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ABSTRACT Most previous studies have neglected the potential of integrating structured data and unstruc-
tured workplace injury reports to perform a predictive analysis of occupational injury severity. This study
proposes an optimized integrated approach for occupational injury severity prediction using multimodal
machine and deep learning techniques. We used 66,405 data points gathered from the US OSHA Severe
Injury Reports from January 2015 to July 2021. Structured labeled data are preprocessed and normalized,
whereas unstructured injury reports undergo text cleaning using Natural Language Processing techniques
and text representation using Term Frequency-Inverse Document Frequency (TF-IDF) and Global Vector
(GloVe) to convert them into numerical representations. Both modalities, in the form of vector represen-
tations, were concatenated and fed as input features for the proposed models. Seven sets of classifiers,
namely Naïve Bayes, Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Long
Short-Term Memory, and Bidirectional Long Short-Term Memory, were employed to learn the multimodal
representations. The algorithm with superior performance was further optimized using the proposed feature
importance and hyperparameter optimization techniques. Our findings revealed that the proposed optimized-
Bi-LSTM architecture outperformed other classifiers in learning multimodal data to predict the likelihood
of hospitalization and amputation with higher accuracies of 0.93 and 0.99, respectively. Consequently, the
proposed approach enhances the performance by significantly improving the model processing time. This
performance prediction provides a convincing benchmark for the successful execution of multimodal deep
learning in occupational injury research. Therefore, the proposed multimodal occupational injury severity
prediction model enhances the early screening and identification of at-risk workers with severe occupational
injury outcomes, as well as, provides valuable information to improve the workplace safety, health, and
well-being of the workers.

INDEX TERMS Artificial intelligence, machine learning, multimodal integration, natural language process-
ing, occupational safety.

I. INTRODUCTION
Occupational injury is defined as ‘‘any physical injury that
affects a worker while working’’. Similar terms refer to
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workplace injury, work-related accidents, and occupational
accidents [1], [2]. The International Labour Organization
(ILO) reported that occupational injury may potentially be
declared a ‘public health emergency’; as it has killed more
than thousands of workers each year [3]. It has substantially
contributed to fatality events, reduced work productivity, and
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worsened the economy at large [4]. In addition, the eco-
nomic cost of workplace injuries can bemeasured through the
amount of medical and rehabilitation compensation, includ-
ing the loss-time costs, social security benefits, as well as, the
training and re-training of the worker [5]. This may cost up
to 4-5% of the global ‘Gross National Product’ (GNP) [6].
Therefore, workplace injuries may affect workers physically,
but they can also manifest detrimental psychological effects,
including depression, anxiety, and post-traumatic injury [7].
These psychological effects of workplace injuries result in
prolonged injury recovery, thus; increasing compensation
expenses. Other research has revealed that workers who expe-
rienced occupational injury developed difficulties in physical
and physiological health which interrupted their workplace
relationships [8]. To some extent, they have reported psychi-
atric symptoms and incidences of suicide attempts [9]. Evi-
dently, work-related accidents can cause a ‘domino effect’,
contributing not only to the immediate physical health and
financial burden but also contribute to the long-term psy-
chological impacts. Therefore, the avoidance of workplace
accidents and injuries should be a top priority for occupa-
tional health and safety throughout all sectors of the economy.

Occupational injury reports are records of injured worker
information consisting of structured information (work-
ers’ demographics, type of injury, accident cause, etc.)
and unstructured data such as textual injury history or
reports. These records are valuable and may provide remark-
able opportunities, especially among Artificial Intelligence
researchers to extract and analyze records in a more reliable
and efficient manner. With recent advances, machine learn-
ing, including deep neural network techniques has gained
interest as the method of choice for predicting occupational
injury outcomes [10].

Some related studies executing those techniques with
structured occupational injury information are as follows:
(i) Yedla et al. [11] used categorical input from the mining
industry to predict the occupational accident outcome of
days away from work with Neural Network outperformed
other models in their study; (ii) Chadwiya in their study
had utilized South African workplace accident-labelled data
and revealed the Support Vector Machine (SVM) as the
best prediction model in predicting occupational injury based
on affected body parts [12], and (iii) Khairuddin et al. [13]
investigated the prediction performance of occupational
injury severity using categorical variables through a Ran-
dom Forest optimized model across all industrial sectors.
In addition, it is believed that unstructured text data are
a valuable source of information; thus, the extraction of
insights can be achieved using text-mining techniques [14].
Often, unstructured data contains rich semantic information
that can yield insightful insights. In text data, for instance,
the choice of words, sentence structure, and tone can con-
vey significant meaning. By incorporating this information,
the model is better to comprehend and capture the data’s
underlying patterns. Unstructured data can provide crucial

additional context for comprehending the relationship within
a dataset. Several studies have focused on analyzing unstruc-
tured injury reports as the input features. For example: (i)
Jing [15] proposed Word2Vec and Long Short-Term Mem-
ory (LSTM), a recurrent neural network (RNN) variant as
a text-mining predictive tool for workplace accidents in
the chemical industry, (ii) Baker et al. [16] developed an
improved text-mining with model stacking of the XGBoost-
Random Forest algorithm to predict the occupational injury
outcomes, and (iii) Goldberg [17] analyzed injury narra-
tives to compare the techniques of word embedding, such
as Word2Vec and TFIDF, including several machine learn-
ing algorithms in predicting the severity of occupational
injury in the United States. As most of the preceding works
focused on employing structured data or unstructured text
separately, it has been verified that the development of the
occupational injury severity prediction model by combin-
ing both modalities; structured and unstructured data are
neglected and restricted in the occupational injury research
domain [18].
Consequently, the purpose of this research is to propose an

integrated predictive model based on multimodal learning of
structured data and unstructured information using machine
and deep neural network approaches in predicting occupa-
tional injury severity.

To summarize, the main contributions of our study are as
follows:

i. The potential of integrating structured data, such as
labelled data points and unstructured data, for exam-
ple workplace injury reports has been neglected by
the majority of previous studies in occupational injury
severity prediction [18]. This work acknowledges the
significance of both modalities and proposes a novel
strategy that exploits the power ofmultimodal data inte-
gration. Integrating the unstructured data will enhance
the feature representation of the overall dataset. The
unstructured data in text narratives contain valuable
information that may not be captured in the structured
data alone.

ii. Unstructured occupational injury reports are subjected
to several preprocessing stages, including text cleaning
using Natural Language Processing (NLP) and tok-
enization, followed by text representation techniques.
Our study proposed an innovative approach for inte-
grating Term Frequency-Inverse Document Frequency
(TF-IDF) and the Global Vector (GloVe) as text repre-
sentations. These stages allow unstructured textual data
to be converted into numerical representations, mak-
ing them appropriate for machine and deep learning
models.

iii. The vectors representing structured and preprocessed
unstructured text data are concatenated and utilized
as input features for the proposed predictive mod-
els. Because of this integration, the models may learn
from both modalities simultaneously, collecting the
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complementary information available in structured and
unstructured data.

iv. Themultimodal occupational injury severity prediction
model presented herein has practical implications for
workplace safety and health. By enhancing the early
screening and identification of at-risk employees with
severe occupational injury outcomes, the predictive
model can contribute to the improvement of workplace
safety measures and overall working environment. The
model’s information can guide interventions and ini-
tiatives designed to promote workers’ well-being and
prevent the occurrence of severe workplace injuries.
These insights will assist in identifying potential haz-
ards, implementing proactive measures, and enhancing
overall workplace safety.

Therefore, this paper enhances the field of occupational
injury research as the findings from the multimodal machine
and deep learning will presents the benchmark model perfor-
mance for occupational injury severity prediction tasks.

This paper is organized into eight sections, including the
Introduction. In Section II, a summary of previous related
studies is presented. The proposed methodology is explained
in Section III and a step-by-step model experiment is sum-
marized in Section IV. The model prediction findings are
presented in Section V, followed by the results of model
optimization in Section VI. Section VII discusses the overall
findings, and Section VIII concludes the paper.

II. RELATED WORKS
Multimodal learning is defined as ‘the area of applying
machine and deep learning techniques in integrating multiple
types of data into a single model to optimum the uniqueness
and valuable information in an algorithmic framework’ [24].
The ultimate aim of this multimodal learning is to harmonize
the diversity of data in improving the data quality, thereby
enhancing the performance predictions [25]. The application
of multimodal learning has been explored in several fields,
especially the use of different modalities extracted from
‘Electronic Health Record’ (EHR), as it contains categori-
cal/numerical variables, clinical notes, and clinical images.
For example, Ross et al. [26] integrated structured data and
clinical text to be trained into Logistic Regression (LR) and
Random Forest (RF) models in predicting cardiovascular dis-
eases. Then, Lei et al. combined structured data, unstructured
text, including audio and clinical images into deep neural
network architectures to categorize the events of communica-
ble disease, whereas Zhang et al. [27] executed LR, RF and
advanced deep learning methods; Long Short-Term Mem-
ory (LSTM) and Convolutional Neural Network (CNN) in
structured, unstructured clinical notes, and the integration
of both data to predict hospitalization stay and mortality,
hence revealing the integration of both data achieved the
best performance predictions. Therefore, multimodal learn-
ing with machine and deep learning techniques have emerged
progressively in those fields including clinical diagnosis

prediction [28], [29], pathological screening [30], and busi-
ness intelligence purposes [31], as it has proven in improving
the model predictability.

However, the exploration of multimodal data for occupa-
tional injury severity remains limited. Johansson et al. [32]
proposed a study protocol to integrate structured occupa-
tional injury registry and photovoice inputs in predicting the
event of medical leave by the injured workers. They believed
that multimodal data could improve model predictability and
assist in discovering insights into workplace injuries among
Swedish adults. Next, a study by Paraskevopoulos et al. [33]
used multimodal dataset of safety reports and workplace
images, prepared by Safety Officers and executed an NLP-
based neural network as the predictive model to predict the
outcomes of workplace safety audits. Their study agreed
that multimodal data can discover hidden information, thus
providing a better accuracy performance. Recently, Sarkar
et al. developed a multimodal deep neural network model
by integrating occupational injury narratives and categorical
variables [18]. Their study compared the performance pre-
diction of deep neural network with several optimizer and
found the model with ‘adaptive moment estimation’ (adam)
optimizer became the best-performing prediction of occupa-
tional injury in steel manufacturing industry. Nevertheless,
they emphasized that predictive analysis using multimodal
data in occupational injury areas is undiscovered, limited, and
requires further exploration.

Table 1 summarizes recent literature on occupational injury
severity prediction models. On the basis of this overview, one
can conclude that the current trend of occupational injury
severity predictive analysis is to make use of structured and
unstructured text data, and it concentrates exclusively on
one industry sector. This causes a lack of generalizability
of the existing predictive models, where data from differ-
ent industries and sectors are neglected. These variations in
work environments, hazards, and job tasks are disregarded,
and predictive models do not have the capability to learn
from diverse scenarios across various occupational settings.
In addition, there is a paucity of multimodal data integra-
tion to develop an occupational injury prediction model.
However, the exploration of advanced neural network archi-
tectures is gaining attention in the domain of occupational
injury.

III. PROPOSED METHODOLOGY
Our study proposes a multimodal occupational injury sever-
ity prediction model that encompasses three main pro-
cesses; first, the gathering of the data, followed by data
pre-processing, and finally, the prediction classifier stage.
These two modalities; structured and unstructured data, were
preprocessed separately. Subsequently, the feature represen-
tations generated by the structured information and text rep-
resentation were merged. These vectors were concatenated
and fed as the input of the proposed classifiers to predict the
severity of the occupational injury.
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TABLE 1. Related studies in occupational injury prediction.

A. DATASET DESCRIPTION
A publicly accessed dataset was gathered from an established
Occupational Safety and Health Administration (OSHA)

located in the United States [34]. The dataset can be accessed
through (https://www.osha.gov/severeinjury). In this study,
the dataset comprises injured worker information with over
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sixty thousand data between January 2015 and July 2021.
This dataset named as ‘Occupational Injury Severity Report’
includes variable columns such as (i) ID number, (ii) event
date, (iii) employer’s address, (iv) the state with latitude and
longitude, (v) nature of the injury, (vi) affected body parts,
(vii) type of exposure, (viii) type of source, as well as, (ix)
the injury narratives. Additionally, it contains information
on (i) amputation and (ii) hospitalization, as the indicator of
occupational injury severity. Table 2 presents the types of
variables used in the dataset.

B. STRUCTURED DATA PREPROCESSING
In this research, five categorical variables were considered
as the input features: the (i) type of industry, (ii) nature of
the injury, (iii) affected body part(s), (iv) type of event, and
(v) type of source. These data are pre-coded according to
the top label only, as guided by the Occupational Injury and
Illness Classification Manual (OIICS). In addition, any rows
with non-value or empty columns were removed, whereas
other columns, for example, ID number, employer’s address,
latitude, and longitude were excluded because of their irrel-
evancy. After data preparation, 66,405 data points were used
for predictive analysis.

For the predictive analysis, a data preprocessing step was
employed to ensure that the input features had consistent
contributions during the machine and deep learning develop-
ment process [35]. Categorical data were manually encoded
by referring to the OIICS manual system, which represents
categories as numerical labels.

The next steps involved developing machine and deep
learning models using these encoded categorical data along
with unstructured feature representations to predict the
outcomes of occupational injury severity. This approach
leverages information encoded in categorical variables and
incorporates it into predictive classifiers for multimodal
learning research.

C. UNSTRUCTURED DATA PREPROCESSING
Textual narratives of occupational injuries were included as
sequential unstructured input features. This text report was
prepared by Safety and Health personnel, assisted by Occu-
pational Health Doctor and we believe it encompasses a large
amount of insight that can be extracted for predictive analysis
in this study. The conversion of text data into numerical values
is essential before they can be processed bymachine and deep
learning algorithms [36].
In this study, text preprocessing was performed for Natu-

ral Language Processing (NLP) tasks through the following
steps: (i) removal of punctuation and digit numbers as they
did not contribute to the analysis, (ii) removal of extra whites-
paces such as tabs and line breaks, (iii) removal of characters
that may potentially interfere during the text vectorization
step [37], (iv) removal of stop words such as ‘‘a’’ and
‘‘the’’ as they consider as the ‘unnecessary words’ which did
not contribute the classification taks and may create higher

TABLE 2. Types of variables.

dimension of vector [38], and (v) lower case capitalization
of the text. Next, the text underwent the tokenization step,
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where a string of words is segmented into its component
words named ‘tokens’. Each tokenized word is numbered to
identify a particular word. This is a crucial step in converting
words into numerical features [39].

Next, text representations were generated by converting
the tokens into numbers to be processed by the classifiers.
The text representation methods employed in this study were
Term Frequency-Inverse Document Frequency (TF-IDF) and
the Global Vector (GloVe). TF-IDF was considered as it
commonly appears as a high-performing text vectorization
technique [40], [41]. It consists of two elements; the ‘term
frequency’ (TF) and the ‘inverse document frequency’ (IDF).
TF depends on the number of occurrences of the word in each
injury narrative, meanwhile, IDF is computed based on how
much the word contains throughout the entire injury narrative
dataset. TF is measured as tfi,w, in which i represent a given
keyword in each given document, w. The data in this experi-
ment consists of D documents and dfi represents the number
of occurrences of a word across all the documents. The IDF
of a keyword, idfi, is calculated by taking the logarithmic
inverse, as shown in the following equation (1). Next, the final
score of TF-IDF is derived from the equation (2).

idfi = log
(
1 + D
1 + dfi

)
+ 1 (1)

tfidfi,w = tfi,w × idfi (2)

The vectorized word was then followed by a word-
embedding of GloVe. It is a word-embedding method in
which words are represented as vectors in a high-dimensional
space that uses word2vec-word representation to learn word
embeddings from textual materials efficiently [42]. To gener-
ate the word vector representation in this study, a pre-trained
GloVe model from Stanford NLP labeled ‘‘Glove.6B’’ was
used. This pre-trained GloVe is a 100-dimensional vector
that has been trained on six billion tokens from Wikipedia
articles and the Gigaword dataset. It is freely accessible to the
public under a Public Domain Dedication and License [43].
Figure 1 is the schematic diagram of the unstructured text
preprocessing used in this study.

D. MULTIMODAL DATA FUSION
Structured and unstructured data were combined as input rep-
resentations to predict occupational injury severity, in terms
of (i) hospitalization and (ii) amputation for multimodal
learning. The structured data were prepared and normalized
as explained in subsection B, whereas the unstructured text
data underwent text preprocessing, tokenization, and text rep-
resentation, as described in subsection C. Subsequently, both
preprocessed representations were concatenated into a single
input representation vector using an early fusion strategy. The
early fusion strategy integrates both datamodalities after their
preprocessing steps and fed them as input representations
to the sets of classifiers. The application of an early fusion
strategy is preferred in multimodal learning owing to its
practicality and simplicity [44]. Moreover, this strategy tends

FIGURE 1. Schematic diagram of unstructured text processing.

FIGURE 2. Flowchart of multimodal data learning.

to generate better performance predictions than the unimodal
versions [45], [46]. Figure 2 illustrates the flowchart of mul-
timodal learning in this study.

E. PREDICTION MODELLING
Both prediction outcomes are composed of a binary classifi-
cation problem, where the label indicates Yes (1) or No (0) for
the occurrence of hospitalization, as well as, the likelihood of
an amputation event. Prior to themodel development, the data
were partitioned into two sets using stratified sampling; 80%
of the data were used as the training set, and the remaining
20% of the data were applied as the testing set.
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Five sets of machine learning algorithms and two deep
neural architectures were proposed to analyze the multimodal
data in predicting the severity of occupational injuries. The
five sets of machine learning predictivemodels were (i) Naïve
Bayes (NB), (ii) K-Nearest Neighbors (KNN), (iii) Decision
Tree (DT), (iv) Random Forest (RF), and (v) Support Vector
Machine (SVM). These ML models were selected because
of their consistency in occupational injury prediction stud-
ies [11]; therefore, a comprehensive comparative analysis is
required to assess model effectiveness [47]. Because several
previous studies have recommended the exploration of RNN
variants in the multimodal occupational injury domain [48],
[49], this study executes two types of RNN variants as the
proposed deep learning architectures: (i) Long Short-Term
Memory (LSTM) and (ii) Bidirectional Long Short-Term
Memory (Bi-LSTM).

NB is a supervised learning algorithm that is based on
Bayes’ theorem and is preferred due to its simplicity and
ability to predict performance accurately. It is named ‘‘naive’’
because it assumes that given the class label, the features in
the data are conditionally independent of each other. Despite
the ‘‘naïve’’ assumption between input variables, the NB
algorithm performs well in a variety of classification prob-
lems [50].
KNN is an algorithm that implies on similar information

exists nearby or in close proximity to one another. The model
calculates the distance between data points and then catego-
rizes them based on their proximity. Normally, it is based
on a distance metric, such as Euclidean distance among the
training samples, and then making a judgement based on the
majority vote or average of its k neighbors’ labels [51].

Next, DT algorithm uses the training data to generate a
tree-like decision structure, with the starting point being a
‘root node’ and the ending point being certain leaves. The
classification strategy in DT begins with the division of the
root node into the leaf node. The splitting process makes
use of the input variables. The splitting will progress until it
reaches the leaf node. Then, the leaf nodes, also known as end
nodes in certain literature, indicate the final outputs, which is
the classification problem [52].

SVM uses a hyperplane to maximize the margin between
two classes in binary classification tasks. The training data
points that are nearer to the boundary will impact the creation
of the hyperplane, and they are referred to as ‘‘support vec-
tors’’. An interesting feature of SVM is it can accommodate
both linearly and non-linearly separable datasets by mapping
the data into a higher dimensional space where it can be
separated by a hyperplane using a kernel function. A kernel
function is introduced to aid in the separation of different
classes. The linear, sigmoid, and radial basic function (RBF)
kernels are the most commonly employed kernels, and this
design of SVM produces the best generalization of decision
boundaries for data categorization [53]. This study employed
the radial basic kernel function.

RF combines numerous decision trees to provide a more
accurate and stable prediction. Each tree in the RF model

produces a classification and accounts it as a ‘vote’. The
final classification is then established based on the major-
ity of these votes, with the category with the most votes
chosen as the final prediction. Because the RF model
adheres to the ‘majority votes decision rule,’ the aggre-
gation of these outcomes will provide a good general-
ization, resulting in improved accuracy. Additionally, each
tree in the forest is trained using a randomly chosen por-
tion of the training data, known as the ‘bootstrap sample’,
and a randomly chosen subset of the features, known as
the feature subset. This reduces variance and the risk of
overfitting [54].
LSTM is an improved technique to solve a well-known

drawback in training Recurrent Neural Network, which is the
vanishing gradient issue. The LSTM method overcomes the
problem by adding a gate mechanism and a memory unit.
Three gates of LSTM are: (i) the input gate, controls which
information is stored in memory cells, (ii) the output gate
determines which information is used in prediction, and (iii)
the forget gate controls which information is ignored. The
configuration of these gates in LSTM enables information
control, which is the primary rationale for reducing the van-
ishing gradient problem in standard RNNs [55].
Bi-LSTM is an advanced architecture of LSTM, which

composed of forward and backward LSTMs. The key idea
behind this bidirectional structure is the capacity to collect
information patterns that may be overlooked by unidirec-
tional LSTM [56]. Because the Bi-LSTM network is con-
structed of two LSTMs, their outputs are concatenated and
utilized as inputs to the final prediction output layer. This
enables the network to generate predictions while consid-
ering the complete sequence. The strength of the ‘forward-
backward’ in Bi-LSTM leads to improve learning long-term
sequences, as a result, improves the model’s performance
prediction.

In this study, both deep learning models; LSTM and Bi-
LSTM, were structured as follows: the hidden unit was
chosen as 256, trained with a batch size of 64, and the max-
imum epoch number was set to 25. In addition, the models
were implemented with an ‘Adam’ optimizer, ‘ReLU’ acti-
vation with a dropout rate of 0.2. ReLU activation was pro-
posed based on recent studies that demonstrated the modified
approach of ReLU with an LSTMs network has empirically
improved model performance in terms of comparison with
other activation functions [57] and existing deep learning
tools [58], [59], [60]. In addition, an early stopping function
was introduced to prevent overfitting and improve model
generalization, including assisting in determining the optimal
stopping point for training [61]. Themetric criterion used was
validation loss with a patience of 5, in which the models were
trained for a maximum of 25 epochs but stopped the training
earlier if the validation loss did not improve for consecutive
5 epochs. As this study is a binary classification task, a dense
output layer functions as a sigmoid and loss function used
was binary cross-entropy. The customized parameters of each
classifier are summarized in Table 3.
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TABLE 3. Classifier’s parameter.

All of the multimodal classifiers were imported and devel-
oped in the Python environment with the execution of suitable
libraries and packages: NumPy (np), pandas (pd), matploblit
(plt), sklearn, natural language toolkit (nltk), Keras and Ten-
sorFlow. The development of the prediction models was
performed on a laptop with the following specifications: (i)
CPU: AMD Ryzen 7 3700U @ 2.30GHz with 12GB RAM
and (ii) GPU: RadeonTM RX Vega 10 Graphics 1400 MHz.

F. MODEL EVALUATION METRICS
A confusion matrix is a foundation for computing the pre-
dictability performance of classifiers. It is in the form of
a ‘‘contingency table’’ that visualizes how the findings are
disseminated over the actual class (represented in rows) and
predicted class (represented in columns) [62]. The matrix
comprises four instances: ‘‘True Positive’’ (TP) and ‘‘False
Positive’’ (FP) are observations of correct and incorrect

FIGURE 3. Model evaluation metrics.

predictions per actual classes, accordingly, while, ‘‘True Neg-
ative’’ (TN) and ‘‘False Negative’’ (FN) are instances of right
and wrong rejections per actual classes, respectively. Based
on this matrix, the following evaluation metrics for classifi-
cation tasks were used to assess the prediction performance
of all models proposed in this study: (i) precision, (ii) recall,
(iii) F1-score, (iv) accuracy, and (v) AUC values. Figure 3
summarized the model evaluation metrics employed in this
study.

IV. MODEL EXPERIMENTATION
This subsection summarizes and simplifies the overall imple-
mentation of the occupational injury severity prediction
model used in this study. The step-by-step implementation
is explained as follows:

i. The experiment began with the preprocessing of struc-
tured data, involving data cleaning and preparation.
Five categorical variables were selected from the occu-
pational injury dataset: (i) type of industry, (ii) nature of
injury, (iii) affected body part(s), (iv) type of event, and
(v) type of source. These categorical data are encoded
using a reference system.

ii. Next, unstructured injury narratives were extracted
through NLP, followed by text representation using
the integration of TFIDF and pretrained GloVe word
embedding to convert the textual data into numerical
representation for further analysis.

iii. The experiment was then resumed with the integration
of both preprocessed data modalities–structured and
unstructured–as multimodal representations.

iv. The data were split into two sets using stratified sam-
pling at an 80:20 ratio; 80% of the data were used as
the training set, whereas the remaining 20% were used
as the testing set.

v. Several candidate models were explored, consisting of
five sets of ML models (NB, KNN, DT, RF, and SVM)
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and two deep learning models (LSTM and Bi-LSTM),
for predicting the severity outcomes of hospitalization
and amputation.

vi. Comparative analyses were performed by utilizing
established model evaluation metrics, including accu-
racy, precision, recall, F1-score, AUC, and prediction
time. These metrics are used to assess the performance
of each candidate model.

vii. Based on the evaluation, the model exhibiting superior
performance in terms of accuracy, F1-score, AUC, pre-
cision, and recall was selected as the best-performing
prediction model.

viii. Then, the experiment was resumed with model opti-
mization step. Firstly, both data modalities were
assessed using the RF feature importance algorithm to
determine the most important features and predictive
keywords.

ix. The selected best-performing model in (vii) was rede-
veloped using only the important features and key-
words, followed by hyperparameter optimization using
random search cross-validation.

x. Finally, the optimized model was compared with the
initially developed model through model evaluation
metrics to determine the best occupational injury
severity prediction model for final model deployment.
Additionally, its compatibility with computational effi-
ciency in terms of processing time (training and testing)
was a significant factor in its selection.

Overall, this careful and systematic model selection pro-
cess ensures that the proposed approach represents the exe-
cution of rigorous experimentation and thorough evaluation,
thereby generating an accurate interpretable practical occu-
pational injury severity prediction model. The pseudocode of
the proposed model experimentation is presented in Figure 4.

V. RESULTS
The prediction outcomes investigated in this study was the
likelihood of severity, in terms of hospitalization and ampu-
tation. Each classifier was evaluated on all performance
metrics and comprehensively compared to determine the
best-performing model.

A. HOSPITALIZATION PREDICTION
Table 4 presents the performance prediction of all proposed
models on the hospitalization prediction task. From this table,
it shows that the Bi-LSTM outperformed other models with
a slightly higher accuracy of 0.93 as compared to RF and
LSTM, both achieved 0.92, respectively. Also, Bi-LSTM
achieved the best F1-score at 0.95, meanwhile, the AUC value
is slightly better than the SVM model at 0.93.

B. AMPUTATION PREDICTION
Table 5 summarizes the findings of each prediction algorithm
for the amputation prediction task. From the table, it can
be seen that Bi-LSTM is the best-performing model as it

TABLE 4. Performance prediction of hospitalization.

TABLE 5. Performance prediction of amputation.

achieved higher accuracy (0.99), F1-score (0.97), and AUC
of 0.98, compared to SVM, KNN, LSTM, DT, and NB.
Meanwhile, the RF model ranked second, with accuracy and
an AUC value of 0.97.

Based on both tables, the Bi-LSTM models have been
discovered as the best-performing prediction model in
predicting occupational injury severity, as this model per-
formed significantly in each model evaluation metric, specif-
ically in accuracy, recall, and F1-score, compared to other
models.

C. PREDICTION TIME
Additionally, the prediction or testing time for each model
was investigated in this study. Although the Bi-LSTM model
achieved higher accuracy, F1-score, and AUC values for both
prediction tasks, the prediction time for Bi-LSTM may be
longer than those for RF, SVM, and LSTM. The Bi-LSTM
model required up to 67s to predict the hospitalization and
at 66s to predict the amputation outcomes. However, it is
presumed that the testing time of the Bi-LSTM model is
still acceptable. A comparison of each model’s prediction
time is depicted in the line graph in Figure 5 for both the
predictions.
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FIGURE 4. Pseudocode of prediction model development.
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FIGURE 5. Prediction time of classification tasks.

FIGURE 6. Learning curves of Bi-LSTM.

D. LEARNING CURVES OF BI-LSTM MODEL
Another metric to measure the performance of our pro-
posed multimodal Bi-LSTM model is the visualization of
the accuracy and loss of progress in the training and valida-
tion sets [63], [64]. Figure 6 shows the performance of the
Bi-LSTM model based on the learning curves of accuracy
and loss on the training and validation sets for both predic-
tion tasks. From the figure, by implementing early stopping
function, it appears that the validation loss (model loss) for
the hospitalization task stopped decreasing and stabilized at
epoch 14, whereas for the amputation prediction, it halted at
epoch 12. This indicates that the Bi-LSTM model achieved
the best performance in terms of minimizing the validation
loss within these epochs. Additionally, it can be observed
that the accuracy of the training and validation sets shows
an upward trend and gradually becomes flat. Overall, as the
epochs advanced, the learning curve for both the loss and
accuracy values became more stable, with less fluctuation in
the training and validation sets. This demonstrates that the
models reached a point of convergence, and training them
beyond these epochs may result in overfitting.

FIGURE 7. Top predictive words.

VI. MODEL OPTIMIZATION
We conducted a comprehensive methodology that involved
feature importance analysis and hyperparameter optimization
to achieve the optimum performance of the proposed multi-
modal Bi-LSTM predictive model. Firstly, a Random Forest
Feature Importance algorithmwas employed to determine the
most relevant features of structured variables and unstruc-
tured text, respectively. Subsequently, the proposed Bi-LSTM
model was optimized with these significant features and
underwent hyperparameter tuning using Randomized Search
Cross Validation. The optimized Bi-LSTM was then com-
pared with the initial developed model to determine the best
performing model for final model deployment.

A. FEATURE IMPORTANCE ANALYSIS
This step was introduced to assess the most important
variables of the occupational injury severity prediction
model, thereby providing valuable insights for classification
tasks [57]. The RF algorithm determines the feature impor-
tance by measuring the reduction in Gini impurity in the
model. The impurity values for all variables were added
and standardized across the trees. The final value is orga-
nized in decreasing order, with the most important attribute
at the top; the greater the value, the more important the
feature [13], [58].

The findings revealed the top three most significant fea-
tures of structured data were similar for both prediction tasks,
which were ‘nature of injury’, ‘type of event’, and ‘affected
body part’. These results were consistent with other related
studies that measured ‘nature of injury’ and ‘affected body
part’ [11], [65], [66], as well as, ‘type of event’ [18] as the
essential predictors for occupational injury outcomes.

Moreover, the feature importance of unstructured text data
was determined based on the importance of keywords. In this
study, we proposed the top 20 keywords to be measured
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TABLE 6. The multiple architectures of Bi-LSTM.

TABLE 7. The performance of multiple architectures.

and ranked for both the prediction tasks. Figure 7 illustrates
the top 20 keywords for the prediction of hospitalization
and amputation. Based on the figure, it is observed that the
extracted predictive words were closely related to the ‘type
of event’ of injury severity, such as ‘fell’, ‘pinched’, ‘slip’,
‘caught’, ‘burns’, ‘tripped’, ‘broken’, and ‘fractured’. In addi-
tion, some keywords were identified as common objects
that may cause the workplace injuries, such as ‘machine’,
‘blade’, ‘ladder’, saw’, and ‘floor’. With this interpretability
analysis, it can be concluded that the content of occupa-
tional injury narratives comprised keywords that indicated
the event and source of workplace injuries, including the
severity outcomes, such as ‘hospitalized/hospitalization’ and
‘amputation/amputated’.

B. HYPERPARAMETER OPTIMIZATION
Initially, the Bi-LSTM model was configured through mul-
tiple experiments based on the number of epochs, batch
size, and LSTM units. Three architectures were proposed
to determine the best accuracy, F1-score, and AUC for both
the predictions. The proposed architectures are presented in
Table 6.
Based on the experiments, it was found that the Bi-LSTMs

configured with Arch 2 (epochs 25, batch size 64 and LSTM
units 256) were the highest as presented in Table 7. Therefore,
to further verify the Bi-LSTM configurations, hyperparame-
ter optimization is introduced.

In this study, a Random Search algorithm was employed
with cross-validation method (k-fold=10). This method
allows a thorough exploration of the hyperparameter space
to identify the optimal configuration for the Bi-LSTM pre-
dictive model. The dataset was divided into 10 equal-sized
folds, in which each fold acted as a testing set, whereas
the remaining folds served as the training set. This process
was resumed until each fold was used once for testing [67].
For each iteration, a combination of hyperparameters for the

TABLE 8. Corresponding hyperparameters for Bi-LSTM.

defined search space is randomly sampled and trained on
the training set. The performance of each configuration was
then evaluated on the respective testing set using the assigned
model evaluation metrics; such as accuracy, F1-score, and
AUC. By repeating this process 10 times, a comprehensive
review of the model’s performance across different hyper-
parameter combinations was obtained. It is believed that
the Random Search algorithm provided better performance
prediction and efficient approach to tune the model’s hyper-
parameter [68], thus ensuring the model predictability was
reliable and generalized on the unseen data [69]. The corre-
sponding hyperparameters are listed in Table 8.

Based on the table, HeUniform was determined as the
preferred weight initialization method, as it is specifically
designed to work well with ReLU activation [70]. This is in
agreement with Huimin et al. [71], who concluded that the
weight initializers corresponded to the activation function.
The other identified best hyperparameter values were similar
to the initial configurations.

This step was followed by optimizing the Bi-LSTMmodel
with important features as input representations. For each
prediction, the model was fed with three important fea-
tures (structured data) and the most predictive keywords
(unstructured data), and the hyperparameters were adjusted
based on the optimal parameters. Next, the performance
prediction of the optimized Bi-LSTM model was compared
with the following architectures: (i) Bi-LSTM I, which was
initially developed with all features and without hyperpa-
rameter tuning; (ii) Bi-LSTM II, a model with important
features without hyperparameter tuning; and (iii) Optimized
Bi-LSTM I (OPTIM Bi-LSTM I), a model developed with all
features with hyperparameter tuning, whereas the optimized
Bi-LSTM was labeled as OPTIM Bi-LSTM II composed of
important features with hyperparameter tuning. The findings
are presented in Table 9 for hospitalization prediction and
Table 10 for amputation outcomes. Based on both tables,
it was observed that the performance of the model evaluation
metrics for each proposed model was consistent. Although
the models using all features may produce slightly better
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TABLE 9. Comparison of Bi-LSTMs performance for hospitalization.

TABLE 10. Comparison of Bi-LSTMs performance for amputation.

performance metrics, the possibility of utilizing those fea-
tures without feature importance or hyperparameter tuning
may introduce noise and irrelevant information for model
development.

Additionally, it was found that the OPTIM Bi-LSTM II,
a proposed model with important features and hyperparame-
ter tuning managed to generate prediction outputs in a timely
manner. It is believed that the optimized hyperparameters
can lead to faster convergence during model training, thereby
allowing the model to reach its optimal performance more
quickly. The optimized Bi-LSTM can predict hospitaliza-
tion outcome at 49s and amputation severity at only 42s.
Therefore, the feature optimization algorithms conducted in
this study optimize the multimodal Bi-LSTM occupational
injury severity prediction model and excellently accelerate
the model prediction time, making it suitable for occupational
injury decision support systems in real field applications.

Consequently, this study is in agreement with a recent
study by [72], which preferred the execution of an effective
and optimum prediction model that utilizes fewer important

features than numerous features as input representations.
Some arguments in the existing literature highlighted the
‘impracticality’ of using larger set of variables in develop-
ing the machine and deep learning classifiers; (i) numerous
features may increase the complexity of the model and
(ii) training process suffers with overfitting problems [73],
including (iii) a complexmodel may generates higher compu-
tational tasks, making it cost expensive and less efficient [74].
Therefore, any technique that promotes the reduction of data
dimensionality is recommended to improve model perfor-
mance prediction [75].
Accordingly, this study emphasizes this feature optimiza-

tion approach to assist Safety and Health Practitioners in exe-
cuting an accurate interpretable practical and time-efficient
occupational injury severity prediction model, thus guiding
practitioners and policymakers to improve workplace injury
intervention strategies. Figure 8 depicts the overall proposed
framework of our multimodal Bi-LSTM occupational injury
severity prediction model. This proposed framework con-
cludes the innovative approaches developed from our study;
multimodal learning with Bi-LSTM predictive model inte-
grates with model optimization techniques to enhance model
interpretability, practicality, and predictability.

VII. DISCUSSION
A. UNIQUENESS OF THE PROPOSED BI-LSTM MODEL
From the findings, the recurrent neural network variant; the
Bi-LSTM model showed promising prediction performances
for both prediction tasks using the multimodal where the;
structured and unstructured notes used as the input features.
The new aspect of this study is the optimization of the
proposed Bi-LSTM model in predicting the outcomes of
occupational injuries by making use of both structured and
unstructured data as input features. In addition, the proposed
model of the optimized Bi-LSTM has two LSTMs applied
to the input features. Firstly, an LSTM is executed on the
input sequence (‘‘forward layer’’) and followed the training in
reverse order with another LSTM (‘‘backward layer’’) [76].
Because of its innovative architecture, which includes both
forward and backward LSTM layers, the proposed model
is able to do an analysis on each and every component of
the input sequences. As a result, the model’s accuracy is
improved, and the results are more relevant. We believed that
the architectures of the proposed model, in which the desired
algorithm is trained, not only from the ‘input to output’
but also from the ‘output to input’ leads to its high model
performances. This nature of architecture gives additional
advantages as the proposed model is able to analyze every
component of the input sequences, thus, providing more
meaningful outputs and enhancing the model’s accuracy [77].
Additionally, the recurrent layers in the proposed Bi-

LSTM model have been assumed as the reason for the capa-
bility of this deep learning algorithm to learn better the feature
representations as the networks and layers grow deeper [27].
The results highlighted the remarkable performance of our
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FIGURE 8. The overall proposed framework of multimodal Bi-LSTM occupational injury severity prediction model.

proposed Bi-LSTM optimized model, in terms of the unique-
ness of its architectures that are well-suited in handling
‘massive-length’ data sequences in multimodal learning.

Moreover, the execution of the LSTMs from both orders or
directions justifiedmore time required for prediction, in terms
of training and testing time using this model. It is known
that more complex the model, more time required to train
and test the prediction outcomes [78]. Therefore, it is fair
to mention the Bi-LSTM model in this multimodal learning
required a bit longer training and testing time, compared to
other algorithms.

Next, we observed the prediction accuracy, F1-score and
AUC values of RF and SVM are quite close to the best-
performing model for both prediction tasks. In RF, the clas-
sifier is a combination of prediction trees and acts as an
‘‘ensemble’’ [19]. This capability of integrating the prediction
ability of multiple learners into a single RF model leads RF
to perform quite well in this study. Not to mention, the SVM
algorithm has the ability to map the input representation in a
high dimensional space by using the ‘kernel function’. The
‘kernel function’ used in this study is a radial-based function
(‘‘rbf’’) and this function significantly increased the accuracy
performance [65] making SVM one of the most effective
machine learning classifiers [53].

B. COMPLEMENTARY NATURE OF MULTIMODAL DATA
This study emphasizes the use of multimodal data sources
to develop an occupational injury severity model. Struc-
tured input highlighted the injured worker’s information,

whereas the sequential injury narratives contained the work-
place injury history. Based on the findings, the performances
of the proposed machine and deep learning models are sat-
isfactory, as they ranged from 0.8 to 0.9 above in each
metric, for both prediction tasks. This performance prediction
implicitly clarifies the harmonious nature of multimodal data
to complement one another, thus, generating good-quality
of predictive models. Additionally, multimodal learning can
enhance model robustness by reducing the impact of noisy
or incomplete data in a single modality. If one modality,
such as structured data, is ambiguous, the presence of other
modalities, such as unstructured text, can compensate for
it, thus providing a more realistic prediction performance.
Moreover, the predictive model generated from multimodal
learning can generalize better to hidden data because it learns
and trains from multiple sources, thus capturing a broader
range of patterns and data relationships

In the context of occupational injury, the integrated anal-
ysis of multimodal learning permits the extraction of rich
useful information from occupational injury records pre-
pared by Safety and Health Practitioners and Occupational
Health Doctors. This kind of integration of field experts
in the occupational injury domain and technical aspects of
workplace safety resulted in dependable stable successful
occupational injury severity prediction outcomes [79], [80],
[81]. It is believed that by integrating both modalities, it can
provide a more comprehensive data representations as each
modality contains unique and complementary information,
thereby integrating them lead to a more holistic understand-
ing of the underlying occupational injury severity events.
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Consequently, the combination of the structured tabular data
and unstructured injury notes in this study justified the suc-
cessful execution of multimodal deep neural architectures as
it appears as a convincing strategy to improve the prediction
performance of occupational injury severity.

C. LONG-TERM BENEFIT OF THE PROPOSED SYSTEM
The detection of occupational injury severity is important to
address the post-injury consequences to the injured worker,
as well as, the organization [82]. In the case of an injured
worker being hospitalized, they have to take days off for
recovery, and those amputated may face longer treatment
as it may involve physical and emotional rehabilitation. The
absence of work owing to the severity of workplace injuries
may affect the organization’s lost-time injuries (LTI). LTIs are
indicators of the effectiveness of workplace safety and health
in preventing work-related accidents and injuries. A high
rate of LTIs indicates poor safety and health monitoring in
the organization [83]. Moreover, workplace injury severity
is related to the chances of injured workers returning to
work [8]. Amputation due to workplace injury may result
in permanent disability, and functional deterioration are the
main reason for not returning to work. This may generate
long-term psychological effects, especially on mental health,
thus, prolonging injury recovery [84].

As a result, this study offers a number of contributions to
the actual applications used in industry. The ultimate objec-
tive of this research was to develop an accurate forecasting
system that would be of assistance to safety and health pro-
fessionals, particularly in the area of estimating the severity of
occupational injuries. Intervention techniques for workplace
safety can be applied as first preventive steps to lessen the
severity of injuries based on the severity outcomes that have
been forecasted for them. This newly created multimodal
prediction model has the capability of successfully identi-
fying high-risk regions and activities within the workplace.
This is accomplished by precisely predicting the possibil-
ity of occupational injury severity. Using this information
to guide, the adoption of targeted safety interventions and
remedial strategies to lower the likelihood of future injuries
is beneficial.

Additionally, this predictive system can aid in the early
screening and identification of at-risk workers with severe
occupational injury outcomes, thereby allowing the prioriti-
zation of safety interventions and support systems for those
workers, such as providing specialize safety training and offer
support for physical and mental well-being. The proactive
approach of this predictive system can lead to improvedwork-
place safety, health, and overall well-being. Furthermore, this
predictive system potential to be useful to industry practi-
tioners in the field of resource management. When workers
are incapable of working due to hospitalization and rehabil-
itation, this can cause significant productivity losses to the
company. Therefore, management may reallocate resources,
such as assigning additional manpower or redesigning work

assignments to ensure that job productivity is still underway.
Next, additional ongoing support, such as physical and coun-
selling support, including job retraining can be allocated in
assisting those injured workers to recover safely and timely
manner.

Consequently, occupational injury severity predictive ana-
lytics utilizing multimodal learning are essential for early
screening, anticipation, and identification tools for at-risk
workers with severe occupational injury outcomes. Cor-
respondingly, the information obtained from multimodal
dataset analysis is beneficial in addressing the compelling
concerns among Safety and Health Practitioners to foresee
effective intervention strategies for preventing the severity
of workplace accidents [85], [86], thereby, promoting work-
place environment that is safer and healthier for employees.
Worker safety, health, and well-being are of the greatest
priority in occupational safety and health; thus, it is vital
to employ the latest advanced Artificial Intelligence (AI)
approach in constructing an accurate and robust occupational
injury severity prediction model.

D. COMPARISON WITH RECENT SIMILAR APPROACH
Sarkar et al. [18] employed a multimodal dataset (structured
and unstructured injury reports) from the steel manufacturing
industry to develop an occupational injury prediction model.
They developed a simple DNNmodel and tuned it using three
optimizers: Adam, RMSprop, and SGD, with a 10-fold cross-
validation method. The findings revealed that the DNN with
Adam-optimizer (ADNN) achieved the best classifier with
0.79 accuracy compared to SGD-DNN, RMSprop-DNN,
KNN, SVM, and RF. Our study was in agreement with their
study in terms of using the Adam-optimizer, 10-fold cross
validation scheme, and compared with similar state-of-the-
art ML models.

In other related studies, Mahajan et al. [28] developed
a baseline multimodal predictive model using the LR
algorithm to predict 30-day readmission for heart failure.
They used structured data from EHR and combined them
with unstructured clinical notes. The multimodal LR predic-
tion model achieved 0.65 AUC values, compared to using
only structured (0.64) or unstructured notes (0.52). More-
over, Zhang et al. [27] developed a multimodal DNN named
‘Fusion-LSTM’ to predict mortality, hospitalization stay and
hospital readmission using the ‘MIMIC-III’ health records.
They utilized unstructured clinical notes and static informa-
tion, and the model produced more accurate predictions and
outperformed the baseline methods: LR and RF models with
AUC scores of 0.87. Compared with our proposed approach,
the multimodal Bi-LSTM model achieved a higher AUC of
0.90.

Recent approaches have become more advanced in terms
of the diverse integration of data modalities with advanced
DNN architectures. For example, Saleh and Murab [87]
developed a Convolutional Neural Network (CNN) to predict
fall injuries. In their study, they combined images and sensor

85298 VOLUME 11, 2023



M. Z. F. Khairuddin et al.: Harnessing the Multimodal Data Integration and Deep Learning

data into multimodal representations. The findings revealed
that the multimodal CNN model outperformed other con-
ventional ML methods: SVM, KNN, DT, and RF with an
accuracy of 0.97. The latest work by Jujjavarapu et al. [88]
integrated structured and unstructured health data, consist-
ing of patients’ personal information, diagnosis codes, drug
names, and diagnostic imaging reports, to predict decom-
pression surgery for low back pain due to occupational back
injury. They proposed a multimodal deep learning architec-
ture composed of (i) a layer of CNN, (ii) a layer of Gated
Recurrent Unit (GRU) model, an advanced simpler architec-
ture of LSTM, and (iii) 2-layer-Fully Connected, compared to
baseline LASSO Logistic Regression. The findings revealed
that multimodal deep learning achieved a better AUC value
of 0.73.

Our findings and reviewed studies consistently indicate
that multimodal deep learning architectures generate better
predictive performance than traditional ML models. Further
exploration in terms of data accessibility and advancement
in adopting standardized multimodal deep learning method-
ologies in the occupational injury domain is required, with
the potential to assist decision-making, resource allocation,
and enhance workplace injury intervention strategies in real-
industry applications. In the following, we highlight the
limitations of study and potential opportunities for future
research.

E. LIMITATIONS OF STUDY
Although this study utilized occupational injury data across
broad industrial sectors, we noticed the necessity of per-
forming additional transfer learning to evaluate the generaliz-
ability of the developed model. However, most occupational
injury datasets are restricted and did not reveal sufficient
features to indicate the severity of hospitalization and ampu-
tation [15], thus limiting the accessibility and data quality to
undergo the predictive analysis process. Besides, most of the
dataset are ‘domain-specific’ and difficult to be transferred to
other settings [27], such as the ‘technical-language’ related
to workplace safety, including ‘manner of injury’ may vary
between industries [17], [89].
Additionally, the dataset relies on ‘human-labelled’ data;

as each Safety and Health Practitioner may have diverse
interpretation of workplace injury severities due to their expe-
rience and training level, thereby impacting the consistency
of data labelling and categorization. This limitation requires
an extensive human assistance to clean and sanitize the data
labelling before it can be proceeded for further analysis.

The scalability of our machine learning models is another
limitation to consider. Given a large dataset comprising
multiple modalities, our computational resources were con-
strained, thereby limiting the exploration of a wider range
of model architectures and parameters. Although our study
provides valuable insights into multimodal data analysis, the
impact of the parameter choices of each machine-learning
classifier cannot be overlooked. More in-depth investiga-
tions of the effects of specific parameters on different

aspects of the analysis would enrich the understanding of our
findings.

F. FUTURE RESEARCH TREND
There are multiple sources of occupational safety data that
can be used to develop occupational injury predictionmodels,
such as workplace safety audit reports, hazard evaluation
reports, and injured workers’ compensation records. Integrat-
ing these data sources could improve the comprehensiveness,
generalizability, and transferability of the model. As a way
forward, we anticipate that future research should integrate
injured worker information from occupational injury reports
and worker compensation documents to further analyze the
pattern of workplace injury severity and the accurate cost
implication, thereby enhancing the model interpretability for
efficient utilization as an intelligent occupational injury deci-
sion support system for real industrial applications.

Another direction is to improve multimodal learning in
occupational injury research by exploring other types of mul-
timodal data fusion strategies, such as joint fusion and late
fusion, including hybrid fusion in generating more robust
occupational injury prediction model. Moreover, multimodal
learning using workplace injury images with structured data
and unstructured text is recommended; thus, alternative
neural architectures such as convolutional neural networks
(CNN) have been proposed.

Finally, future research could benefit from extensive fea-
ture optimization to assess the robustness of our findings with
respect to the parameter variations. Additionally, conducting
multiple experiments or iterative refinement approaches to
explore a wide range of parameter settings and leveraging
more advanced computational resources would help enhance
the efficiency and effectiveness of our multimodal analysis.

VIII. CONCLUSION
In conclusion, our study highlights the need to utilize all
modalities in occupational injury records to determine the
risk of occupational injury severity, such as hospitalization
and amputation. The proposed model has been proven to
work well in this multimodal learning for both prediction
tasks. These findings are significant in practicing workplace
accidents and injury analytics because themodel shows a high
predictive and accurate classification performance.

To the best of our knowledge, this study is the first
to propose multimodal integration learning with traditional
machine learning algorithms and recurrent neural network
variants; hence, our study serves as a crucial foundation
and benchmark for further advancements in multimodal
deep learning for occupational injury prediction. In addi-
tion, we merged a large historical workplace injury-specific
dataset to classify the severity of occupational injuries across
broad industrial sectors.

CODE AVAILABILITY STATEMENT
The sample code used in this study is available at https://
github.com/mzf23/oshinjury. Any updates or improvements
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to the code will be made available in the repository to ensure
accessibility and sustainability of the research findings.
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