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ABSTRACT Three-phase converters based on insulated-gate bipolar transistors (IGBTs) are widely used in
various industrial applications. Faults in IGBTs can significantly affect the operation and safety of the power
electronic equipment and loads. It is critical to accurately detect power inverter faults as soon as they occur
to ensure system availability and high-power quality. This study provides a novel integration of signal and
data-driven fault-diagnosis approaches for detecting open-circuit switch faults in three-phase inverters. The
proposed technique uses the average root-mean-square (RMS) ratio of the phase current as the key extraction
feature. This feature can be used to estimate the fault types and faulty switches (es) irrespective of changes
in the running load. Ensemble-bagged machine learning classification was used to accurately predict the
faulty switch of the inverter. The results demonstrate the ability of the proposed fault diagnosis technique to
identify single-, double-, and triple-switch fault (s). The experimental results also attested to the simulation
of multiple fault diagnosis. A unique feature of this technique is its ability to estimate faulty switches under
various inverter-operating conditions.

INDEX TERMS Ensemble bagged, fault diagnosis, open-circuit fault, voltage source inverter, IGBT.

I. INTRODUCTION
Voltage Source Inverters (VSIs) play a vital role in the
contemporary industry and energy sectors, with applications
extending from induction motor drives to renewable energy
integration and power-efficient systems [1]. The failure of
these devices can lead to operational disruption and con-
sequential economic loss. Research on motor drives and
renewable energy conversion systems reveals that VSIs are
particularly susceptible to faults and exhibit a high failure
rate, as depicted in Fig.1 [2].

Insulated Gate Bipolar Transistors (IGBTs) are one
of the common VSI components that are especially
prone to faults, accounting for 38% of VSI failures [3],
[4]. These can be categorized into short-circuit (SC),
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gate-drive malfunction, and open-circuit (OC) faults, often
resulting from environmental conditions, thermal stress, or
ageing [1], [5].

Short-circuit faults can inflict immediate and severe dam-
age, necessitating protective mechanisms such as fuses and
circuit breakers [4]. On the other hand, open-circuit faults
may not cause instant damage but can degrade the power
quality of the inverter output, potentially harming other sys-
tem components. Over time, open-circuit faults can prompt
a total system shutdown [6]. Hence, it is essential to detect
open- and short-circuit faults promptly to prevent extensive
damage to the converter system.

Fault diagnosis (FD) is a vital reliability-cantered tool
used to identify, classify, and locate faults, which in turn
reduces the downtime of the inverter system. Over the years,
considerable research has been conducted to investigate the
performance of power switches under open circuit conditions.
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FIGURE 1. Failure rate of wind energy conversion system components [7].

This has resulted in the development of fault diagnosis and
fault-tolerant techniques.

Fig.2 shows the common open-circuit faults in a VSI.
These faults include gate driver malfunctions, open-switch
faults, and diode open faults [5], [8]. A gate driver mal-
function occurs when the gate drive signal to the switch is
interrupted. Thus, there is no signal to switch, creating an
open-circuit fault in the IGBT switch A gate driver mal-
function leads to an interruption in the gate drive signal to
the switch, resulting in an open-circuit fault in the IGBT
switch. This fault can arise from a faulty gate driver or bond
wire lift-off within the IGBT switch. In cases where the
anti-parallel diode is not integrated directly with the IGBT
switch, it remains connected and operational [5], [9], [10].
An open-diode fault occurs when the diode is damaged and
becomes disconnected from the circuit. In contrast, an open-
switch fault occurs when both the IGBT and the diode
within the circuit are faulty [5], [10], [11]. Such faults can
manifest during bond wire lift-off caused by thermal stress,
specifically in a Reverse Conducting Insulated Gate Bipolar
Transistor (RC-IGBT) where the IGBT and diode are inte-
grated on a single chip.

FIGURE 2. Possible open circuit faults in VSI.

Most studies on open-circuit faults have focused on gate
drive malfunctions rather than on open-switch faults.

II. OPEN CIRCUIT FAULT DIAGNOSIS METHODS
Open circuit (OC) fault diagnosis can be categorized into
model-based, data-driven, and signal-based approaches [1].
A model-based approach compares the information from the
analytical and theoretical inverter models with that of a real
system after a fault occurs. This includes the development of
mathematical models and open- and closed-loop observers
and using residuals as fault indicators. The authors of [12]
used a switching-state function model for fault diagnosis in
inverters. A gate-drive malfunction was created, the switch-
ing states were analyzed, and an estimated phase voltage was
established. A normal scenario occurred when the measured
and estimated phase voltages were similar. A threshold was
set to consider measurement error, switching delay, and dead
time. When a fault occurs, the phase voltage exceeds a set
threshold. Thus, fault identification was achieved. However,
only single-switch faults were identified in the present study.
In [13], a Luenberger observer model was introduced using
a dq stator current. The fault was identified by monitoring
the current residuals and comparing them with a thresh-
old value. Reference [4]presents an approach that uses an
observer and an adaptive threshold to analyze system sig-
nals without extra hardware. It takes into account current
dynamics, state changes, and real-world application factors.
Its detection time is about 6ms. Reference [14] proposes a
hybrid approach for diagnosing faults in sensorless induction
motor drives. The method uses a diagnostic algorithm, based
on a first-order sliding mode observer, to identify single
and multiple open-switch faults and open-phase faults by
analyzing unique features of the motor’s abc frame in about
20% of the fundamental frequency. One of its drawbacks is
the threshold setting. The main drawbacks of model-based
approaches include a lack of robustness in multiple-switch
fault identification and their dependence on the type of model
used. Some voltage-based methods involve the use of extra
equipment such as voltage sensors, thus reducing the total
reliability and increasing the implementation cost.

A data-driven fault-diagnosis approach involves the use
of machine learning for fault identification and localization.
In this approach, significant emphasis is placed on the fea-
ture extraction of fault indicator signals, because they play
a critical role in the performance of the technique. The raw
three-phase current itself was combined with a random vector
functional network in [15] for the fault identification and clas-
sification of gate-drive malfunction open-circuit faults. High
accuracy can be achieved only when the sample’s current
time window length is greater than 60 ms (approximately 3-4
cycles). Wavelet analysis using a fuzzy algorithm was pro-
posed in [15] and [16]. In this method, an open-circuit fault
was created by opening the gate signal to the switches under
investigation. The fault is detected by changes that occur in
three-phase current wavelet coefficients. These coefficients
were fed into the fuzzy algorithm for the fault identifi-
cation and classification stages. Single- and double-switch
faults were identified using this technique [16]. Several
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combinations of wavelet parameters, such as wavelet energy
and entropy, have been used with more sophisticated machine
learning algorithms for fault identification [18], [19], [20].
The major concerns of the data-driven approach are its com-
plexity and the requirement of large-scale data for training
and validating machine-learning algorithms. Signal-based
methods use the signal characteristics of current, voltage, or a
combination of both for fault identification and classification.
The following include different signal-based fault diagnosis
techniques [16], [20], [21], which developed an open-circuit
fault diagnosis (OC-FD) method based on the principle of the
park vector technique by analyzing the average current tra-
jectory. In a healthy condition, the average current trajectory
is a complete circle; however, it is subject to change when a
fault occurs. The shape of the current trajectory depends on
the type of OC fault. The major drawback of this technique
is its load dependence. To address this issue, the authors
of [23] introduced a DC-normalized current that compares
the normalized DC for each phase to a universal threshold.
A pattern-recognition method was used in [23], that deploys
three-phase current harmonics for FD was used in [23]. It has
been established that whenever a fault occurs, the zero-order
harmonics of the faulty phase are the sum of the other
two zero-order harmonics of healthy phases. The faulty arm
and single-switch faults can be identified; however, double-
switch faults cannot be identified from the two different
phases. Reference [25] introduces a novel fuzzy-based fault
diagnosis technique for three-phase voltage-source inverters.
It uses the average current Park’s vector for detecting and
locating single, multiple, and intermittent faults in power
switches. These faults were detected in 9ms and the fuzzy
system had an accuracy of 96%.

The mean current was proposed in [26] for fault identifi-
cation and localization. Under normal conditions, the mean
value of each phase is zero. However, this value changeswhen
an OC fault exists. The polarity of the mean value was used
for switch identification. Single- and double-switch faults can
be identified; however, the technique is load dependent as
well. To eliminate load dependency, an additional variable
called the normalized mean current was employed [27]. This
was derived by dividing the mean current of each phase by the
Park modulus [26]. Under healthy conditions, the normalized
average mean was 0.5198. Thus, a fault will cause deviation
from the normalized healthy value. This technique can be
used to identify single- and double-switch faults. A criticism
of this methodwas published in [11], which indicated that this
technique would not be effective at low currents, that is when
the current approached zero. However, this technique cannot
be used to identify triple-switch faults. Root-mean-square
(RMS) and mean combination were proposed in [6] and [22].
It uses the RMS to identify the faulty arm and the mean to
identify the faulty switch. It also introduces a normalized
mean current to remove the load dependency. This technique
cannot detect multiple switch faults and is prone to challenges

that affect the normalization techniques discussed in other
approaches.

The authors of [10] developed an FD method to identify
open-switch faults in voltage-source inverters. This method
is based on measuring the RMS and average voltage output
of the inverter. It can identify single- and multiple-switch
faults within a single cycle. The major drawback of this
technique is the first step in the diagnosis, and it is necessary
to compare the measured RMS voltage to the rated RMS
voltage. Therefore, this technique requires the input of the
rated RMS voltage at the start of FD.

Overall, the signal-based approach is simple and easy to
implement in control units because minimum calculation is
required [1]. Recent research has focused on a signal - and
data-driven methods, owing to their simplicity and potential.
The literature has shown that adding extra hardware, com-
plexity, high cost of implementation, false alarms, and lack
of robustness are major shortcomings of existing FDmethods
for OC faults.

Several authors such as [5], [10], and [11] have highlighted
the potential for open switch faults to occur in inverter sys-
tems. Upon reviewing the literature, it’s evident that much
of the existing research predominantly concentrates on gate-
drive malfunctions, with relatively fewer studies dedicated to
open-switch faults in the inverter. Thus, distinguishing and
accurately pinpointing the root causes of open-circuit faults
in the inverter switches becomes an essential endeavour.

This paper’s contributions are summarized as follows.
• A fault diagnosis technique for open-switch faults was
developed using a combination of three-phase current
average and rms for fault identification and classifica-
tion.

• The FD technique can identify single and multiple
switch faults without the need for additional sensors.

• It also introduces a novel but simple normalization tech-
nique to eliminate the load dependency associated with
the mean current indicator compared with published
methods.

• Developed a machine-learning-based technique that
successfully identified single- and multiple-switch
open-circuit faults. This was achieved by using super-
vised and ensemble-bagged tree models to predict the
classification of faults that were completely independent
of load changes.

The proposed model is verified experimentally to confirm the
simulations.

In this paper, we present a comprehensive study
of open-circuit fault diagnosis methods in Section II.
In Section III, we discuss the specific characteristics of faults
in the three-phase inverter output current. In Sections IV
andV,we propose a novel fault-diagnosismethod that utilizes
average and RMS ratios. We then provide the simulation and
experimental results in Sections VI and VII, respectively,
before concluding our findings in Section VIII.
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FIGURE 3. Three-phase inverter schematics.

III. OPEN CIRCUIT CHARACTERISTICS OF THREE-PHASE
INVERTER
A. INVERTER MODEL
This study concentrates on a three-phase, two-level inverter
system, as depicted in Fig. 3. The system utilizes IGBT
switches and operates using pulse-width modulation (PWM)
for control within an open-loop control framework. The
output of this system is connected to an RL load, which
is typically found in applications such as Uninterruptible
Power Supplies (UPS), certain types of motor drives, renew-
able energy systems like solar photovoltaic and wind energy
systems, and power supplies for electronic equipment. The
specific parameters of the RL load, crucial for determining
the performance of the system, are detailed in Table 1.

TABLE 1. Model parameters.

B. FAULT ANALYSIS
The three-phase balanced output-current waveforms of the
inverter are sinusoidal under normal operating conditions,
as shown in Fig.4. This changes when an OC fault occurs in
a single switch or multiple switches.

1) SINGLE SWITCH FAULT
When a switch from the upper arms is subjected to an OC
fault (e.g., S3), the current will not flow through S3 but will
flow through S6. Thus, the current in Phase B was negative.
This, in turn, adds positive DC components to the currents in
Phases A and C. The three-phase current became distorted,
as shown in Fig. 5. The Case is reversed when S6 is OC and
the current in phase B becomes positive.

FIGURE 4. Three-phase current during healthy conditions.

FIGURE 5. Open circuit fault on a single switch (S3).

2) DOUBLE SWITCH FAULT
During a double-switch OC fault on the upper arms
(e.g., S1 and S3), the current does not flow through either
Switch. Thus, the currents in phases A and B are negative,
as shown in Fig. 6. The case is reversed if both the faulty
switches are in the lower arms. The current waveform in the
fault phase was positive. However, if one fault is in the upper
arm and the other in the lower arm (e.g., S1 and S6), the
current will not flow through them, thus creating positive and
negative currents for phases A and B, respectively, as shown
in Fig. 7.

FIGURE 6. Open circuit faults on upper double switches (S1&S3).

3) TRIPLE SWITCH FAULT
When this type of fault occurs, all three-phase current wave-
forms have a positive or negative half cycle. This depends
on the arm in which the fault occurred. If S4, S5, and S6
are affected by an OC fault, it can be observed in Fig.8 that
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FIGURE 7. Open circuit faults on lower and upper switches (S1&S6).

FIGURE 8. Open circuit faults on triple switches.

phases A and B will be positive, whereas phase C will have a
negative value.

From this analysis, information from the current waveform
can be extracted and used for fault identification during the
OC faults.

IV. FAULT INDICATING MEASUREMENTS
In the previous section, it was established that the three-phase
waveforms of the current are affected under faulty conditions.
Thus, the waveform characteristics can be used as key indica-
tors for identifying fault signatures. This study suggests using
RMS and average values of the current for fault identification
and classification. For example, Fig.9 shows the effect of
the S1 OC fault on the average current. As can be observed,
the average current is 0 during a healthy condition, and this
changes during the fault when introduced at 0.04s. Fig.10
shows the effect of the S1 OC fault on the rms measured
current. It is observed that during a healthy condition, the
rms of all phases are the same but change when a fault is
introduced at 0.04s. From all graphs, it is noticeable that the
magnitude and sign of the average and rms currents are rich
indicators of the type and location of faults.

V. NOVEL APPROACH OF FAULT DETECTION AND
CLASSIFICATION
To extract information regarding the inverter condition, the
RMS and average current values were calculated for each
phase over one cycle using Eqs. (1) and (2), respectively:
The RMS and average current values were generated from
the simulated inverter for both healthy and faulty conditions
to extract fault signatures. There are limitations to using
each parameter individually for fault detection. The RMS

FIGURE 9. Three-phase average current during S1 OC fault.

FIGURE 10. Three-phase rms current during S1 OC fault.

alone can identify the faulty phase in the inverter, but cannot
identify the faulty switch. This is also load dependent.

Iavg =
1
T

∫ T

0
i (t)dt (1)

Irms =

√
1
T

∫ T

0
i2 (t)dt (2)

Using only the average current, identification of the faulty
switch and/or phase (only if one or two phases are faulty)
can be achieved; however, the FD method is load depen-
dent and cannot differentiate between short- and open-circuit
faults. To address the load dependency issue, researchers
have adopted an additional variable called the normalized
mean current [27]. This was derived by dividing the mean
current of each phase by the Park modulus [26]. However,
this normalization technique has limitations, including lower
effectiveness at low current values and the inability to identify
triple-switch faults [1].

This study presents a new normalization technique that
uses the ratio of the average to the RMS current for each
phase. The average and RMS values changed at different
loads, but the average-to-RMS ratio remained the same.
Table 2 shows a sample of the average-rms ratio for the S3
fault for different loads, as indicated in Fig.11.

Thus, the mean to rms ratio can be employed for fault
detection without being load dependent. This technique has
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TABLE 2. AVERAGE/RMS ratio oc single switch s3 fault.

TABLE 3. Sample of average to rms ratio value for different loads during
O.C single and multiple switch faults.

FIGURE 11. Average / rms ratio OC single switchS1 fault.

been shown to identify faults at low currents and triple-switch
faults in the inverters. The sample data given in Table 3 repre-
sent the generated data to be presented to a machine-learning
algorithm to classify the faulty switch of the faulty phase
(A/B/C) under load variation. Table 4 lists all the possible
open-switch faults and their respective fault labels. These
fault labels are used to train the classifiers.

A. CLASSIFICATION TECHNIQUES
Several classifiers are used in the decision-making process for
fault identification in the inverters. Accuracy and efficiency
are critical factors when considering the best classifiers.
Support vector machine (SVM), Naïve Bayes (NB) (KNN)
decision tree (DT), and linear discriminant are some of

TABLE 4. Fault type labels.

the classifiers used in fault classification. The accuracy of
these classifiers significantly depends on the dataset param-
eters; thus, the accuracy varies from one dataset to another.
To achieve a high classifier model efficiency, cross-validation
was applied to the training process to protect against over-
fitting. This was achieved by segmenting the dataset into
smaller sets and estimating their accuracy.

1) SUPPORT VECTOR MACHINE
This supervised machine-learning technique was developed
in [30] and used for both classification and regression analy-
ses. This technique is based on determining the optimal sep-
arating hyperplane between two classes of data, as illustrated
in Fig.12 [31]. A hyperplane with the maximum distance
between the two data classes was chosen. Its major advan-
tage is its ability to produce a globally optimized separating
boundary using a small dataset compared with a neural net-
work that uses a large dataset and has a high risk of local
minima [20].

FIGURE 12. SVM classifier [31].

Maximize

W (α) =

N∑
j=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjK
(
xi, xj

)
(3)
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Subjected to∑N

i=1
αiyi = 0, 0 ≤ αi ≤ C, ∀i = (1, 2, . . . ,N ) (4)

K
(
x, x′

)
=

(
< x, x′ > +1

)d (5)

where αi is a Lagrange multiplier, and (xi, yi) is a training
dataset in which xi is the input data and yi is the output data.
C is a constant for a trade-off between the performance and
the generalization, K (x, x‘) is a polynomial kernel function
that performs the non-linear mapping into the feature space.

2) K- NEAREST NEIGHBOURS
It is one of the simplest forms of supervised machine learning
that can be used for classification and regression. Classi-
fication is conducted by mapping how close data classes
are and grouping them based on their minimum distances
as nearest neighbours [20], [32]. Fig.13 shows the general
KNN classifier. In this scenario, the Euclidean KNN model
was adopted using Equation (6) [33], which measures the
straight-line distance between classes of x1 and x2.

d (x1, x2) =

√√√√ p∑
j=1

(x1 − x2)2 (6)

FIGURE 13. KNN classifier [20].

3) DECISION TREE
This method graphically represents the steps that must be
performed to achieve optimal classification. It is a super-
vised machine learning method that solves problems using
a top-bottom approach to find solutions [20], [34]. All possi-
bilities were considered before making the final decision.

4) ENSEMBLE DECISION TREE
Ensemble learning is a supervised machine learning method
with a high ability to accurately predict classification
labels [35]. This is a series/parallel combination of classifiers
to improve the classification accuracy, generalizability, and
robustness over a single classifier.

Several ensemble methods have been proposed to achieve
this purpose. This paper uses the bagging tree method. A bag-
ging tree is a combination of decision tree classifiers, which

FIGURE 14. Bagging structure.

results in a reduction in the variance and bias of the classifiers,
thus improving accuracy. Fig. 14 shows the basic structure of
the bagging decision tree. This study used 30 learners in the
bagged tree method to enhance the classifier output.

B. PROPOSED CLASSIFICATION ASSESSMENT
Single- and multiple-switch OC faults were simulated using
MATLAB and Simulink. Table 3 shows a sample of the
average, RMS, and their ratio values for different loads during
the OC single and multiple switch faults. These values are
then used to train the classifier models. To achieve high
accuracy in identifying fault conditions, several techniques
were compared for the same set of supervised training data.
Classifiers based on trees, KNN, SVC, and ensembles were
trained and their responses were studied. An indicator called
the Confusion Matrix was used to evaluate the performance
of each classifier in retrieving the original trained state.

The confusion matrix plots show the performance of the
classifier for each class of the dataset. The true class was
plotted against the predicted class. Thus, the diagonal class
indicates classifier performance. The confusionmatrix is ana-
lyzed based on two factors namely the false discovery rates
(FDR), and predictive Positive values (PPV). FDR is defined
as the proportion of erroneously categorized observations per
expected class, whereas PPV is defined as the proportion of
correctly categorized observations per projected class. In the
confusion matrix, the highest FDR is denoted in red and
the highest PPV is denoted in green. As the FDR and PPV
values decreased, the intensity of the colour decreased. It is
important to note that when the PPV is not at its highest, there
is a presence of FDR

Fig. 15 shows the confusion matrix for the decision tree
classifier when trained with the average and rms ratios. From
the figure, we can observe that there are many FDR and most
PPVs do not reach 100%. This indicates that the classifier
cannot accurately distinguish the fault classes. An example
with the S5 open switch fault is denoted as fault label ‘3’ on
the confusion matrix. The PPVwas 53% and the accumulated
FDRwas approximately 46.7%. This means that the classifier
tends to classify S5 faults as other faults. In this case, S2S3,
S4S6, and S4S5S6 faults are denoted by their corresponding
fault labels 12, 17, and 20, respectively.

VOLUME 11, 2023 85871



C. N. Ibem et al.: Multiple Open Switch FD of Three Phase VSI

FIGURE 15. Decision tree confusion matrix.

FIGURE 16. KNN confusion matrix.

Fig.16 and 17 show the confusion matrices of KNN and
SVM, respectively. Both can be observed to have an FDR;
therefore, they can incorrectly classify trained open-switch
faults. However, in the SVM confusion matrix, it can be
observed that FDR has a lower colour intensity than KNN
and the decision tree. This indicates that SVMperforms better
than KNN and the decision tree.

Fig.18 shows the confusion matrix for the ensemble-
bagged tree. It can be observed that the classifier did not
misclassify the different faults; hence, the PPV for each fault
was 100%. From the confusion matrices for the different
classifiers, it is clear that the bagged ensemble has the highest
accuracy in estimating classes that are as close as possible to
the true values.

VI. SIMULATION RESULTS
A three-phase DC-AC inverter was simulated under different
fault scenarios for IGBT open-circuit faults. The test model
included the inverter under investigation, with an ensem-
ble classifier block fed from the current RMS and average
measurements. The machine learning block (classification
model) has three main functions: first, to check and identify

FIGURE 17. SVM confusion matrix.

FIGURE 18. Ensemble bagged tree confusion matrix.

FIGURE 19. Fault label to display conversion.

the healthy case from the faulty phase; second function)
to apply ensemble classifications for the average/rms data
samples, and (third) to convert the fault label values to string
output showing the faulty switch on the display. The numeric-
to-string conversion is implemented using a mathematical
function in MATLAB. A schematic of the process is shown
in Fig. 19. The fault label values were split into single digits
and converted into strings. This signal was then fed into the
display to show the condition of the inverter. This creates a
user-friendly environment for the proposed method.

Aflowchart of the classification system is shown in Fig. 20.
The output of the classifier is indicated as a ‘‘figure’’ that
represents the fault case, and the full details of all cases
are given in Table 4 for all possible fault open circuits,
that is, for single, double, and triple faulty switches (es).
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TABLE 5. Classifier performance.

FIGURE 20. Fault diagnosis flow chart.

The simulation analysis and the results of the investigated
technique are presented in this section. Table 5 shows that
the ensemble bagged classifier has the best performance and
accuracy (100%) compared to the other classifiers.

Fig. 21 – 24 shows the simulation fault diagnosis model
results for OC single-, double-, and triple-switch faults,
respectively, using the ensemble-bagged supervised classifi-
cation technique. The display faulty switch block is designed
to convert the classifier fault indicator into a display of fault
type and indicates the faulty switch(es).

As shown in Fig. 21, S3 was an open-circuit circuit. The
corresponding average to-RMS ratios are shown in Fig. 10.
The output fault label code of that fault according to Table 4
is 2, this is also indicated in the display unit as ‘S3’ which is
clearly shown.

Fig. 22 shows the classifier outputting ‘S1 S3’ for the
double open-circuit switches in the top arms, in this case, for
S1 and S3. The resulting output shows the fault label as ‘9’
as indicated in Table 4.
Fig. 23 shows the classifier result when two switches from

two different phases are open-circuited, this is S2&S3, it pro-
duces the code of ‘17’ as indicated in Table 4

FIGURE 21. Simulation fault diagnosis result for S3 OC.

FIGURE 22. Simulation fault diagnosis result for S1S3 OC.

FIGURE 23. Simulation fault diagnosis result for S2S3 OC.

Fig.24 shows the classifier estimation for triple switches
open circuit fault for S1&S2&S3, it produces the correct fault
code of ‘19.’

Fig. 25 shows the different fault scenarios and fault diag-
nosis technique responses to these faults. From Fig. 25A a
healthy scenario is simulated from 0 – 0.11 s and it can be
seen that the current waveform is sinusoidal thus the fault
technique reads ‘0’ indicating a normal condition. An open
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FIGURE 24. Simulation fault diagnosis result for S1S2S3 OC.

FIGURE 25. Fault diagnosis response to different open switch faults
(a) Diagnosis response to S1 fault (b) Diagnosis response to S1S3 and
S1S2S3 Open switch fault.

switch fault S1 is introduced between 0.11 s – 0.2 s. Phase
A will have negative values and the fault diagnosis technique
result changes from ‘0’ to ‘1’ according to the fault label in
Table 4. Fig. 25B shows a double-switch open circuit S1, and

FIGURE 26. Experiment setup.

S3 is introduced from 0 to 0.1s. The fault diagnosis technique
immediately identifies faulty switches by indicating fault
label ‘9 ’ at a diagnosis time of 12.5% of the fundamental
frequency approximately 2.5ms. A triple switch open circuit
fault S1, S2 and S3 is introduced at 0.1s -0.2s, and we
can observe the decrease in the magnitude of the current
waveform thus the fault diagnosis technique indicates ‘19.
’ These results demonstrate that the proposed technique can
identify the fault switch for half the period of the fundamental
frequency.

VII. EXPERIMENT RESULT
The experimental setup was performed at the Smart Energy
Lab at the Glasgow Caledonian University, as shown in
Fig. 26. The setup included a three-phase inverter with six
removableGW39NCB0VD IGBT switches driven by aGDA-
3A2S1 Taraz Technologies gate driver. MATLAB Simulink
was used to generate the gate control signals for the six
switches. The LAUNCHXL-F28379D Launchpad Develop-
ment Kit was used as an input–output interface between the
Simulink and gate drivers. An open-circuit fault was created
by removing each switch, and the three-phase output cur-
rent was measured using a current and voltage measurement
device USM-31V (Taraz Technologies). The data from the
phase current measurements were logged from the oscillo-
scope and fed offline to the fault diagnosis model block in
MATLABSimulink andwere used for fault identification and
classification.

Fig. 27-28 shows the output currents for the healthy and
faulty case obtained from the experiment.

Fig. 29 shows the Simulink fault diagnosis model fed with
the experimental three-phase current. In this case, a single
(S3) open switch fault is fed to the model and the output
of the model indicates S3 while the fault label shows ‘2’.
In Fig. 30, a more detailed diagram can be observed when
the S3 open-switch fault was applied, and the fault diagnosis
model increased to 2. This indicates that the faulty switch
is S3.
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FIGURE 27. Experimental three-phase current for a healthy condition.

FIGURE 28. Experimental three-phase current for S3 OC fault.

FIGURE 29. Simulink experiment result for S3 OC fault.

FIGURE 30. Fault diagnosis experimental result for S3 OC fault.

The experimental results verified the proposed technique
in all scenarios, and all single- and multiple-switch OC faults
could be detected and classified accurately.

TABLE 6. Comparative result.

Table 6 presents a comparative analysis of the proposed
fault diagnosis technique, specifically for IGBT/Diode faults,
against techniques previously used for IGBT faults, with
a particular emphasis on detection time and accuracy. The
detection time is evaluated in relation to the period of the fun-
damental current, which is 20ms. The data in Table 6 clearly
shows that most of the techniques require less than half the
period of the fundamental time for diagnosis. Moreover, the
table illustrates that the proposed method for IGBT/Diode
faults demonstrates strong performance across the evaluated
parameters, indicating its effectiveness in a comparative con-
text, rather than a direct comparison of the fault diagnosis
methods themselves.

VIII. CONCLUSION
This study focused on the open-switch fault of a three-phase
inverter. This study presents a new fault diagnosis method for
identifying and classifying single and multiple open-switch
faults. This was achieved by.

• The three-phase current waveform of the inverter was
analyzed, and the average and RMS values were
extracted. The combination of both parameters yields
a robust fault diagnosis method compared with using
them individually.

• A new normalization method based on the mean-to-
RMS ratio is introduced and verified. The ratio val-
ues were fed into the ensemble-bagged classification
method to classify different faults.
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• The proposed technique can identify multiple switch
faults including triple-switch faults. It is also effective
under low current conditions.

• In addition to the simplicity of the fault diagnosis
technique, additional sensors are not required, thus
facilitating implementation and minimizing the cost to
the manufacturer.

• The proposed fault diagnosis technique was validated
through experiments and simulations. The results pre-
sented in this paper confirm the robustness of the
proposed technique for estimating all possible fault
scenarios.

REFERENCES
[1] K. Hu, Z. Liu, Y. Yang, F. Iannuzzo, and F. Blaabjerg, ‘‘Ensuring a reliable

operation of two-level IGBT-based power converters: A review of monitor-
ing and fault-tolerant approaches,’’ IEEE Access, vol. 8, pp. 89988–90022,
2020.

[2] T. Chen, Y. Pan, and Z. Xiong, ‘‘Fault diagnosis scheme for single and
simultaneous open-circuit faults of voltage-source inverters on the basis of
fault online simulation,’’ J. Power Electron., vol. 21, no. 2, pp. 384–395,
Feb. 2021.

[3] H. Yang, Y. Zhou, and J. Zhao, ‘‘Current covariance analysis-based open-
circuit fault diagnosis for voltage-source-inverter-fed vector-controlled
induction motor drives,’’ J. Power Electron., vol. 20, no. 2, pp. 492–500,
Mar. 2020.

[4] H. Yin, Y. Chen, and Z. Chen, ‘‘Observer-based adaptive threshold diag-
nosis method for open-switch faults of voltage source inverters,’’ J. Power
Electron., vol. 20, no. 6, pp. 1573–1582, Nov. 2020.

[5] S. M. Dabour and M. I. Masoud, ‘‘Open-circuit fault detection of five-
phase voltage source inverters,’’ in Proc. IEEE 8th GCC Conf. Exhib.,
Feb. 2015, pp. 1–6.

[6] M. A. Zdiri, B. Bouzidi, and H. H. Abdallah, ‘‘Improved diagnosis method
for VSI fed IM drives under open IGBT faults,’’ in Proc. 15th Int. Multi-
Conf. Syst., Signals Devices (SSD), Mar. 2018, pp. 905–910.

[7] M. Hossain, A. Abu-Siada, and S. Muyeen, ‘‘Methods for advanced wind
turbine condition monitoring and early diagnosis: A literature review,’’
Energies, vol. 11, no. 5, p. 1309, May 2018.

[8] M. D. Kumar, S. F. Kodad, and B. Sarvesh, ‘‘Simplified fault detection
algorithm for voltage source fed induction motor,’’ Mater. Today, Proc.,
vol. 5, no. 1, pp. 1401–1410, 2018.

[9] Z. Li, H. Ma, Z. Bai, Y. Wang, and B. Wang, ‘‘Fast transistor open-circuit
faults diagnosis in grid-tied three-phase VSIs based on average bridge arm
pole-to-pole voltages and error-adaptive thresholds,’’ IEEE Trans. Power
Electron., vol. 33, no. 9, pp. 8040–8051, Sep. 2018.

[10] Y. O. Ajra, H. A. Sheikh, N. Moubayed, and G. Hoblos, ‘‘Fault diagnosis
of open switch failure in voltage source inverter using average and RMS
phase voltages,’’ in Proc. Int. Conf. Innov. Intell. for Informat., Comput.,
Technol. (3ICT), Sep. 2021, pp. 250–255.

[11] L. M. Halabi, I. M. Alsofyani, and K.-B. Lee, ‘‘Open circuit fault diagnosis
for multi-level inverters using an improved current distortion method,’’ in
Proc. IEEE Conf. Energy Convers. (CENCON), Oct. 2021, pp. 75–79.

[12] T. Yanghong, Z. Haixia, and Z. Ye, ‘‘A simple-to-implement fault diag-
nosis method for open switch fault in wind system PMSG drives without
threshold setting,’’ Energies, vol. 11, no. 10, p. 2571, Sep. 2018.

[13] Y. Chen, H. Luo, W. Li, X. He, F. Iannuzzo, and F. Blaabjerg, ‘‘Analytical
and experimental investigation on a dynamic thermo-sensitive electrical
parameter with maximum dIC/dt during turn-off for high power trench
gate/field-stop IGBT modules,’’ IEEE Trans. Power Electron., vol. 32,
no. 8, pp. 6394–6404, Aug. 2017.

[14] R. Maamouri, M. Trabelsi, M. Boussak, and F. M’Sahli, ‘‘Mixed model-
based and signal-based approach for open-switches fault diagnostic in
sensorless speed vector controlled induction motor drive using sliding
mode observer,’’ IET Power Electron., vol. 12, no. 5, pp. 1149–1159,
May 2019.

[15] Y. Xia, B. Gou, Y. Xu, and G. Wilson, ‘‘Ensemble-based randomized
classifier for data-driven fault diagnosis of IGBT in traction converters,’’
in Proc. IEEE Innov. Smart Grid Technol. Asia (ISGT Asia), May 2018,
pp. 74–79.

[16] H. S. H. Chung, H. Wang, F. Blaabjerg, and M. Pecht, Reliability of Power
Electronic Converter Systems. Institution of Engineering and Technology,
2016.

[17] S. Anupama and S. Priya, ‘‘Open circuit switch fault diagnosis methods
for VSI fed induction motor drive,’’ in Proc. 3rd Int. Conf. Adv. Comput.
Commun. Syst. (ICACCS), vol. 1, Jan. 2016, pp. 1–6.

[18] R. B. Dhumale and S. D. Lokhande, ‘‘Comparative study of fault diagnostic
methods in voltage source inverter fed three phase induction motor drive,’’
IOP Conf. Ser., Mater. Sci. Eng., vol. 197, no. 1, 2017, Art. no. 012006.

[19] Z. Yang and Y. Chai, ‘‘A survey of fault diagnosis for onshore grid-
connected converter in wind energy conversion systems,’’ Renew. Sustain.
Energy Rev., vol. 66, pp. 345–359, Dec. 2016.

[20] P. Achintya and L. Kumar Sahu, ‘‘Open circuit switch fault detection in
multilevel inverter topology using machine learning techniques,’’ in Proc.
IEEE 9th Power India Int. Conf. (PIICON), Feb. 2020, pp. 1–6.

[21] A. M. S. Mendes and A. J. M. Cardoso, ‘‘Voltage source inverter fault
diagnosis in variable speed AC drives, by the average current park’s
vector approach,’’ in Proc. IEEE Int. Electr. Mach. Drives Conf. (IEMDC),
May 1999, pp. 704–706.

[22] B. Lu and S. K. Sharma, ‘‘A literature review of IGBT fault diagnostic and
protection methods for power inverters,’’ IEEE Trans. Ind. Appl., vol. 45,
no. 5, pp. 1770–1777, Sep./Oct. 2009.

[23] K. Rothenhagen and F. W. Fuchs, ‘‘Performance of diagnosis methods for
IGBT open circuit faults in three phase voltage source inverters for AC
variable speed drives,’’ in Proc. Eur. Conf. Power Electron. Appl., 2005,
pp. 1–10.

[24] C. B. D. Eddine, B. Azzeddine, K. M. Amine, B. Mokhtar, and
B. Noureddine, ‘‘The enhancement of park current vectors technique for
inverter fault detection,’’ in Proc. 6th Int. Conf. Syst. Control (ICSC),
May 2017, pp. 377–382.

[25] H. Yan, Y. Xu, F. Cai, H. Zhang,W. Zhao, and C. Gerada, ‘‘PWM-VSI fault
diagnosis for a PMSM drive based on the fuzzy logic approach,’’ IEEE
Trans. Power Electron., vol. 34, no. 1, pp. 759–768, Jan. 2019.

[26] Z. Jian-Jian, C. Yong, C. Zhang-Yong, and Z. Anjian, ‘‘Open-switch fault
diagnosis method in voltage-source inverters based on phase currents,’’
IEEE Access, vol. 7, pp. 63619–63625, 2019.

[27] J. O. Estima and A. J. Marques Cardoso, ‘‘A new approach for real-time
multiple open-circuit fault diagnosis in voltage source inverters,’’ in Proc.
IEEE Energy Convers. Congr. Expo., Sep. 2010, pp. 4328–4335.

[28] M. A. Khelif, A. Bendiabdellah, and B. D. E. Cherif, ‘‘A combined RMS-
MEAN value approach for an inverter open-circuit fault detection,’’ Peri-
odica Polytechnica Electr. Eng. Comput. Sci., vol. 63, no. 3, pp. 169–177,
Apr. 2019.

[29] P. S. Das and K. H. Kim, ‘‘Open-switch fault-tolerant control of a grid-
side converter in a wind power generation system,’’ Int. J. Power Electron.
Drive Syst., vol. 6, no. 2, pp. 293–304, 2015.

[30] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[31] D.-E. Kim and D.-C. Lee, ‘‘Fault diagnosis of three-phase PWM inverters
using wavelet and SVM,’’ in Proc. IEEE Int. Symp. Ind. Electron., vol. 2,
Jun. 2008, pp. 329–334.

[32] W. Gong, H. Chen, Z. Zhang, M. Zhang, and H. Gao, ‘‘A data-driven-
based fault diagnosis approach for electrical power DC–DC inverter by
using modified convolutional neural network with global average pool-
ing and 2-D feature image,’’ IEEE Access, vol. 8, pp. 73677–73697,
2020.

[33] B. Boehmke and B. Greenwell, Hands-On Machine Learning With R.
London, U.K.: Chapman & Hall, 2019.

[34] A. Stetco, F. Dinmohammadi, X. Zhao, V. Robu, D. Flynn, M. Barnes,
J. Keane, and G. Nenadic, ‘‘Machine learning methods for wind turbine
condition monitoring: A review,’’ Renew. Energy, vol. 133, pp. 620–635,
Apr. 2019.

[35] W. Zhu, M. Xie, and J.-F. Xie, ‘‘A decision tree algorithm for license plate
recognition based on bagging,’’ in Proc. Int. Conf. Wavelet Act. Media
Technol. Inf. Process. (ICWAMTIP), Dec. 2012, pp. 136–139.

[36] Z. Li, B. Wang, Y. Ren, J. Wang, Z. Bai, and H. Ma, ‘‘An average
model-based transistor open-circuit fault diagnosis method for grid-tied
single-phase inverter,’’ in Proc. 44th Annu. Conf. IEEE Ind. Electron. Soc.
(IECON), Oct. 2018, pp. 993–998.

[37] K.-D. Li, C.-Y. Chen, T.-F. Chen, S. Cheng, X. Wu, and C.-Q. Xiang,
‘‘A new approach for on-line open-circuit fault diagnosis of inverters based
on current trajectory,’’ J. Central South Univ., vol. 26, no. 3, pp. 743–758,
Mar. 2019.

85876 VOLUME 11, 2023



C. N. Ibem et al.: Multiple Open Switch FD of Three Phase VSI

[38] M. Fei, L. Ning, M. Huiyu, P. Yi, S. Haoyuan, and Z. Jianyong, ‘‘On-line
fault diagnosis model for locomotive traction inverter based on wavelet
transform and support vector machine,’’ Microelectron. Rel., vols. 88–90,
pp. 1274–1280, Sep. 2018.

[39] L. Qiu, Q. Peng, Y. Yang, W. Xu, and Q. Liang, ‘‘Using CEEMDAN
algorithm and SVM fault diagnosis methodology in three-phase inverters
of PMSM drive systems,’’ in Proc. 36th Chin. Control Conf. (CCC),
Jul. 2017, pp. 7127–7132.

[40] M. Ayyakrishnan, ‘‘Fuzzy control based double switching fault tolerant
control on four switch voltage source inverters,’’ J. Electr. Eng. Technol.,
vol. 17, no. 2, pp. 1031–1038, Mar. 2022.

CHUKWUEMEKA N. IBEM (Member, IEEE)
received the B.Eng. degree (Hons.) in electrical
electronics engineering from the Bells University
of Technology, Nigeria, in 2015, and the M.Sc.
degree in electrical electronics engineering from
Glasgow Caledonian University, U.K., in 2017,
where he is currently pursuing the Ph.D. degree.
The Ph.D. topic is based on developing robust
fault detection techniques and tolerant schemes for
converter topologies. He has published conference

papers in the IEEE. His current research interests include fault analysis
of converter topologies, renewable energy topology integration, renewable
energy storage, and distributed generation systems.

MOHAMED E. FARRAG (Member, IEEE)
received the B.Eng. (Hons.) and M.Sc. degrees
in industrial electronics and control engineering
from Egypt, in 1990 and 1996, respectively, and
the Ph.D. degree from Northumbria University,
U.K., in 2002. He is currently a Professor with
the Department of Electrical and Electronic Engi-
neering, Glasgow Caledonian University (GCU),
U.K., with more than 20 years of research and
lecturing experience in electrical power engineer-

ing. He has published around 100 research papers in refereed journals and
conferences. He is leading multiple million projects in a capacity building
funded by Erasmus+ with partners from Europe, Egypt, and Sri Lanka.
In addition to projects funded by SFC and ETP, he is also working with
power industry companies on development projects to assess their assets. His
current research interests include artificial intelligence control applications
in condition monitoring and control of FACTS. He organized and chaired the
UPEC2018 Conference.

AHMED A. ABOUSHADY (Senior Member,
IEEE) received the B.Sc. (Hons.) and M.Sc.
degrees in electrical and control engineering from
the Arab Academy for Science and Technology,
Egypt, in 2005 and 2008, respectively, and the
Ph.D. degree in power electronics from the Uni-
versity of Strathclyde, U.K., in 2013. He is cur-
rently a Senior Lecturer of power electronic sys-
tems with Glasgow Caledonian University, U.K.
He has published several papers in refereed jour-

nals/conferences, textbooks, book chapters, and the PCT patent number
PCT/GB2017/051364. His current research interests include DC–DC con-
verters, high-voltage DC transmission systems, grid integration of renewable
energy, and distributed generation systems.

SHERIF M. DABOUR (Senior Member, IEEE)
received the B.Sc. degree in electrical engineering
from Zagazig University, Egypt, in 2002, and the
M.Sc. and Ph.D. degrees in electrical power engi-
neering from Tanta University, Egypt, in 2012 and
2015, respectively.

He has extensive experience in research and aca-
demic teaching of electrical power and industrial
electronics. From 2003 to 2009, he was a Lecturer
and a Certified Trainer with Technical and Voca-

tional Training Corporation, Riyadh, Saudi Arabia. In 2009, he joined Tanta
University, where he is currently an Associate Professor (on academic leave).
He has been involved in many projects funded by the Egyptian Academy of
Scientific Research and Technology and the Qatar National Research Foun-
dation. He is also a Researcher-1A with Glasgow Caledonian University,
U.K., where he is participating in research funded by the British Council and
Academy of Engineering and European Commission Projects. He has super-
vised the M.Sc. students and three Ph.D. students. To date, he has published
49 papers in international journals and conferences in the field of expertise.
His current research interests include analysis, modeling, and application of
power electronic converters. In addition, he studied wind turbines, PV sys-
tems, storage systems, microgrids, electric vehicle chargers, and energy
storage integration. He served as a Treasurer for the Egypt Chapter of the
IEEE Power Electronics Society (PELS), from 2017 to 2020. Additionally,
he is a Reviewer of several journals, including IEEE TRANSACTIONS ON POWER

ELECTRONICS AND INDUSTRIAL ELECTRONICS, IET Power Applications, and IET
Power Electronics.

VOLUME 11, 2023 85877


