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ABSTRACT This paper tackles the electron microscope image processing for rubber material discovery.
In rubber material science fields, electron microscope images are used to observe the properties of materials
during their development process. Hence, by analyzing the electronmicroscope images with the recent image
processing technology, it is expected that further effective material developments can be realized. In this
paper, we propose a rubber material compound and physical property image retrieval method using the
rubber material electron microscope images. The aim of our method is to support material technologists to
grasp the relationships between material compounds and physical properties visually and comprehensively.
Our method constructs an electron microscope image space through a conditional image generation model.
The generated images are used to retrieve materials with similar compounds and physical properties.
By effectively using the constructed electron microscope image space, it is expected that the technologists
visually and comprehensively understand the relationships of similar materials, and the advances in material
developments are accelerated.

INDEX TERMS Electron microscope images, image retrieval, generative model, rubber materials.

I. INTRODUCTION
Rubber materials are one of the essential industrial materials
in our daily life. They are used for various products, such
as tires and sport items. Computer-aided analysis has been
widely studied to accelerate the development of valuable
rubber materials, and recent research has paid attention to
the analysis with machine learning [1], [2], [3]. However,
conventional studies mainly focus on the analysis of table
and textual data obtained from materials [4], [5], [6], [7],
and there are few studies focusing on electron microscope
images of materials. By effectively analyzing the electron
microscope images based on the recent image processing
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technologies, it is expected that rubber material developments
can be accelerated.

General cycle of rubber material development is shown in
Fig. 1. Rubber materials are first manufactured by mixing
multiple base material compounds. Then, the manufactured
rubber materials are evaluated to analyze their physical
properties through demonstration experiments, such as driv-
ing tests. Finally, the evaluation results are used for re-
considering the properties of the base material compounds.
By repeating this development cycle, material technologists
obtain new knowledge about the materials and discover more
valuable materials. The essential aim of the cycle is dis-
covering more valuable materials; however, the conventional
computer-aided analysis methods only focus on reducing
the effort of the cycle and do not fully contribute to the
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FIGURE 1. Rubber development cycle and images used in this paper. Our
method supports material discovery using electron microscope images.

FIGURE 2. The electron microscope images used in our paper Each image
is manufactured from different compound-property, respectively.

discovery [7], [8]. To effectively support the technologists,
a method that mainly supports the discovery should be further
considered.

To discover more valuable materials, it is essential
to visually and comprehensively understand the relation-
ships between rubber base material compounds and their
physical properties (hereinafter referred to as compound-
property) [9], [10], [11]. However, in conventional stud-
ies, comprehensively grasping the relationships is difficult
since the inputs and outputs are associated in one-to-one
correspondence. Furthermore, conventional studies mainly
applied black-box machine learning models with complex
parameter combinations, leading to lower explainability and
unclear relationships for the technologists [4], [5], [6], [7].
In short, technologists cannot visually and comprehensively
discover valuable rubber materials from conventional studies.
If compound-property related to the technologist’s interests
can be visually and comprehensively observed, machine
learning-based analysis that can further support material
development is expected to be realized.

Among various machine learning-based methods, neural
information retrieval is an effective way to comprehensively
observe information, such as the compound-property [11],
[12]. By ranking the compound-property related to the tech-
nologist’s interests and plotting them adequately, it is consid-
ered that the technologists can comprehensively understand
these relationships. However, the technologists cannot visu-
ally understand the inference reason since the general neural
information retrieval methods handle high-dimensional fea-
tures [13], [14], [15]. For the visual enumeration, the neural
information retrieval should present the retrieval results with
understandable information for the technologists. As such
information, electron microscope images are useful. The
electron microscope images can be obtained during the man-
ufacturing process, and the technologists usually analyze

these electron microscope images to obtain new knowl-
edge [16], [17], [18]. Figure 2 shows the electron micro-
scope images used in this paper, and each image reflect
the characteristics of input compound-property. By retrieving
the compound-property using electron microscope images,
machine learning-based analysis that can visually and com-
prehensively support the material discovery is expected to be
realized.

In this paper, we propose a compound-property retrieval
method using electron microscope images to support material
discovery. Using electron microscope images, we can treat
the compound-property retrieval as the image retrieval task.
The proposed method retrieves compound-property highly
related to the query compound-property. Here, to retrieve
the related compound-property using the electronmicroscope
images, it is required to prepare the electron microscope
images corresponding to the query compound-property. How-
ever, manufacturing the corresponding electron microscope
images every time takes much effort. To reduce such efforts,
our method follows conditional image generation mod-
els [19], [20], [21], [22]. The proposed method generates
an electron microscope image from the query compound-
property using the conditional image generation model. Then
by using the generated electron microscope image as a
query, our method retrieves compound-property with similar
electron microscope images. By enumerating the retrieved
compound-property with these electron microscope images,
visual and comprehensive machine learning-based analysis
for rubber material developments is realized.

The contributions of this paper are summarized as follows.

Rubber material retrieval via images
To support the technologists, we propose the
compound-property retrieval method using electron
microscope images. Our method can support the
technologists to visually and comprehensively dis-
cover new materials.

Image generation for rubber material
For visually providing the analysis results for
the technologists, our method converts query
compound-property into an electron microscope
image. With its conditional image generation, our
method enables visual and comprehensive retrieval
without any further manufacturing effort.

II. RELATED WORKS
A. COMPUTER-AIDED RUBBER MATERIAL ANALYSIS
The computer-aided rubber material analysis methods mainly
focus on assisting users to find new knowledge about rubber
materials for manufacturing novel rubber materials. Specifi-
cally, these methods assist users by grasping the relationships
between the base material compounds and the physical prop-
erties of the manufactured rubber material. Recently, for
grasping these relationships, machine learning-based meth-
ods are frequently used for estimating one-to-one relation-
ships between compound-property [4], [5], [6], [7]. Among
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FIGURE 3. Overview of the proposed method. Our method first generates a microscope image from a query compound-property. Then, the
generated and corresponding real images are passed into the discriminator module in the training phase. By training each module to generate
images that the discriminator module mistakes for real images, our method is expected to generate realistic images corresponding to the query
compound-property. In the test phase, the generated image is used to retrieve similar images in the database. By providing the retrieved images
with the corresponding compound-property, visual and comprehensive machine learning-based support for the material discovery is expected to
be realized.

them, the most relevant research is a method that esti-
mates the physical properties from the electron microscope
images of the rubber materials [8]. They can provide knowl-
edge about one-to-one relationships between rubber mate-
rial information by estimating the physical properties from
the visual features extracted from the electron microscope
images. Compared with them, our method can comprehen-
sively provide analysis results with visual inference reasons
by analyzing compound-property relationships via an image
retrieval task. With its procedure, the computer-aided rubber
material analysis that can further assist users in obtaining new
knowledge is realized.

B. IMAGE GENERATION
With the recent progress of deep neural architectures, var-
ious image generation models such as variational autoen-
coders [23], generative adversarial networks (GAN) [24], and
flow-based generative models [25] have been widely studied.
Among these models, GAN has one of the most powerful
generation abilities with its min-max game training strategies.
The min-max game training is conducted with two modules
of GAN: the generator module and the discriminator module.
The generator module aims to generate realistic images that
can deceive the discriminator module, and the discriminator
module aims to discriminate real images and the images
generated by the generator module.

Although the original GAN has powerful generation abili-
ties, there were problems with the training stability and the
limit of generated image resolution. To solve the training
stability problem, WGAN [26] and WGAN-GP [27] intro-
duce Wasserstein distance to the loss calculation. Compared
with Jensen–Shannon divergence that is used in the origi-
nal GAN, Wasserstein distance can suppress the vanishing
gradient problem caused by non-overlapping between the
probability distribution of real and generated data. To expand

the limit of generated image resolution, PGGAN [28] intro-
duces a progressive growing strategy that gradually adds
higher-resolution convolution and inverse convolution mod-
ules. With the gradually growing strategy, PGGAN can
stably generate high-resolution images. Recently, by apply-
ing both Wasserstein distance and the progressive growing
strategy, StyleGAN [21] can generate more realistic and high-
resolution images. With its generation performance, we fol-
low StyleGAN for generating rubber electron microscope
images.

III. COMPOUND-PROPERTY RETRIEVAL USING
ELECTRON MICROSCOPE IMAGES
This section presents the proposed compound-property
retrieval method using electron microscope images. We show
the overview of the proposed method in Fig. 3. The pro-
posed method consists of the following two steps: conditional
image generation and similar compound-property retrieval.
First, we generate an electron microscope image Pquery from
a query compound-property cquery ∈ RDc

+Dp
, where Dc

and Dp represent the dimmensions of the compounds and
physical properties, respectively. Then, the similarities sn
(n = 1, 2, . . . ,N ; N is the number of candidate compound-
properties) between the generated electron microscope image
Pquery and electron microscope images Pcandn of candidate
compound-property cn ∈ RDc

+Dp
are calculated. Finally, the

compound-property and electron microscope images highly
related to the generated electron microscope image Pquery are
provided.

A. TRAINING OF CONDITIONAL IMAGE GENERATION
MODEL
This subsection introduces the training procedure of our
conditional image generation model M(·). Our condi-
tional image generation model is constructed based on
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the conditional style generative adversarial network (Style-
GAN) [21]. Since the electron microscope images have high
resolution, we divide the training electron microscope images
Itrainm (m = 1, 2, . . . ,M ;M is the number of training electron
microscope images) into Mpatch

m patch images Prealm,k (k =

1, 2, . . . ,Mpatch
m ). Here, we define preal as the probability

distribution followed by Prealm,k . Additionally, we represent the
compound-property of each patch image Prealm,k as the vector
ctrainm,k ∈ RDc

+Dp
. Note that each dimension of ctrainm,k is normal-

ized based on the range of each compound-property.
Our conditional image generation modelM(·) consists of

Lenc-layer encoder module F(·), Lgen-layer generator mod-
ule Gl(·) (l = 1, 2, . . . ,Lgen), and Ldis-layer discriminator
module D(·). First, we extract representative features f encm,k ∈

RDenc
from the compound-property vector ctrainm,k and random

vector z ∼ N (µ, σ 2) ∈ RDc
+Dp

via the encoder module F(·)
as follows:

f encm,k = F(z, ctrainm,k ), (1)

whereDenc represents the dimension of the extracted encoder
features; f encm,k represent features that should be reflected in
the generated electron microscope image. By extracting the
features f encm,k using the encoder module F(·), compound-
property vector ctrainm,k is expected to be accurately reflected
in the generated electron microscope images Pgenm,k . Next,
to apply the extracted features f encm,k to the generated images,
we first translate the f encm,k into the style features f sm,k,l ∈

RDl and the bias features f bm,k,l ∈ RDl using the affine
transformation Al(·), where Dl represents the dimension of
the extracted l-th layer features. After that, we obtain the
features f inm,k,l+1 ∈ RDl for inputting l + 1-th layer generator
module Gl+1(·) by combining f sm,k,l and f

b
m,k,l into the output

features f outm,k,l ∈ RDl of l-th layer generator module Gl(·) as
follows:

f inm,k,l+1 = f sm,k,l ◦
f outm,k,l − µ(f outm,k,l)

σ (f outm,k,l)
+ f bm,k,l, (2)

where ◦ represents Hadamard product. Equation (2) is an
adaptive instance normalization-based transformation [29],
and the features f encm,k extracted from the compound-property
vector ctrainm,k are reflected into the generated electron micro-
scope images Pgenm,k . Based on the extracted features f

in
m,k,Ltrain ,

we obtain the generated electronmicroscope images Pgenm,k cor-
responding to the compound-property vector ctrainm,k as follows:

Pgenm,k = GLgen (f inm,k,Lgen ). (3)

With the generation process, the encoder module F(·)
and generator module Gl(·) are adversely trained with the
discriminator module D(·). These models are trained based
on the loss functions provided by [27] as follows:

min
F ,G

max
D

EPrealm,k∼preal
[D(Prealm,k )] − EPgenm,k∼pgen

[D(Pgenm,k )]

+ λEPm,k∼preal [(∥∇Pm,kD(Prealm,k )∥2 − 1)2], (4)

TABLE 1. FIDq,u obtained by the proposed method.

where λ and pgen represent the regularization coefficient and
probability distribution, followed by Pgenm,k , respectively. With
the above training, the encoder module F(·) and generator
module Gl(·) can accurately generate images corresponding
to the input compound-property.

B. COMPOUND-PROPERTY IMAGE RETRIEVAL
In this subsection, we introduce the compound-property
retrieval procedure using the trained encoder module F̂(·)
and the trained generator module Ĝl(·). Using electron micro-
scope images, we can treat the compound-property retrieval
as the image retrieval task. First, we generate an electron
microscope image Pquery from a query compound-property
cquery using F̂(·) and Ĝl(·) as follows:

Pquery = ĜLgen (f
qin
Lgen), (5)

f qinl+1 = f qsl ◦
f qoutl − µ(f qoutl )

σ (f qoutl )
+ f qbl , (6)

f qoutl = Ĝl(f
qin
l ), (7)

f qsl , f qbl = Al(f qenc), (8)

f qenc = F̂(z, cquery), (9)

After that, we calculate the visual features from f vis ∈ RDvis

and f visn ∈ RDvis
from the generated electron microscope

image Pquery and electron microscope images Pcandn of candi-
date compound-property cn via the trained feature extractor
E(·) as follows:

f vis = E(Pquery), (10)

f visn = E(Pcandn ), (11)

where Dvis represents the dimension of the extracted visual
features. Then, the extracted features f vis and f visn are used to
calculate similarities sn as follows:

sn =
f vis · f visn
|f vis||f visn |

. (12)

The proposed method calculates retrieval result indexes rk
by ranking the candidate images Pcandn in descending order
of sn, where rk indicates the index of k-th rank image
obtained by the calculated ranking (e.g., Pcandr1 represents the
1st rank image). Finally, visual and comprehensive machine
learning-based support for the material discovery is realized
by providing the retrieval results crk with the corresponding
electron microscope images Pcandrk .
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TABLE 2. FIDq,u (q = u) obtained by the proposed method and the comparative method.

TABLE 3. MAP@k obtained by the proposed method and the
comparative method.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. EXPERIMENTAL SETTINGS
To evaluate the effectiveness of the proposed method,
we collected the dataset with compound-property-electron
microscope image pairs. The collected dataset consists
of 156 electron microscope images and corresponding
compound-property. Each electron microscope image is in
grayscale with a resolution of 1,536 × 1.024 pixels. In our
experiments, we randomly divided 156 electron microscope
images into 151 (= M ) and 5 images for training and test,
respectively. We conducted the experiments ten times. The
average of each experiment result is shown in each table of
experimental results. Additionally, each electron microscope
image is divided into 256 × 256 resolution with 50 pixels
slide width. After the patch division, 62,816 and 2,080 (= N )
patch images can be obtained for training and test images.
However, to the best of our knowledge, we first attempt the
compound-property retrieval, and it is difficult to use the
other computer-aided material analysis methods as compara-
tive methods.

We focused on evaluating the image generation capabil-
ities and whether the relevant compound-property can be
retrieved. Specifically, our method based on the auxiliary
classifier GAN [22] (ACGAN) and a method that randomly
ranks the candidate compound-property (Random) are used
as the comparative methods. In our method, the visual fea-
ture extractor E(·) is constructed following DenseNet121
model [30] trained on ImageNet [31].

B. QUANTITATIVE EXPERIMENTAL RESULTS
In this subsection, we quantitatively evaluate the effective-
ness of the proposed method. The most important evaluation
topic in our method is whether the generated images with
certain compound-property are similar to the corresponding
real images. Then, we evaluated ourmethod using the popular
evaluation metrics in image generation: Fréchet inception
distance(FID) [32]. First, we extracted visual features from
the real and generated images corresponding to the q-th
(q = 1, . . . ,Q; Q is the number of test compound-property)
test compound-property through the DenseNet121 model

trained on ImageNet. Then, we calculated the mean µreal
q

(respectively, µgen
q ) and covariance 6real

q (respectively, 6gen
q )

from the features extracted from real (respectively, generated)
images corresponding to the q-th test compound-property.
Finally, we calculated FIDq,u (u = 1, . . . ,Q) as follows:

FIDq,u = µ + 6, (13)

µ = |µreal
q − µ

gen
u |

2, (14)

6 = tr(6real
q + 6

gen
u − 26real

q 6
gen
u ). (15)

Moreover, FIDq,u reveals the distance between the real
images with q-th test compound-property and the generated
images with u-th test compound-property. Following other
information retrieval studies, we used the mean average
precision@k (MAP@k) as follows:

MAP@k =
1
Q

∑
q

APq,k , (16)

APq,k =

k∑
i=1

Prq,i
k

, (17)

Prq,k =
gq,k
k

, (18)

where gq,k represents the number of accurately retrieved
relevant compound-property in the top-k retrieval results
using the q-th test compound-property as a query. Here,
we define compound-property similar to the query as relevant
compound-property.

The experimental results are shown in Tables 1, 2, and 3.
As presented in Table 1, the values of q = u are lower than
the values of q ̸= u. This means that the proposed method
generates images that are more similar to the images with
the corresponding compound-property than the images with
a non-corresponding compound-property. Table 2 shows that
the proposed method outperforms ACGAN. These results
show that our image generation model can generate images
corresponding to the input compound-property than a method
based on the ACGAN. Furthermore, Table 3 shows that our
method can retrieve the corresponding compound-property
more accurately than the other methods. These results con-
firm the effectiveness of the proposed method.

C. QUALITATIVE EXPERIMENTAL RESULTS
In this subsection, we evaluate the effectiveness of the pro-
posed method through qualitative experiments. In the qualita-
tive experiments, we asked material technologists to evaluate
the generated images. First, we collected the generated and
real images corresponding to the test compound-property.
Then, we simultaneously showed the generated and real
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TABLE 4. Percentage of technologists who misidentified the generated image as the real image.

FIGURE 4. Real electron microscope images of rubber materials,
generated images using the proposed method, and generated images
using the comparative method.

images to the technologist and asked them to identify the
real image from them. In the experiments, ten technologists
evaluated the same seven generated and real images. Finally,
we calculated the percentage of technologists who misidenti-
fied the generated image as the real image.

The experimental results and samples are shown in Table 4
and Fig. 4. Table 4 shows the percentage of technologists
who misidentified the generated image as the real image.
As presented in Table 4, technologists misidentify the images
generated using the proposed method compared with the
comparative method. These results show that our image
generation model can generate images similar to the real
images than a method based on the ACGAN. Additionally,
considering that the technologists usually see the electron
microscope images and are asked to identify the real images,
it is considered that the range of value in Table 4 is 0 to
about 0.5. Thus, we consider that the mean value of the
proposed method is comparatively higher, indicating that the
proposed method can generate realistic electron microscope
images. These results show that the generated images using
the proposed method can be useful for visualizing the rela-
tionships between compound-property. Althoughwe focus on
the material compound-property retrieval in this paper, our
method using the conditional image generation model may
contribute to various retrieval tasks. In future studies, we will
further examine these applications.

V. CONCLUSION
In this paper, we first tackle compound-property retrieval
using electron microscope images for rubber mate-
rial development. The proposed method realizes the

compound-property retrieval using electron microscope
image space by generating the images corresponding to the
query compound-property. It enables material technologists
to visually and comprehensively understand the relationships
between materials. The experimental results show the effec-
tiveness of the proposed method.
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