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ABSTRACT The lexicographic product, a powerful binary operation in graph theory, offers methods for
creating a novel graph by establishing connections between each vertex of one graph and every vertex of
another. Beyond its fundamental nature, this operation is found in various applications across computer
science disciplines, including network analysis, data mining, and optimization. In this paper, we give a
definition of the weight function to the lexicographic product graph G[H ], which enables us to capture the
intricate interplay among the vertices of the constituent graphs and facilitate a deeper understanding of their
relationships. We derive an expression for the spectrum of G[H ] by using the spectrums of G and H if the
graph H is a self-complementary graph. Through a systematic analysis and careful computations, we derive
a comprehensive expression for the spectrum of G[H ]. Remarkably, we reveal an intriguing characteristic
pertaining to self-complementarity within the weighted lexicographic product graph. Specifically, we show
that the weighted lexicographic product graph can be self-complementary if this graph is a product of two
connected weighted self-complementary graphs. Furthermore, we delve into the geometric properties of the
lexicographic product, specifically examining the Ricci curvature for the product of two regular graphs.
Through rigorous analysis, we have discovered that the lexicographic product of two regular graphs exhibits
a lower bound on the Ricci curvature.

INDEX TERMS Lexicographic product, self-complementary, spectrum, Ricci curvature.

I. INTRODUCTION
A product graph is a mathematical structure which is used
to represent the relationship between two or more graphs. It
is created by taking the Cartesian product of the vertex sets
and edge sets of the input graphs. The resulting product graph
has vertices that are pairs of vertices from the input graphs,
and edges that connect pairs of vertices according to a certain
rule. The various types of graph products differ in terms of the
specific mathematical condition that is used to create them.
For example, the Cartesian product [13], [39], tensor product
[22], [35], lexicographic product [6], [11], [16], [19], [29],
and strong product [5], [34] each utilize a different set of rules
to combine the input graphs into a new, composite graph.

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

Depending on the particular requirements of a given problem,
one type of graph product may be more suitable than another
for modeling or analyzing relationships between graphs.

The lexicographic product, a powerful mathematical tool,
has gained significant recognition and utilization in various
fields including network analysis, data mining, and optimiza-
tion. Furthermore, its versatile applications have contributed
to a deeper understanding of complex systems, efficient data
analysis, and problem-solving in diverse domains. Network
analysis benefits greatly from the lexicographic product as
it offers a robust framework for modeling systems charac-
terized by strong interactions between nodes. For instance,
social networks and communication networks heavily rely on
the lexicographic product to capture the intricate dynamics
and information flow within these interconnected structures.
By referring to the works of Hu [23] and Mao [27] in
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their respective publications, researchers have successfully
employed the lexicographic product to unravel the under-
lying mechanisms and identify crucial nodes that drive the
overall network behavior. In the realm of data mining, the
lexicographic product has emerged as a valuable tool for
analyzing vast datasets and uncovering hidden patterns or
relationships between different variables. The works of Chou
[8] and Rute et al. [33], as cited in their publications, demon-
strate how the lexicographic product facilitates the extraction
of meaningful insights from complex data structures. By
leveraging its capabilities, researchers can efficiently navi-
gate through large volumes of information, identify relevant
patterns, and make informed decisions based on the discov-
ered knowledge. Moreover, the lexicographic product proves
instrumental in optimization, enabling the resolution of intri-
cate problems by breaking them down into smaller, more
manageable sub-problems. This approach, as highlighted in
the works of Bissoli et al. [7] and Guo et al. [20], allows
for a systematic and efficient solution to complex optimiza-
tion challenges. By decomposing the problem into smaller
components, the lexicographic product simplifies the overall
optimization process, leading to improved performance and
enhanced decision-making.

The lexicographic product is a fundamental concept in
the field of graph theory and has been extensively studied.
While much of the research has focused on simple graphs, the
lexicographic product was first introduced by Hausdorff [21].
Geller and Stahl [15] discovered that the independence num-
ber of a lexicographic product can be easily calculated from
the independence numbers of its constituent graphs. Ravindra
and Parthasarathy [32] established that a lexicographic prod-
uct of two graphs is a perfect graph if and only if both fac-
tors are perfect. Additionally, Feigenbaum and Schäffer [14]
demonstrated that determining whether a graph is a lexico-
graphic product is equally complex as the graph isomorphism
problem. These findings can be helpful for researchers to
develop novel techniques for analyzing complex systems and
solving challenging graph-related problems.

Recently, there has been an increased focus among
researchers on understanding various properties of weighted
graphs. Interested readers can refer to works [2], [3], [4],
[37], [38]. Grigor’yan et al. have investigated the Kazdan-
Warner equation on graphs in [18]. Additionally, Grigor’yan
[17] focused on the Cartesian product of weighted graphs and
demonstrated that all eigenvalues of the Laplace operator on
the weighted Cartesian product graph are convex combina-
tions of the eigenvalues of the Laplace operator of the original
graphs.

Weighted graphs have important applications in electrical
resistance. In circuit analysis, a weighted graph can be used
to represent the connections and resistances between com-
ponents in a circuit. By analyzing the weighted graph, one
can calculate the current distribution, potential difference,
and power dissipation in the circuit. This is very helpful for
circuit design, optimization, and solving practical problems.

In a weighted graph, nodes represent the endpoints or con-
nection points in the circuit, while edges represent the wires
or devices in the circuit. The weight of an edge represents
the resistance value in the circuit. By using network analysis
methods such as Kirchhoff’s laws and Ohm’s law, one can
use the weighted graph to solve for voltage, current, power,
and other parameters in the circuit. Furthermore, weighted
lexicographic product graphs can help understand the topol-
ogy and characteristics of a circuit. For example, for complex
circuit boards or power grid systems, they can be abstracted
into simple weighted graphs to simplify the analysis process.
By changing the weights, one can simulate variations or faults
in different components of the circuit. In summary, weighted
graphs have important applications in electrical resistance,
making circuit analysis more intuitive and efficient. They
assist engineers in designing, optimizing circuits, and solving
real-world problems. We refer the readers to the references
[12] and [30] for more details.

Lin and Yau [26] established that the Ricci curvature,
as defined by Bakry and Emery, of locally finite graphs is
lower bounded by -1. Furthermore, they demonstrated that
the Ricci curvature, as defined by Ollivier, for the simple
random walk on graphs also possesses a lower bound. Chung
and Yau’s concept of a Ricci flat graph corresponds to a
graph with Ricci curvature bounded below by zero. Münch
and Wojciechowski [28] exhibited that a lower bound on
the Ollivier curvature is equivalent to a particular Lipschitz
decay pattern in solutions to the heat equation. Cushing
et al. [10] proved that the curvature functions of the Carte-
sian product of two graphs, G1 and G2, equal an abstract
product of curvature functions of G1 and G2. This paper
focuses on analyzing the Ricci curvature of the lexico-
graphic product graph and providing a lower bound for the
same.

This paper takes inspiration fromGrigor’yan’s work on the
Cartesian product of weighted graphs, as presented in [17].
In [36], we have already studied the spectral problem of the
strong product weighted graphs. Here, we aim to extend our
research by exploring the spectral properties of other kinds of
weighted graphs, such as the weighted lexicographic product
graphs. Conducting these studies will help us to gain a deeper
understanding of the behavior and properties of weighted
graphs, while also provide valuable insights that can inform
future research in this field. The primary challenge in ana-
lyzing the connection between the spectrum of two original
weighted graphs and their lexicographic product graph arises
from the difficulty in assigning a suitable weight function
to the weighted lexicographic product graph. Additionally,
as Feigenbaum and Schäffer [14] showed, the lexicographic
product is closely related to the isomorphism of graphs. To
overcome this challenge, we adopt the weight function of
the quasi-complement graph, which means that this weighted
graph is isomorphic to its quasi-complement weighted graph.
This is also a distinguishing factor from the spectral problem
of strong product graphs.
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The following structure is adopted in the remaining sec-
tions of this paper: Section ⨿ presents notations and def-
initions on weighted graphs along with our main results.
Section⨿.A provides a formula for obtaining the spectrum of
G[H ] using the spectrums of G and H , specifically in cases
where graph H is a self-complementary graph. Additionally,
when both graph G and H are self-complementary graphs,
we establish that their weighted lexicographic product graph
is also self-complementary. In Section ⨿.B, we follow the
method presented in [25] to determine the lower bound of
Ricci curvature for the lexicographic product of two regular
graphs. Finally, Sections III and IV offer the proofs of our
results and the conclusion of this paper, respectively.

II. MAIN RESULTS
In this paper, we analyze connected, simple, undirected, and
weighted graphs. The vertex set and edge set of a graph G
are denoted by V (G) and E(G), respectively. We use dG(u, v)
to represent the distance between two vertices u and v in G.
Additionally, we denote the lexicographic product of graph
G and H as G[H ]. Here, we define a graph G as simple if it
does not contain loops ormultiple edges.Wewill now provide
basic definitions for weighted graphs, which can be found in
[3], [9], and [17]. Let V denote a finite discrete space that
serves as the set of vertices for graph G, and E denote the set
of edges in the graph. In addition, we define an edge weight
function µ : V × V ∋ (x, y) 7→ µxy ∈ [0, ∞) that satisfies
two conditions: (1)µxy = µyx for every pair of vertices x, y ∈

V , and (2)
∑

y∈V µxy < ∞ for every vertex x ∈ V . The edge
weight function µ : V ×V ∋ (x, y) 7→ µxy ∈ [0, ∞) induces
a combinatorial (undirected) graph structureG = (V ,E) with
a set of vertices V and a set of edges E . Specifically, for any
pair of vertices x, y ∈ V , we have {x, y} ∈ E if and only
if µxy > 0, which can be denoted by x ∼ y. Alternatively,
we can consider µxy as a positive function defined on the set
of edges, which is extended to be 0 on non-edge pairs (x, y).
Thus, a weighted graph can be represented asG = (V , µ).We
say that a graphG has simple weights if the weight functionµ

satisfies either µxy = 1 for all x ∼ y or µxy = 0 for all
x ̸∼ y in G. Given a weight function µxy on the edges of a
graph G = (V ,E), we define a corresponding function on
the vertices as follows:

µ(x) =

∑
y∼x

µxy,

whereµ(x) is called the weight of vertex x. For instance, if the
weight function µ is simple, then µ(x) is equivalent to the
degree of vertex x, denoted by deg(x).

A. SPECTRUM
Let us begin by recalling the definition of the lexicographic
product of two unweighted graphs. Suppose we have two
unweighted graphs (X ,E1) and (Y ,E2). The lexicographic
product of these graphs is denoted by

(V ,E) = (X ,E1)[(Y ,E2)],

where V = X × Y is the set of ordered pairs (x, y), and the
set E of edges is defined as follows:

(x, y) ∼ (x ′, y′) if

{
either x ∼ x ′,

or x = x ′ and y ∼ y′,

where x, x ′
∈ X and y, y′ ∈ Y . Here, |V | represents the total

number of vertices in the lexicographic product graph, which
is equal to the product of the number of vertices in each of the
original graphs. The degree of a vertex (x, y) is the sum of the
degrees of its corresponding vertices in the original graphs,
taking into account the edges between pairs of vertices in X
and Y . Finally, |E| denotes the total number of edges, which
is the sum of the edges in E1 multiplied by the number of
vertices in Y , plus the edges in E2 multiplied by the number
of vertices in X . When considering the lexicographic product
of two weighted graphs, we define the vertex set and edge
set of the product graph in a similar way as for unweighted
graphs. However, defining an appropriate weight function for
the product graph can be challenging. We will construct it
through the weight function of the quasi-complement graph
of the second graph. We say Ḡ = (Y , b) is the quasi-
complement weighted graph of G = (X , a), if Ḡ = (Y , b)
satisfies: (1) Y = X ; (2) For any x, x ′

∈ X , there holds x ∼ x ′

inG⇔ x ̸∼ x ′ in Ḡ. We see that Ḡ is exactly the complement
graph of G when both the weight functions are simple. And
our construction to the weight function of product graph is as
follows:
Definition 1: Let G = (X , a) be a locally finite con-

nected weighted graph and H = (Y , b) be a finite con-
nected weighted graph. Suppose that H̄ = (Y , c) is the
quasi-complement graph of H = (Y , b). Fix four numbers
p1, p2, p3, p4 > 0 and define the lexicographic product graph

(V , µ) = G[H ](p1, p2, p3, p4),

as follows: V = X × Y and the weight µ on V is defined by

µ(x,y)(x ′,y′) =



p1axx ′byy′c(y), x ∼ x ′ in G, y ∼ y′ in H ;

p2a(x)byy′c(y), x = x ′ in G, y ∼ y′ in H ;

p3axx ′b(y)cyy′ , x ∼ x ′ in G, y ̸∼ y′ in H ;

p4axx ′b(y)c(y), x ∼ x ′ in G, y = y′ in H ;

0, otherwise.

(1)

Remark 1: For any two distinct vertices (x, y) and (x ′, y′)
of G = G[H ](p1, p2, p3, p4), we observe that

dG((x, y), (x
′, y′)) =


1, if x = x ′, y′ ∈ NH (y);
2, if x = x ′, y′ ̸∈ NH (y);
dG(x, x ′), if x ̸= x ′.

Let us revisit the definition of the Laplace and Markov
operators on weighted graphs, as presented in [17]. Consider
a locally finite weighted graph (V , µ) with no isolated points.
For any function f : V → R, the function 1f is defined by

1f (x) =
1

µ(x)

∑
y

µxy
(
f (y) − f (x)

)
. (2)
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The operator 1 acting on functions on V , is called the
weighted Laplace operator of (V , µ). For any function f :

V → R, the function Pf is defined by

Pf (x) =

∑
y

P(x, y)f (y), (3)

where the Markov kernel P(x, y) = µxy/µ(x) is the random
walk with transition probability of moving from a vertex x
to each of its neighbours y. This operator P is called the
Markov operator. In this paper, we say a graph G = (X , a)
is isomorphic to another graph H = (Y , b), if there exists
a bijection σ between the vertex sets of G and H which
satisfies: (1)x ∼ x ′ in G if and only if σ (x) ∼ σ (x ′) in H ;
(2) axx ′ = bσ (x)σ (x ′), for any x, x ′

∈ X . A graph G = (X , a)
is a self-complementary means G = (X , a) is isomorphic to
its quasi-complement weighted graph Ḡ = (X , b). In view of
the map σ : X → Y is a bijection, we know that if X = Y ,
the σ (X ) is exactly a permutation of X .
Theorem 1: LetG = (X , a) be a finite connected weighted

graph with m vertices and H = (Y , b) be a finite con-
nected self-complementary weighted graph with n vertices.
Suppose that {αk}

m
k=1 and {βl}

n
l=1 be the sequences of the

eigenvalues of the Markov operators A on X and B on Y
respectively, counted with multiplicities. Then all the eigen-
values of the Markov operator P on the lexicographic product
G[H ](p1, p2, p3, p4) are given by the sequence{

(p1 + p3)αkβl + p2βl + p4αk
p1 + p2 + p3 + p4

}
where k = 1, 2, . . . ,m and l = 1, 2, . . . , n.

According to (2) and (3), we know the Laplace operator 1

and the Markov operator P are related by a simple identity

1 = P− id,

where id is the identical operator in F which is the set of all
real-valued functions on V . It is easy to see the same relation
holds for the eigenvalues of 1 and P. Hence, by Theorem 1,
we have
Corollary 1: Let G = (X , a) be a finite connected

weighted graph with m vertices and H = (Y , b) be a finite
connected self-complementary weighted graph with n ver-
tices. Suppose that {αk}

m
k=1 and {βl}

n
l=1 are the sequences

of the eigenvalues of the Laplace operators A on X and B
on Y respectively, counted with multiplicities. Then all the
eigenvalues of the Laplace operator 1 on the lexicographic
product G[H ](p1, p2, p3, p4) are given by the sequence{
(p1 + p3)αkβl + (p1 + p2 + p3)βl + (p1 + p3 + p4)αk

p1 + p2 + p3 + p4

}
where k = 1, 2, . . . ,m and l = 1, 2, . . . , n.
Theorem 2: Let G = (X , a) be a r-regular locally finite

connected graph, H = (Y , b) be a k-regular connected finite
graph with n vertices. IfG andH are two self-complementary
graphs with simple weights, then their lexicographic prod-
uct graph G[H ]( 1k ,

1
rk ,

1
k ,

1
k2
) is a (r(2k + 1) + k)-regular

graph with simple weights. Further, if the quasi-complement

graph of G[H ]( 1k ,
1
rk ,

1
k ,

1
k2
) also has a simple weight, then

G[H ]( 1k ,
1
rk ,

1
k ,

1
k2
) is a self-complementary graph.

Theorem 3: Let G = (X , a) be a locally finite con-
nected self-complementary graph and H = (Y , b) be a
finite connected self-complementary graph. Then there exists
a weight function on the quasi-complement graph of their
lexicographic product graph G[H ](p1, p2, p3, p4) such that
G[H ](p1, p2, p3, p4) is also a self-complementary graph.

B. RICCI CURVATURE
Wewill use similar notations as in [25] and [31]. A prob-

ability distribution over the vertex-set V (G) is a mapping
m : V (G) → [0, 1] satisfying

∑
x∈V (G) m(x) = 1. Let us

assume that we have two probability distributionsm1 andm2,
both of them have finite support. A coupling between m1 and
m2 is amappingA : V (G)×V (G) → [0, 1] with finite support
so that∑

y∈V (G)

A(x, y) = m1(x) and
∑

x∈V (G)

A(x, y) = m2(y).

Let d(x, y) be the graph distance between two vertices x
and y. The transportation distance between two probability
distributions m1 and m2 is defined as follows:

W (m1,m2) = inf
A

∑
x,y∈V (G)

A(x, y)d(x, y),

where the infimum is taken over all coupling A between
m1 and m2. For any vertex x ∈ V (G), let N (x) denote the set
of neighborhood of x, i.e., N (x) = {y ∈ V (G) : y ∼ x in G}.

For any α ∈ [0, 1] and any vertex x, the probability measure
mα
x is defined as

mα
x (v) =


α, if v = x;
1 − α

deg(x)
, if v ∈ N (x);

0, otherwise.

(4)

For any x, y ∈ V , we define α-Ricci-curvature kα to be

kα(x, y) = 1 −
W (mα

x ,m
α
y )

d(x, y)
,

and the Ricci curvature at (x, y) in the graph is

k(x, y) = lim
α→1

kα(x, y)
1 − α

.

Theorem 4: Let G be a dG-regular locally finite graph and
H be a dH -regular finite graph with n vertices. For u1 ∼ u2 in
G, v1, v2 ∈ V (H ), the Ricci curvature of G[H ] is bounded
below, that is

kG[H ]((u1, v1), (u2, v2)) ≥
−2ndG
ndG + dH

.

Theorem 5: Let G be a dG-regular locally finite graph and
H be a dH -regular finite graph with n vertices. For u ∈ V (G),
v1 ∼ v2 in H , the Ricci curvature of G[H ] is bounded below,
that is

kG[H ]((u, v1), (u, v2)) ≥
dHkH (v1, v2) − ndG

ndG + dH
.
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From Lemma 2.3 in [25], we know if k(u, v) ≥ k0 for any
u ∼ v in G, then k(u, v) ≥ k0 for any pair of vertices (u, v).
Hence, we have
Corollary 2: LetG be a dG-regular locally finite graph and

H be a dH -regular finite graph with n vertices. For u1, u2 ∈

V (G), v1, v2 ∈ V (H ), the Ricci curvature ofG[H ] is bounded
below, that is

kG[H ]((u1, v1), (u2, v2))

≥ min
{

−2ndG
ndG + dH

,
dHkH (v1, v2) − ndG

ndG + dH

}
.

III. PROOFS
Theorem 6: Let G = (X , a) be a locally finite connected

weighted graph and H = (Y , b) be a finite connected
weighted graph, and H̄ = (Y , c) be the quasi-complement
graph of H = (Y , b). Suppose that A, B and C are the
Markov kernels on X in G, Y in H and Y in H̄ , respectively.
Then the Markov kernel P on the lexicographic product
G[H ](p1, p2, p3, p4) = (V , µ) is given by, as shown in the
equation at the bottom of the page, where x, x ′

∈ X , y, y′ ∈ Y
and p1, p2, p3, p4 are four given positive numbers.

Proof: From the definition, the weight on the vertices
of V is

µ(x, y) =

∑
(x ′,y′)∼(x,y)

µ(x,y)(x ′,y′)

=

∑
x ′∼x
y′∼y

µ(x,y)(x ′,y′) +

∑
x ′

=x
y′∼y

µ(x,y)(x ′,y′) +

∑
x ′∼x
y′ ̸∼y

µ(x,y)(x ′,y′)

+

∑
x ′∼x
y′=y

µ(x,y)(x ′,y′)

= p1c(y)
∑
x ′∼x
y′∼y

axx ′byy′ + p2a(x)c(y)
∑
x ′

=x
y′∼y

byy′

+ p3b(y)
∑
x ′∼x
y′ ̸∼y

axx ′cyy′ + p4b(y)c(y)
∑
x ′∼x
y′=y

axx ′

= (p1 + p2 + p3 + p4)a(x)b(y)c(y).

In the case x ∼ x ′, y ∼ y′, by (1), we have

P((x, y), (x ′, y′)) =
µ(x,y)(x ′,y′)

µ(x, y)

=
p1axx ′byy′c(y)

(p1 + p2 + p3 + p4)a(x)b(y)c(y)

=
p1

p1 + p2 + p3 + p4
A(x, x ′)B(y, y′),

and other cases are treated similarly.
Lemma 1: If G = (X , a), H = (Y , b) and H̄ = (Y , c)

are r-regular, k-regular and (|Y | − k − 1)-regular graphs
with simple weights, respectively. Then their lexicographic
product

G[H ](
1

|Y | − k − 1
,

1
r(|Y | − k − 1)

,
1
k
,

1
k(|Y | − k − 1)

)

is a (r|Y | + k)-regular graph with a simple weight.
Proof: Since a, b and c are simple weights of G, H and

H̄ with the regularity of graphs G and H , we have

a(x) = deg(x) = r,

b(y) = deg(y) = k,

c(y) = deg(y) = |Y | − k − 1.

Hence, by the definition of the weight function on lexico-
graphic product, we get

µ(x,y)(x ′,y′)

=



p1(|Y | − k − 1), x ∼ x ′ in G, y ∼ y′ in H ;

p2r(|Y | − k − 1), x = x ′ in G, y ∼ y′ in H ;

p3k, x ∼ x ′ in G, y ̸∼ y′ in H ;

p4k(|Y | − k − 1), x ∼ x ′ in G, y = y′ in H ;

0, otherwise.

(5)

Therefore, when taking the parameters p1, p2, p3, p4 as

p1 =
1

|Y | − k − 1
,

p2 =
1

r(|Y | − k − 1)
,

p3 =
1
k
,

p4 =
1

k(|Y | − k − 1)
,

we have µ(x,y)(x ′,y′) = 1 for any (x, y) ∼ (x ′, y′)
and µ(x,y)(x ′,y′) = 0 for any (x, y) ̸∼ (x ′, y′) in G[H ], that
is the weight µ is also simple.

Now, we shall prove our main results for the spectrum of
the Lexicographic Product.

P((x, y), (x ′, y′)) =



p1
p1 + p2 + p3 + p4

A(x, x ′)B(y, y′), x ∼ x ′ in G, y ∼ y′ in H ;

p2
p1 + p2 + p3 + p4

B(y, y′), x = x ′ in G, y ∼ y′ in H ;

p3
p1 + p2 + p3 + p4

A(x, x ′)C(y, y′), x ∼ x ′ in G, y ̸∼ y′ in H ;

p4
p1 + p2 + p3 + p4

A(x, x ′), x ∼ x ′ in G, y = y′ in H ;

0, otherwise.
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Proof of Theorem 1:
Proof: Assume that H̄ = (Y , c) is a quasi-complement

graph of H and C is the Markov operator on H̄ . Since
H is a self-complementary graph, there exists a bijection
σ : Y → Y such that H is isomorphic to H̄ . Sup-
pose Y = {y1, y2, . . . , yn}, then (σ (y1)σ (y2) · · · σ (yn)) is
a permutation of (y1y2 · · · yn) essentially. For convenience,
we can denote (σ (y1), σ (y2), . . . , σ (yn)) by (ys1 , ys2 , . . . , ysn )
and (s1s2 · · · sn) is some permutation of (12 · · · n). Let f be
an eigenfunction of A with the eigenvalue α and g be an
eigenfunction of B with the eigenvalue β. That is to say, for
any x ∈ X and y ∈ Y , there holds

Af (x) =

∑
x ′∈X

A(x, x ′)f (x ′) = αf (x),

Bg(y) =

∑
y′∈Y

B(y, y′)g(y′) = βg(y).

Nowwe claim that for operators B and C , there holds if the
function g is the eigenfunction of B with the eigenvalue β,
then g is also the eigenfunction of C with the eigenvalue
β, i.e., if Bg = βg then Cg = βg. Suppose that HB =

(B(yi, yj))n×n and HC = (C(yi, yj))n×n are the matrix of
operator B and C respectively, where i, j ∈ {1, 2, . . . n}. For
our goals, we will construct an invertible matrix Mn×n such
that M−1HCM = HB.
Step 1: If s1 = 1, that is σ (y1) = y1, we take P1 = In×n,

here In×n is the identity matrix. If s1 ̸= 1, we take P1 as the
elementary matrix from exchanging the positions of columns
1 and s1 in the identity matrix In×n. Now, we suppose that the
label about columns of HCP1 be (s1, 2(1), 3(1), . . . , n(1))T .
Step 2: If s2 = 2(1), we take P2 = In×n. If s2 ̸= 2(1),

we take P2 as the elementary matrix from exchanging the
positions of columns 2(1) and s2 in the identity matrix In×n.
And suppose that the label about columns of HCP1P2 be
(s1, s2, 3(2), . . . , n(2))T .
We continue this process for n − 1 times, then the label

about columns of HCP1P2 · · ·Pn−1 is (s1, s2, . . . , sn)T . Tak-
ing into account the symmetry of the matrix HC , we know
the label about rows of Pn−1 · · ·P2P1HCP1P2 · · ·Pn−1 also
is (s1, s2, . . . , sn). Let M = P1P2 · · ·Pn−1. It is easy to
see that MT

= Pn−1 · · ·P2P1 and M−1
= MT . That

is, Pn−1 · · ·P2P1HCP1P2 · · ·Pn−1 = MTHCM . In view of
cyy′ = bσ−1(y)σ−1(y′), we obtain

c(y) =

∑
y′∼y in G2

cyy′ =

∑
σ (y′)∼σ (y) in Ḡ2

bσ−1(y)σ−1(y′)

= b(σ−1(y)),

then

C(y, y′) =
cyy′

c(y)
=
bσ−1(y)σ−1(y′)

b(σ−1(y))
= B(σ−1(y), σ−1(y′)).

Hence, the element of si-th row and sj-th column in matrix
MTHCM is C(ysi , ysj ) = C(σ (yi), σ (yj)) = B(yi, yj). There-
fore, we have MTHCM = HB, i.e., the matrix HC is similar

to the matrixHB, thenHC andHB have the same eigenvalues.
As well as, if

HB(g(y1), g(y2), . . . , g(yn))T = β(g(y1), g(y2), . . . , g(yn))T ,

then

HCM (g(y1), g(y2), . . . , g(yn))T

= βM (g(y1), g(y2), . . . , g(yn))T .

From the construction process ofM , we can see that the action
on some matrix by left multiplying these elementary matrices
P1,P2, . . . ,Pn−1 is equivalent to transform the rows’ posi-
tions of this matrix. So, we have

M (g(y1), g(y2), . . . , g(yn))T

= P1P2 · · ·Pn−1(g(y1), g(y2), . . . , g(yn))T

= (g(yt1 ), g(yt2 ), . . . , g(ytn ))
T ,

where (t1t2 · · · tn) is some permutation of (12 · · · n).
Hence,

HC (g(yt1 ), g(yt2 ),. . . ,g(ytn ))
T

=β(g(yt1 ), g(yt2 ),. . . , g(ytn ))
T .

Now, let us show that the function h(x, y) = f (x)g(y) is

the eigenfunction ofPwith the eigenvalue (p1+p3)αβ+p2β+p4α
p1+p2+p3+p4

.
For any (x, y) ∈ X × Y , by Theorem 6, we have

Ph(x, y)

=

∑
x ′

∈X
y′∈Y

P
(
(x, y), (x ′, y′)

)
h(x ′, y′)

=
p1

p1 + p2 + p3 + p4

∑
x ′∼x
y′∼y

A(x, x ′)B(y, y′)f (x ′)g(y′)

+
p2

p1 + p2 + p3 + p4

∑
x ′

=x
y′∼y

B(y, y′)f (x ′)g(y′)

+
p3

p1 + p2 + p3 + p4

∑
x ′∼x
y′ ̸∼y

A(x, x ′)C(y, y′)f (x ′)g(y′)

+
p4

p1 + p2 + p3 + p4

∑
x ′∼x
y′=y

A(x, x ′)f (x ′)g(y′)

=
p1

p1 + p2 + p3 + p4
αf (x)βg(y)

+
p2

p1 + p2 + p3 + p4
f (x)βg(y)

+
p3

p1 + p2 + p3 + p4
αf (x)βg(y)

+
p4

p1 + p2 + p3 + p4
αf (x)g(y)

=
(p1 + p3)αβ + p2β + p4α

p1 + p2 + p3 + p4
h(x, y),

which is to be proved.
Let {fk} be a basis in the space of functions on X such that

Afk = αk fk , and {gl} be a basis in the space of functions on
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Y such that Bgl = βlgl . Then {hkl(x, y) = fk (x)gl(y)} is a
linearly independent sequence of functions on X × Y . Since
the number of such functions is mn = |X × Y |, we see that
hkl is a basis in the space of functions on X × Y . Since hkl is
the eigenfunction with the eigenvalue (p1+p3)αkβl+p2βl+p4αk

p1+p2+p3+p4
,

we conclude that the sequence (p1+p3)αkβl+p2βl+p4αk
p1+p2+p3+p4

exhausts
all the eigenvalues of P.

Proof of Theorem 2:
Proof: Assume that Ḡ = (X , d) and H̄ = (Y , c) are the

quasi-complement graphs to G = (X , a) and H = (Y , b)
respectively. Since H is a k-regular self-complementary
graph with n vertices and a simple weight, we know H̄ is a
k-regular graph and n = 2k + 1. By Lemma 1, the graph
G[H ]( 1k ,

1
rk ,

1
k ,

1
k2
) is a (r(2k + 1) + k)-regular graph with a

simple weight.
In the following, we will prove G[H ]( 1k ,

1
rk ,

1
k ,

1
k2
) is also

a self-complementary graph. For convenience, we denote
G[H ]( 1k ,

1
rk ,

1
k ,

1
k2
) by G. Since G is isomorphic to Ḡ, there

exists a bijection σ1 : X → X satisfies for any xi, xj ∈ X ,
xi ∼ xj inG if and only if σ1(xi) ∼ σ1(xj) in Ḡ. Similarly, there
exists a bijection σ2 : Y → Y satisfies for any ys, yt ∈ Y ,
ys ∼ yt in H if and only if σ2(ys) ∼ σ2(yt ) in H̄ . Now
we construct a mapping σ : X × Y → X × Y satisfies
σ ((x, y)) = (σ1(x), σ2(y)) for any x ∈ X , y ∈ Y . Clearly,
the mapping σ is a bijection. We claim that for xi, xj ∈ X ,
ys, yt ∈ Y , there holds (xi, ys) ∼ (xj, yt ) in G if and only if
(σ1(xi), σ2(ys)) ∼ (σ1(xj), σ2(yt )) in Ḡ.
Since (xi, ys) ∼ (xj, yt ) in G ⇔ either i ̸= j, xi ∼ xj in

G or i = j, ys ∼ yt in H . Case 1. i ̸= j, xi ∼ xj in G ⇔

i ̸= j, σ1(xi) ∼ σ1(xj) in Ḡ ⇔ i ̸= j, σ1(xi) ̸∼ σ1(xj) in
G. Case 2. i = j, ys ∼ yt in H ⇔ i = j, σ2(ys) ∼ σ2(yt )
in H̄ ⇔ i = j, σ2(ys) ̸∼ σ2(yt ) in H . Combining these two
cases, we have (xi, ys) ∼ (xj, yt ) in G ⇔ (σ1(xi), σ2(ys)) ̸∼
(σ1(xj), σ2(yt )) inG⇔ (σ1(xi), σ2(ys)) ∼ (σ1(xj), σ2(yt )) in Ḡ.
That is, if (xi, ys) ∼ (xj, yt ) in G, then σ ((xi, ys)) ∼ σ ((xj, yt ))
in Ḡ.
Since G and Ḡ have simple weights, there exists a bijection

σ such that G is isomorphic to Ḡ, which is equivalent to G is
a self-complementary graph.

Proof of Theorem 3:
Proof: Suppose that G = (V , µ) = G[H ](p1, p2, p3, p4)

and Ḡ = (V , ω) are the quasi-complement graph of G.
And assume Ḡ = (X , d) and H̄ = (Y , c) are the
quasi-complement graphs of G = (X , a) and H = (Y , b),
respectively. Since G is a self-complementary graph, there
exists a bijection σ1 : X → X such that G is isomorphic
to Ḡ. Similarly, there exists a bijection σ2 : Y → Y such that
H is isomorphic to H̄ .
Nowwe construct a mapping σ : X×Y → X×Y such that

σ ((x, y)) = (σ1(x), σ2(y)) for any x ∈ X , y ∈ Y . Clearly, the
mapping σ is a bijection. As the similar proof in Theorem 2,
we know that for xi, xj ∈ X , ys, yt ∈ Y , there holds (xi, ys) ∼
(xj, yt ) in G if and only if (σ1(xi), σ2(ys)) ∼ (σ1(xj), σ2(yt ))
in Ḡ.

If we take the the weight ω in Ḡ as follows:

ω(σ1(x),σ2(y))(σ1(x ′),σ2(y′))

=



p1dσ1(x)σ1(x ′)cσ2(y)σ2(y′)b(σ
−1
2 (y)), x ∼ x ′, y ∼ y′;

p2d(σ1(x))cσ2(y)σ2(y′)b(σ
−1
2 (y)), x = x ′, y ∼ y′;

p3dσ1(x)σ1(x ′)c(σ2(y))bσ−1
2 (y)σ−1

2 (y′), x ∼ x ′, y ̸∼ y′;

p4dσ1(x)σ1(x ′)c(σ2(y))b(σ
−1
2 (y)), x ∼ x ′, y = y′;

0, otherwise.

Then µ(x,y)(x ′,y′) = ω(σ1(x),σ2(y))(σ1(x ′),σ2(y′)). Noting that
axx ′ = dσ1(x)σ1(x ′), byy′ = cσ2(y)σ2(y′) we have

a(x) =

∑
x ′∼x in G

axx ′ =

∑
σ1(x ′)∼σ1(x) in Ḡ

dσ1(x)σ1(x ′) = d(σ1(x)).

Similarly, there hold b(y) = c(σ2(y)) and c(y) = b(σ−1
2 (y)).

Hence, by (1), we know

µ(x,y)(x ′,y′) = ω(σ1(x),σ2(y))(σ1(x ′),σ2(y′)) = ω(σ (x,y)σ (x ′,y′)),

for any x, x ′
∈ X , y, y′ ∈ Y . Therefore, there exists a bijection

σ such that G is isomorphic to Ḡ, which is equivalent to
G[H ](p1, p2, p3, p4) is a self-complementary graph.
Example 1: LetG be a path with four vertices. It is easy to

see that G is a self-complementary graph when it has simple
weight. And the lexicographic product of G and G with a
simple weight is also a self-complementary graph. We can
see this from figure 1.

In the following, we shall prove our main results on Ricci
curvature of the lexicographic product of two regular graphs.

Proof of Theorem 4:
Proof: Assume thatA is a coupling betweenmα

v1 andm
α
v2

which defined as (4). Since u1 ∼ u2 in G, (u1, v1) ∼ (u2, v2)
in G[H ]. We define a function D : V (G[H ]) × V (G[H ]) →

[0, 1], as shown in the equation at the bottom of the next page.
Now we claim that D is a coupling between mα

(u1,v1)
and

mα
(u2,v2)

. Set a characteristic function as follows:

1S (x)

=

{
1, if x ∈ S;

0, otherwise.∑
(x1,y1)∈V (G[H ])

D((x1, y1), (x2, y2))

=

∑
y1∈V (H )

D((u1, y1), (u2, y2))δu2 (x2)

+

∑
x1∈NG(u1)
y1∈V (H )

D((x1, y1), (x2, y2))1NG(u2)(x2)

=
dH

ndG + dH
δu2 (x2)

∑
y1∈V (H )

A(y1, y2)

+ α
ndG

ndG + dH
δv2 (y2)δu2 (x2) +

1 − α

ndG + dH
1NG(u2)(x2)

=
dH

ndG + dH
δu2 (x2)m

α
v2 (y2) + α

ndG
ndG + dH

δv2 (y2)δu2 (x2)
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FIGURE 1. G[G] is a self-complementary graph.

+
1 − α

ndG + dH
1NG(u2)(x2)

= mα
(u2,v2)(x2, y2)

Similarly, we have∑
(x2,y2)∈V (G[H ])

D((x1, y1), (x2, y2)) = mα
(u1,v1)(x1, y1).

Noting that
∑

y1,y2∈V (H ) A(x, y) = 1 and u1 ∼ u2 in G, for
x1 ∈ NG(u1), x2 ∈ NG(u2), y1, y2 ∈ V (H ), we have

d((x1, y1), (x2, y2)) ≤ 3,

then we obtain

W (mα
(u1,v1),m

α
(u2,v2))

≤

∑
(x1,y1)∈V (G[H ])
(x2,y2)∈V (G[H ])

D((x1, y1), (x2, y2))d((x1, y1), (x2, y2))

=

∑
y1,y2∈V (H )

D((u1, y1), (u2, y2))d((u1, y1), (u2, y2))

+
1 − α

ndG(ndG + dH )

∑
x1∈NG(u1),x2∈NG(u2)

y1, y2∈V (H )

d((x1, y1), (x2, y2))

D((x1, y1), (x2, y2)) =



dH
ndG + dH

A(v1, v2) + α
ndG

ndG + dH
, x1 = u1, y1 = v1,

x2 = u2, y2 = v2;

dH
ndG + dH

A(y1, y2), x1 = u1, x2 = u2,

(y1, y2) ̸= (v1, v2);

1 − α

ndG(ndG + dH )
, x1 ∈ NG(u1), x2 ∈ NG(u2);

0, otherwise.
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≤
dH

ndG + dH

∑
y1,y2∈V (H )

A(y1, y2) +
αndG

ndG + dH

+
3(1 − α)ndG
ndG + dH

=
dH + αndG + 3(1 − α)ndG

ndG + dH
.

Thus, for any α ∈ [0, 1], we get

kG[H ]((u1, v1), (u2, v2)) = lim
α→1

kG[H ]
α ((u1, v1), (u2, v2))

1 − α

= lim
α→1

1 −W (mα
(u1,v1)

,mα
(u2,v2)

)

1 − α

≥
−2ndG
ndG + dH

.

Proof of Theorem 5:
Proof: Suppose thatA is a coupling betweenmα

v1 andm
α
v2

which reaches the infimum in the definition ofWH (mα
v1 ,m

α
v2 ).

So, we have

WH (mα
v1 ,m

α
v2 ) =

∑
y1,y2∈V (H )

A(y1, y2)d(y1, y2).

Define the function D : V (G[H ]) × V (G[H ]) → [0, 1] as
follows:

D((x1, y1), (x2, y2))

=



dH
ndG + dH

A′(v1, v2) + α
ndG

ndG + dH
, x1 = x2 = u,

y1=v1, y2=v2;

dH
ndG + dH

A′(y1, y2), x1=x2 = u,

(y1,y2) ̸= (v1,v2);

1 − α

n(ndG + dH )
, x1=x2∈ NG(u);

0, otherwise.

Through the analogous analysis in Theorem 4, we know the
function D is a coupling between mα

(u,v1)
and mα

(u,v2)
. Noting

that d((x, y1), (x, y2)) ≤ d(y1, y2) and d((x, y1), (x, y2)) ≤

2 in G[H ], we obtain

W (mα
(u,v1),m

α
(u,v2))

≤

∑
(x1,y1)∈V (G[H ])
(x2,y2)∈V (G[H ])

D((x1, y1), (x2, y2))d((x1, y1), (x2, y2))

=

∑
y1,y2∈V (H )

dH
ndG + dH

A(y1, y2)d((u, y1), (u, y2))

+
αndG

ndG + dH

+
1 − α

n(ndG + dH )

∑
x1=x2∈NG(u)
y1,y2∈V (H )

d((x1, y1), (x2, y2))

≤
dH

ndG + dH
WH (mα

v1 ,m
α
v2 ) +

αndG + 2(1 − α)ndG
ndG + dH

.

Hence for any u ∈ V (G), v1 ∼ v2 in H , we have

kG[H ]
α ((u, v1), (u, v2))

= 1 −W (mα
(u,v1),m

α
(u,v2))

≥ 1 −
dH

ndG + dH
WH (mα

v1 ,m
α
v2 ) −

αndG + 2(1 − α)ndG
ndG + dH

=
dH

ndG + dH
(1 −WH (mα

v1 ,m
α
v2 )) −

(1 − α)ndG
ndG + dH

.

Thus

kG[H ]((u, v1), (u, v2)) = lim
α→1

kG[H ]
α ((u, v1), (u, v2))

1 − α

≥
dH

ndG + dH
kH (v1, v2) −

ndG
ndG + dH

.

Remark 2: We know the cycle Cn for n ≥ 6 has a constant
Ricci curvature 0. Combining with Theorem 5, we obtain
the lower bound of the Ricci curvature for G[Cn] is −

2ndG
ndG+2 ,

which is larger than −2.

IV. CONCLUSION
In this paper, we have proposed a precise definition of the
weight function for the lexicographic product graph G[H ].
This definition captures the intricate interplay between the
vertices of the constituent graphs and provides a solid foun-
dation for further analysis. Furthermore, we have derived
an expression for the spectrum of the lexicographic prod-
uct graph G[H ]. By leveraging the spectrums of graphs G
and H , with the additional assumption that H is a self-
complementary graph, we have obtained a comprehensive
understanding of the eigenvalues and associated properties of
the lexicographic product graph. Additionally, our research
has proved an essential result regarding the Ricci curvature
for the lexicographic product of two regular graphs. We have
established that the Ricci curvature for this operation exhibits
a lower bound, shedding light on the geometric properties
and constraints inherent in the lexicographic product. In the
future, we will focus on investigating the expression for the
spectrum of the lexicographic product graph G[H ], which
will build upon the spectrums of graphs G and H assuming
that H is not a self-complementary graph.
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