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ABSTRACT Ensemble models based on deep learning have made significant contributions to the medical
field, particularly in the area of disease prediction. Breast cancer is a highly aggressive disease with a
high mortality rate. Timely and effective prediction of breast cancer can reduce the risk of it progressing
to later stages and the need for unnecessary medications. While previous studies have focused on predicting
breast cancer using single-modal datasets, multi-modal datasets that include gene expression (gene exp),
clinical, and copy number variation (CNV) data have become available in recent years for predictive model
development. However, despite multiple studies using multi-modal data for disease prediction, models
designed for breast cancer are typically homogeneous neural networks. This article proposes a heterogeneous
deep learning-based ensemble model for effective breast cancer prediction using multi-modal data. The
model consists of three phases: feature extraction, stacked feature set creation, and using extracted features
as input for a stacked-based model using a random forest algorithm for effective prediction. For feature
extraction, convolutional neural networks (CNNs) are used for clinical and gene expression data, and deep
neural networks (DNNs) are used for CNV data. The extracted features from CNNs and DNNs are stacked
to create a comprehensive feature set. The simulation results demonstrate the superiority of the proposed
framework in terms of accuracy compared to uni-modal and homogeneous model-multi-modal frameworks.

INDEX TERMS Breast cancer, deep learning, feature extraction, machine learning, prognosis prediction.

I. INTRODUCTION
Breast cancer is a highly lethal disease that predominantly
affects women, with a significant mortality rate [1]. The
condition is characterized by abnormal cell growth in the
breast tissue, resulting in the formation of primary tumors,
which can be either benign or malignant. Benign tumors
are confined to the affected area and do not spread, while
malignant tumors can invade and affect other body parts.
Breast cancer is classified into two types: invasive and non-
invasive [2]. Invasive breast cancer can spread to neighboring
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tissues, whereas non-invasive breast cancer is confined to
the milk ducts or lobules of the breast [3], as illustrated in
Figure 1. Although breast cancer is more commonly diag-
nosed in females, it can also affect males, but at a lower
frequency [4].

According to the report of Cancer.Net (ASCO website) an
estimated 2,261,419 new cases were diagnosed with breast
cancer around the globe in 2020. According to the data,
in the United States, approximately 287,850 women will
receive a diagnosis of invasive breast cancer, while about
51,400 women will be impacted by non-invasive breast can-
cer. Approximately, 43,580 death cases were forecast for the
year 2022 due to breast cancer in the United States. The
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FIGURE 1. a) Anatomy of female breast b) Noninvasive cancer c) Invasive cancer.

survival rate is classified as long-term survival i-e more than
5 years and short-term survival i-e less than 5 years [3].
According to Cancer.Net1 report, the 5-year survival rate for
non-invasive cases is 90 percent and the 10-year survival
rate for women with non-invasive diagnosed breast cancer
is 84 percent. If invasive breast cancer is confined to the
breast, the 5-year survival rate is 99 percent. But if it is spread
to lymph nodes the 5-year survival is 86 percent, and if it
spread to other parts of the body it becomes 29 percent. It is
arduous for physicians to effectively diagnose and prognoses
invasive breast cancer due to its variety of clinical outcomes
and complexity [3]. Initiating a prognosis is significant for the
treatment of breast cancer. Firstly, a clear understanding of the
disease allows physicians and patients tomake informed deci-
sions regarding treatment options tailored to the individual’s
specific needs [5].

In the past decade, rapid advances in machine learning and
deep learning open up the ways for medical fields. Various
techniques and tools were proposed by the researcher in
the medical domain for the identification of health-related
issues [6], [7]. Machine learning demonstrates superior per-
formance in diagnosing and treating diseases that can lead
to death. On the other hand, deep learning is specifically
developed to identify the most relevant features for predict-
ing disease [8], [9]. Research reports that deep learning is
capable of diagnosing cancer before revealing its symptoms
to patients with clinical standards [10].
Optimizing hyper-parameters for deep learningmodels can

improve training and prediction, leading to more effective
therapy plans for patients and doctors. Breast cancer prog-
nosis can be improved by using multi-modal data such as
clinical data, gene expression data (gene-exp), copy number
variation (CNV), and other genomics data [11] through the
application of deep learning models. Currently, researchers
have proposed a limited number of methods that use a
homogeneous deep learning model applied to all relevant
modalities. Ensemble models are considered the optimal tool
for improving performance and generalization [12], [13].
keeping the point in view we proposed a model with the
following key characteristics:

• The objective of this study is to create a breast cancer
prognosis method that utilizes a variety of deep-learning

models through stacking. Our study targets to improve
breast cancer prognosis by identifying novel prognostic
factors that can help in the treatment of the disease.

• The primary aim of the research is to develop het-
erogeneous stacking-based models that will enable the
efficient prognosis of breast cancer. This is achieved
through three main steps, namely feature extraction,
feature stacking, and classification algorithm.

• The innovation of this proposed method lies in the use of
multiple deep learning models to extract features from a
vast array of data modalities.

• The heterogeneousmodels are designed to extract highly
informative features and produce more generalized
results. The findings show that the proposed model
outperforms the current benchmarks for breast cancer
prognosis.

• Our study has important clinical implications, as it can
guide the development of new prognostic tools and
treatment strategies for breast cancer patients.

The paper is organized in a way that Section II of the paper
will provide an overview of existing methods and models,
while Section III will detail the methods and materials used
in the proposed approach. Section IV will describe the exper-
imental setup for the proposed model, and Section V will
present the results, discussions, and conclusions.

II. RELATED WORK
The related work can be studied in the following subsections:

A. BREAST CANCER PROGNOSIS WITH SELECTIVE
FEATURES
During past decades, with the fast implementation of gene
expression analysis, and microarray techniques, many con-
tributions help to understand the molecular signatures of
breast cancer based on gene expression patterns in previous
literature. Yixin wang and his colleague identify 76 gene
expression signatures from 115 tumor tissues that can be
useable in the prediction of distant metastasis lymph nodes
specifically negative breast cancer [14]. From the indepen-
dent data of 171 lymph node-negative patients, the results
show 48% specificity and 93% sensitivity. As Breast cancer
is a genetic disease, so for prediction and prognosis various
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TABLE 1. Overall METABRIC dataset information.

researchers contribute with upgraded techniques that hold
multi-modal data like clinical data, gene expr, and CNV to
enhance the prediction and prognosis accuracy [15].

B. BREAST CANCER PROGNOSIS WITH MULTIMODAL
DATA USING MACHINE LEARNING AND DEEP LEARNING
The multi-modal is becoming more prevalent in capturing
the complication of biological process, as it can unveil the
underlying interconnections [16]. To enhance breast can-
cer prognosis Sun. integrates multi-modalities (clinical and
genomic data). In their work, they proposed a new method of
GPMLK of multi-kernel learning. GPMKL was trained for
130 selected pathological features out of 1990 and 20 features
of gene expression and it shows better results than the previ-
ous contribution. As it holds limited data so the performance
of GPMKL is not efficient [17]. Whereas Shimizu. targeted
to design a novel prognosis score mPS that applies to a
wide range of breast cancer patients. In the contribution,
researchers identify 184 prognosis-related genes by training
Random Forest and Neural Network. mPS system is tuned
to 23 expression status and it is applicable where long rank
P< 0.05 specifically independent of platform. It shows better
performance when the mPS system is integrated with clin-
ical data and also provides value that can be used to avoid
over-treatment [18].
Previous work relies on selected features of genomic

data for breast cancer prognosis. But Sun et al. work on
multi-dimensional data with a deep learning model. Where
the dense neural network is applied to multi-modal data
i-e CNV, gene expression, and clinical independently. The
output of DNN is fused in the middle layer. At the out-
put, layer modalities were integrated with the score level
fusion at the final prediction results. It shows better results
than the existing work with 79% accuracy [19]. Li Tong.
Integrates the multi-omics data to predict breast cancer
survival. In this work, researchers implement ConcatAE
(concatenation autoencoder) that merges the feature that a
model learns from each modality and CrossAE to gain an
invariant representation of modality. Proposed models show
remarkable performance on TCCAmulti-omics data of breast
cancer [20]. Han introduced a Model Class Structure Based
Deep Convolutional Neural Network (CSDCNN) that uses
a nonlinear representation to efficiently classify breast can-
cer into multiple categories. With the BreaKHis dataset,
which contains eight subclasses of breast cancer, CSDCNN
achieved an impressive accuracy of 93.2% [21]. In other

work Wei Shao. Proposed a method for feature selection
for multi-modal data that were useful to identify the rela-
tionship between prognosis and prediction. The proposed
framework efficiently highlights the relationship between
prognosis and prediction by identifying the related features
from multi-modal data [22]. Breast cancer modeling has
proven to be a useful tool in comprehending the intricate
nature of tumor growth during treatment. In a similar vein,
the authors have introduced a mathematical model for breast
cancer that employs a system of differential equations with
piecewise constant arguments to investigate tumor growth
and the effects of chemotherapy treatment. The authors have
validated their theoretical findings through numerical sim-
ulations [23]. Luis A. presented MultiSurv, a multi-modal
method for predicting long-term survival in PAN cancer.
MultiSurv employs separate sub-models for each modality,
including imaging, clinical, and other omics data, to establish
feature representations. The sub-model outputs are merged
to generate conditional survival predictions. The proposed
method can handle missing data and be evaluated on 33 types
of cancer that show an accurate survival curve [24].

C. BREAST CANCER PROGNOSIS WITH MULTIMODAL
DATA USING ENSEMBLE DEEP LEARNING
Ensemble deep learning models have become increasingly
important in the medical field, particularly in disease diagno-
sis and prognosis. The EDLCDS-BCDC technique, as sug-
gested by the authors [25], utilizes ultrasound images for the
detection of breast cancer. To extract features, the VGG-16,
VGG-19, and SqueezeNet models are employed in the pro-
posed approach. The final classification is achieved through
the application of Cat Swarm Optimization in combination
with a Multilayer Perceptron for the identification of breast
cancer tissue. In [26], The authors incorporated a CNN into
their study to predict progression-free survival, pathological
complete response, and residual cancer burden. They utilized
MRI scans, demographic data, and molecular subtypes as
inputs. The researchers evaluated three different procedures:
stacking, concatenation, and integration. The results demon-
strated that integration outperformed the other twomethods in
addressing the concerned problem. The authors of this article
[27] have presented an approach that employs hybrid transfer
learning with a modified VGG architecture, utilizing both 2D
and 3Dmammogram images in the dataset. The experimental
findings demonstrate that this proposed method achieves a
prediction accuracy of 89.8%, surpassing the performance
of existing methods. In this study, the authors suggest two
automated approaches for breast cancer (BC) classifica-
tion that utilize a combination of the Whale Optimization
Algorithm (WOA) and Dragonfly Algorithm (DA) along
with Radial Basis Function Kernel Support Vector Machines
(RBF-SVM). The proposedmethods aim to enhance the accu-
racy of BC classification by identifying the optimal SVM
parameters, validated on the WBCD dataset. The proposed
model outperforms the benchmarks [28]. J. Gao introduced
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FIGURE 2. The detailed architecture a) CNN model architecture for feature extraction b) DNN model architecture for feature
extractions.

TABLE 2. Feature selection detail.

a novel framework called the Multimodal Graph Neural
Network, which utilizes gene expression, CNV, and patho-
logical data to classify short and long-term survivals. The
framework constructs bipartite graphs between patients and
multimodal data and fuses all features at the final layer.
With an accuracy of 94% and an AUC of 0.97 [29]. In [30],
the author has proposed for breast cancer diagnosis using a
snapshot ensemble using neural networks with the feature
reduction procedure using t-SNE that provides an efficient
visualization and an accurate classification than the existing
benchmarks. The authors proposed a multimodal adversarial
representation learning approach for breast cancer prognosis
prediction. The proposed approach integrates both clinical
and imaging data to create a unified representation that can
accurately forecast the prognosis of breast cancer patients.
Based on the experimental findings, this approach performs
better than existing methods in terms of predictive accuracy
[31]. Nikhilanand Arya developed a model for prognosis
that uses multi-modal data which were trained on CNN with
stacking. Random forest is applied to stacked files for breast
cancer prognosis that give AUC = 0.93 and ACC = 90% [3].
Liao et al. proposed a hybrid deep learning model that com-
bines multiple modalities, including imaging and gene data.
The researchers developed a fusion framework that utilized
feature selection networks for each modality and then merged
the outputs using a weighted linear aggregation. The fused
features were then used to classify breast cancer subtypes,
achieving an accuracy of 88.07% [32].
The literature has pointed out that several breast cancer

prognosis models have been successful in making accu-
rate predictions for patient survival, but they still have

some limitations. Initially, researchers proposed models that
focused on a single modality for breast cancer progno-
sis. Vijver [33] introduced the first prognosis model that
was based on gene modality. However, relying solely on
gene expression is insufficient to effectively predict breast
cancer survivability. Incorporating additional sources of
information, such as clinical data, copy number variations,
and gene expression, can lead to more efficient prognosis
models. To address the limitations of unimodal architec-
tures, researchers have proposed multi-modal architectures.
Sun et al. proposed one of the most effective multi-modal
architectures in which authors designed a Multimodal Deep
Neural Network by integrating Multi-dimensional Data
(MDNNMD) [19]. The authors utilized clinical data, copy
number variations, and gene expression modality for the
proposed model. DNN neural network is applied to all con-
cerned data for feature extraction and then performs fuse
scoring. The result shows better performance than other
prognosis models. N.Arya proposes another breast cancer
prognosis model citearya2020multi, which is a dual-staged
deep learning-based stacked ensemble model. This model
utilizes clinical data, copy number variations, and gene
expression datasets. In the first stage, CNNs are used for
feature extraction, and in the second stage, the extracted
features are inputted into the stacked ensemble model. The
proposed model uses a homogeneous model-CNN for each
modality to extract features. However, the literature suggests
that heterogeneity in ensemble deep learning is more effec-
tive and provides better generalization [34]. Our proposed
architecture utilizes a heterogeneous model for multi-modal
datasets to ensure a more accurate survivability model for
breast cancer prognosis.

The motivation behind the proposed work is to address the
limitations of existing breast cancer prognosis models, which
often rely on a single modality and may not provide accurate
predictions for patient survivability. The research gaps in the
field have highlighted the need for multi-modal approaches
that incorporate diverse sources of information. The objective
of the proposed work is to develop a heterogeneous model
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FIGURE 3. The systematic proposed framework.

TABLE 3. CNN tuned parameters for clinical and gene expression.

that leverages multiple modalities to improve the accuracy
of breast cancer prognosis models, ultimately leading to bet-
ter patient outcomes. By justifying the research gaps and
objectives, the proposed work aims to make a significant
contribution to the field of breast cancer research.

III. MATERIAL AND METHODS
1) DATASET
The preprocessed METABRIC dataset has been directly
used and is publicly available at: https://github.com/USTC-
HIlab/MDNNMD. The METABRIC dataset comprises
(n = 1980) valid breast cancer patient records [35]. Patients
diagnosed with breast cancer have access to multi-modal
data, including gene expr, clinical information, and CNV.
The samples were categorized into two cohorts: long-term
survivors, who lived for more than 5 years after diagnosis,
and short-term survivors, who lived for less than 5 years after
diagnosis. METABRIC consists of 1489 and 491 samples for
long-term survival and short-term survival respectively. The
diagnosismedian age for the available samples is 61 years and

the average survivability in months is 125.1 months. Long-
term survivors were labeled as ‘0’ and short-term survivors
were labeled as ‘1’. The overall METABRIC data set infor-
mation is given in Table 1. Out of 1980 patients, 64 patients
were lost to follow-up for five years, representing 3.23% of
the total samples. For our model, suspicious samples from
METABRICwere considered long-term survivors. Anymiss-
ing values in the gene expression and copy number variation
dataset were imputed using a weighted nearest neighbor
algorithm [36]. Sun et al. have discretized and normalized the
gene expression data into three levels: under-expression (−1),
baseline (0), and over-expression (1) in correspondence to
Gevaert et al. [37]. The copy number variation-CNV dataset
has been used with five values [−2, −1, 0, 1, 2]. Normaliza-
tion of the clinical dataset is performed by using min-max
algorithm [38] in the range of [0,1] by considering the eq.(1).

x ′
i,n =

xi,n − min(xi)
max(xi) − min(xi)

(nMax − nMin) + nMin (1)

2) FEATURE SELECTION
Considering the nature of the dataset having the high dimen-
sional and low sample size (HDLSS) curse would cost the
efficiency of deep learning models [39]. In the proposed
architecture, multi-modal data consisting of copy number
variation, gene expression, and clinical profiles are taken into
account. These data have 26,000, and 24,000 features for
CNV and gene expression modality. The clinical modality for
each patient consists of 27 features, such as age at diagnosis,
cellularity, size, lymph node positivity, and others that can be
seen in the provided link.1 To alleviate the curse of HDLSS,
we used the well-known algorithm mRMR to reduce the
dimensionality of our data [40], [41]. Feature extraction was

1https://www.kaggle.com/datasets/raghadalharbi/breast-cancer-gene-
expression-profiles-metabric
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TABLE 4. DNN tuned parameters for copy number variation.

done incrementally using the mRMR algorithm, and the final
selection was based on AUC values obtained from various
cohorts. The model’s performance was evaluated using the
top 100 features, which were selected in the first iteration.
In subsequent iterations, the number of features increased to
200, 300, and finally, 500, and the model’s performance was
evaluated each time. The features with high AUC scores were
selected for the heterogeneous stacked RFmodel, and Table 2
provides a detailed description of these selected features. The
selection of features was based on their high AUC score, and
for CNV data, Gene expression profile, and clinical data, 200,
400, and 25 features were selected, respectively.

IV. EXPERIMENTAL SETUP
For our experimental configuration, we utilized ten-fold
cross-validation to assess the proposed framework, as in prior
research [3]. Our dataset consisted of 1980 patients, which we
randomly divided into ten subsets.We combined nine of these
subsets to form a training set, while one was reserved as the
testing set. Additionally, we further partitioned the merged
training set into an 80% training subset and a 20% validation
subset Figure 3 shows the systematic proposed framework
where Keras 2.12.0, along with Tensorflow 2.12.0, is used
for implementing the source code of the model.

1) A CNN AND DNN-BASED PREDICTION FOR A
UNI-MODAL DATASET
The Heterogeneous stacked model proposed in this study
utilizes both a convolutional neural network (CNN) and a
deep neural network (DNN) for predicting breast cancer in
humans and extracting features for the subsequent phase
of the model. The proposed model comprises both CNN
and DNN and incorporates learnable filters directly on the
Multimodal sequences. The CNN is applied to clinical and
gene expression data, while the DNN is applied to the copy
number variation dataset. The CNN and DNN are used at
phase one for feature extraction for the next stage of the
model while having certain numbers of filters. It generates
a feature map that is the output of the convolution and
dense process. The feature mapping is achieved through
element-wise multiplication followed by addition between

TABLE 5. Confusion metrics for the validation set.

TABLE 6. Class evaluation of heterogeneous stacked model.

the corresponding values of the input matrix and the filter
matrix.

In [3], The Glorot normal initializer is utilized to initialize
the filter values. This approach involves selecting values that
have a mean of zero and standard deviation within a specific
range.

−

√
2

ni, no
,

√
2

ni, no
(2)

The input and output values are denoted by ni and n0, respec-
tively. A constant seed value of 0.1 is utilized by both the
CNN and DNN models. The stride rate for the convolutional
layer is 2 which shifts the filter with the difference of 2 to
perform convolution over the input matrix. Padding is also
added to convolution layers for the control of feature size.
After that flattened layer is used to flatten the output of the
convolutional layer then we passed the output from the dense
layer with 150 hidden units. The regularization technique
Dropout [42], was applied for DNN after each layer to pre-
vent overfitting. Whereas L2 regularization is used for CNN
as it has vast applications in deep learning [43], [44]. The
activation function used at the convolutional layer is Tanh
whereas the sigmoid activation function is used at the dense
layer. The detailed architecture of CNN and DNN is shown
in Figure 2.
For model training, a recently proposed optimizer

Adam [45] was used. The parallel cross-entropy is used,
and work was upgraded utilizing that enhancer since it is
computationally proficient. It has required a little memory
and is all around applied to those issues that are huge as far
as boundaries and additional information. A loss function is
used to measure or see how well a deep learning classifier
fits or suites to empirical data. In our case, since the problem
is a binary classification problem, the ground truth (y) can
only have two states, which are one or zero. To evaluate the
prediction performance of the deep learner, we used binary
cross-entropy loss in this study.

Finally, the CNN model is composed of a single convolu-
tional layer, a flattened layer, a dense layer, and an output
layer. On the other hand, the DNN comprises four dense
layers with varying filter sizes and neurons. Each layer is
followed by a 50% dropout layer, and an output layer is
present at the end. The AUC metric is evaluated for different
subgroup sizes ranging from 8 to 128, and the results show
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FIGURE 4. ROC curve for the heterogeneous stacked model having both CNN and DNN for stacked feature extraction for prognosis prediction a) AUC of
CNN for Gene expression b) AUC of DNN for CNV c) AUC of CNN for clinical.

FIGURE 5. AUC comparison of individual modality.

FIGURE 6. Accuracy comparison of individual modality.

that a batch size of 8 yields the best performance. Hence,
a batch size of 8 is chosen for the final model. The detailed
parameter configurations of CNN and DNN are presented
in Figure 3.

2) HETEROGENEOUS STACKED-BASED MODEL FOR
MULTI-MODAL PREDICTION
The proposed model is divided into three phases. These
phases were described as under:

FIGURE 7. Result evaluation of heterogeneous stacked model with
existing benchmarks.

FIGURE 8. Heterogeneous model evaluation parameters.

Phase 1: In phase 1, we train the CNN for clinical data at the
first layer, secondly CNV data is used to train a DNN at the
second layer, and finally we train the CNN for the modality
of Gene Expr data.

Phase 2: In this phase, we shape a stacked feature set by
using extracted features of the output of CNN and DNN.

Phase 3: Finally, we pass this stacked feature set to Random
Forest (RF) algorithm for further classification. We evaluate
the performance of our proposed framework with the parame-
ters given as Sensitivity, Specificity, Precision, and Accuracy.
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TABLE 7. Heterogeneous stacked model results along with existing
benchmarks.

TABLE 8. Performance comparison of the proposed model with existing
benchmark.

Mathematically, these evaluation parameters are described as:

Sensitivity =
Tp

Tp+ Fn
(3)

Specificity =
Tn

Tn+ Fn
(4)

Precision =
Tp

Tp+ Fp
(5)

Accuracy =
Tp+ Tn

Tp+ Tn+ Fp+ Fn
(6)

The true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) is used to calculate the model’s
performance. Additionally, the area under the curve (AUC)
value is computed using the receiver operating characteristic
(ROC) curve to evaluate the model’s efficiency.

V. RESULTS AND DISCUSSION
This section presents a detailed comparison of our proposed
framework with existing benchmarks.

A. HETEROGENEOUS STACKED MODEL PERFORMANCE
A heterogeneous stacked model is designed to combine the
final feature extractions from the CNN andDNNmodels. The
AUC metric, calculated from the ROC curve, is utilized as
the performance evaluation criterion for the feature extraction
models, in addition to the accuracy metric. The model with
a higher AUC value is deemed more effective compared to
the one with a lower AUC value. In Figure 4, we present the
AUC values obtained from the ROC curve analysis. As the
graph depicted AUC for the CNN applied to gene exp and
clinical modality is 0.90 and 0.85 respectively. AUC for
DNN applied to CNV data modality is 0.72. Furthermore, the
accuracies for CNN-gene Exp, DNN-CNV, and CNN-clinical
are 80.56%, 80.45%, and 81.21%, respectively. The AUC

results were not as anticipated, primarily due to a high false
positive rate that carries potential implications for patients.
To overcome the issue of variance caused by the limited
size of the dataset, we employed ten-fold cross-validation to
evaluate the proposed model. The dataset of 1980 patients
was divided into 10 subsets, and in each iteration, 9 subsets
were combined to form the training set while the remaining
subset was used as the testing set.

After analyzing the AUC the features from the individual
neural network are taken as stacked features. Where RF is
applied to the stacked features, it is evident from the liter-
ature that RF outperforms stacked features as compared to
other classifiers [17]. So we validate our model at the last
level using an RF classifier. Where we determine the con-
fusion metrics, Sensitivity, F1 score, Precision, Specificity,
and accuracy of the proposed model. The confusion metrics
for the validation set are shown in Table 3. The table pre-
sented below confirms that the proposed models are efficient
in predicting the samples. Out of a total of 495 samples
in the validation set, 485 samples were correctly predicted,
as shown in the table. There were only 10 false negative
predictions and no false positive predictions. The lack of false
positives may be attributed to imbalanced classes. Whereas
the class evaluation of the heterogeneous stacked model is
shown in Table 4. It is clear from the table below that the
heterogeneous stacked model shows better results. It shows
the precision, recall, and F1 score for the binary classes.
Where the long-term survival holds 1.00, 0.97, and 0.98 for
precision, recall, and F1 score respectively. For short-term
survival, the heterogeneous stacked model secures 0.92, 1.00,
and 0.96 precision, recall, and F1 score respectively. The
stacked features are passed to the random forest where the
overall results of the model were evaluated with multiple
threshold values. The overall result evaluation metrics were
accuracy, sensitivity, and specificity, where it secure 0.97,
0.92, and 1.0 respectively as depicted in Figure 8. It is evi-
dent from our results that the heterogeneous stacked models
show better results than the existing benchmarks as shown
in Table 5.

B. COMPARISON OF HETEROGENEOUS STACKED MODEL
WITH EXISTING BENCHMARKS
It is evident from the result above that the heterogeneous
stacked model has improved the result compared to the
current benchmarks. We compare our proposed heteroge-
neous stacked model with popular prediction methods such
as MDNNMD, Stacked RF-based ensemble model [3], [17].
We compute the AUC values under the ROC for the het-
erogeneous stacked-based model, in comparison to stacked
based ensemble model, MDNNMD. The literature demon-
strates that stacked-based ensemble and Heterogeneous
stacked-based methods outperform the other benchmarks.
In comparison to the stacked RF model and MDNNMD,
the heterogeneous stacked model had higher AUC and ACC
values. In comparison, the stacked RFmodel gains 0.83, 0.92,
and 0.70 AUC values for CNN-Gene Exp, CNN-Clinical,
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and CNN-CNV respectively that are lesser than the het-
erogeneous stacked RF as shown in Figure 5(a). Whereas
Figure 5(b) demonstrates the individual modality accuracy
in comparison to the existing benchmarks. The graph shows
that the heterogeneous stacked model shows better prediction
on individual modality as compared to the existing prognosis
model.

It is determined from the simulations that our heteroge-
neous stacking of neural networks achieves upto-mark results
as compared to existing frameworks such as stacked RF and
MDNNMD as shown in table 7. The heterogeneous stacked
model gains up-to-the-mark results for each modality trained
under different neural networks. The overall model shows
better results than the existing models. Compared to these
benchmarks, our proposed framework achieves 0.97, 0.97,
0.98, 0.98 for accuracy, sensitivity, precision, and F1 score
respectively as shown in Figure 7. While comparing the dif-
ferent evaluation parameters it is validated that the proposed
model earned better results than the existing benchmarks as
shown in Table 8.

VI. CONCLUSION
This article presents a novel approach to predicting breast
cancer prognosis using ensemble deep learning. Unlike pre-
vious research, we utilized a stacked ensemble model with
individual neural networks for feature extraction from differ-
ent data modalities. Our model incorporated CNN for feature
extraction of clinical data and gene expression data, and DNN
for CNV data. In the second phase, the extracted features
were stacked and used as input for the RF for the classi-
fication of short-term and long-term survivals. Our results
demonstrate that our heterogeneous framework outperformed
homogeneous stacking and other benchmarks, achieving an
accuracy of 97%. It is important to note that further val-
idation or integration with other sources of information is
necessary before utilizing the predicted output for clinical
decision-making. Additionally, our approach can be extended
to predict other diseases with different algorithms and can
include more data modalities for prognosis such as gene
methylation and miRNA.
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