (i)
m (ym1 , 0i−11 |ui) is fi(B1, · · · ,Bm), which is obtained

VOLUME 11, 2023 87509

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

Algorithm 1 hideKnownValues(E)
Input: E =

∑
umi+1

W (y1|(um1 Gm)1) · · ·W (ym|(um1 Gm)m)

Output: É =
∑

umi+1
W (y1|((0i1, u

m
i+1)Gm)1) · · ·W (ym|((0i1, u

m
i+1)Gm)m)

1: The implementation process is straightforward and omitted.

by implementing Algorithm 7 (introduce later) on (14).
Then, the W -formula of W (i)

m (ym1 , ui−11 |ui) is fi(B
(1−2a1)
1 , · · · ,

B(1−2am)m).
Proof: For each j ∈ {1, · · · ,m}, we have

(W (yj|aj + (umi,ui=0GB)j),W (yj|aj + (umi,ui=1GB)j))

= (W (yj|(umi,ui=0GB)j),W (yj|(umi,ui=1GB)j))
1−2aj .

Therefore, each Bj in the W -formula of W (i)
m (ym1 , 0i−11 |ui) =

fi(B1, · · · ,Bm) becomes B
1−2aj
j in the W -formula of

W (i)
m (ym1 , ui−11 |ui) = fi(B

(1−2a1)
1 , · · · ,B(1−2am)m).

The pseudo code of function hideKnownValues is
described in Algorithm 1. Because the implementation
process of hideKnownValues is straightforward, it is
omitted.

2) STANDARD EXPRESSION TRANSFORM
Definition 3 (Standard expression): A standard expres-

sion has the following form∑
umi+1

W (y1|v1) · · ·W (yi|vi)W (yi+1|ui+1) · · ·W (ym|um); (15)

that is vj = uj when j = i+ 1, · · · ,m.
Lemma 1 (Standard expression transform [18]): Given

an expressionW (i)
m (ym1 , 0i−11 |ui) defined by a lower triangular

matrix Gm, it can be transformed into a standard expression.
Proof: This lemma is included and proved in [18]

(Section III, Lemma 1).
Let A = {i + 1, . . . ,m}. Let GAA denote the subma-

trix of Gm consisting of the array of elements ((Gm)ij)
with i ∈ A and j ∈ A. We can do linear row trans-
forms on last m − i rows of Gm and make GAA an
identity matrix. We use function rowTransform to denote
this procedure; that is Ǵm = rowTransform(Gm) (ǴAA
is identity matrix). In [18], we show that the expression∑

umi+1
W (y1|((0i1, u

m
i+1)Ǵm)1) · · ·W (ym|((0i1, u

m
i+1)Ǵm)m) is

equivalent to the original expression and it is an standard
expression because of (0i1, u

m
i+1)Ǵm)j = uj when j = i +

1, . . . ,m. The pseudo code of function standardExpression-
Transform is described in Algorithm 2.

3) ZERO VARIABLE COMBINATION
Proposition 2 (Zero-variable combination): Given an

expression E as follows

E =
∑
umi+1

W (y1|v1)W (y2|v1)W (y3|v3) · · ·W (ym|vm), (16)

we have

E =
∑
umi+1

W ((y21)z|v1)W (y3|v3) · · ·W (ym|vm),

where W ((y21)z|v1) ≜ W (y1|v1)W (y2|v1). Furthermore,
we have

B(y21)z
≜ (W ((y21)z|v1 = 0),W ((y21)z|v1 = 1)) = B1 · B2.

The proof is immediate and omitted.
The Proposition 2 describes one type of the zeroVariable-

Combine function. It has another three forms as follows.

W ((y1, y2)z|v1) ≜ W (y1|v1)W (y2|v1), (17)

W ((y1, y2)z|v1) ≜ W (y1|v1)W (y2|v1), (18)

W ((y1, y2)z|v1) ≜ W (y1|v1)W (y2|v1). (19)

Correspondingly, we have B(y1,y2)z = B−11 · B2, B(y1,y2)z =
B1 · B

−1
2 , B(y1,y2)z = B−11 · B

−1
2 .

In (17), W ((y1, y2)z|v1) is referred as a combination chan-
nel expression and y1 means that the corresponding channel
expression in the right side of (17) is W (y1|v1). The two
channel expressions in the right side of (16), (17), (18), or (19)
are denoted as a channel expression pair of the zero-variable-
type. The zeroVariableCombine function is to combine all
possible channel expression pairs of the zero-variable-type
for a given expression.

InAlgorithm 3,we introduce a boolean array arrayVisited.
The size of arrayVisited is m. The value arrayVisited[i]
denotes that the channel expressionW (yi|vi) is visited or not.
The initial values of arrayVisited are all false. In the line 6 of
Algorithm 3, we set arrayVisited[j] to true because the chan-
nel expression W (yj|vj) is combined into W (yi, yj|vi). Then,
the channel expression W (yj|vj) will never be visited again
in the algorithm. The details of the zeroVariableCombine
function are presented in Algorithm 3. Note that the input
and output in the algorithm are just examples.

4) ONE VARIABLE COMBINATION
Proposition 3 (One-variable combination): Given an

expression E as follows:

E =
∑
umi+1

W (y1|v1 + v2)W (y2|v2)W (y3|v3) · · ·W (ym|vm)

and assuming v2 = ui+1, ui+1 ⋖ v1 + v2 and v2 ⊓ vk = ∅, for
k = 3, · · · ,m, we have

E =
∑
umi+2

W ((y21)o|v1)W (y3|v3) · · ·W (ym|vm)

87510 VOLUME 11, 2023

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

Algorithm 2 standardExpressionTransform(E)

Input: E =
∑

umi+1
W (y1|((0i1, u

m
i+1)Gm)1) · · ·W (ym|((0i1, u

m
i+1)Gm)m)

Output: É =
∑

umi+1
W (y1|w1) · · ·W (yi|wi)W (yi+1|ui+1) · · ·W (ym|um), where wj = (0i1, u

m
i+1)Ǵm)j, j = 1, 2, . . . ,m

1: Ǵm = rowTransform(Gm); ▷ Submatrix ǴAA of Ǵm is an identity matrix
2: return É =

∑
umi+1

W (y1|((0i1, u
m
i+1)Ǵm)1) · · ·W (ym|((0i1, u

m
i+1)Ǵm)m)

Algorithm 3 zeroVariableCombine(E , zeroFlag, arrayVisited)
Input: E =

∑
umi+1

W (y1|v1)W (y2|v2) · · ·W (ym|vm), zeroFlag, arrayVisited
Output: E =

∑
umi+1

W ((y21)z|v1)W (y3|v3) · · ·W (ym|vm) ▷ suppose v1 == v2 is true
1: for i = 1, 2, . . . ,m do
2: if arrayVisited[i] == false then
3: for j = i+ 1, 2, . . . ,m do
4: if arrayVisited[j] == false and vi == vj then
5: W (yi|vi)← W ((yi, yj)z|vi); ▷ W ((yi, yj)z|vi) ≜ W (yi|vi)W (yj|vi)
6: arrayVisited[j] = true
7: zeroFlag = true
8: end if
9: end for

10: end if
11: end for
12: return

∑
umi+1

W ((y21)z|v1)W (y3|v3) · · ·W (ym|vm)

where W ((y21)o|v1) ≜
∑

v2 W (y1|v1 + v2)W (y2|v2). Further-
more, we have B(y21)o

= B1 ⋄ B2.
Proof:

E =
∑
umi+1

W (y1|v1 + v2)W (y2|v2)W (y3|v3) · · ·W (ym|vm)

(20)

(a)
=

∑
umi+2

(∑
v2

W (y1|v1 + v2)W (y2|v2)

)
· · ·W (ym|vm)

(21)
(b)
=

∑
umi+2

W ((y21)o|v1)W (y3|v3) · · ·W (ym|vm) (22)

where (a) follows from the fact that only v2 and v1+v2 contain
ui+1. Then, we can define W ((y21)o|v1) ≜

∑
v2 W (y1|v1 +

v2)W (y2|v2) and (b) follows.
The Proposition 3 describes one type of the oneVariable-

Combine function. It has another three forms as following.

W ((y1, y2)o|v1) ≜
∑
v2

W (y1|v1 + v2)W (y2|v2), (23)

W ((y1, y2)o|v1) ≜
∑
v2

W (y1|v1 + v2)W (y2|v2), (24)

W ((y1, y2)o|v1) ≜
∑
v2

W (y1|v1 + v2)W (y2|v2). (25)

Correspondingly, we have B(y1,y2)o = B−11 ⋄ B2,B(y1,y2)o =
B1 ⋄ B

−1
2 ,B(y1,y2)o = B−11 ⋄ B

−1
2 .

The two channel expressions in the right side of (20), (23),
(24), and (25) are denoted as a channel expression pair of the
one-variable-type. The details of the oneVariableCombine
function are presented in Algorithm 4. We first find a vk that

contains a single variable (lines 3 to 8). Suppose the found
single variable is vk which contains a single variable uj. Then,
we construct a set S contained the indices of vl, l ̸= k, l ∈
{1, . . . ,m} which contain uj (lines 10 to 15). According to
Proposition 3, if S contains only one element, the channel
expressions W (yk |vk) and W (yp|vp) can be combined (sup-
pose the element in S is p) (lines 16 to 22).

5) COMBINE LIKE TERMS
Generally speaking, the function combineLikeTerms com-
bines like terms for an expression as much as possible.
There are mainly two types of like terms: the zero-variable-
type and the one-variable-type corresponding to the functions
zeroVariableCombine and oneVariableCombine. Given an
expression E , the dim of E will not reduce after implementing
the zeroVariableCombine function on E . But the dim of E
may reduce 1 after implementing the oneVariableCombine
function on E . That’s why we name the two functions as
zeroVariableCombine and oneVariableCombine.

The pseudo code of function combineLikeTerms is
described in Algorithm 5. Note that we just combine one
possible channel expression pair of the one-variable-type in
the oneVariableCombine. Because after combining a chan-
nel expression pair of the one-variable-type, it may appear
some channel expression pairs of the zero-variable-type and
we should combine them at first. In Algorithm 5, the while
loop is broken only if both zeroFlag and oneFlag are false.
It means the function combineLikeTerms is ended only if
there are no like terms of two types to be combined in the
expression E .
If dimE == 1, E can be combined to only

one channel expression and to be a sub-formula. For

VOLUME 11, 2023 87511

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

Algorithm 4 oneVariableCombine(E , oneFlag, arrayVisited)
Input: E =

∑
umi+1

W (y1|v1)W (y2|v2) · · ·W (ym|vm)
Output: E =

∑
umi+1

W (y1|v1)W (y2|v2) · · ·W (ym|vm) or
∑

uj−1i+1,u
m
j+1
W (y1|v1) · · ·W (yl−1|vl−1)W ((yl, yk)o|vl −

vk)W (yl+1|vl+1) · · ·W (ym|vm) ▷ suppose vk = uj, uj ⋖ vl and vk ⊓ vḱ = ∅, for ḱ = 1, . . . , l − 1, l + 1, . . . ,m
1: for j = i+ 1, i+ 2, . . . ,m do
2: uFlag = flase;
3: for k = i+ 1, i+ 2, . . . ,m do ▷ After for loop, vk = uj
4: if arrayVisited[k] == false and vk == uj then
5: uFlag = true;
6: break;
7: end if
8: end for
9: if uFlag == true then

10: S ← ∅;
11: for l = i+ 1, i+ 2, . . . ,m do
12: if l! = k and uj ⋖ vl then
13: S ← S

⋃
l;

14: end if
15: end for
16: if |S| == 1 then
17: W ((yp, yk)o|vp − vk) ≜

∑
uj W (yp|vp)W (yk |vk); ▷ Suppose the only element in S is vp

18: W (yp|vp)← W ((yp, yk)o|vp − vk);
19: arrayVisited[k] = true;
20: oneFlag = true;
21: return

∑
uj−1i+1,u

m
j+1
W (y1|v1) · · ·W (yp−1|vp−1)W ((yp, yk)o|vp − vk)W (yp+1|vp+1) · · ·W (ym|vm);

22: end if
23: end if
24: end for
25: return

∑
umi+1

W (y1|v1)W (y2|v2) · · ·W (ym|vm); ▷ Do nothing

Algorithm 5 combineLikeTerms(E , arrayVisited)
Input: E =

∑
umi
W (yk |v1) · · ·W (ym|vm), arrayVisited

Output: E =
∑

umj
W (yk |w1) · · ·W (ym|wm) ▷ Updated by combining all like terms

1: while true do
2: zeroFlag = false, oneFlag = false;
3: E ← zeroVariableCombine(E , zeroFlag, arrayVisited);
4: E ← oneVariableCombine(E , oneFlag, arrayVisited);
5: if zeroFlag = false and oneFlag == false then
6: return E ;
7: end if
8: end while

FIGURE 3. Node structure.

example, let E =
∑

ui W (yi1 |ui)W (yi2 |ui)W (yi3 |ui).
Define

∑
ui W (yi1 , yi2 , yi3 |ui) = W (yi1 , yi2 |ui)W (yi3 |ui)

and W (yi1 , yi2 |ui) = W (yi1 |ui)W (yi2 |ui). Then, E =∑
ui W (yi1 , yi2 , yi3 |ui). So, we have E = S(Byi1 ·Byi2 ·Byi3). In

the tree structure of aW -formula, we will drop S from expres-
sion of E . Therefore, Byi1 · Byi2 · Byi3 is the sub-formula for
this example. Therefore, the result of the combineLikeTerms
function may be an expression or a sub-formula.

6) FUNDAMENTAL STEP
Suppose a vk = uj1 + uj2 + · · · and j1 < j2 < · · · . We refer
the uj1 as the first term of vk .
Lemma 2 (Fundamental step for the W-formula): Given

an ith bit channel expressionE as in (26), shown at the bottom
of the next page, and assume the first term in vk is uj, we have
xl = vl+vk if uj⋖vl ; otherwise xl = vl , for l = k+1, · · · ,m
in the left part of (27). In the right part of as in (27), shown at
the bottom of the next page, if uj⋖vl , x ′l = vl + vk ; otherwise
x ′l = vl .

Proof: LetM ≜ W (yk+1|vk+1) · · ·W (ym|vm) and define

W (ymk+1|0) ≜ W (ymk+1|vk = 0) ≜
∑
umi+1

M · 1vk=0,

W (ymk+1|1) ≜ W (ymk+1|vk = 1) ≜
∑
umi+1

M · 1vk=1.

87512 VOLUME 11, 2023

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

Algorithm 6 fundamentalStep(E , arrayVisited)
Input: E =

∑
umi+1

W (yk |vk) · · ·W (yi|vi) · · ·W (ym|vm)
Output: Bk ,

∑
uj−1i+1,u

m
j+1
W (yk+1|xk+1) · · ·W (ym|xm),

∑
uj−1i+1,u

m
j+1
W (yk+1|x ′k+1) · · ·W (ym|x ′m)

1: uj = firstTerm(vk); ▷ i+ 1 ≤ j ≤ m
2: for l = k + 1, k + 2, . . . ,m do
3: if uj ⋖ vl then
4: xl ← vl + vk ;
5: x ′l ← vl + vk ;
6: else
7: xl ← vl ;
8: x ′l ← vl ;
9: end if

10: end for
11: arrayVisited[k] = true;
12: return Bk ,

∑
uj−1i+1,u

m
j+1
W (yk+1|xk+1) · · ·W (ym|xm),

∑
uj−1i+1,u

m
j+1
W (yk+1|x ′k+1) · · ·W (ym|x ′m);

Then

E =
∑
umi+1

(W (yk |vk)M1vk=0 +W (ym|vk)M1vk=1) (28)

= W (yk |0)W (ymk+1|0)+W (yk |1)W (ymk+1|1) (29)

= S(Bk · (W (ymk+1|0),W (ymk+1|1))) (30)

= S(Bk · (
∑
umi+1

M · 1vk=0,
∑
umi+1

M · 1vk=1)) (31)

(a)
= S(Bk · (

∑
uj−1i+1,u

m
j+1

W (yk+1|xk+1) · · ·W (ym|xm) (32)

,
∑

uj−1i+1,u
m
j+1

W (yk+1|x ′k+1) · · ·W (ym|x ′m)), (33)

where (a) follows from that: By substituting uj by uj + vk
for vl in each channel expression of M in (31) if uj ⋖ vl ,
the expression

∑
uj−1i+1,u

m
j+1
W (yk+1|xk+1) · · ·W (ym|xm) in (32)

is obtained. Suppose uj ⋖ vl and let v̀l = uj + vl . Then
vl = uj + v̀l . Because of 1vk=0, we just need to consider
vk = 0 inM ·1vk=0. Therefore, we have uj = uj+vk (vk = 0).
Thus, we have xl ← uj + v̀l = uj + vk + v̀l = vl + vk . The
expression

∑
uj−1i+1,u

m
j+1
W (yk+1|x ′k+1) · · ·W (ym|x ′m) in (33) can

be obtained by the similar derivation.
Obtaining the first term of vk is referred as the func-

tion uj = firstTerm(vk). The Algorithm 6 describes
details of implementing the fundamentalStep function
for an given expression. In Algorithm 6, the chan-

nel expression starts at k . This means the values of
arrayVisited[0],. . .,arrayVisited[k−1] are supposed to true.
The Lemma 2 shows the correctness of the fundamentalStep
function.

The Bk in (27) is referred as a local formula. It should be
noted that the channel expression W (yk |vk) in (26) can be a
combination channel expression.

D. HIGH-LEVEL FUNCTION
We now describe the high-level function of our algorithm,
given in Algorithm 7. Recall the outline of the W -formula
generating algorithm, each expression in the same level
will be broken into two short expressions and the expres-
sions in the last level correspond to sub-formulas. There-
fore, a full binary tree is suitable for describing the
W -formula generating algorithm. In Algorithm 7, the func-
tion createBinaryTree(m − i) is used to create a full binary
tree with level m− i (level starts at 0, ends at m− i−1). For a
node, we denote its level as l and its index in the current level
as j. We have three undefined data structures in Algorithm 7.
The first one is arrayPointer[l][j], which denotes the pointer
to point to the node with index (l, j), the second one is E(l,j),
which denotes the expression for the node with index (l, j),
and the last one is B(l,j), which denotes the local formula for
the node with index (l, j).

The level of the tree may be less than m − i since the
oneVariableCombine function may reduce the dim of an
expression without breaking it into two short expressions.

E =
∑
umi+1

W (yk |vk)W (yk+1|vk+1) · · ·W (ym|vm) (26)

= S(Bk · (
∑

uj−1i+1,u
m
j+1

W (yk+1|xk+1) · · ·W (ym|xm)

︸ ︷︷ ︸
left part

,
∑

uj−1i+1,u
m
j+1

W (yk+1|x ′k+1) · · ·W (ym|x ′m)

︸ ︷︷ ︸
right part

)) (27)

VOLUME 11, 2023 87513

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

Algorithm 7W -Formula Generating Algorithm, Main Loop
Input: A kernel matrix Gm, index i and B1, · · · ,Bm
Output: arrayPointer[0], [0] ▷ a pointer of the root node

▷ Starts from E(0,0)← (W (i)
m (ym1 , ui−11 |ui) =

∑
umi+1

W (y1|v1) · · ·W (ym|vm))
1: arrayPointer[0], [0]← createBinaryTree(m− i);
2: E(0,0)← hidingKnownValues(E(0,0));
3: E(0,0)← standardExpressionTransform(E(0,0));
4: dim← dimE(0,0) , l ← 0, arrayVisited[0, · · · ,m− 1]← [false, · · · , false];
5: while dim > 1 do
6: for j = 0, 1, . . . , 2l − 1 do
7: arrayTempVisited← arrayVisited;
8: E(l,j)← combineLikeTerms(E(l,j), arrayTempVisited);
9: if dimE(l,j) == 1 then
10: (∗arrayPointer[l][j]).localFormula← B(l,j); ▷ Drop S from E(l,j)
11: end if
12: if dimE(l,j) > 1 then
13: (B(l,j),E(l+1,2j),E(l+1,2j+1))← fundamentalStep(E(l,j), arrayTempVisited);
14: (∗arrayPointer[l][j]).localFormula← B(l,j);
15: end if
16: end for
17: arrayVisited← arrayTempVisited;
18: l ← l + 1;
19: dim← dimE(l,0) ;
20: end while
21: return arrayPointer[0], [0];

But, for simplicity, we still create a full binary tree with level
m− i and its actual level is clear in Algorithm 7.

In the line 10 of Algorithm 7, B(l,j) denotes a
sub-formula because of dimE(l,j) = 1. In the line 13,
B(l,j), E(l+1,2j), and E(l+1,2j+1) correspond to the outputs of
Algorithm 6 as Bk ,

∑
uj−1i+1,u

m
j+1
W (yk+1|xk+1) · · ·W (ym|xm),

and
∑

uj−1i+1,u
m
j+1
W (yk+1|x ′k+1) · · ·W (ym|x ′m), respectively.

Each node in the tree has a data field localFormula, which
is used to save the local formula (non-leaf node) or the sub-
formula (leaf node) generated in the algorithm. The data
structure of the node is given in Figure 3. The pointers lChild
and rChild point to the node’s left and right child nodes,
respectively. For simplicity, we omit the assignment of point-
ers lChild and rChild for each node and just suppose that we
have an pointer arrayPointer[l][j] to point to each node (l, j)
in the tree. After the main loop finished, the localFormula of
each node in the tree is assigned and the tree corresponds to
the W -formula for a given bit channelW (i)

m (ym1 , ui−11 |ui).

E. EXAMPLE
In Figure 4, we use W (4)

7 (y71, u
3
1|u4 = 0) to illustrate the W -

formula generating algorithm. The kernel matrix is

G7 =


1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 .

Based on the definition (3) and the hideKnownValues func-
tion, we obtain

E(0,0)=
∑
u75

W (y1|u5+u6+u7)W (y2|u5+u6)W (y3|u5

+ u7)W (y4|u6+u7)W (y5|u5)W (y6|u6)W (y7|u7).

The W -formula in Figure 4 can be viewed as the following
formula.

W (4)
7 (y71|0) = S(B1 · (S(B2 · B7 · (B4 · B5) ⋄ (B3 · B6)),

S(B−12 · B7 · (B4 · B
−1
5) ⋄ (B−13 · B6)))).

Note that all S are dropped in the tree structure of the W -
formula. Based on the hideKnownValues function, the W -
formula ofW (4)

7 (y71, u
3
1|0) is

W (4)
7 (y71, u

3
1|0) = S(B(1−2(u1+u2+u3))1 ·

(S(B(1−2u2)2 · B7 · (B4 · B5) ⋄ (B
(1−2u3)
3 · B6)),

S(B(2u2−1)2 · B7 · (B4 · B
−1
5) ⋄ (B(2u3−1)3 · B6)))).

V. COMPUTATION ON W -FORMULAS
In the previous section, we present the method to generate
the W -formula for a given expression in the general case.
Actually, there exist some special cases for the W -formula.
In this section, we first present all the special cases for the
W -formula. Then, we provide the procedures to compute the
value of an expression based on itsW -formula.

A. GENERAL CASE
The computation of the W -formula in general is described
in Figure 5. Consider a non-leaf node v in the tree structure
of an W -formula, its left child node and right child node are
denoted as vl and vr , respectively. Suppose the computation
result of local formula on v is Bv, the value which is passed
by vl is sl , and the value which is passed by vr is sr . Then
the value computed on v is S(Bv · (sl, sr)). Now we con-
sider a leaf node v. Then the value computed on v is S(Bv).
Recall the equation (27), these computation rules are easy to
obtain.

87514 VOLUME 11, 2023

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

FIGURE 4. An example for generating W -formula.

FIGURE 5. Explanation of letter D. (a) Computation on the non-leaf node. (b) Computation on the leaf
node.

FIGURE 6. Explanation of letter A. (a) General case; (b) Example for
W (4)

5 (y5
1 , 04

1|0).

B. SPECIAL CASES
In Figure 5, we use a letter D to denote the local formula on
the node v. In the following, we will introduce two letters A
and F for a node v.

1) LETTER A
For some expressions, they may contain constant channel
expressions such asW (yi|0) orW (yi|1). These constant chan-
nel expressions correspond to the letter A. For a node v,
suppose that the computation result of its D part is a pair
Bv1, the computation result of its A part is a pair Bv2, the
value which is passed by its left child node is sl , and the value
which is passed by its right child node is sr . Then the value
computed at node v is S(Bv1 · (sl, sr))L(Bv2), which is passed
to its parent node or the final result. The process on node v

FIGURE 7. Explanation of letter F. (a) General case; (b) Example for
W (2)

5 (y5
1 , 0|0).

with letter D and A is described in Fig. 6(a). Two points about
letter A should be noted: 1) the letter A only appears in the
root node; 2) The letter A is not necessary.

An example is given in Fig. 6(b) to explain the process on
a node v with letter D and A. The computation result of D
part is Bv1 = B1 · B2 · B3 · B5 and the computation result of
A part is Bv2 = B4. Therefore, the value computed at node v
is S(B1 · B2 · B3 · B5)L(B4).

2) LETTER F
For some expressions, they can be broken into two indepen-
dent expressions. In this case, we introduce a letter F. A node v
is denoted by a letter F and its two children nodes vl and vr
correspond to the two independent expressions. For a node v,

VOLUME 11, 2023 87515

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

FIGURE 8. (a) W -formula for W (4)
7 (0); (b) Simple form.

suppose the value which is passed by its left child node is sl ,
and the value which is passed by its right child node is sr .
Then the value computed at node v is sl × sr . The process on
node v with letter F in general is described in Fig. 7(a) and
the example forW (2)

5 (y51, 0|0) is given in Fig. 7(b).

VI. W -FORMULAS FOR SOME OPTIMAL KERNELS
In this section, we first introduce a simple form for the
W -formulas in the tree structure. Second, we present the
W -formulas in the simple form for several optimal kernels
given in [6]. TheseW -formulas will reveal some useful prop-
erties of the computation reduction for the W -formula based
SC decoding.

A. THE SIMPLE FORM
To expressW -formulas more efficient (save space), we intro-
duce a simple form for the W -formulas. The simple form
describes theW -formula in a table. In the simple form, we use
a number i (1 ≤ i ≤ m) to denote Bi and ij to denote Bi · Bj.
I.e., 27(45) ⋄ (36) implies B2 · B7(B4 · B5) ⋄ (B3 · B6). The D,
A, and F parts for a node form a row in the table. Then these
rows for nodes in the same level are arranged in column. For
example, the W -formula of W (4)

7 (0) and its simple form is
described in Figure 8 (a) and (b), respectively.

B. EXAMPLES OF W -FORMULAS
We presentW -formulas of optimal kernelsG7 [6] and the last
level ofW (5)

10 (0) in the simple form in Examples VI-B and VI-
B. In these tables, i is the ith bit channel and l is the level of
the tree.
Example 1 (W-formulas for G7):

Example 2 (The last level of W (5)
10 (0)):

VII. ADVANTAGES OF W -FORMULAS
Compared with the l-formulas, two factors make a significant
reduction of computation for the W -formulas. One is the
reduction on the number of sub-formulas and the other is the
repetition of sub-formulas.

A. REDUCTION ON THE NUMBER OF SUB-FORMULAS
The number of sub-formulas of a W -formula (l-formula) is
decided by the times of combining like terms in the W -
formula (l-formula) generating algorithm. The more like
terms are combined, the fewer sub-formulas are generated in
the W -formula (l-formula). We will show that much more
like terms can be combined in the W -formula generating
algorithm than the l-formula generating algorithm.

First, let’s see the definition of the sign between two
expressions. We define the sign ofW (yi|vj) as+ and the sign
of W (yi|vj) as −. The combination of channel expressions
occurs between two channel expressions. We define the sign
of two channel expressions as the multiplication of sign of
each channel expression. The sign multiplication rules of two
channel expressions are+×+ = +,+×− = −,−×+ = −,
and −×− = +.

Now, we introduce a concept channel consistency for two
channel expressions. In the l-formula generating algorithm,
we consider the ratio of two expressions. Suppose the two
expressions are E0 and E1. The channel consistency means
that the two channel expressions in E0 have the same sign
with two corresponding channel expressions (at the same
positions) in E1.

In the l-formula generating algorithm, only if the two
channel expressions satisfy the channel consistency, they can
be combined. But, we don’t need this restriction (channel
consistency) in the W -formula generating algorithm because
the expressions E0 and E1 are processed separately.

Let Ll(m) and LW (m) denote the number of sub-formulas
of l(5)m andW (5)

m (0), respectively. Table 1 shows the number of
sub-formulas comparison of l(5)m andW (5)

m (0),m = 9, · · · , 16.
It can be seen that theW -formulamethod obtains a significant
reduction on the number of sub-formulas over the l-formula
method.

B. REPETITION OF SUB-FORMULAS
As we can see from Table 1, the W -formula achieves a sig-
nificant complexity advantage over the l-formula. However,

87516 VOLUME 11, 2023

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

TABLE 1. The number of sub-formulas of l-formula and W-formula for
some optimal kernels: Ll (m) vs. LW (m).

TABLE 2. The comparison of the number of sub-formulas for W (5)
m (0)

between considering and not considering the repetition of sub-formulas
for some optimal kernels: LW (m) vs. LWrep (m).

it can be seen that the number of sub-formulas ofW (5)
m (0) still

grows fast with respect to kernel size m when m ≥ 12. We
will show that there are many repeated sub-formulas in the
W -formula and their computation can be shared.

In the W -formula generating algorithm, an expression is
broken into two short expressions by implementing funda-
mentalStep function of the W -formula. Unlike the funda-
mentalStep function of l-formula, we can always choose the
same channel expressions in the fundamentalStep function
of the W -formula for the two short expressions. This feature
makes that each sub-formula contains the same number and
order of Bis and the differences among them are the sign. We
define the sign of Bi as + and the sign of B−1i as −. The sign
of a Bi in a sub-formula is decided by the sign change process
of the ith channel expression W (yi|vi) (from level i to i + 1,
the sign of W (yi|vi) may or may not change) in each level in
the W -formula generating procedure. Because the sign of a
Bi has only two states, two sub-formulas can have the same
sign for each Bi and they are the repetition of sub-formulas.

For example, considering theW -formulaW (5)
10 (0) in Exam-

ple VI-B, it can be seen that the first and eighth, the second
and seventh, the third and sixth, and the fourth and fifth
sub-formulas are the same. The same sub-formulas just need
to be computed once. Therefore, the number of sub-formulas
of W (5)

10 (0) which needs to be computed reduces from 8 to 4.
Let LW (m) and LWrep (m) denote the number of sub-

formulas of W (5)
m (0), which need to be computed, by not

TABLE 3. The average number of sub-formulas for optimal kernels up to
size 16: Cl (m) vs. CW (m).

TABLE 4. The average number of operations for kernel computation:
(a) the straightforward computation; (b) the l -formula method; (c) the
W -formula method.

considering and considering the repetition of sub-formulas,
respectively. Table 2 shows the comparison of LW (m) and
LWrep (m), for m = 9, 10, · · · , 16. It can be seen that the
number of sub-formulas of W -formulas which need to be
computed are significantly reduced by considering repetition
of sub-formulas for medium kernels.

C. COMPARISON OF THE NUMBER OF SUB-FORMULAS
Given a kernel Gm, let wi denote the number of sub-formulas
in the W -formulas of W (i)

N (0), i = 1, . . . ,m. Let CW (m)
denote the average number of sub-formulas for a kernel Gm
such as CW (m) = 2

∑
i wi
m , where the factor 2 comes from

the W -formulas of W (i)
N (1), i = 1, . . . ,m. Similarly, let

VOLUME 11, 2023 87517

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

TABLE 5. The average number of operations of the kernel computation for some 16 × 16 kernels.

Cl(m) denote the average number of sub-formulas in the

l-formulas of
W (i)
N (0)

W (i)
N (1)

, i = 1, . . . ,m. Table 3 presents the

average number of sub-formulas comparisons for optimal
kernels with size m = 2, 3, · · · , 16. In Table 3, a column
of (2m+1 − 2)/m is added. This column is viewed as the
average number of sub-formulas for the kernel computation
of the straightforward SC decoding. For a sub-formula of
W -formula, it containsB1, . . . ,Bm at most once. Consider the
equation (3), for each realization of umi+1, a term of (3) (right
hand) contains w(y1|0) or w(y1|1), . . ., w(ym|0) or w(ym|1)
once. Therefore, a term of (3) is viewed as sub-formula like
the W -formula. And the average number of terms in the
W (i)
N (0) and W (i)

N (1), i = 1, . . . ,m of (3) is (2m+1 − 2)/m.
Table 3 shows that the W -formula method achieves a signif-
icantly improvement on the average number of sub-formulas
for medium kernels.

VIII. COMPUTATION COST ANALYSIS OF W -FORMULAS
The complexity of W -formula or l-formula based SC
decoding is proportional to the average number of
sub-formulas. However, the number of operations involved in
the sub-formula ofW -formula and l-formula are different. In
this section, we compare theW -formulas based SC decoding
with the l-formulas based SC decoding with respect to the
exact number of operations.

A. LOG DOMAIN
In practice, wewill transfer the domain to logarithmic domain
in the SC decoding to avoid the problem of processing very
small numbers. Our simulations are done in the logarithmic
domain. However, logarithm and exponential operations will
be involved in the logarithmic domain, which makes com-
plexity comparison more difficult. Therefore, the complexity
comparison will be done in the non-logarithmic domain.

It should be noticed that the comparison results in the
non-logarithmic domain can be directly generalized to the
logarithmic domain. We count the number of multiplications
in the non-logarithmic domain and the number of additions
in the logarithmic domain. Almost all of the additions in the
logarithmic domain comes from the multiplications in the
non-logarithmic domain. Therefore, the comparison results
in the non-logarithmic domain are proportional to the results
in the logarithmic domain.

B. COMPARISON OF THE NUMBER OF OPERATIONS
Because the complexity of SC decoding is proportional to the
computation of the kernel computations, we just consider the

computation cost of the kernel computation. The number of
multiplications in (3) dominates the computation cost of the
kernel computation for the straightforward SC decoding. For
theW -formula, a · operation contains twomultiplications and
one addition. A ⋄ operation contains four multiplications and
two additions. For the l-formula, a · operation contains one
multiplication and a ⋄ operation contains one multiplication,
one division, and two additions. Because the number of mul-
tiplications is more than additions and the execution speed of
multiplication is much lower than addition, we neglect addi-
tions in our analysis. Furthermore, we assume one division is
equivalent to two multiplications to simplify the comparison.

In the W -formula method, we have to compute W (i)
N (1) as

well as W (i)
N (0). Obviously, the number of operations needed

for computing W (i)
N (1) is the same as W (i)

N (0). Although a
lot of computations of computing W (i)

N (0) and W (i)
N (1) based

on W -formulas can be shared (see examples in Section VI),
we just count the number of operations of computingW (i)

N (0)
and double it in Table 4.

The exact average number of operations (multiplications)
of the kernel computation by straightforward computation,
l-formula and W -formula are summarized in Table 4. It can
be seen that the W -formula based SC decoding achieves a
significant reduction of the number of operations compared
with the straightforward SC decoding and the l-formula based
SC decoding, for m ≥ 10.

The exact average number of operations of the kernel com-
putation for three 16×16 kernels are provided in Table 5. The
G16 kernel is the linear kernel provided in [6]. TheG16_Fazeli
and G16_Trofimiuk kernels which are generated based on
heuristic algorithm presented in [3] are provided in [3] and
[9], respectively. It can be seen that theW -formula based SC
decoding behaves almost the same in terms of the number
of operations for three kernels. Again, the W -formula based
SC decoding achieves a significant reduction of computations
compared with the l-formula based SC decoding for three
kernels.

The error performance of polar codes with medium kernels
under non-approximate SC decoding can refer to our another
paper [19].

IX. CONCLUSION
1) Discussion: The basic task of the W -formula method
is to reduce the computational cost of (3). Actually, the
computation of (3) is an instance of the classic marginalize
product-of-functions (MPF) problem. The factor graph and
the sum-product algorithm (message passing rules) are the

87518 VOLUME 11, 2023

Z. Huang et al.: On the Non-Approximate SC Decoding of Binary Polar Codes With Medium Kernels

main method to solve the MPF problem [20]. As far as we
know, there is no effective method for the exact computation
of theMPF problem when the corresponding factor graph has
cycles. Therefore, the W -formula method actually provides
a way to effective compute the exact marginal of the MPF
problem (its factor graph has cycles) at medium scale (the
number of variables is less than 16).

2) Conclusion: Given a kernel Gm (m × m matrix),
the computational cost of the kernel calculation of SC
decoding is O(2m) in general. In order to reduce the compu-
tational cost of the kernel computation, this paper has pro-
posed aW -formula method to obtain the simplified formulas
(W -formulas) of the kernel computation. Our results show
that theW -formulas yields a significant reduction of the com-
putational cost of the kernel calculation for medium kernels
(m ≤ 16) by comparing with the existing non-approximate
methods.

REFERENCES
[1] E. Arıkan, ‘‘Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels,’’ IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] S. B. Korada, E. Sasoglu, and R. Urbanke, ‘‘Polar codes: Characterization
of exponent, bounds, and constructions,’’ IEEE Trans. Inf. Theory, vol. 56,
no. 12, pp. 6253–6264, Dec. 2010.

[3] A. Fazeli and A. Vardy, ‘‘On the scaling exponent of binary polarization
kernels,’’ in Proc. 52nd Annu. Allerton Conf. Commun., Control, Comput.
(Allerton), Monticello, IL, USA, Sep. 2014, pp. 797–804.

[4] S. Hamed Hassani, K. Alishahi, and R. L. Urbanke, ‘‘Finite-length scaling
for polar codes,’’ IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5875–5898,
Oct. 2014.

[5] N. Presman, O. Shapira, S. Litsyn, T. Etzion, and A. Vardy, ‘‘Binary
polarization kernels from code decompositions,’’ IEEE Trans. Inf. Theory,
vol. 61, no. 5, pp. 2227–2239, May 2015.

[6] H.-P. Lin, S. Lin, and K. A. S. Abdel-Ghaffar, ‘‘Linear and nonlinear binary
kernels of polar codes of small dimensions with maximum exponents,’’
IEEE Trans. Inf. Theory, vol. 61, no. 10, pp. 5253–5270, Oct. 2015.

[7] V. Miloslavskaya and P. Trifonov, ‘‘Sequential decoding of polar codes
with arbitrary binary kernel,’’ in Proc. IEEE Inf. Theory Workshop (ITW),
Hobart, TAS, Australia, Nov. 2014, pp. 376–380.

[8] P. Trifonov, ‘‘Binary successive cancellation decoding of polar codes with
Reed–Solomon kernel,’’ in Proc. IEEE Int. Symp. Inf. Theory, Honolulu,
HI, USA, Jun. 2014, pp. 1–5.

[9] G. Trofimiuk and P. Trifonov, ‘‘Efficient decoding of polar codes with
some 16 × 16 kernels,’’ in Proc. IEEE Inf. Theory Workshop (ITW),
Guangzhou, China, Nov. 2018, pp. 1–5.

[10] G. Trofimiuk and P. Trifonov, ‘‘Window processing of binary polarization
kernels,’’ IEEE Trans. Commun., vol. 69, no. 7, pp. 4294–4305, Jul. 2021.

[11] F. Abbasi and E. Viterbo, ‘‘Large kernel polar codes with efficient window
decoding,’’ IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 14031–14036,
Nov. 2020.

[12] P. Trifonov, ‘‘Recursive trellis processing of large polarization kernels,’’
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Melbourne, VIC, Australia,
Jul. 2021, pp. 2090–2095.

[13] B. Gupta, H. Yao, A. Fazeli, and A. Vardy, ‘‘Polar list decoding for large
polarization kernels,’’ in Proc. IEEE Globecom Workshops (GC Wkshps),
Madrid, Spain, Dec. 2021, pp. 1–6.

[14] S. Buzaglo, A. Fazeli, P. H. Siegel, V. Taranalli, and A. Vardy, ‘‘Permuted
successive cancellation decoding for polar codes,’’ inProc. IEEE Int. Symp.
Inf. Theory (ISIT), San Francisco, CA, USA, Jun. 2017, pp. 2618–2622.

[15] S. Buzaglo, A. Fazeli, P. H. Siegel, V. Taranalli, andA. Vardy, ‘‘On efficient
decoding of polar codes with large kernels,’’ in Proc. IEEE Wireless Com-
mun. Netw. Conf. Workshops (WCNCW), Aachen, Germany, Mar. 2017,
pp. 1–6.

[16] G. Bonik, S. Goreinov, and N. Zamarashkin, ‘‘Construction and analysis
of polar and concatenated polar codes: Practical approach,’’ Jul. 2012,
arXiv:1207.4343.

[17] X. Wang, Z. Zhang, and L. Zhang, ‘‘On the SC decoder for any polar code
of length N=ln,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
İstanbul, Turkey, Apr. 2014, pp. 485–489.

[18] Z. Huang, S. Zhang, F. Zhang, C. Duan, F. Zhong, and M. Chen, ‘‘Sim-
plified successive cancellation decoding of polar codes with medium-
dimensional binary kernels,’’ IEEE Access, vol. 1, pp. 5253–5270, 2018.

[19] S. Zhang, Z. Huang, G. Chen, and M. Chen, ‘‘A fast two-phase
Monte Carlo method for constructing polar codes with arbitrary binary
kernel,’’ IEEE Access, vol. 7, pp. 131609–131615, 2019.

[20] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, ‘‘Factor graphs and
the sum-product algorithm,’’ IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001.

ZHILIANG HUANG (Member, IEEE) received
the B.S. degree from the School of Materials Sci-
ence and Engineering,Wuhan Institute of Technol-
ogy, in 2004, the M.S. degree from the College
of Physical and Electric Information Engineer-
ing, Zhejiang Normal University, in 2009, and
the Ph.D. degree from the School of Information
Science and Engineering, Southeast University,
in 2013. In 2015, he was a Visiting Researcher
with Bilkent University, Ankara, Turkey. He is cur-

rently an Associate Professor with the School of Mathematics, Physics and
Information Engineering, Zhejiang Normal University. His current research
interests include modern coding theory and signal processing for digital
communications.

ZONGSHENG JIANG received the B.S. degree
from the School of Electronics and Information
Engineering, Taizhou University, in 2019. He is
currently pursuing the degree with the College
of Mathematics and Computer Science, Zhejiang
Normal University. His current research interest
includes 5G polarization code improvement in
modern coding theory.

SHUIHONG ZHOU received the B.S. degree from
the School of Electronics and Information Engi-
neering, Shenyang LigongUniversity, in 2006, and
the M.S. degree from the School of Mathematics,
Physics and Information Engineering, Zhejiang
Normal University, in 2009. She is currently a Lab-
oratory Master with the College of Mathematics
and Computer Science, Zhejiang Normal Univer-
sity. Her current research interests include modern
coding theory and wireless communications.

XIAOYAN ZHANG received the B.S. degree from
the School of Electronics and Information Engi-
neering, South-Central Minzu University, in 2002,
the M.S. degree from the School of Communi-
cation Engineering, Hangzhou Dianzi University,
in 2008, and the Ph.D. degree from the School
of Electrical Engineering and Computer Science,
Ningbo University, in 2019. In 2016, she was a
Visiting Researcher with The Chinese University
of Hong Kong. She is currently a Lecturer with

the School of Mathematics, Physics and Information Engineering, Zhejiang
Normal University. Her current research interests include modern coding
theory and wireless communications.

VOLUME 11, 2023 87519

