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ABSTRACT Myoelectric control has been used predominantly in the field of prosthetics, but is an
increasingly promising hands-free input modality for emerging consumer markets such as mixed reality.
Developing robust machine learning-enabled EMG control systems, however, has historically required
substantial domain expertise. This has presented a significant barrier to entry for researchers, impeded
progress in EMG-based interaction design, and contributed to the perception that such systems lack the
robustness and intuitiveness required for real-world use. To overcome these challenges, we present LIbEMG,
an open-source Python library for performing offline EMG analyses and developing online EMG-based
interactions. By abstracting the challenges and nuances surrounding myoelectric control, including hardware
interfacing, data acquisition, feature extraction/selection, classification, post-processing, and evaluation,
we eliminate many of the significant barriers limiting the exploration of this technology. Combining expertise
from the prosthetics and human-computer interaction communities into a shared library, extensive examples,
and documentation, we provide researchers with an accessible tool to accelerate research and improve
reproducibility in myoelectric control. In doing so, we aim to facilitate the exploration of this technology,
particularly outside prosthesis control, to unlock its potential as a widely applicable hands-free input
modality. Documentation: https://libemg.github.io/libemg/.

INDEX TERMS EMG, electromyography, toolkit, library, myoelectric control, gesture recognition.

I. INTRODUCTION

Myoelectric control — the control of a device using the
electrical signals generated during muscular contractions —
has had a long and successful history in prosthetics for the
control of powered prostheses. By placing surface electrodes
directly on the skin (i.e., surface electromyography (EMGQG)),
the electrical signals produced during muscular contractions
can be recorded, processed, and passed to machine learn-
ing algorithms [1]. These algorithms can then differentiate
between contractions, effectively turning the human body
into a readily-available controller, where muscle inputs are
associated with interactive device commands.
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Although the first myoelectric control systems were devel-
oped in the 1960s for prosthesis control [2], the technology
did not garner interest for ‘general-purpose applications’ until
the early 2000s [3], [4], [5]. Notably, in 2014, the land-
scape of myoelectric control was drastically altered through
the release of the Myo Armband, the first widely available
and affordable surface EMG wearable band [6]. This com-
mercially available device, which had pre-built software for
enabling gesture recognition, paved the way for an influx of
EMG research in human-computer interaction (HCI), pro-
pelling myoelectric control to new bounds. This can be
attributed to the fact that this device lowered the entry barrier
and enabled non-domain experts (such as HCI researchers)
to explore this technology for various interactive systems.
However, with the discontinuation of the Myo Armband,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

87380

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023


https://orcid.org/0000-0002-8392-3729
https://orcid.org/0000-0001-5399-4318
https://orcid.org/0000-0003-0170-3245
https://orcid.org/0000-0003-3592-2163
https://orcid.org/0000-0002-4421-1016
https://orcid.org/0000-0003-0026-5423

E. Eddy et al.: LIbEMG: An Open Source Library to Facilitate the Exploration of Myoelectric Control

IEEE Access

no ‘killer’ application on the horizon, and relatively immature
gesture recognition capabilities, the progression and interest
in consumer applications of myoelectric control dwindled,
at least until recently.

Driven by the growing need to compute in rich environ-
ments such as mixed reality, myoelectric control has regained
interest as a general-purpose input modality [7]. Its potential
convenience, intuitiveness, and subtlety make it a partic-
ularly attractive solution for readily-available input within
ubiquitous computing environments. However, while this
technology is potentially more applicable than ever, signifi-
cant barriers exist to its adoption and exploration, particularly
outside prosthetics. For the continued development, progres-
sion, and maturation of myoelectric control for general-
purpose use, it needs to once again be made accessible to
a broader research audience. Correspondingly, we present
LibEMG, an open-source toolkit for exploring myoelectric
control.

LibEMG is an open-source Python library that aims to
facilitate the development of myoelectric control systems,
particularly for non-domain experts. To alleviate the barri-
ers hindering the exploration of this technology, LIbEMG
abstracts many challenges associated with developing myo-
electric control systems, including data processing, hardware
interfacing, feature extraction/selection, classification, post-
processing, and evaluation. Through its creation, LibEMG
makes this space accessible to a broader range of researchers
and practitioners, regardless of their expertise with EMG, sig-
nal processing, and machine learning. Moreover, LibEMG’s
documentation describes the API and provides explanations,
background, and pointers that additionally support expertise
acquisition. We also developed LibEMG based on the cur-
rent state-of-the-art practices from the myoelectric prosthesis
literature and enable extended functionality and control for
more expert users. Through this flexibility, we hope that
LibEMG will serve as a powerful tool that can be adopted by
developers, students, and researchers whose experience with
EMG ranges from novice to expert.

Il. BACKGROUND

A. ELECTROMYOGRAPHY

Electromyography (EMG) is a measurable representation of
the electrical activity resulting from the contraction of a
muscle. While multiple methods exist to measure these phys-
iological signals, such as through skin-implanted needles and
wires [8], surface EMG is the most common due to its conve-
nience and non-invasiveness [1]. By measuring, processing,
and passing the signals to machine learning algorithms, ges-
tural intent can be converted to interactive commands for
hands-free myoelectric control.

Initial myoelectric control schemes (i.e., conventional con-
trol) took a one-muscle one-function approach for device
control [1]. By placing electrodes on antagonistic muscle
pairs (e.g., the flexor and extensor forearm muscles) and
activating a controlled device when the amplitude of the

VOLUME 11, 2023

signal passed a predefined threshold, amputees could control
one function of a prosthesis (e.g., opening or closing a hand).
While these initial systems were simple and reasonably
effective, they required complicated mode-switching (i.e.,
the co-contraction of both antagonistic muscles) to increase
the input space (e.g., to switch a prosthesis between wrist
rotation and hand-open/close modes). In turn, learning to use
conventional control systems effectively was challenging and
required extensive training [9]. To increase the intuitiveness
and effectiveness of these control schemes, researchers turned
to approaches based on “‘pattern recognition” (i.e., machine
learning) [10], [11], [12], [13].

By using multiple electrodes to measure EMG across
several muscle sites [8], pattern recognition leverages the
synergistic behaviour of muscles when they are contracted.
Machine learning algorithms can categorize repeatable and
separable muscular inputs into classes (i.e., unique con-
tractions), which can act as input commands to a device.
For prosthesis control, these classes have traditionally cor-
responded to physiologically appropriate inputs (i.e., where
the recognized contraction corresponds to a similar device
control). For example, the hand open and close classes would
correspondingly open and close the prosthetic device. Con-
tinuously classifying these contractions based on predefined
window size and increment (i.e., update rate) to control a
prosthesis in real-time, as proposed by Englehart and Hud-
gins [10], is the foundation of today’s commercially available
pattern recognition-based myoelectric control (e.g., Coapt!
and Ottobock?).

Modern day continuous myoelectric control schemes can
be summarized in four stages, as highlighted by Scheme
and Englehart [1]: data preprocessing, windowing, feature
extraction, and classification. First, EMG enters the sys-
tem, and unwanted noise (i.e., signal contaminants), such
as powerline interference and motion artifact, is filtered.
Next, due to the stochastic and random nature of EMG,
it is split into windows (i.e., a predefined amount of data
samples) with specified increments (i.e., the time that elapses
before capturing the next window). For prosthesis control,
the window size and increment are short [14] (in the order
of milliseconds) to enable continuous and constant control
over a device, enabling amputees to micro-adjust their pros-
thesis. In the third step, features are computed from each
window to increase the information density of the under-
lying signal before being passed into a machine learning
algorithm that differentiates between them and outputs a class
label corresponding to one of the N classes used to train
the system. Finally, these outputs are converted into device
commands and combined with proportional velocity-based
control approaches [15] — where contraction intensity dic-
tates the device speed — enabling amputees to control their
prostheses.

1 https://coaptengineering.com
2https://WWW.ottobock.com/
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B. EMG IN HCI

The success of leveraging EMG for prosthesis control ulti-
mately led to its exploration by HCI researchers in the early
2000s [3], [4], [5]1, [16], [17], [18]. Before this, surface EMG
devices were cost-prohibitive, tethered, and primarily used
for medical purposes. Additionally, the release of commer-
cially available wearable devices, such as the Myo Armband
in 2014 [6], made the exploration of this technology for novel
hands-free interactions possible for the broader research
community. Since then, myoelectric control has been lever-
aged for various general-purpose applications such as piano
augmentation [19], drone control [20], gaming [9], hands-
full input [21], and mixed reality interactions [22]. Simul-
taneously, the HCI community has also contributed novel
work and applied their expertise to inform prosthetics-related
research through training tools [9], [23], [24], alleviating
phantom limb pain [25], and improved prosthesis design [26].
However, regardless of the uptake and interest in this technol-
ogy, both commercially [27] and academically, the adoption
of myoelectric control for general-purpose use is still lim-
ited [7].

From understanding the physiology underlying the
stochastic EMG signal, the processing techniques required
for its interpretation and the machine learning needed for
classifying user intent, myoelectric control is inherently com-
plex. In turn, developing control systems with real-world
viability is challenging. This presents a significant barrier,
especially for researchers and system developers unfamiliar
with this technology, and may even dissuade some from pur-
suing it completely. Recent work by Eddy et al. [7] supports
the notion that a considerable challenge to the adoption of
EMG is that its robust exploration is challenging, and design-
ing control systems requires considerable EMG-specific
domain knowledge. In turn, they emphasize that to facili-
tate the eventual adoption of EMG for general-purpose use,
its principled and well-informed exploration must be made
accessible to the broader research community, including HCI
researchers. In particular, they highlight the need for toolkits
that enable non-domain experts to explore this technology.
This would enable research practices around interactive
general-purpose EMG applications to mature, and it would
allow researchers outside prosthetics to contribute and apply
their expertise to advance prosthetics-focused research in new
directions.

C. TOOLKITS

One solution to improve accessibility for complex areas of
research is through the development of toolkits. Ledo et al.
defines toolkits as ““generative platforms designed to create
new interactive artifacts, provide easy access to complex
algorithms, enable fast prototyping of software and hard-
ware interfaces, and/or enable creative exploration of design
spaces” [28]. Many toolkit examples exist for facilitating
research, such as for exploring electrical muscle stimula-
tion [29], haptics [30], mixed reality development [31],
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autonomous driving [32], and outlier detection [33]. More
specifically, several toolkits have been developed for ges-
ture [34], [35], [36] and activity [37] recognition using IMU
sensors and cameras. However, to the best of our knowledge,
no toolkits (other than EMBody [38] and BioPatRec [39])
exist for facilitating the development of myoelectric control
systems.

Although an excellent starting point, EMBody’s contri-
bution stands primarily in its open-access hardware design
and goal of enabling HCI researchers to explore EMG as an
input modality. However, EMBody’s limitation is that it was
created with a predefined and rigid myoelectric control sys-
tem. For example, by default EMBody only supports a single
classifier (SVM) and feature (root mean square). We believe
that a library for designing and developing myoelectric con-
trol schemes should include robust signal processing, feature
selection and extraction techniques, algorithmic implemen-
tations, and effective evaluation opportunities. Moreover,
it should be usable and facilitate the thorough exploration
of myoelectric control through shared datasets and hardware
integration.

BioPatRec, an EMG toolkit released in 2013, was an early
attempt within the prosthetics community to create a shared
platform for myoelectric prosthesis control research. Cor-
respondingly, the release of this toolkit and its associated
dataset led to many contributions within the prosthetics field,
highlighting the impact these tools can have on a research
community. However, while this toolkit supports offline and
online analysis, various classifiers, and features, its rigid UI-
based structure, lack of support for commercial hardware,
focus on prosthesis control, and requirement for Matlab
licensing mean its adoption outside of prosthesis control
research (such as in HCI venues) never occurred.

In this work, we lean on EMBody and BioPatRec as con-
ceptual starting points and extend their use in new directions
guided by experts from both the prosthetics and HCI fields.
We strive to expand upon the foundational work of both
tools and provide a new tool for enabling robust EMG-based
interactions through a feature-rich library grounded in the
latest research in prosthetics and inspired by widely used
libraries such as scikit-learn [40] and LIBSVM [41].

Ill. LibEMG DESIGN

We designed LibEMG with the primary goal of enabling
researchers outside prosthetics to explore myoelectric control
as arobust and reliable hands-free input modality for general-
purpose applications. We also hope that it serves as a new
scalable platform upon which ongoing advancements in myo-
electric control can be built. By combining the expertise of a
prosthetics lab and an HCI lab into a shared library, we have
created a common resource for exploring and evaluating
EMG-based interactions. After outlining the pipeline archi-
tecture, each module was designed, developed, and tested
independently. For several modules, including the Feature
Extraction, Feature Selection, and Filtering modules, source
code used as part of previously published work from our
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FIGURE 1. The six main steps (modules) of the pipeline for developing EMG-based interactions using LibEMG. The dashed borders indicate that the

modaule is an optional step in the pipeline.

labs was leveraged as a starting point. Additionally, through
the design and development of ongoing studies, the set of
examples (see Section V), and feedback from others within
and outside the lab, the library incrementally evolved until
we felt it had the reliability, flexibility, and usability required
for deployment. We hope that through the release of this
library, myoelectric control can continue to mature to the level
required for its widespread adoption within the consumer
market.

A. DESIGN GOALS

In this section, we highlight and explore the four design goals
that guided the development process of LibEMG: usability,
accessibility, reliability, and reproducibility.

1) USABILITY

Several factors, from signal processing to machine learning,
make the design and development of EMG-based interac-
tions challenging. LibEMG strives to abstract these compli-
cations and reduce the domain knowledge required for the
robust exploration of this technology. Moreover, it simul-
taneously enables the development of more complicated
interactions for expert users that may have more familiarity
with myoelectric control. With this in mind, the goal was to
develop a highly usable library to support a wide spectrum
of potential end users (from novices to experts). Correspond-
ingly, a significant usability requirement of LibEMG was a
robustly documented API® with several working demo sys-
tems. We modeled this documentation after scikit-learn [40],
a popular Python library for machine learning, and examples
from previous works published in IEEE and ACM venues.
Moving forward, this documentation (including the user
guide, AP, and examples) will act as a living extension of this
paper. Additionally, we promote usability by having default
integration with common EMG devices (initially we support
four: the Myo Armband, Delsys Trigno/Avanti, SIFI Bioarm-
band, and gForcePro+ EMG Armband), and inclusion of an
initial collection of pre-recorded datasets. Ultimately, this
reduces the overhead typically required for exploring this
technology and enables the community to focus on design-
ing interactive systems rather than on the control schemes
themselves.

2) ACCESSIBILITY
To ensure an accessible library for all interested researchers,
LibEMG is implemented in Python, is fully open source,

3 https://libemg.github.io/LibEMG/
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requires no licenses, is publicly documented, and is operating
system agnostic. We chose Python as it is free, easy to use,
popular, and has become a common environment for machine
learning — a fundamental component of deciphering user
intent from EMG. Not only is all the code* open-source, but
the library itself is available for download via PyPI (i.e., pip
install libemg). Additionally, due to the modular nature of this
library, we have made each pipeline component accessible to
developers. Therefore, the entire pipeline pictured in Figure 1
or any of the individual blocks can be leveraged based on the
developer’s needs.

3) RELIABILITY

One major limitation of previous work is that control systems
have often lacked the perceived robustness and intuitiveness
required for consumer-level use. Due to the challenges of
processing and handling EMG, developing reliable control
systems is inherently challenging. Therefore a goal for this
library was to facilitate the design of myoelectric control
systems beyond the standards set of other EMG toolKkits, like
EMBody and BioPatRec. To achieve this goal, LIbEMG was
designed and developed by HCI researchers experienced with
numerous interactive technologies, system evaluation, and
toolkit research. Additionally, it was co-developed by domain
experts with years of experience implementing myoelectric
control systems for powered prostheses. By providing a reli-
able tool for designing and developing myoelectric control
systems, shared across both HCI and prosthetics, we hope
this technology can finally mature to a level where it can
complement or even compete with other hands-free input
modalities such as computer vision or IMU-based inputs.

4) REPRODUCIBILITY

While reproducibility has recently garnered increased atten-
tion from the research community [42], [43], it is inherently
challenging for EMG-focused research for several reasons.
Different hardware, datasets, algorithmic implementations,
and signal-processing techniques make the validation, cor-
roboration, and extension of work difficult. This is especially
true when the data and code are unavailable, making the
reproduction of results challenging or sometimes impossible.
Inevitably, this makes building off of previous work difficult
and limits the uptake and maturation of this technology.
LibEMG strives to bridge this gap and promotes repro-
ducible research in several ways. First, we include several
datasets (see Section III-C2) to facilitate the comparison of

4https:// github.com/libemg/libemg
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techniques on a standardized baseline. Secondly, the develop-
ment pipeline acts as a form of documentation for understand-
ing the implementation details of a particular control system.
Thirdly, by providing developers with a shared tool for
recording data, we can improve consistency among datasets,
improving the reproducibility of results. We hope that through
the development of a shared library, LIbEMG can indirectly
promote the advancement toward more reproducible research
around myoelectric control.

B. CORE MODULES

As depicted in Figure 1, LibEMG consists of six core
modules: Data Handling, Filtering, Feature Extraction, Fea-
ture Selection, Classification, and Evaluation. These steps
are consistent with those proposed by Eddy et al. in [7] for
developing myoelectric control systems for general-purpose
applications. In this section, we explore the functionality and
purpose of each of these modules. Note that this section is
simply an overview of each module, highlighting a subset
of their functionality. A more thorough overview of each
module, including additional functionality, can be found in
LibEMG’s API documentation.

1) DATA HANDLER

When developing myoelectric control systems, EMG data are
required to train models, make real-time predictions, and run
analyses. The job of the DataHandler module is to deal with
and process all of this data, which is either stored in offline
datasets (through the OfflineDataHandler) or streamed in
real-time (through the OnlineDataHandler).

When performing offline analyses, a significant up-front
time investment is writing the code to parse through a dataset,
accumulate the contents of each data file, and store them in
memory correctly. This is especially true for publicly avail-
able EMG datasets, as they often adopt completely different
file and folder structures and naming conventions. We have
greatly reduced the challenges associated with this process
through the OfflineDataHandler. Using regular expressions,
we simplified the process of accumulating data files and
extracting metadata when it is contained in the file path.
For example, in dataset/participant_1/training/R_1/C_1.csv,
we can accumulate all files and then split the data into differ-
ent participants, training/testing sets, reps, and classes, since
all of this metadata exists in the file path. Also built into the
OftlineDataHandler is the ability to split data into windows of
a specified length and increment, as is typical for myoelectric
control. Although this tool is not fully compatible with all
data formats, we analyzed and took motivation from several
pre-existing datasets. Data in other formats, such as .mat
files, can be converted to compatible datasets by converting
the files to a compatible (.csv or .txt) format. We took this
approach to interface the Nina Pro datasets (i.e., we convert
the .mat files to .csv files). Conveniently, when creating
datasets with LiIbEMG, data are saved in a consistent format
by default, standardizing the overall data storage process.
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collection of real-time EMG data.

The OnlineDataHandler is responsible for collecting,
processing, and storing all EMG data streamed from a device
in real-time. As depicted in Figure 2, the architecture consists
of two main components, a UDP streamer, and a UDP listener.
Since these two components are mutually independent and
run in different processes (i.e., threads), this architecture is
hardware agnostic and acts as a middle layer between the
library and the hardware device. Therefore, for any device not
integrated into the library already (e.g., a custom hardware
setup), a simple UDP streamer (see Section III-C1) can be
created to connect a device and leverage the toolkit’s func-
tionality. The job of the UDP streamer is to continuously
listen to an EMG device for new data. Often this data is
streamed over BLE-enabled devices such as the Myo Arm-
band. For every new sample of data (a single reading across
a set of channels/electrodes), the UDP streamer writes it to
a pre-specified UDP port, and the UDP listener continuously
listens on this port and updates an internal buffer with the
new data. Ultimately, these data are used for several purposes,
such as creating datasets, making predictions, or depicting
real-time visualizations. Furthermore, to reduce the burden on
developers using this library, we have implemented the UDP
streamers for some common hardware (see Section III-C1).

2) FILTERING

The Filtering module of LibEMG is crucial for designing
systems with consistent performance across various situ-
ations (e.g., during electrode shift or in the presence of
powerline interference). As the EMG signal is stochastic,
we want to minimize external sources of noise common in
real-world use that can overshadow the gesture-specific infor-
mation required to decipher user intent. For example, EMG
measurements are often inundated by powerline interference
(50/60 Hz noise) due to proximity to wired electronic devices
and the human body acting as an antenna. Further, during
movement of the limb and, correspondingly, measurement
equipment, the contact characteristics between the electrodes
and the skin change, resulting in low frequency (<20 Hz)
motion artifacts to the signal. The Filtering module was
designed to remove this frequency-localized noise from the
signal and improve the downstream classification.

Filtering can be applied as a stand-alone component on
data external to the pipeline, can be used directly on datasets
through the OfflineDataHandler, or can be passed to an
OnlineDataHandler to perform filtering on a live stream of
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FIGURE 3. A built-in visualization of the effect of a fourth-order notch filter for powerline interference removal on the time series and frequency

spectrum of a single EMG channel.

data. The filter component requires first installing the desired
filters and provides an easy way of designing the filters
through passing in dictionaries with interpretable keys like
name (e.g., notch, lowpass, highpass, bandpass, or bandstop),
cutoff (i.e., the boundary of where the filter operates), and
order (i.e., the rate at which energy is removed from the
frequency band). Although LibEMG supports the exploration
of a variety of filters, it also includes a method to install a
set of filters recommended in prosthetics research to combat
common noise sources, such as the aforementioned powerline
interference and motion artifact. Figure 3 shows the effects
of the filtering module on removing 60 Hz powerline inter-
ference in the time domain (i.e., the evolution of the EMG
signal over time) and frequency domain (i.e., the energy of
the signal across frequencies).

Another form of signal conditioning supplied through the
filter component is channel-wise standardization. For stan-
dardization, the mean and standard deviation of each channel
is computed from an OfflineDataHandler and stored for later
transformations. The standardization can be helpful for deep
learning applications where the ideal range of input values is
near -1 to 1; however, establishing a uniform range for inputs
will also make the default parameters of feature extraction
arguments more viable (see Section IV-C).

3) FEATURE EXTRACTION

After collecting, filtering, and segmenting the data, fea-
tures can be extracted from each window using the Feature
Extraction module to increase the information density of
the underlying EMG signal. Numerous studies have ana-
lyzed features, and their combination (i.e., feature sets), for
optimal performance [44], [45], [46], [47]. Understanding
the optimal features/groups to use can often be challenging
and even daunting. Moreover, after deciding on the feature
set, implementation poses a significant programming burden.
To alleviate these challenges, we provide developers with
a list of 50 features (see Table 1) and 11 feature sets (i.e.,
combinations of individual features that have been identified
as beneficial combinations in previous work; see Table 2).
All features included are from the frequency domain, time
domain, or time-frequency domain and have been suggested
for myoelectric control in prior work. Additionally, each
feature’s implementation has been thoroughly validated and
tested. Since this module stands independently from the rest
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of the pipeline, it can be leveraged to extract features from
any time series, EMG or non-EMG related. Finally, as part
of this module, LIbEMG includes a function for visualizing a
variety of projections (e.g., PCA) of the feature space (see
Section IV-A). This tool is useful for reducing the dimen-
sionality of a dataset down to two dimensions to facilitate
visualization.

4) FEATURE SELECTION

The Feature Selection module provides an optional assess-
ment after data collection to provide developers with a means
to search for an information-dense subset of features (not
unlike the aforementioned feature groups) from the features
provided in the library. Six metrics for feature group opti-
mization, based on sequential forward selection, are incor-
porated by default within the library: accuracy, active error,
repeatability index, separability index, mean semi-principal
axis length, and feature efficiency [68]. The output of this
component provides a feature ranking and the associated
metric values, which can be used to decide the set of features
for classification. Essentially, this module can select a feature
group that optimizes one of the aforementioned metrics for
a given problem. Although optional, this module is ideal for
more complex analyses that require custom-tuned feature sets
or feature comparisons.

5) CLASSIFICATION

To enable the classification of a diverse set of muscle-based
inputs, researchers have turned to machine learning tech-
niques. Using the features extracted from the Feature Extrac-
tion module, algorithms can discriminate between muscle
patterns. To facilitate this process, LIbEMG’s Classification
module wraps the popular Python library for machine learn-
ing, scikit-learn [40]. This provides access to robust algo-
rithmic implementations for expert users, as they can pass in
all the same parameters accessible through scikit-learn, while
simultaneously alleviating the challenges for those with less
experience by incorporating default parameters. An exam-
ple of these parameters includes the optimal k-value for a
KNN classifier. We also acknowledge that many researchers
will have custom algorithm implementations, including deep
learning models, that they wish to use within LibEMG’s
pipeline. To accommodate this, we designed the EMGClas-
sifier module to accept any classifier as long as it follows
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TABLE 1. List of features available to be extracted and used as input to the classification module.

[48] Mean Absolute Value (MAV)

[49] Median Frequency (MDF)

[48] Zero Crossings (ZC)

[49] Mean Frequency (MNF)

[44] Slope Sign Changes (SSC)

[50] Mean Power (MNP)

[44] Waveform Length (WL)

[44] Maximum Peaks (MPK)

[46] L-Score (LS)

[51] Discrete Time Fourier Transform Representation (DFTR)

[52] Maximum Fractal Length (MFL)

[53] Skewness (Skew)

[46] Mean Squared Ratio (MSR)

[53] Kurtosis (KURT)

[48] Willison Amplitude (WAMP)

[54] Root Mean Squared Phasor (RMSPHASOR)

[3] Root Mean Square (RMS)

[54] Waveform Length Phasor (WLPHASOR)

[48] Integral Absolute Value (IAV)

[44] Peak Average Power (PAP)

[55] Difference Absolute Standard Deviation Value (DASDV)

[56] Multiplication of Peaks (MZP)

[48] Variance (VAR)

[44] Spectral Moment (SM)

[44] Temporal Moment (TM)

[57] Integral Square Descriptor (ISD)

[58] First Temporal Moment (MO)

[57] Coefficient of Regularization (COR)

[58] Second Temporal Moment (M2)

[48] Log Detector (LD)

[58] Fourth Temporal Moment (M4)

[45] Mean Absolute Value First Difference (MAVFD)

[59] Activation (ACT)

[44] Mean Absolute Value Slope (MAVSLP)

[59] Complexity (COMP)

[60] Fuzzy Entropy (FUZZYEN)

[58] Sparsness (SPARSI)

[61] Sample Entropy (SAMPEN)

[58] Irregularity Factor (IRF)

[57] Mean Difference Derivative (MDIFF)

[58] Waveform Length Factor (WLF)

[57] Mean Logarithm Kernel (MLK).

[62] Autoregressive Coefficient 4 (AR4)

[59] Mobility (MOB)

[62] Autoregressive Coefficient 9 (AR9)

[63] Cepstral Coefficient (CC)

[64] Wavelet Energy (WENG)

[64] Wavelet Variance (WV)

[64] Wavelet Waveform Length (WWL)

[64] Wavelet Entropy (WENT)

TABLE 2. Feature Sets: Predefined groups of features that have been identified in previous work as being useful for classification purposes.

Feature Set

Features

[65] Hudgins’ Time Domain (HTD)

MAV, ZC, SSC, WL

[47] Low Sampling Frequency 4 (LS4)

LS, MFL, MSR, WAMP

[47] Low Sampling Frequency 9 (LS9)

LS4, ZC, RMS, 1AV, DASDV, VAR

[58] Time Domain Power Spectral Descriptors (TDPSD)

MO, M2, M4, SPARSI, IRF, WLF

[66] Time Domain Autoregressive (TDAR)

MAV, ZC, SSC, WL, AR4

[45] Topologically Selected Time Domain (TSTD)

MAVED, DASDV, WAMP, ZC, MFL, SAMPEN, TDPSD

[57] Inverse Time Domain Features (ITD)

ISD, COR, MDIFF, MLK

[59] Hjorth Parameters (HJORTH)

ACT, MOB, COMP

[67] Combined (COMB)

WL, SSC, LD, AR9

[51] Discrete Fourier Transform Representation (DFTR)

DFTR

[64] Multi-Signal Wavelet Transform-Based Feature Set (MSWT)

WENG, WV, WWL, WENT

the scikit-learn standard and has a .fit(), .predict(), and
.predict_proba() function. Therefore, with minimal effort,
custom classifiers can be passed to the pipeline to leverage
its functionality.

This module can be split into the EMGClassifier and the
OnlineEMGClassifier. The main difference is that the Onli-
neEMGClassifier leverages the OnlineDataHandler to read
live data and output real-time predictions over a pre-specified
UDP or TCP port. Additionally, it handles the buffering of
windows, feature extraction, and prediction streaming. This
socket-based design enables any application, including mixed
reality devices such as the HoloLens, to leverage the output
from the library through a UDP or TCP protocol. In contrast,
while the EMGClassifier is for running offline analyses and
is partially a wrapper for scikit-learn, its true advantage is that
it has post-processing built in. The goal of post-processing is
to improve the classifier’s decision after a prediction by lever-
aging additional contexts such as confidence (i.e., rejection)
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or previous predictions (i.e., majority voting). Currently,
LibEMG supports rejection (i.e., rejecting decisions with low
confidence) [69], majority voting (i.e., applying a majority
vote to the past N decisions) [70], and proportional control
(i.e., outputs a speed between 0-1 corresponding to the con-
traction intensity) [15].

6) EVALUATION

Evaluating myoelectric control systems is challenging, and
although there is a tendency to favour offline evaluation (i.e.,
recording contractions and evaluating classification accuracy
using previously collected data), recent work suggests that
these offline analyses are not necessarily representative of
online usability [68], [71], [72]. For myoelectric control sys-
tem evaluation, this is especially true outside of lab-based
settings where several factors, including varying limb posi-
tion [73], fatigue [74], and electrode shift [67], ultimately lead
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FIGURE 4. The supported hardware (at time of submission). From left to right, the (1) Myo Armband, (2) SIFI Labs Bioarmband, (3) Delsys

Trigno and Avanti, and (4) gForcePro+ EMG Armband.

to varied EMG signals and system degradation. Regardless,
offline analysis is commonplace in prosthetics research due to
ease and accessibility, the expense of prosthesis fittings, chal-
lenging hardware setups, and difficulties recruiting amputee
participants. This has influenced the evaluation of general-
purpose applications, since running online studies adds addi-
tional complexities to studies. As a result, there is currently
an over-reliance on offline metrics, such as classification
accuracy, for evaluating these systems. With this in mind,
the Evaluation module provides developers with a common
set of offline evaluation metrics for running offline analyses.
While these metrics may not fully predict the real-world via-
bility of a control system, they are valuable for control system
tuning (i.e., testing different parameters such as the window
size/increment, classifier, or rejection) before deploying the
system. This enables developers to optimize their control
systems using offline data before running online usability
studies.

Although this module focuses on the offline evaluation
of control systems, researchers should use it with its lim-
itations in mind. Moving forward, there needs to be more
of a focus on evaluating the online usability (i.e., how a
system performs when the user gets to interact with it) of
a designed control system. As this technology continues to
progress toward its use for general-purpose applications, sys-
tem evaluations will inevitably become application specific.
For example, a control system designed to navigate a menu
should be evaluated for that particular use case. Generally,
the best method to evaluate control schemes is to deploy the
system and evaluate its use with user-in-the-loop feedback
(i.e., where the user gets feedback and makes decisions based
on the control system’s output). LibEMG provides all of
the functionality to do this through the OnlineEMGClassi-
fier. Additionally, we provide a full testing environment in
a version of the ISO 9241-9 (pointing device assessment
— Fitts’ Law test) [75] (see Section V-D), which has been
adopted in prosthetics research for evaluating the online
performance of myoelectric control systems (by mapping par-
ticular muscle contractions to the movement of an onscreen
cursor).

C. SUB MODULES
To provide developers with access to convenient functionality
that is not part of the core pipeline, we present a group
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of sub-modules: streamers, datasets, and data collection.
We explore the functionality of each of these sub-modules
below.

1) STREAMERS

With the current state of myoelectric control for general-
purpose use and the commercial discontinuation of the
Myo Armband, a range of different sensors are used across
research labs. Some have custom hardware setups, oth-
ers use expensive biomedical-grade equipment, a few have
access to un-released commercial devices, and many con-
tinue to use the discontinued Myo Armband. Developing
an interface for all these different technologies would be
unfeasible, so instead, we designed LibEMG to be hardware
agnostic. However, to facilitate the development process and
improve usability, LIbEMG includes a streamers sub-module
(see Figure 4), to interface with commonly used hardware
including the Myo armband, SIFI Labs Bioarmband,® the
gForcePro+ EMG Armband,® and the Delsys’ Trigno and
Avanti. Therefore, anyone interested in using these devices
can interface with them directly through the library’s API
with a single function call. These streamers are simply pre-
defined code for streaming data over UDP, adhering to the
architecture defined in Section III-B1. As new EMG devices
are released to the public and become widely adopted, the
library will be updated to support them.

2) DATASETS

While EMG dataset repositories currently exist, such as Kag-
gle,® Physionet,” and IEEE Dataport,'” no previous work
has integrated them directly into a library that automatically
downloads, extracts, and loads them into a pipeline for even-
tual classification. Ultimately, this alleviates many of the
challenges associated with interfacing datasets, including the
significant up-front time investment. LibEMG provides four
datasets by default, with plans to incorporate more in future
releases. This dataset integration was a crucial design consid-
eration, as the overhead required for parsing and downloading

Shitps://sifilabs.com/bioarmband/
6http://www.oymotion.com/en/product32/ 149
7https://delsys.com/

8https J/Iwww.kaggle.com/
9https://physionet.org/
lOhttps://ieee-dataport.org/
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FIGURE 5. The three main components of the data collection module. From left to right: (1) the gesture library consisting of 35 distinct HCI gestures, (2)

the main menu of the data collection screen, (3) the data collection screen.

data from different locations is a significant burden. Including
a shared repository of datasets for all researchers to use serves
two purposes: (1) it makes accessible the exploration of this
technology for researchers that do not have the time or means
required to acquire or interface datasets, and (2) it serves as a
common set of data (or baseline) for researchers to compare
their results, improving transparency and reproducibility in
this field. The datasets currently supported in LIbEMG are
summarized in the API documentation. To comply with data
usage permissions, the Nina Pro datasets must be downloaded
manually from their website.

3) DATA COLLECTION

Data Collection is used to acquire data (i.e., datasets) for
future offline analysis or to train a model for real-time inter-
actions. Usually, this occurs through screen-guided training,
where users are prompted with a particular image represent-
ing a contraction that they elicit for a predefined amount
of time. Typically these prompts last between two to five
seconds and are repeated for several repetitions. In general,
more repetitions lead to more variability and, in turn, better
models, but they come at the cost of tedious training. LIbEMG
enables this data collection through a simple user interface
pictured in Figure 5. In this data collection UI, developers can
customize the number of reps, time per rep, and time between
contractions. Once these values are selected, this module will
record the live data from the OnlineDataHandler and save
them in csv files for future processing.

Additionally, with the release of LibEMG, we provide a
standardized gesture repository,!! consisting of 35 gestures,
including both static (i.e., photos) and dynamic (i.e., videos)
gesture representations. For example, the wrist-flexion class
is represented in its static form as wrist flexion through an
image and its dynamic form (i.e., a wrist flick) through a
video. This ensures consistency among studies reliant on
data collection and reduces the requirement for manually
acquiring these images or videos. These gestures can be

1 https://github.com/libemg/LibEMGGestures
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downloaded directly from the GitHub repository or through
the API by specifying a set of indices (where each gesture
is associated with a unique index). Additionally, LIbEMG
supports the use of custom images for added flexibility and
convenience. In turn, this provides developers with all the
tools required for simple screen-guided training to acquire
EMG data.

IV. OFFLINE DEMONSTRATIONS

While LibEMG strives to facilitate the development of online
interactive systems, offline analysis is nevertheless crucial.
Inevitably, the creation of robust interactive systems starts
at the algorithmic level before funneling down to the online
control system. This process of testing different algorithms,
features, and filtering strategies on offline data before deploy-
ment is referred to as control system tuning. In this section,
we present four offline demonstrations: (1) a simple intro-
duction to offline analysis, (2) a more thorough review of
LibEMG’s features and feature sets on a Nina Pro database,
(3) a method for extracting optimal feature parameters, and
(4) a deep learning example. These demonstrations serve as
a starting point to highlight some of LibEMG’s functionality
for running robust offline analyses and system optimization.
A more thorough walkthrough of each example, including
step-by-step design and code, can be found in the API docu-
mentation:

(A) LibEMG_OneSubject_Showcase

(B) LibEMG_Feature_Showcase

(C) LibEMG_FeatureOptimization_Showcase
(D) LibEMG_DeepLearning_Showcase

A. SIMPLE OFFLINE ANALYSIS

One goal of LibEMG is to enable the initial exploration of
myoelectric control systems with minimal setup time. In this
example, we demonstrate the core functionality of LIbEMG
through a straightforward offline analysis of a single partici-
pant by leveraging the OneSubjectMyoDataset. We compare
the classification accuracy, active error, and instability of five
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FIGURE 6. Offline accuracy of the individual features and feature sets included in LibEMG computed for a single subject in the NinaPro
DB8 dataset. Blue bars represent individual features and red bars represent feature sets.

classifiers (LDA, SVM, KNN, RF, and QDA) on a five-class
problem: hand open/close, wrist flexion/extension, and rest.
Six reps (i.e., three trials) are used for training and six reps for
testing. The classification accuracies achieved using the HTD
feature set were 98.5%, 97.6%, 97.7%, 98.0%, and 98.9%
respectively for the LDA, SVM, KNN, RF, and QDA classi-
fiers. Additionally, we demonstrate some of the visualization
functionality of the library by plotting the PCA feature space,
exemplified in Figure 7. This is a common approach used
in machine learning research to visualize a dataset’s feature
space by reducing its dimensionality to 2D (i.e., two principal
components).

PCA Visualization
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FIGURE 7. The PCA feature space of the OneSubjectMyoDataset
representing the training (.) and testing data (+).
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B. FEATURE AND FEATURE SET EVALUATION

A major benefit of LIbEMG is the robust library of validated
features and feature sets. When designing a control system,
choosing the best subset of features for a given problem is
challenging because of the large number and combination of
options. Only a small subset of features should be used at
run-time to minimize computational complexity and redun-
dancy. While this subset can be determined automatically
using the feature selection module (section III-B4), designers
can also manually assess which of the individual features
and feature sets are beneficial as a first step during the con-
trol system tuning stage. For an example of such a process,
a popular finger movement dataset (NinaPro DB8) was used
to demonstrate a simple offline analysis of the accuracy of
individual features and feature sets. Although classifying the
different motions within this dataset is challenging due to the
many classes required to represent both flexion and extension
of the digits, Figure 6 shows the accuracies obtained using
rather naive models based on single features and the included
feature sets. Although this initial offline performance would
not necessarily be viable for a real-world control system,
it could be improved by filtering, constructing a more robust
feature set, optimizing the parameters of the feature extrac-
tion module, or implementing more advanced classification
models. Note that this example can be easily extended to
different datasets, as highlighted by the analysis of Nina Pro
DB2 in the same repository.

C. DETERMINING OPTIMAL FEATURE PARAMETERS

Although myoelectric potentials typically range from the
micro to milli-volt range, different devices amplify raw
potentials to different ranges. Inevitably, this impacts the
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feature extraction module as it relies on predefined param-
eters (such as the threshold for slope sign changes). Since
the feature extraction module was optimized for the Delsys
Trigno and Myo Armband systems, some features reliant on
these thresholds may not be optimal on different hardware.
We recommend tuning these default arguments used by the
feature extraction methods to get the best performance possi-
ble. In this example, we leverage the 3DCDataset to demon-
strate the feature parameter tuning process. The Willison’s
amplitude (WAMP) feature is commonly used in myoelectric
control and corresponds to the total number of times the
magnitude of the derivative exceeds some specified threshold
within a window. Selecting an appropriate threshold for this
feature can drastically influence a system’s performance. So,
in this example, we provide the foundational process for
optimizing feature parameters, a useful strategy in general for
feature parameter selection. To do this, we iteratively test a
range of thresholds, and through a visual inspection, we can
make an informed selection of the ideal value. From Figure 8,
the optimal WAMP threshold of 92 resulted in an accuracy
of 89% on the validation set and 84% on the test set which
was drastically higher than other valid (non-error returning)
potential threshold values.

100
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FIGURE 8. The accuracy of different WAMP threshold values.

D. CUSTOM CLASSIFIERS: DEEP LEARNING

In the past offline examples, the library relied on classifiers
from the scikit-learn package to perform gesture recognition;
however, a custom classifier can also be integrated into the
pipeline if it has a fit, predict, and predict_proba method.
As an example of integrating a custom classifier, a PyTorch
convolutional neural network (CNN) that operates directly
on the raw windowed signals, as opposed to hand-crafted
features, was used within the EMGClassifier object. The first
four trials of the OneSubjectMyoDataset were used to train
the model weights, and the fifth trial was used as a validation
set. The performance on the held-out sixth trial was 95%
accuracy, 5% active error, and 2% instability. While this
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was a custom classifier, it could still use the post-processing
techniques provided by the EMGClassifier object, such as
obtaining a proportional control output or improving perfor-
mance metrics using rejection and majority vote. By adding
a rejection threshold of 90% confidence and a majority vote
window of three samples, the performance was improved
to 97% accuracy, 3% active error, and 0% instability while
rejecting 14% of the inputs.

This simple deep learning example can be extended to
more challenging problems, like cross-user gesture recog-
nition which tries to maintain the accuracy achieved by
within-subject models while not requiring the end-user to
provide their own data. Prominent strategies like adap-
tive domain adversarial neural networks [76], [77], subject-
specific normalization [78], and few-shot supervised domain
adaptation [79] have shown early success in this area. More-
over, with the flexibility to update model weights online,
related research areas like adaptive supervised strategies [80]
or reinforcement learning [81] can be explored.

V. ONLINE DEMONSTRATIONS

In this section, we present five online (i.e., real-world)
demonstrations of LIbEMG: (1) a simple continuous control
scheme to play Snake, (2) cross-platform use for a myo-
electric training game in Unity, (3) proportional control to
interface a mouse and play an online game, (4) an ISO Fitts’
evaluation tool for assessing the online performance of dif-
ferent classifiers, and (5) controlling a menu in mixed reality.
The goal of these demonstrations is to highlight LIbEMG’s
functionality and provide a starting point for future work.
An in-depth walk-through of each example, including code
and design decisions, can be found in the API documentation:

(A) LibEMG_Snake_Showcase
(B) LibEMG_Unity_Showcase
(C) LibEMG_Cursor_Showcase
(D) LibEMG_Isofitts_Showcase
(E) LibEMG_MixedReality_Showcase

A. SIMPLE CONTINUOUS CONTROL: SNAKE

Continuous control [10], where decisions are generated based
on a predefined parameter such as a time increment, is the
current commercial standard approach to prosthesis control.
These decisions are governed by the window size (i.e., the
number of samples) and the increment size (i.e., the number
of samples advanced before extracting a new window). For
prosthesis control, a classifier makes a prediction for each
window of data, typically on the order of 150-200 millisec-
onds, to provide amputees the responsiveness required to
micro-adjust their prostheses. In this example, we leverage
this type of control for a common HCI application — gaming.
To do this, we created an adapted version of the traditional
snake game using Pygame, a game development library for
Python. The player can move the snake up, down, left,
and right using hand open/close and wrist flexion/extension
muscular inputs. The goal of the game is to navigate the
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environment without the snake bumping into the wall or itself,
growing the snake as large as possible by eating food.

Score: 3

FIGURE 9. Leveraging continuous control to play a simple Pygame
rendition of Snake.

B. CROSS PLATFORM USE: UNITY

It may be desirable to use technology platforms other than
Python to develop applications that leverage myoelectric
control. For example, applications might be developed in
another programming language, such as C#, or on a com-
pletely different device, such as a mixed-reality headset or a
microcontroller. In this example, we interface LibEMG with
Unity, a 3D game development environment that is widely
used for VR/AR applications. To accomplish this, the Onli-
neEMGClassifier communicates over UDP or TCP, meaning
any environment or programming language that can open a
standard socket interface can communicate with LibEMG.
This example shows how to leverage the library in a simple
Unity game (The Falling of Momo [9] — borrowed from the
work done by Tabor et al. ) to create a myoelectric training
game for amputees. In this fall-down style game, players can
move the character left or right using wrist flexion/extension
and jump over barriers by making a fist.

FIGURE 10. Interfacing a myoelectric training game (The Falling of Momo)
in Unity.
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C. PROPORTIONAL CONTROL: MOUSE INTERFACE
Combined with continuous control, proportional velocity-
based control systems control the speed of an action based
on the contraction intensity. For example, an amputee using
this type of system can open their prosthetic hand very slowly
by performing a soft hand-open contraction. When it comes
to continuous movements, such as prosthesis control, or in
this example, cursor control, proportional control can dras-
tically improve throughput through speed modulation [15].
In this example, we use a proportional control system to
create a cursor interface for a desktop computer. Ultimately,
users can control the direction of the cursor through a
set of contractions (flexion/extension - left/right and hand
open/close - up/down) and its speed through contraction
intensity (a number between 0-1). Leveraging Pyautogui to
create mouse inputs, we are able to replace cursor movement
with muscle contractions and demonstrate its use by play-
ing snake.io, a third-party'? online game that is not unlike
our snake game. This example could be extended to any
cursor-based application and with minor modifications, could
recognize discrete inputs (e.g., finger taps) for left and right
mouse clicks.

o

FIGURE 11. Using proportional control to control a mouse and play an
online game.

D. ISO 9241-9 FITTS’ LAW EVALUATION ENVIRONMENT

Highlighted by previous work [68], [71], [72], offline evalua-
tion metrics, such as classification accuracy, are not necessar-
ily representative of the online usability of a control system
for various reasons such as fatigue [82], electrode shift [83],
varying contraction intensities [51], and closed-loop user
behaviours. As a result, online evaluation must become a
core part of interaction design studies to properly assess the
viability of a myoelectric control system, especially in HCI.
In this example, we introduce an ISO 9241-9 inspired Fitts’
test environment to evaluate the online performance of a myo-
electric control system with two degrees of freedom (up/down
and left/right). Fitts’ law evaluations are common for eval-
uating myoelectric control systems in prosthetics research,
as it provides an indication of real-world system viability
without the requirement of expensive prosthetics hardware.
In this example, we designed a mini experiment to compare

12https://snake.io/
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FIGURE 12. An online ISO 9241-9 inspired Fitts’ Law assessment tool for
myoelectric control.

the online performance of four classifiers (LDA, SVM, RF,
and KNN) using the metrics of Throughput, Efficiency, and
Overshoots proposed in [15]. Although not a formal eval-
uation, this demonstration is a potential starting point for
usability studies, in both HCI and prosthetics to build on
moving forward.

E. MIXED REALITY: MENU NAVIGATION

One of the main reasons for the renewed interest in EMG
as a general-purpose input modality stems from its applica-
bility to ubiquitous computing and mixed reality. With the
continued advancement of mixed reality technology, myo-
electric control may become desirable for several reasons.
First, EMG can be built directly into wearable devices such
as watches and bracelets making it a form of always-available
input. Second, myoelectric control can be used in situations
where computer vision might not be available, such as in
poor lighting conditions or when the hands are outside of the
view of cameras (e.g., in gloves). Finally, EMG can enable
more subtle gestures compared to movement-based input
modalities such as inertial measurement units or camera-
based approaches. This could make its use ideal in situations
where dynamic gestures are less socially acceptable (e.g.,
quickly dismissing a phone call in public). Regardless of its
promise, however, there has been little research on its use
in mixed-reality environments outside of private industry-
related work. This example demonstrates how LibEMG can
be leveraged to navigate a menu on the HoloLens 2. To com-
municate with the headset, we connect over TCP and enable
users to open/close the menu (hand open), scroll up and
down (flexion/extension), and make selections (finger tap).
Although simple, future work could extend this example
to enable readily-available hands-free input for any mixed
reality application (e.g., controlling a music application or
responding to messages).

VI. DISCUSSION

In this work, we have presented LibEMG, a library for
facilitating the development of robust myoelectric control
systems for “‘general-purpose applications” (i.e., the use of
EMG as input to interactive systems outside of prosthesis
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FIGURE 13. Mixed reality input on the HoloLens 2.

control). We hope that with the release of this library,
we can move toward more collaborative and reproducible
research, inevitably improving the robustness and reliability
of EMG technology as is required for its widespread adop-
tion. With the growing popularity of ubiquitous computing
and the inherent need for readily available inputs, particularly
within mixed-reality environments, an exciting opportunity
has arisen for this technology to be widely applied to many
new applications. In turn, we believe that this work and library
has come at an opportune time to enable researchers, par-
ticularly outside the traditional field of prosthetics, to apply
their expertise to help mature this technology to a level that is
competitive with or complementary to other input modalities
such as computer vision or IMU-based input. Regardless,
there is still a long way to go, both in this field and with this
library, and so in this section, we critique our own work to
better position its contributions.

A. EVALUATION BY DEMONSTRATION AND
CONTINUED LOCAL USE
Library (or toolkit) evaluation, as captured by Ledo et al. in
[28], is crucial for all toolkit-related research. Correspond-
ingly, one of LibEMG’s main contributions is its evaluation
by demonstration, where we showcase its use through four
offline and five online examples. The contribution of these
demonstrations is not the examples themselves, but that they
act as mini-projects for future work to build upon. Addition-
ally, the fidelity of the library was evaluated and validated by
analyzing its performance compared to previously published
work and code wherever possible. For example, the bench-
marks set in Section IV-B for Nina Pro DB8 and DB2 were
validated against those achieved on the same dataset in [84].
LibEMG is the culmination of our experiences in con-
ducting EMG research in the prosthetics field over many
years. While LibEMG may be new, we have been using its
constituent tools (e.g., scikit-learn) and the included datasets
daily as core parts of our daily research for some time. Now
that we have completed the first full version of LibEMG,
our lab (typically over a dozen researchers at any one time)
and other collaborating labs have begun to adopt the library.
Correspondingly, we expect to receive continued feedback
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and feature requests, leading to the continued maturation of
this library. Most importantly, however, we believe that the
true evaluation of LibEMG will occur after its public release
through continued feedback and constant iteration from an
even larger community.

B. A LIBRARY FOR DEVELOPING EMG-BASED
INTERACTIONS

From the very name of LibEMG, we have intentionally
positioned this work as a library (which we define as being
comprehensive, well-documented, and well-maintained),
as opposed to a toolkit (which does not have such require-
ments), with the hope that it will become adopted by the
greater research community, similar to LIBSVM [41] and
scikit-learn [40]. With this proposition, LibEMG offers a
set of resources outside the scope of toolkits and enables
the development of interactions beyond simple prototypes.
Firstly, it is a more general set of tools that can be applied
to develop a wide range of interactive systems. Secondly,
it includes a publicly documented API with a detailed user
guide that supports learning key EMG concepts and both
offline and online demonstrations. Moving forward, this liv-
ing documentation, which highlights functionality beyond
what was explored in this paper, will continue to serve as
a critical resource for developers interested in developing
myoelectric control systems. Thirdly, it will be available
for download via PyPI, making its integration into Python
environments trivial. Finally, since LibEMG is a tool that has
been adopted as a lab initiative to promote reproducibility and
transparency, we are committed to its maintenance moving
forward. Ultimately, we hope that this library can enable
researchers to begin focusing on the interactive aspects of
myoelectric control without having to worry about the design
and implementation of robust control systems. Ideally, this
will unlock a realm of potential future myoelectric control
research across various research fields.

C. ENABLING CROSS-FERTILIZATION BETWEEN HCI AND
PROSTHETICS

With the commercialization of machine learning-enabled
EMG prosthesis controllers (e.g., Coapt,'® Infinite Biomedi-
cal,'* and Ottobock!?), the growing popularity of mixed real-
ity technologies, and a need for readily available hands-free
input, myoelectric control may be more popular and desir-
able than ever before. However, its use for general-purpose
applications is still far away, partly because, until now, the
technology and techniques needed for building robust EMG
control have been largely inaccessible to researchers outside
prosthetics. LibEMG changes this by providing the tools
required to begin asking and answering the questions needed
for maturing this technology. For example, what gesture sets
will work best in mixed-reality environments? Moreover, how

13https://coaptengineering.com
14https://www.i—biomed.com/
15 https://www.ottobock.com/
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can we design user interfaces to better support users employ-
ing myoelectric control? We also hope this library opens up
research avenues for non-proshthetic researchers (e.g., HCI
researchers) to contribute their expertise to advancing and
maturing prosthetics research. For example, how can embod-
iment be improved between amputees and their prostheses?
Or, how can we create more robust and engaging training
tools for amputees? Ultimately, we hope that LibEMG can
open up previously inaccessible research opportunities to
enable the continued progression of this technology outside
of and within prosthetics.

D. CREATING HCI-SPECIFIC EMG CONTROL
LibEMG’s pipeline (i.e., Data Handling, Filtering, Feature
Extraction, Feature Selection, Classification, and Evaluation)
was directly inspired by the work in [7] for designing myo-
electric control systems for general-purpose HCI systems
(i.e., rather than for prosthesis control). Nevertheless, con-
tinued improvements to this library moving forward will be
crucial for its success. This is especially true as myoelectric
control in HCI continues to mature and consequently diverges
from prosthesis control. For example, LIbEMG currently only
supports continuous control schemes (i.e., where classifier
events are generated based on a predefined periodic param-
eter, such as a window increment). While discrete inputs,
such as a wrist flick, can be recognized within continuous
control schemes through post-processing state logic, it is
not necessarily optimal [7]. For example, to recognize a
wrist flick gesture, the decision stream would likely output
a sequence of “rest” (or inactive) decisions, followed by
some number of wrist flexion decisions, followed again by
more rest decisions. This decision stream would then have
to be mapped to the discrete event through some sequence
of filtering or state logic. Considering that HCI is full of
these event-based actions, such as flicks, swipes, gestures,
and button clicks, there is a need to incorporate fundamen-
tally different temporally aware classifiers that make sense in
the context of general-purpose use cases. Future work will
explore the implementation, evaluation, and integration of
more robust control schemes for recognizing discrete inputs.
Another area of improvement is that at the time of sub-
mission of this work, only four compatible devices and four
datasets are built into LibEMG by default. We plan to extend
this to a much larger repository of datasets (similar to Nina
Pro) with support for numerous EMG devices. However,
for the continued growth and improvement of this library,
we realize that community-wide adoption and feedback are
required. Additionally, enabling cross-user models may be
crucial to the future success of EMG technology in consumer
applications. Although LibEMG does not currently support
this functionality, it will be included in future releases.

E. OTHER USES OF LibEMG BEYOND MYOELECTRIC
CONTROL

Although LibEMG was designed using principles estab-
lished in EMG-based upper-limb prosthesis research, the
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customization available within the modules (e.g., filtering,
feature extraction, and classification), and the interfaces for
connecting to hardware and broadcasting predictions means
LibEMG could provide benefits to other uses of EMG and
research outside of myoelectric control.

The use of EMG in HCI is not limited to the control
of interactive systems through muscle-based input on the
forearm and wrist. For example, EMG has been studied in the
context of brain-computer interfaces [85]. Further, it has been
used for user identification as a biometric in the context of
security [86]. Other recent examples have shown compelling
examples of EMG used on the legs to control an avatar in
VR [87]. In these examples, much, if not all, of what we have
presented is applicable. Accordingly, LibEMG can facilitate
the principled exploration of exciting new uses of EMG for
system input beyond what we demonstrated in this work.

Additionally, many modern systems leverage human
intent or state-of-being decoded from different modalities
(e.g., inertial measurement units (IMUs), surface electroen-
cephalography (EEG), electrocardiography (ECG), and gal-
vanic skin response (GSR)) using similar modules to those
supplied by LibEMG. IMUs are currently being leveraged in
similar pipelines, such in the Apple Watch’s assistive touch
gestures, and is an ongoing area of research [88], [89]. Addi-
tionally, a large number of resources provided by the library
are used in brain-computer interfaces [90]. For example, the
EEG signal often undergoes the same windowing, feature
extraction, and classification process as EMG [91]. Likewise,
GSR or ECG use similar pipelines for detecting stress [92] or
pain [93] which can be valuable triggers to govern an affect-
aware human-computer interaction. We encourage the com-
munity to explore these broader applications using LIbEMG
and improve the library by enriching and extending its use
with best practices from other fields.

F. CONTRIBUTIONS

Contributions to improve and expand LibEMG can come in
a variety of ways. Firstly, as previously highlighted, we are
open to exploring the integration of additional datasets to
build a repository of validated datasets. For example, an ideal
dataset for a future release could have dynamic gestures such
as swipes, flicks, and gestures. Secondly, we are increasingly
interested in exploring new technology and are interested
in supporting more hardware, especially wearable devices.
Finally, we hope to receive continuous feedback from the
community to make LibEMG a tool adopted for all EMG
research (including for prosthetics). In turn, we hope that
LibEMG inspires a more collaborative, transparent, and
reproducible research community for all EMG-related work
moving forward.

VIl. CONCLUSION

This paper presents LibEMG, a library to facilitate the devel-
opment and evaluation of EMG-based interactions. With the
increased interest in novel hands-free input modalities for
ubiquitous environments such as mixed reality, myoelectric
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control has become increasingly desirable. However, its use
is still limited, partially because developing control systems
from the ground up is inherently challenging, especially
for non-domain experts. Through the release of this library,
we hope to alleviate the barriers surrounding myoelectric con-
trol so that researchers can continue to mature this technology
to reach the level of robustness and reliability required for its
eventual use as a widely used input modality for a range of
interactions and scenarios.

DATA AVAILABILITY
Documentation: Data and code are available online at
https://libemg.github.io/libemg.

ACKNOWLEDGMENT
(Ethan Eddy and Evan Campbell are co-first authors.)

REFERENCES

[1] E.J. Scheme and K. Englehart, “Electromyogram pattern recognition for

control of powered upper-limb prostheses: State of the art and challenges

for clinical use,” J. Rehabil. Res. Develop., vol. 48, no. 6, pp. 643-659,

2011.

J. Baits, R. Todd, and J. Nightingale, “Paper 10: The feasibility of an

adaptive control scheme for artificial prehension,” in Proc. Inst. Mech.

Eng. Conf., vol. 183. London, U.K.: SAGE, 1968, pp. 54-59.

[3] T.S.Saponas, D. S. Tan, D. Morris, and R. Balakrishnan, ‘“Demonstrating
the feasibility of using forearm electromyography for muscle-computer
interfaces,” in Proc. SIGCHI Conf. Human Factors Comput. Syst. (CHI).
New York, NY, USA: Association for Computing Machinery, Apr. 2008,
pp. 515-524.

[4] T.S. Saponas, D. S. Tan, D. Morris, J. Turner, and J. A. Landay, “Mak-
ing muscle-computer interfaces more practical,” in Proc. SIGCHI Conf.
Human Factors Comput. Syst. (CHI). New York, NY, USA: Association
for Computing Machinery, Apr. 2010, pp. 851-854.

[5] T. S. Saponas, D. S. Tan, D. Morris, R. Balakrishnan, J. Turner, and

J. A. Landay, “Enabling always-available input with muscle-computer

interfaces,” in Proc. 22nd ACM Annu. Symp. User Interface Softw. Technol.

(UIST), New York, NY, USA, Oct. 2009, pp. 167-176.

S. Rawat, S. Vats, and P. Kumar, “Evaluating and exploring the MYO

ARMBAND,” in Proc. Int. Conf. Syst. Modeling Advancement Res. Trends

(SMART), Nov. 2016, pp. 115-120.

[7] E. Eddy, E. J. Scheme, and S. Bateman, “A framework and call to action
for the future development of EMG-based input in HCL,” in Proc. CHI
Conf. Human Factors Comput. Syst. New York, NY, USA: Association for
Computing Machinery, Apr. 2023, pp. 1-23.

[8] L. J. Hargrove, K. Englehart, and B. Hudgins, “A comparison of surface
and intramuscular myoelectric signal classification,” IEEE Trans. Biomed.
Eng., vol. 54, no. 5, pp. 847-853, May 2007.

[9] A.Tabor, S. Bateman, E. Scheme, D. R. Flatla, and K. Gerling, “Designing
game-based myoelectric prosthesis training,” in Proc. CHI Conf. Human
Factors Comput. Syst. New York, NY, USA: Association for Computing
Machinery, May 2017, pp. 1352-1363.

[10] K. Englehart and B. Hudgins, “A robust, real-time control scheme for
multifunction myoelectric control,” IEEE Trans. Biomed. Eng., vol. 50,
no. 7, pp. 848-854, Jul. 2003.

[11] L.Pan, D.Zhang, N. Jiang, X. Sheng, and X. Zhu, “Improving robustness
against electrode shift of high density EMG for myoelectric control through
common spatial patterns,” J. Neuroeng. Rehabil., vol. 12, no. 1, pp. 1-16,
Dec. 2015.

[12] A.Phinyomark, E. Campbell, and E. Scheme, ““Surface electromyography
(EMG) signal processing, classification, and practical considerations,”
in Biomedical Signal Processing: Advances in Theory, Algorithms and
Applications. Singapore: Springer, 2020, pp. 3-29.

[13] D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl,
and O. C. Aszmann, “The extraction of neural information from the
surface EMG for the control of upper-limb prostheses: Emerging avenues
and challenges,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4,
pp. 797-809, Jul. 2014.

2

—

[6

—

VOLUME 11, 2023



E. Eddy et al.: LIbEMG: An Open Source Library to Facilitate the Exploration of Myoelectric Control

IEEE Access

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

L. H. Smith, L. J. Hargrove, B. A. Lock, and T. A. Kuiken, ““Determining
the optimal window length for pattern recognition-based myoelectric con-
trol: Balancing the competing effects of classification error and controller
delay,” IEEE Trans. Neural Syst. Rehabil. Eng.,vol. 19,no. 2, pp. 186-192,
Apr. 2011.

E. Scheme, B. Lock, L. Hargrove, W. Hill, U. Kuruganti, and
K. Englehart, “Motion normalized proportional control for improved pat-
tern recognition-based myoelectric control,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 22, no. 1, pp. 149-157, Jan. 2014.

E. Costanza, S. A. Inverso, R. Allen, and P. Maes, “Intimate interfaces
in action: Assessing the usability and subtlety of EMG-based motionless
gestures,” in Proc. SIGCHI Conf. Human Factors Comput. Syst. (CHI).
New York, NY, USA: Association for Computing Machinery, Apr. 2007,
pp. 819-828.

E. Costanza, S. A. Inverso, and R. Allen, “Toward subtle intimate inter-
faces for mobile devices using an EMG controller,” in Proc. SIGCHI Conf.
Human Factors Comput. Syst. (CHI). New York, NY, USA: Association for
Computing Machinery, Apr. 2005, pp. 481-489.

G. R. Naik, D. K. Kumar, V. P. Singh, and M. Palaniswami, ‘‘Hand gestures
for HCI using ICA of EMG,” in Proc. HCSNet Workshop Vis. Human-
Comput. Interact. (VisHCI), vol. 56. Docklands, VIC, Australia: Australian
Computer Society, Nov. 2006, pp. 67-72.

J. Karolus, A. Kilian, T. Kosch, A. Schmidt, and P. W. Wozniak, ‘Hit the
thumb Jack! Using electromyography to augment the piano keyboard,” in
Proc. ACM Designing Interact. Syst. Conf. (DIS), New York, NY, USA,
Jul. 2020, pp. 429-440.

J. DelPreto and D. Rus, “Plug-and-play gesture control using muscle
and motion sensors,” in Proc. 15th ACM/IEEE Int. Conf. Human-Robot
Interact. (HRI), New York, NY, USA, Mar. 2020, pp. 439-448.

F. Kerber, P. Lessel, and A. Kriiger, “Same-side hand interactions with
arm-placed devices using EMG,” in Proc. 33rd Annu. ACM Conf. Extended
Abstr. Human Factors Comput. Syst. (CHI), New York, NY, USA,
Apr. 2015, pp. 1367-1372.

M. Wu, Y. Xu, C. Yang, and Y. Feng, “Omnidirectional mobile robot
control based on mixed reality and SEMG signals,” in Proc. Chin. Autom.
Congr. (CAC), Nov. 2018, pp. 1867-1872.

A. Al-Jumaily and R. A. Olivares, “Electromyogram (EMG) driven system
based virtual reality for prosthetic and rehabilitation devices,” in Proc. 11th
Int. Conf. Inf. Integr. Web-Based Appl. Services (iiWAS). New York, NY,
USA: Association for Computing Machinery, Dec. 2009, pp. 582-586.

I. Phelan, M. Arden, M. Matsangidou, A. Carrion-Plaza, and S. Lindley,
“Designing a virtual reality myoelectric prosthesis training system for
amputees,” in Proc. Extended Abstr. CHI Conf. Human Factors Com-
put. Syst. New York, NY, USA: Association for Computing Machinery,
May 2021, pp. 1-7.

C. Prahm, M. Bressler, K. Eckstein, H. Kuzuoka, A. Daigeler, and
J. Kolbenschlag, “Developing a wearable augmented reality for treating
phantom limb pain using the Microsoft HoloLens 2,” in Proc. Augmented
Humans. New York, NY, USA: Association for Computing Machinery,
Mar. 2022, pp. 309-312.

K. A. Shatilov, D. Chatzopoulos, A. W. T. Hang, and P. Hui,
“Using deep learning and mobile offloading to control a 3D-
printed prosthetic hand,” in Proc. ACM Interact. Mobile Wearable
Ubiquitous Technol., vol. 3, Sep. 2019, pp. 1-19. [Online]. Available:
https://tech.facebook.com/reality-labs/2021/3/inside-facebook-reality-
labs-wrist-based-interaction-for-the-next-computing-platform/

L. B. Jaloza, “Inside Facebook reality labs: Wrist-based interaction for
the next computing platform,” Tech at Meta, Menlo Park, CA, USA,
Tech. Rep., Mar. 2021.

D. Ledo, S. Houben, J. Vermeulen, N. Marquardt, L. Oehlberg, and
S. Greenberg, “Evaluation strategies for HCI toolkit research,” in Proc.
CHI Conf. Human Factors Comput. Syst. New York, NY, USA: Association
for Computing Machinery, Apr. 2018, pp. 1-17.

M. Kono, Y. Ishiguro, T. Miyaki, and J. Rekimoto, “Design and study of
a multi-channel electrical muscle stimulation toolkit for human augmen-
tation,” in Proc. 9th Augmented Human Int. Conf. New York, NY, USA:
Association for Computing Machinery, Feb. 2018, pp. 1-8.

D. Ledo, M. A. Nacenta, N. Marquardt, S. Boring, and S. Greenberg,
“The HapticTouch toolkit: Enabling exploration of haptic interactions,”
in Proc. 6th Int. Conf. Tangible, Embedded Embodied Interact. (TEI).
New York, NY, USA: Association for Computing Machinery, Feb. 2012,
pp. 115-122.

VOLUME 11, 2023

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

[40]

[41]

(42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

(50]

(51]

W. Biischel, A. Lehmann, and R. Dachselt, “MIRIA: A mixed reality
toolkit for the in-situ visualization and analysis of spatio-temporal inter-
action data,” in Proc. CHI Conf. Human Factors Comput. Syst. New York,
NY, USA: Association for Computing Machinery, May 2021, pp. 1-15.
S. Seiya, A. Carballo, E. Takeuchi, and K. Takeda, “Deepware:
An open-source toolkit for developing and evaluating learning-based
and model-based autonomous driving models,” IEEE Access, vol. 10,
pp. 105734-105743, 2022.

Y. Zhao, Z. Nasrullah, and Z. Li, “PyOD: A Python toolbox for scalable
outlier detection,” J. Mach. Learn. Res., vol. 20, no. 96, pp. 1-7, Jan. 2019.
T. Westeyn, H. Brashear, A. Atrash, and T. Starner, ““Georgia tech gesture
toolkit: Supporting experiments in gesture recognition,” in Proc. 5th Int.
Conf. Multimodal Interfaces (ICMI) New York, NY, USA: Association for
Computing Machinery, Nov. 2003, pp. 85-92.

N. Gillian and J. A. Paradiso, “The gesture recognition toolkit,” J. Mach.
Learn. Res., vol. 15, no. 101, pp. 3483-3487, 2014.

S. K. Stigberg, “Mobile hand gesture toolkit: Co-designing mobile inter-
action interfaces,” in Proc. ACM Conf. Companion Publication Designing
Interact. Syst., New York, NY, USA, Jun. 2017, pp. 161-166.

J. Haladjian, “The wearables development toolkit: An integrated devel-
opment environment for activity recognition applications,” in Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., vol. 3, Sep. 2020, pp. 1-26.
J. Karolus, F. Kiss, C. Eckerth, N. Viot, F. Bachmann, A. Schmidt, and
P. W. Wozniak, “EMBody: A data-centric toolkit for EMG-based interface
prototyping and experimentation,” in Proc. ACM Hum.-Comput. Interact.,
vol. 5, May 2021, pp. 1-29.

M. Ortiz-Catalan, R. Branemark, and B. Hakansson, ‘“BioPatRec: A mod-
ular research platform for the control of artificial limbs based on pattern
recognition algorithms,” Source Code Biol. Med., vol. 8, no. 1, pp. 1-18,
Dec. 2013.

G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and
A. Miiller, “Scikit-learn: Machine learning without learning the machin-
ery,” GetMobile, Mobile Comput. Commun., vol. 19, no. 1, pp. 29-33,
Jun. 2015.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27,
May 2011.

M. L. Wilson, W. Mackay, E. Chi, M. Bernstein, D. Russell, and
H. Thimbleby, “RepliCHI—CHI should be replicating and validating
results more: Discuss,” in Proc. CHI Extended Abstr. Human Factors
Comput. Syst. (CHI EA). New York, NY, USA: Association for Computing
Machinery, May 2011, pp. 463-466.

F. Echtler and M. HéulBler, “Open source, open science, and the replication
crisis in HCL” in Proc. Extended Abstr. CHI Conf. Human Factors Comput.
Syst., New York, NY, USA, Apr. 2018, pp. 1-8.

A. Phinyomark, P. Phukpattaranont, and C. Limsakul, “Feature reduction
and selection for EMG signal classification,” Expert Syst. Appl., vol. 39,
no. 8, pp. 7420-7431, Jun. 2012.

A. Phinyomark, R. N. Khushaba, E. Ibafez-Marcelo, A. Patania,
E. Scheme, and G. Petri, “Navigating features: A topologically informed
chart of electromyographic features space,” J. Roy. Soc. Interface, vol. 14,
no. 137, Dec. 2017, Art. no. 20170734.

A. Phinyomark, R. N. Khushaba, and E. Scheme, ‘Feature extraction
and selection for myoelectric control based on wearable EMG sensors,”
Sensors, vol. 18, no. 5, p. 1615, May 2018.

A. Phinyomark and E. Scheme, “A feature extraction issue for myoelectric
control based on wearable EMG sensors,” in Proc. IEEE Sensors Appl.
Symp. (SAS), Mar. 2018, pp. 1-6.

M. Zardoshti-Kermani, B. C. Wheeler, K. Badie, and R. M. Hashemi,
“EMG feature evaluation for movement control of upper extremity pros-
theses,” IEEE Trans. Rehabil. Eng., vol. 3, no. 4, pp. 324-333, Dec. 1995.
S. Thongpanja, A. Phinyomark, P. Phukpattaranont, and C. Limsakul,
“Mean and median frequency of EMG signal to determine muscle force
based on time-dependent power spectrum,” Electron. Electr. Eng., vol. 19,
no. 3, pp. 51-56, Mar. 2013.

S. Du and M. Vuskovic, “Temporal vs. spectral approach to feature extrac-
tion from prehensile EMG signals,” in Proc. IEEE Int. Conf. Inf. Reuse
Integr. (IRI), Nov. 2004, pp. 344-350.

J. He, D. Zhang, X. Sheng, S. Li, and X. Zhu, “Invariant surface EMG
feature against varying contraction level for myoelectric control based on
muscle coordination,” IEEE J. Biomed. Health Informat., vol. 19, no. 3,
pp. 874-882, May 2015.

87395



IEEE Access

E. Eddy et al.: LIbEMG: An Open Source Library to Facilitate the Exploration of Myoelectric Control

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

S. Arjunan and D. Kumar, “Decoding subtle forearm flexions using fractal
features of surface electromyogram from single and multiple sensors,”
J. Neuroeng. Rehabil., vol. 7, no. 1, p. 53, 2010.

S. Thongpanja, A. Phinyomark, F. Quaine, Y. Laurillau, C. Limsakul, and
P. Phukpattaranont, ““Probability density functions of stationary surface
EMG signals in noisy environments,” IEEE Trans. Instrum. Meas., vol. 65,
no. 7, pp. 1547-1557, Jul. 2016.

F. Onay and A. Mert, “Phasor represented EMG feature extraction against
varying contraction level of prosthetic control,” Biomed. Signal Process.
Control, vol. 59, May 2020, Art. no. 101881.

K. S. Kim, H. H. Choi, C. S. Moon, and C. W. Mun, “Comparison of
k-nearest neighbor, quadratic discriminant and linear discriminant analysis
in classification of electromyogram signals based on the wrist-motion
directions,” Current Appl. Phys., vol. 11, no. 3, pp. 740-745, May 2011.
S. Pancholi and A. M. Joshi, “Time derivative moments based feature
extraction approach for recognition of upper limb motions using EMG,”
IEEE Sensors Lett., vol. 3, no. 4, pp. 1-4, Apr. 2019.

M. G. A. Samuel, O. W. Samuel, Y. Geng, P. O. Idowu, S. Chen, N. Ganesh
R, P. Feng, and G. Li, “Enhancing the robustness of EMG-PR based system
against the combined influence of force variation and subject mobility,”
in Proc. 3rd Asia—Pacific Conf. Intell. Robot Syst. (ACIRS), Jul. 2018,
pp. 12-17.

R. N. Khushaba, L. Shi, and S. Kodagoda, ““Time-dependent spectral fea-
tures for limb position invariant myoelectric pattern recognition,” in Proc.
Int. Symp. Commun. Inf. Technol. (ISCIT), Oct. 2012, pp. 1015-1020.

B. Hjorth, “EEG analysis based on time domain properties,” Electroen-
cephalogr. Clin. Neurophysiol., vol. 29, no. 3, pp. 306-310, Sep. 1970.

A. Mengarelli, A. Tigrini, S. Fioretti, S. Cardarelli, and F. Verdini, “On the
use of fuzzy and permutation entropy in hand gesture characterization from
EMG signals: Parameters selection and comparison,” Appl. Sci., vol. 10,
no. 20, p. 7144, Oct. 2020.

J. S. Richman and J. R. Moorman, ‘Physiological time-series analysis
using approximate entropy and sample entropy,” Amer. J. Physiol.-Heart
Circulatory Physiol., vol. 278, no. 6, pp. H2039-H2049, Jun. 2000.

S.-H. Park and S.-P. Lee, “EMG pattern recognition based on artifi-
cial intelligence techniques,” IEEE Trans. Rehabil. Eng., vol. 6, no. 4,
pp. 400-405, Dec. 1998.

A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-Bernard,
and Y. Laurillau, ‘Feature extraction of the first difference of EMG time
series for EMG pattern recognition,” Comput. Methods Program. Biomed.,
vol. 117, no. 2, pp. 247-256, Nov. 2014.

R.N. Khushaba, S. Kodagoda, S. Lal, and G. Dissanayake, “Driver drowsi-
ness classification using fuzzy wavelet-packet-based feature-extraction
algorithm,” IEEE Trans. Biomed. Eng., vol. 58, no. 1, pp. 121-131,
Jan. 2011.

B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for multifunction
myoelectric control,” IEEE Trans. Biomed. Eng., vol. 40, no. 1, pp. 82-94,
Jan. 1993.

G.-C. Chang, W.-J. Kang, J.-J. Luh, C.-K. Cheng, J.-S. Lai, J.-J.-J. Chen,
and T.-S. Kuo, “Real-time implementation of electromyogram pattern
recognition as a control command of man-machine interface,” Med. Eng.
Phys., vol. 18, no. 7, pp. 529-537, Oct. 1996.

D. Tkach, H. Huang, and T. A. Kuiken, “Study of stability of time-
domain features for electromyographic pattern recognition,” J. Neuroeng.
Rehabil., vol. 7, no. 1, p. 21, May 2010.

J. L. Nawfel, K. B. Englehart, and E. J. Scheme, “A multi-variate approach
to predicting myoelectric control usability,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 29, pp. 1312-1327, 2021.

E. J. Scheme, B. S. Hudgins, and K. B. Englehart, “Confidence-based
rejection for improved pattern recognition myoelectric control,” IEEE
Trans. Biomed. Eng., vol. 60, no. 6, pp. 1563-1570, Jun. 2013.

M. F. Wahid, R. Tafreshi, and R. Langari, ““A multi-window majority voting
strategy to improve hand gesture recognition accuracies using electromyo-
graphy signal,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 2,
pp. 427-436, Feb. 2020.

B. Lock, K. Englehart, and B. Hudgins, “Real-time myoelectric control in
avirtual environment to relate usability vs. accuracy,” in Proc. MyoElectric
Controls/Powered Prosthetics Symp., Fredericton, NB, Canada, Jan. 2005,
pp. 1-4.

L. Hargrove, Y. Losier, B. Lock, K. Englehart, and B. Hudgins, “A
real-time pattern recognition based myoelectric control usability study
implemented in a virtual environment,” in Proc. 29th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc., Aug. 2007, pp. 4842-4845.

87396

(73]

(74]

[75]

[76]

(77]

(78]

(791

[80]

(81]

(82]

(83]

(84]

(85]

[86]

(87]

(88]

[89]

[90]

(911

[92]

(93]

E. Campbell, A. Phinyomark, and E. Scheme, “Current trends and con-
founding factors in myoelectric control: Limb position and contraction
intensity,” Sensors, vol. 20, no. 6, p. 1613, Mar. 2020.

D. R. Rogers and D. T. Maclsaac, “A comparison of EMG-based muscle
fatigue assessments during dynamic contractions,” J. Electromyogr. Kine-
siol., vol. 23, no. 5, pp. 1004-1011, Oct. 2013.

I. S. MacKenzie and R. J. Teather, “FittsTilt: The application of Fitts’ law
to tilt-based interaction,” in Proc. 7th Nordic Conf. Human-Comput. Inter-
act., Making Sense Through Design. New York, NY, USA: Association for
Computing Machinery, Oct. 2012, pp. 568-577.

U. Coété-Allard, E. Campbell, A. Phinyomark, F. Laviolette, B. Gosselin,
and E. Scheme, “Interpreting deep learning features for myoelectric con-
trol: A comparison with handcrafted features,” Frontiers Bioeng. Biotech-
nol., vol. 8, p. 158, Mar. 2020.

E. Campbell, A. Phinyomark, and E. Scheme, “Deep cross-user models
reduce the training burden in myoelectric control,” Frontiers Neurosci.,
vol. 15, May 2021, Art. no. 657958.

Y. Lin, R. Palaniappan, P. De Wilde, and L. Li, ““A normalisation approach
improves the performance of inter-subject SEMG-based hand gesture
recognition with a ConvNet,” in Proc. 42nd Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc. (EMBC), Jul. 2020, pp. 649-652.

B. Xue, L. Wu, A. Liu, X. Zhang, X. Chen, and X. Chen, ‘“Reduce
the user burden of multiuser myoelectric interface via few-shot domain
adaptation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 31, pp. 972-980,
2023.

J. W. Sensinger, B. A. Lock, and T. A. Kuiken, “Adaptive pattern recog-
nition of myoelectric signals: Exploration of conceptual framework and
practical algorithms,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 17,
no. 3, pp. 270-278, Jun. 2009.

J. Berman, R. Hinson, and H. Huang, “Comparing reinforcement learning
agents and supervised learning neural networks for EMG-based decoding
of continuous movements,” in Proc. 43rd Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc. (EMBC), Nov. 2021, pp. 6297-6300.

M. A. Oskoei and H. Hu, “Myoelectric control systems—A survey,”
Biomed. Signal Process. Control, vol. 2, no. 4, pp. 275-294, Oct. 2007.
A. Ameri, M. A. Akhaee, E. Scheme, and K. Englehart, “A deep transfer
learning approach to reducing the effect of electrode shift in EMG pat-
tern recognition-based control,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 28, no. 2, pp. 370-379, Feb. 2020.

S. Pizzolato, L. Tagliapietra, M. Cognolato, M. Reggiani, H. Miiller, and
M. Atzori, “Comparison of six electromyography acquisition setups on
hand movement classification tasks,” PLoS ONE, vol. 12, Oct. 2017,
Art. no. e0186132.

R. Leeb, H. Sagha, R. Chavarriaga, and J. D. R. Milldn, “A hybrid brain—
computer interface based on the fusion of electroencephalographic and
electromyographic activities,” J. Neural Eng., vol. 8, no. 2, Mar. 2011,
Art. no. 025011.

L. Lu, J. Mao, W. Wang, G. Ding, and Z. Zhang, “A study of personal
recognition method based on EMG signal,” IEEE Trans. Biomed. Circuits
Syst., vol. 14, no. 4, pp. 681-691, Aug. 2020.

J. Karolus, S. Thanheiser, D. Peterson, N. Viot, T. Kosch, A. Schmidt,
and P. W. Wozniak, “Imprecise but fun: Playful interaction using elec-
tromyography,” in Proc. ACM Hum.-Comput. Interact., vol. 6, Sep. 2022,
pp. 1-12.

B. Coffen and Md. S. Mahmud, “TinyDL: Edge computing and deep
learning based real-time hand gesture recognition using wearable sensor,”
in Proc. IEEE Int. Conf. E-Health Netw., Appl. Services (HEALTHCOM),
Mar. 2021, pp. 1-6.

M. Kim, J. Cho, S. Lee, and Y. Jung, “IMU sensor-based hand ges-
ture recognition for human-machine interfaces,” Sensors, vol. 19, no. 18,
p. 3827, Sep. 2019.

A. Bablani, D. R. Edla, D. Tripathi, and R. Cheruku, “Survey on brain-
computer interface: An emerging computational intelligence paradigm,”
ACM Comput. Surv., vol. 52, no. 1, pp. 1-32, Feb. 2019.

X. Zheng, X. Liu, Y. Zhang, L. Cui, and X. Yu, “A portable HCI
system-oriented EEG feature extraction and channel selection for emo-
tion recognition,” Int. J. Intell. Syst., vol. 36, no. 1, pp.152-176,
Jan. 2021.

J. A. Healey and R. W. Picard, “Detecting stress during real-world driving
tasks using physiological sensors,”” IEEE Trans. Intell. Transp. Syst., vol. 6,
no. 2, pp. 156-166, Jun. 2005.

E. Campbell, A. Phinyomark, and E. Scheme, ‘“‘Feature extraction and
selection for pain recognition using peripheral physiological signals,”
Frontiers Neurosci., vol. 13, p. 437, May 2019.

VOLUME 11, 2023



E. Eddy et al.: LIbEMG: An Open Source Library to Facilitate the Exploration of Myoelectric Control

IEEE Access

ETHAN EDDY (Member, IEEE) received the B.Sc.
degree in software engineering from the Univer-
sity of New Brunswick, in 2021, where he is
currently pursuing the Ph.D. degree in electrical
and computer engineering. He is also a part of
the Institute of Biomedical Engineering, Human-
Computer Interaction (HCI) Laboratory, and the
Spatial Computing Training and Research (SPEC-
TRAL) Laboratory. His research interests include
human—computer interaction, ubiquitous comput-
ing, mixed reality, machine learning, and myoelectric control.

EVAN CAMPBELL (Member, IEEE) received the
B.Sc. and M.Sc. degrees in electrical engineer-
ing from the University of New Brunswick, in
2019 and 2021, respectively, where he is cur-
rently pursuing the Ph.D. degree in electrical
engineering. He has been a member of the Insti-
tute of Biomedical Engineering, since 2018. His
research interests include deep learning, reinforce-
ment learning, and signal processing applied to
myoelectric control.

ANGKOON PHINYOMARK (Member, IEEE)
received the B.Eng. degree (Hons.) in computer
engineering and the Ph.D. degree in electrical
engineering from the Prince of Songkla Univer-
sity (PSU), Hat Yai, Thailand, in 2008 and 2012,
respectively. From 2012 to 2013, he was a Postdoc-
toral Research Fellow with GIPSA and LIG Lab-
oratories, Université Grenoble Alpes, Grenoble,
France. From 2013 to 2016, he was a Postdoctoral
Research Fellow with the Human Performance
Laboratory, University of Calgary, Calgary, AB, Canada. From 2016 to 2017,
he was a Researcher with the ISI Foundation, Turin, Italy. Since 2017,
he has been with the Institute of Biomedical Engineering, University of
New Brunswick, Fredericton, NB, Canada, where he is currently a Senior
Research Scientist. His research interests include biomedical signal pro-
cessing and machine learning, wearable sensors, gait biomechanics and
biometrics, and neuroscience.

VOLUME 11, 2023

SCOTT BATEMAN received the master’s and
Ph.D. degrees in computer science from the Uni-
versity of Saskatchewan, in 2008 and 2013, respec-
tively. He was a Researcher with the Microsoft
Research, IBM Watson Research, University of
Calgary, and the National College of Ireland.
He joined UNB, in 2015, after 2.5 years with the
University of Prince Edward Island. He is cur-
rently an Associate Professor of computer science,
the Co-Director of the Human-Computer Interac-

3¢

tion Laboratory, and the Director of the Spatial Computing Research (SPEC-
TRAL) Laboratory, University of New Brunswick. His research interests
include novel input devices and interactions, mixed reality, computer-based
collaboration, and games for learning and health. He was an Associate
Editor and the Program Chair for several leading international journals and
conferences.

ERIK SCHEME (Senior Member, IEEE) received
the B.Sc., M.Sc., and Ph.D. degrees in elec-
trical engineering from the University of New
Brunswick (UNB), Fredericton, NB, Canada,
in 2003, 2005, and 2013, respectively. He is cur-
rently an Associate Professor with the Depart-
ment of Electrical and Computer Engineering, the
Associate Director of the Institute of Biomedical
Engineering, and the Director of the Health Tech-
nologies Laboratory, UNB. His research inter-
ests include application of signal processing and machine learning for
human-machine interfaces, mobility and rehabilitation, digital health and
diagnostics, and biometrics. He is a Registered Member of the Association
of Professional Engineers and Geoscientists of New Brunswick (APEGNB).

87397



