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ABSTRACT Adaptive Digital Filters (ADFs) are computationally demanding Digital Signal Processing
(DSP) systems with applications in diverse areas signal processing, such as active noise control, channel
equalization, system identification. The most popular implementation structure for ADFs is FIR transversal
filter which can be efficiently implemented without multipliers by Distributed Arithmetic (DA) method.
DA is used to efficiently implement digital FIR filter with a precomputed weight DA combinations in a
memory element. However, due to the operation of ADFs the memory content has to be recomputed at
each iteration; the advantage of DA method disappears. The objective of this review is to cover the research
gap on DA-ADF implementations. This article reviews the main features and contributions of DA-ADF
designs present in literature. The DA-ADF designs have been grouped into three categories: non-pipelined,
pipelined and block processing. Pipelining and block processing increase the throughput of the ADF. The
reviewed designs implement only Least Mean Square (LMS) type adaptive algorithms due to the simplicity
of implementation. Latest and most efficient designs tend to employ conjugate Offset Binary Coding (OBC)
DA structure.

INDEX TERMS Adaptive digital filters (ADFs), distributed arithmetic (DA), least mean square (LMS).

I. INTRODUCTION
Adaptive Digital Filters (ADFs) are powerful self-designing
systems used in a wide variety of digital signal process-
ing (DSP) applications [1], [2]. ADFs are notably applied
in active power filters [3], bearing prognosis [4], hearing
aids [5], [6], active noise control [7], cerebellum model-
ing [8], 5G technology [9] etc. Finite Impulse Response (FIR)
is the most commonly used adaptive filter structure due to its
stability property. It consists of an FIR filter with adjustable
coefficients and a module that updates these coefficients
according to an adaptive algorithm. The Least Mean Square
(LMS) adaptive algorithm is one of the most employed for
hardware implementations due to its simplicity.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tianhua Xu .

A. MOTIVATION
Most of the contemporary portable DSP systems require high
performance while keeping the design small and low-power.
The fully dedicated architecture implementation, where every
arithmetic operation is realized with dedicated hardware unit,
of direct form ADF with LMS algorithm would require 2N
multipliers and 2N − 1 additions, where N is the FIR filter
length. Hence, fully dedicated architecture implementation
demands large power consumption and is costly in terms
of hardware. This cost is unbearable for high order filter
implementation as hardware is proportional to the order of
the filter and portable devices that are constrained by power
and area limits. A serial implementation of the ADFs with
one multiply and accumulate unit is possible to mitigate
issues with area and power. However, the throughput of the
system is traded off and the maximum speed of the system
becomes limited. A parallelized implementation with several
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multiplexed multipliers or processing units is possible [10] at
the cost of higher power, area, and hardware consumption as
the multipliers are hardware and power demanding circuits.

Distributed Arithmetic (DA) is a computationally efficient
bit-serial inner product computation method [11] that is used
in implementation of digital filtering process without a need
for hardware multipliers. Combinations of coefficients of the
filter can be precomputed and stored in the memory element,
usually Look-Up-Tables (LUTs), which are accessed by an
address formed with the bits of the input samples from Least
Significant Bit (LSB) to Most Significant Bit (MSB). The
outputs of LUT are then shifted and added to compute the
output of the digital filter. Major disadvantage of DA method
is that the number of partial products to be stored in the LUTs
grows exponentially for large filter orders. Another problem
arises while implementing ADFs with DAmethod. For ADFs
the precomputation of filter coefficients are not possible
as at every iteration the filter weights should be updated.
This problem almost entirely eliminates advantages of DA
method. Thus, an efficient designs are needed to overcome
this limitations.

B. DISTRIBUTED ARITHMETIC ADF LITERATURE REVIEW
First study of DA has been done by Croisier et al. [12] in
1973 and the most commonly recognized description of DA
method has been proposed in 1974 [13] by A. Peled and
B. Liu. It has been applied to second-order Infinite Impulse
Response (IIR) filter that can be combined to realize higher
order IIR filters. The initial attempts to employ DA for LMS
ADFs have been reported in [10], [11], [12], [13], [14], and
[15]. As the most notable obstacle to use DA for ADFs is that
the filter coefficients had to be recomputed at every iteration
early works tried to reduce hardware requirements. Basic
feasibility of DA-ADF using prototype hardware implemen-
tation of 8 point transversal filter has been proven in [14] and
[15]. To ease the LMS update process an assumptions of zero
mean, white input signal and Offset Binary Coded (OBC)
samples were made. OBC encodes binary data with ±1.
In contrast, regular DA is derived assuming 2’s complement
data representation and is referred to as Two’s Complement
DA (TC-DA). As a result, the update reduces to shifting and
adding error sample to the contents of the memory. In [16]
and [17] it was shown that large filters can be broken down
into several smaller filters which eases the implementation.
These, technique of implementing high-order filters with a
combination of smaller filters is widely used among other
researchers as LUT decomposition method. Also, study of
nonlinear adaptive filters in context of echo cancelers were
conducted [18], [19]. The complexity reduction in these
architectures were achieved by utilizing symmetries of OBC
and Volterra kernels together with the previously discussed
assumption of zero-mean and white input signal. Later, the
same simplified update method presented in [14] and [15] but
assuming 2’s complement representation of the samples has
been derived in [20].

The work of Allred et. al [21] got much attention, where
they proposed an efficient update procedure using two LUTs:
filtering LUT and auxiliary LUT. Update of auxiliary LUTs
is done by reusing the upper half of the previous LUT
contents and adding the most current sample to compute
the other half. The filtering LUT is updated by scaling and
adding the contents of auxiliary LUT to the corresponding
addresses according to the LMS weight update rule. This
update method does not put any assumptions on the input
signal statistics. In 2006, a conjugate DA structure for ADFs
was proposed [22]. Compared to traditional or direct DA
structure conjugate DA uses the weights of ADF to form an
addresses to the filtering LUT avoiding the need for the aux-
iliary LUT, effectively halving the amount of memory needed
and increasing the throughput. Later, two designs for TC and
OBC encoding that used the conjugate DAmethod have been
independently proposed in [23]. The update of the LUT for
the TC-DAADF is done as in [21], however, for the OBC-DA
ADF a different update has been used. For OBC-DA design a
term computedwith themost current and the oldest samples is
subtracted from the LUT content at even addresses and added
to content at odd addresses to compute the second and first
half of the LUT for next iteration, respectively. Conjugate DA
structure have been also applied to implement Sliding Block
DA (SB-DA) ADF [24] and Modified Sliding Block DA
(MSB-DA) ADF [25]. The SB-DA ADF utilizes the fact that
the collection of input samples processed by the filter changes
slowly, by one sample per iteration. By employing the LUT
decomposition done in [16] and [17] only one of the smaller
LUTs that contain the oldest sample has to change and one
extra LUT is dedicated to hold newest sample. To execute
such an operation with LUT reusing the weights should be
circularly shifted. This notion of LUT reusing is also widely
applied in block processing DA-ADF implementations.

The block processing designs have been studied in [43],
[44], [45], [46], [47], [48], and [49]. Given the block length of
L, block digital filters process L input vectors and compute L
outputs in one iteration. Thus, for the higher hardware cost L
times higher throughput can be achieved. The DAmethod has
been employed in block ADFs in [45], where DA is applied
to efficiently mechanize the Fast Fourier Transform in the
implementation of Fast Block LMS. The first DA formulation
of Block LMS (BLMS) based on conjugate TC-DA structure
has been done in [46]. A similar concept to SB-DA have been
used to update contents of LUTs. A collection of LUTs, called
a processing element, with oldest samples is overwritten by
the combinations of the newest samples for each iteration
called inter-iteration LUT reuse. Rest of the processing ele-
ments with intermediate samples remain the same. The LUT
sharing is realized by implementing register array based LUT.
This design has been optimized in [47] by reusing LUT con-
tents during one iteration called intra-iteration LUT sharing.
As the successive LUTs in one PE have three overlapping
samples half of the previous LUT contents can be shared
with the next LUT. Thus, reducing the memory complexity.
An OBC-DA implementation have been proposed in [48].
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The initial design [46] have been improved with even-odd
LUT decomposition in [49]. Intra-iteration have been adapted
for OBC-DA design in [50] and further optimized in [51].
Another class of DA-ADF designs are pipelined architec-

tures [35], [36], [37], [38], [39], [40], [41], [42]. Pipelining is
used to reduce the critical-path and increase the throughput
of the system. One of the first DA-ADF pipelined design
has been proposed in [37] based on TC direct DA struc-
ture. Later, a TC conjugate DA structure pipelined ADF
design has been proposed in [38]. The differences with
non-pipelined DA designs are delay elements that separate
the processing stages, register based LUTs, and shift accu-
mulate unit. Delay is introduced between filtering, error
computation and weight update processes in [37] and [38].
Register based LUT computes the DA combinations in paral-
lel and online. Thus, the number of registers needed increases
exponentially. To reduce the number of registers needed a
multiplexed LUT and AND cell LUT have been proposed
in [40]. An improved performance DA-ADF have been pro-
posed in [41] that used AND cell LUT as base unit LUT
and introduced delay elements in the adder tree. A conver-
gence enhanced DA-ADF based on convex combination of
two adaptive filters [42] has been presented in [43]. Two
combined ADFs have been replaced with one DA-ADF unit
with two multiplexed step sizes. A 2-Dimensional DA-ADF
based on pipelined DA-ADF architecture have been proposed
in [44].

To the best knowledge of authors, no comprehensive lit-
erature review is available on the almost three decade long
DA-ADF research. The intent of this article is to provide
better understanding of the DA-ADF implementations by
reviewing the main features of the designs. The present work
indeed summarizes the most significant works in one place
for the reference of interested. The articles have been selected
based on the chronological order of significant improvement
of the DA-ADF structure. The works on FPGA implemen-
tation have been omitted as they are FPGA architecture
specific. Furthermore, papers with very incremental improve-
ments have also not been considered in the current review.
The rest of the paper is organized as follows. Section II is
devoted for DA method, its OBC variation, and DA digi-
tal filter implementation. Section III reviews LMS, Delayed
LMS (DLMS), and BLMS. Section IV presents the non-
pipelined, pipelined, and block processing DA-ADF designs.
Section V concludes this paper. For the sake of conve-
nience, a list of abbreviations used in the paper in given
in Table 1.

II. DISTRIBUTED ARITHMETIC METHOD
A. TWO’s COMPLEMENT DISTRIBUTED ARITHMETIC
DA is a method of implementing the inner product of two
vectors in a bit-serial manner [11]. As the output of FIR
filter can be computed as inner product of input sample
vector and weight vector DA can be applied to implement
digital FIR filter. To illustrate the inner product computation

TABLE 1. List of abbreviations used in the paper.

of TC-DA, consider:

y[n] = wT x[n] =

N−1∑
k=0

wkx[n− k], (1)

where w = [w0 w1 · · · wN−1]T is a vector of fixed coeffi-
cients, and x[n] = [x[n] x[n − 1] · · · x[n − N + 1]]T is a
vector of input data samples. Assuming input data samples
are in 2’s complement form with B bits, then xk = x[n − k]
can be expressed as:

xk = −xk0 +

B−1∑
j=1

xkj2−j, (2)

where xkj is the jth bit of the input data word such that
xkj ∈ [0, 1] and the xk0 is a sign bit. Replacing xk in (1) by its
representation in (2):

y =

N−1∑
k=0

wk

−xk0 +

B−1∑
j=1

xkj2−j

 , (3)

where y = y[n] to ease the notation. By distributing the terms
and exchanging the order of the summations, gives:

y = −

N−1∑
k=0

wkxk0 +

B−1∑
j=1

[
N−1∑
k=0

wkxkj

]
2−j, (4)

where the term
∑N−1

k=0 wkxkj can be precomputed as it has
only 2N possible values given wk ’s because xkj ∈ [0, 1].
For example, for N = 2 there are only 22 partial products:
[0,w1,w2,w1 + w2]. Partial products can stored in a LUT
and accessed with an address formed by the bits of the input
samples from one bit position. According to (4) these partial
products should be then shift added to compute the result of
an inner product or the output of a digital filter. Fourth order
DA FIR filter structure with the description of the content of
thememory is depicted in Fig. 1. The bits of the input samples
form an address that is then used to look up corresponding
combination of weight from the memory. As the addresses
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FIGURE 1. Block diagram of length 4 TC-DA FIR filter.

formed fromLSBs toMSBs of the input samples the output of
the memory should be right shifted accordingly to account for
the bit position. When theMSBs arrive the sign control signal
becomes high and changes addition to subtraction. Because
of TC number representation the MSB is the sign bit. The
output sample computation takes several clock cycles equal
to the word length of the input samples. So that MSBs arrive
last to form an address and negate the output of the memory.

Immediate observations are that the memory required
grows exponentially with the filter order 2N and due to the
serial mechanization 1 bit-at-a-time DA filter may seem slow.
However, if the word length of the input signal equal to
the number of weights, the time required to compute output
sample with DA is equal to the approach where onemultiplier
is used and samples are fed serially [11]. The exponential
memory problem can be partially mitigated by using OBC.

B. OFFSET BINARY CODING DISTRIBUTED ARITHMETIC
By using OBC the memory requirement can be reduced by
half due to the arising symmetries [11]. OBC assumes bits to
be either +1 or −1. So the bit values are symmetric around 0.
Consider xk to be:

xk =
1
2
(xk − (−xk )), (5)

where −xk is 2’s complement of xk written as:

−xk = −x̄k0 +

B−1∑
j=1

x̄kj2−j
+ 2−(B−1), (6)

where x̄kj is the bit inverted xkj. Substituting (2) and (6) in (5):

xk =
1
2
(−(xk0 − x̄k0) +

B−1∑
j=1

(xkj − x̄kj)2−j
− 2−(B−1)). (7)

Consider the following substitution:

ckj =

{
xkj − x̄kj, j ̸= 0,
−(xk0 − x̄k0), j = 0,

(8)

where ckj ∈ [−1, 1]. Rewriting (7) with this substitution:

xk =
1
2

B−1∑
j=0

ckj2−j
− 2−(B−1)

 . (9)

Substituting (9) in (1) the output sample can be
computed as:

y =
1
2

N−1∑
k=0

wk

B−1∑
j=0

ckj2−j
− 2−(B−1)

 ,

=

B−1∑
j=0

(
N−1∑
k=0

1
2
wkckj

)
2−j

−

(
N−1∑
k=0

1
2
wk

)
2−(B−1), (10)

where
∑N−1

k=0
1
2wk represents the initial condition that is

added at the LSB cycle or first cycle when LSBs of the inputs
samples are used as address. The term

∑N−1
k=0

1
2wkckj can also

be precomputed resulting in 2N combinations. However, due
to the emerging symmetries the number of combinations can
be reduced to 2N−1. The OBC-DA memory content and its
OBC reduction are presented in Fig. 2. The upper half of
the memory is the sign reversed lower half. Regarding the
address x0j bit decides whether the upper or lower half is
accessed. Thus, bits from the most recent sample x0 can be
excluded from the address formation and the overall structure
is modified as illustrated in Fig. 3. The XOR gates at the
input operate like a 1’s complement inverter of the address
controlled by bits of x0. The XOR gate at the sign control
of the adder can be explained by extending the truth table to
include the MSB sign control signal and then reducing it size
by abusing the symmetries [11].
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FIGURE 2. Length 4 OBC-DA FIR filter memory content reduction illustration.

C. CONJUGATE DISTRIBUTED ARITHMETIC
Conjugate DA has been first proposed in [22]. This method
assumes the weights of the filter to be treated as addresses
of the filter. Assuming weights to be in 2’s complement form
with B bits, then wk can be expressed as:

wk = −wk0 +

B−1∑
j=1

wkj2−j, (11)

where wkj are bits of the filter weights. Performing the same
derivation as for conventional DA, the output sample can be
computed as:

y = −

N−1∑
k=0

xkwk0 +

B−1∑
j=1

[
N−1∑
k=0

xkwkj

]
2−j. (12)

After performing the same argumentation as for traditional
DA, conjugate DA essentially has the role of input samples
and weights switched. Thus, the content of filtering LUT has
to be recomputed as the new input sample arrive. Although,
this result has little meaning in the context of FIR digital filter
implementation, it has considerable advantage for DA-ADF
implementations.

III. ADAPTIVE ALGORITHMS
Fig. 4 depicts the general transversal FIR ADF block dia-
gram where x[n] is the input signal, y[n] is an output of
the programmable digital FIR filter, d[n] is the desired
response, and e[n] is the error signal. General structure of
transversal FIR ADF consists of two main computation-
ally intensive blocks: programmable digital FIR filter and
adaptive algorithm. Adaptive algorithm updates the weights
of the programmable filter based on the input and error
signals.

A. LMS ADAPTIVE ALGORITHM
In LMS output, y[n] of the programmable digital FIR filter is
first computed as:

y[n] = wT [n]x[n] =

N−1∑
k=0

wk [n]x[n− k], (13)

where w[n] = [w0[n] w1[n] · · · wN−1[n]]T is the
time varying weight vector. Then the error signal, e[n],
is computed:

e[n] = d[n] − y[n], (14)

which is used to change or update the weight of the
programmable digital FIR filter as:

wk [n+ 1] = wk [n] + µe[n]x[n− k], (15)

where wk [n] is k th digital filter weight at time n and µ is the
fixed step-size or learning rate. The vector form of the LMS
update rule is given as follows:

w[n+ 1] = w[n] + µe[n]x[n]. (16)

B. DLMS ADAPTIVE ALGORITHM
Delayed LMS (DLMS) [36] algorithm has an adaptation
delay that can be formulated as follows:

w[n+ 1] = w[n] + µe[n− m]x[n− m], (17)

where e[n− m] and x[n− m] m-sample delayed error signal
and input signal vector, respectively. The error can be delayed
due to the pipelining. Input signals are delayed accordingly
to match the delay of the error sample. The block diagram
of DLMS is illustrated in Fig. 5. The pipelining delay or
adaptation delay is lumped tom delay elements from the error
computation and input signal sides.
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FIGURE 3. Block diagram of length 4 OBC-DA FIR filter.

FIGURE 4. Block diagram of transversal FIR generic adaptive digital filter.

C. BLMS ADAPTIVE ALGORITHM
The output of the BLMS algorithm is computed as:

y[n] = X[n]w[n], (18)

where y[n] = [y[nL] y[nL − 1] · · · y[nL − L + 1]]T is a
vector of convolution sums of weights, index n denotes the
block iteration, X[n] is the data matrix being given as:

X[n]

=


x[nL] x[nL − 1] · · · x[nL − N + 1]

x[nL − 1] x[nL − 2] · · · x[nL − N ]
...

...
. . .

...

x[nL − L + 1] x[nL − L] · · · x[nL − L − N − 2]

,

(19)

and the corresponding error vector is computed as:

e[n] = d[n] − y[n], (20)

where e[n] = [e[nL] e[nL − 1] · · · e[nL − L + 1]]T and
d[n] = [d[nL] d[nL − 1] · · · d[nL − L + 1]]T . The weight
update equation becomes:

w[n+ 1] = w[n] + 1w[n], (21)

where 1w[n] = [1w0[n] 1w1[n] · · · 1wN−1[n]]T is
computed as follows:

1w[n] = µXT [n]e[n]. (22)

FIGURE 5. Block diagram of DLMS ADF.

IV. REVIEW OF DA-ADF DESIGNS
A. NON-PIPELINED DA ADFs
1) DA LMS UPDATE METHODS
Most of the non-pipelined designs employ LMS adaptive
algorithm. The output of the programmable digital FIR filter
can be computed as per TC-DA, OBC-DA, and conjugate DA
methods in (4), (10), and (12), respectively. However, based
on the chosen DA implementation the LMS update mecha-
nism may differ. The operation of adaptive filters requires
ongoing update of the weights, thus the whole DA LUT with
weights should be recomputed at each iteration.

To ease the LMS update and reduce the computa-
tional complexity the following simplified update have been
proposed for TC-DA [20] and OBC-DA [14], [15]:

p[n+ 1] = p[n] + γµNe[n]s, (23)

where γ = 0.5 for TC-DA and γ = 2 for OBC-DA,
p[n] is a vector of DA partial products defined as p[n] =

[p0[n] p1[n] · · · pB−1[n]]T , s = [−20 2−1
· · · 2−(B−1)]T for

TC-DA, and s = [−2−1 2−2
· · · 2−B]T for OBC-DA. A DA

partial product is the output of the LUT that is related to
some address formed by individual bits of the input sample.
These DA partial products are essentially contents of DA
LUT, i.e. some combination of filter weights corresponding
to some address. The update mechanism is: first, to compute
the output by DA operation, second, to update the few entries
of the DA LUT by adding the scaled, or bit shifted if the
µ and N are power’s of two, error signal to the DA partial
product and storing the result in the corresponding DA LUT
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FIGURE 6. Filtering LUT update mechanism [21].

FIGURE 7. Auxiliary LUT update mechanism [21].

location. As the DA partial product is the result of a look
up operation with some address, the update of the partial
product should be performed on the same entry. Thus, storing
the corresponding input addresses and DA partial products is
essential. The simplified update is derivedwith an assumption
that input signal is zero mean and white. However, such
an assumption may not be applicable in many real world
applications.

LMS update mechanism that does not require any assump-
tions on input signal distribution have been proposed in [21].
The update method requires two LUTs. One LUT, called
filtering LUT, contains the TC-DA combinations of filter
weights same as in Fig. 1. The other auxiliary LUT contains

the TC-DA combinations of input samples that correspond
to weight combinations. The basic principle of the weight
or filtering DA LUT update is illustrated in Fig. 6. Due to
the creation of an auxiliary LUT it contents can be used
to directly update the filtering LUT according to the LMS
weight update rule shown in (15). This LMS update method
can be formulated as:

DA_F_LUT(r)[n+ 1]

= DA_F_LUT(r)[n] + µe[n]DA_A_LUT(r)[n], (24)

where the DA_F_LUT(r)[n] and DA_A_LUT(r)[n] are the
r th entries of the DA filtering LUT and DA auxiliary
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FIGURE 8. Block diagram of DA-ADF by Allred et. al. [21].

FIGURE 9. Block diagram of DA-ADF by Guo and DeBrunner [23].

FIGURE 10. The update mechanism for OBC conjugate DA [23].

LUT, respectively. To maintain a valid DA auxiliary LUT
an efficient LUT update is performed on the auxiliary
LUT as illustrated in Fig. 7. The upper half is directly

used in the updated auxiliary LUT as the even address
contents. The odd addresses are then generated by adding
the newest sample x−1 = x(n + 1) to the previous
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FIGURE 11. Illustration of length 16 DA filter with LUT decomposition.

FIGURE 12. Example of the SB-DA working principle for length 4 ADF.

even address. It can be observed that the contents of
auxiliary LUT at time n + 1 are exactly the needed DA
combinations.

The structure of the DA-ADF proposed by Allred et. al.
[21] is illustrated in Fig. 8. The filtering process and auxiliary
LUT update process are concurrent. After the output sample
is computed the filtering LUT update begins. After the com-
putation of the error sample it is scaled by the step-size µ

that is usually in the order of O(1/N ) and the filter length
is usually in power’s of two. Scaling by the number that is

a power of two is realized as left (for positive powers) or
right (for negative powers) shifting of bits. The scaled error
sample e[n] is then quantized to be in the form of a power of
two with the same idea. Thus, to update the filtering LUT the
contents of auxiliary LUT are scaled by µe[n] and added to
the corresponding addresses of filtering LUT.

It is noticed that this design requires two equally sized
LUTs. Thus, twice as much memory is needed to implement
DA-ADF compared to DA digital filter. However, using the
conjugate DAmethod [22] DA-ADF implementation without
auxiliary LUT can be realized. The first proposition to use
conjugate DA structure has been done in [22], which was later
independently proposed by other researchers in [23]. The
design of conjugate DA-ADF is shown in Fig. 9. Comparing
with the design in [21], the auxiliary LUT becomes filtering
LUT, which is more generally referred to as DA LUT in
conjugate DA structures. The weight update mechanism now
closely resembles the LMS update rule in (15) as the weights
are updated directly. The weights are stored in registers, that
are represented as delay elements. The updated weight wk+1
is computed as

wk+1[n] = wk [n] + Quantize(µe[n])x[n− k], (25)

where Quantize(µe[n]) = 2p to reduce the scaled error
sample to a power of two to replace multiplication by bit
shifting operation. The update of DA LUT is done exactly
with the efficient update method of auxiliary LUT update
seen in Fig. 7. Authors of [23] have proposed a second design
using OBC to further reduce the memory required. Most of
the design remains the same, but the update mechanism is
different when the DALUT contains OBC-DA combinations.
The update of OBC-DA LUT for conjugate DA is illustrated
in Fig. 10. The mean of the newest sample and the oldest
sample is used to update the contents. Even contents of
OBC-DA LUT are subtracted from this term and stored at
the upper half of the updated LUT. Odd contents are added
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FIGURE 13. Direct DA-ADF OBC update mechanism [26].

FIGURE 14. Illustration of even-odd LUT decomposition.

with the same term and fill the lower half of the updated LUT.
It is important to note that this LUT updates are done serially,
which means that for every clock cycle only one address is
generated and only one LUT content is updated. Thus, LUT
update process may take a considerable amount of time when
higher order filters are implemented.

Presented structures and LUT contents are mainly for ADF
with filter length of 4. To design a higher order systemmostly
a base filtering unit is defined, for example length 4 DA filter.
By connecting the outputs of the base units via an adder tree
an efficient implementation can be achieved. As the direct
realization of 16 length filter would require 216 words to
be stored and an array of 4 base units of length 4 would
require 4 × 24 = 22 × 24 = 26 memory locations.
An example of length 16 DA filter implemented with base
unit is shown in Fig. 11. Parallel-Input-Serial-Output (PISO)
register receives the current input sample and outputs it
bit by bit, which is essentially needed to form an address.

Serial-Input-Serial-Output (SISO) register synchronously
passes the input sample bits one by one. This series of PISO
and SISO registers essentially implements the delay line.

2) SLIDING BLOCK DA-ADF
Another work that used the efficiency of conjugate DA
has been proposed in [24]. In the SB-DA the property of
slowly changing input vector was utilized. As only the oldest
input sample is discarded and the newest sample is added.
DA blocks that contain combinations of intermediate sam-
ples may remain unchanged. Only the addresses should be
circularly shifted accordingly to get a valid output. The
SB-DA implies subdivision of the DA LUTs into several
smaller LUTs and one extra used for update. An exten-
sion of the SB-DA from TC-DA to OBC-DA was presented
in [25]. The SB-DA, despite its name, works on sample by
sample basis. But the mechanism of reusal of LUTs with
combinations of intermediate samples is widely used in DA
based BLMS ADF implementations to efficiently update
LUTs.

The basic idea of the SB-DA for length 4 filter is presented
in Fig. 12. Two smaller DA LUTs with one extra update LUT
is needed for the SB-DA. The main idea is that for several
iteration (two for example) the contents of two DA LUTs
do not change. Only the weights that are used to access the
contents left shift every iteration. TheDALUTwith the oldest
sample is initialized to zeros and is assigned to be an update
LUT. After, it accepts newest sample at each iteration until
one of the DA LUTs with the oldest sample will be emptied.
MSB-DA [25] has the samemain idea of achieving efficiency,
but DA LUTs contain OBC-DA combinations. Regarding the
overall structure, the outputs of several DA LUTs are com-
bined by an adder tree as shown Fig. 11. Also, an extra logic
is needed to rotate the weights, so that appropriate weight
bits access the corresponding DA LUT. The error computa-
tion and weight update is essentially done the same way as
in [23].
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FIGURE 15. OBC-DA auxiliary LUT update without address rotation [28].

FIGURE 16. Conjugate TC-DA even-odd LUT update [30].

3) DIRECT DA IMPLEMENTATIONS
The direct or traditional DA-ADF structure of [21] have been
further improved in [26], [27], [28], and [29]. An OBC-DA
implementation of the design in [21] has been proposed
in [26]. The update mechanism for the OBC auxiliary LUT is
presented in Fig. 13.

The average of even and subsequent odd address, contents
results in the elimination of the oldest sample. The block with
≫ 1 represents the right shift, which is essentially a division
by two. A scaled version of the current sample, stored in
external register, is subtracted and added for odd and even
addresses, respectively. After the update the new sample is
stored into the external register. However, this update method
has a drawback which is related to the address rotation.
As it can be noticed from Fig. 13, the contents of updated

auxiliary LUT are at different locations. This means that
some amount of address rotation and extra circuitry is needed.
Another proposition in [26] is to implement an even-odd
LUT decomposition as illustrated in Fig. 14. The LSB of the
address is the bit that actually decides if the address is odd
or even. Thus, it was used to switch between the outputs of
both LUT as a control bit to the 2:1 multiplexer. In general,
LUT decompositions help to reduce the LUT size and reduce
the access time when high order filters are implemented and
large size LUTs are used.

The issue with address rotation has been addressed in [28].
The rest of the design staying the same, i.e. direct OBC-DA
with even-odd LUT decomposition, only the auxiliary LUT
update has been modified. The modified OBC-DA auxil-
iary LUT update method is shown in Fig. 15. Now, each
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FIGURE 17. Conjugate OBC-DA even-odd LUT update [30].

LUT entry is directly updated by removing the oldest sam-
ple and introducing the current sample. Keeping in mind
that the newest sample x−1 is stored in a separate register
after the update. Still, the OBC-DA LUT update mechanism
requires several adder and subtract units, which increases
the complexity and critical path. A TC-DA design as an
improvement of original [21] design has been implemented
with the even-odd LUT decomposition in [27]. TC-DA aux-
iliary LUT is updated with the efficient update method
illustrated in Fig. 7. The OBC-DA auxiliary LUT update
proposed in [23] and illustrated in Fig. 10 have been used
for the direct DA structure without LUT decomposition
in [29] due to the apparent reduction of area and power
consumption.

4) CONJUGATE DA IMPLEMENTATIONS
Amore recent work on non-pipelined DA-ADF proposed two
conjugate DA designs for TC and OBC-DA with even-odd
LUT decomposition [30]. The even and odd LUT contents
are identical. This property can be comprehended if the
efficient LUT update mechanism without decomposition is
considered [21]. By observing the update method shown in
Fig. 7, the even and odd addresses are almost identical with
one difference being the addition of the current sample to
the odd addresses. As shown in Fig. 16, such even-odd LUT
decomposition allows addition of new sample to be done at
the output of the odd DA LUT.

An interesting feature to be noticed is the same efficient
TC LUT update being applied to even-odd decomposed LUT.
The OBC-DA update is shown in Fig. 17. Again, the idea is to
remove the oldest sample. The odd OBC-DA LUT contents
are negated so that a oldest sample value is positive for easy
removal. The sign of the contents in OBC-DA are flexible as
the MSB of the address controls the addition or subtraction
at the output of the LUT, it can be easily inverted or adjusted.

The main advantage of both of these TC and OBC designs is
that the even and odd LUTs are updated concurrently. Thus,
not only the access time is reduced but, also the clock cycles
required for LUT update.

5) APPROXIMATE DA IMPLEMENTATION
Another implementation method applies a new design
paradigm of Approximate Computing (AxC) for energy and
hardware efficient implementations [31]. This method is
mainly applied in inherently error resilient and data-rich
applications such as signal processing, machine learning,
image processing and computer vision. AxC offers a trade-off
situation for accuracy and hardware resources. In order to
implement approximate ADF approximate circuits are used
such as approximate adders, multipliers, and dividers [32].

Approximate DA-ADF implementation has been presented
in [33]. Fig. 18 depicts architecture of the error computation
module. This architecture uses Booth encoder [34] and Par-
tial Product Generation (PPG) for multiplication without the
partial product accumulation. Partial product accumulation
is done via a Wallace tree [35] which adds up all partial
products from all the taps. Wallace tree outputs two parts of
the sumwhich is then needs to be summed by anotherWallace
tree or a Carry Lookahead Adder (CLA). Weight update
module, illustrated in Fig. 19, has: Booth encoder and PPGs,
and a smaller Wallace tree and a CLA for partial product
accumulation at each tap. Essentially, due to the method of
partial product accumulation this design can be thought of as
distributed.

B. PIPELINED DA ADFs
Pipelining is mainly applied to reduce the critical-path and
achieve high throughput as dividing the process in pipelining
stages allows concurrent processing. Throughput being the
number of samples processed in a second and critical-path

85176 VOLUME 11, 2023



S. Yergaliyev, M. Tahir Akhtar: Systematic Review on DA-Based Hardware Implementation of ADFs

FIGURE 18. Block diagram of approximate DA-ADF error computation module [33].

FIGURE 19. Block diagram of approximate DA-ADF weight update module [33].

being the longest signal path through combinational logic.
However, due to the recursive nature of adaptive algo-
rithms pipelining actually degrades performance. For the
LMS algorithm performance is only slightly degraded for low
adaptation delays [36]. First DA-ADF pipelined design has
been proposed in [37] based on TC direct DA structure. How-
ever, later an improved TC conjugate DA structure pipelined
ADF design has been proposed [38]. Two pipelining delay
elements have been applied to separate the filtering, error
computation, and weight update stages. Thus, the perfor-
mance of the ADF are not severely degraded. To increase the
throughput following main modifications has been applied:

register based LUT and Carry Save Adder (CSA) based
accumulation. An example of register based LUT for length
3 filter is demonstrated in Fig. 20. The outputs on the right are
precisely TC-DA combinations. An array of delay elements,
which are realized via registers, store the DA combination
computed previously. With this design the update of the
filtering LUT can be done in one clock cycle compared to the
non-pipelined designs. However, the complexity of the LUT
increases.

The accumulation of the DA partial products are done via
a CSA to reduce the critical path of a ripple carry adder,
which is usually used for addition. The carry propagation is
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FIGURE 20. Register based LUT for a lenth 3 DA filter.

FIGURE 21. Carry save adder accumulator.

FIGURE 22. Block diagram of length 4 pipelined DA-ADF [38].

essentially postponed for later stage. The structure of CSA
is illustrated in Fig. 21, where yij is some partial product
bit j. These partial product bits pass throughXOR gates, when
MSBs arrive, the sign bit becomes high and the XOR gates
behave like switchable NOT gates inverting the incoming
most significant partial product. Thus, obtaining one’s com-
plement. To obtain two’s complement 1 is fed as an initial
carry to the least significant adder of the summer outside of
the accumulation block.

Fig. 22 illustrates the overall structure of the conjugate
pipelined DA-ADF from [38]. Due to the conjugate DA
structure only one filtering LUT is used. Two output signals
from the filtering or inner product block are due to the CSA
based accumulation. Little delay element inside the inner

FIGURE 23. (a) Multiplexed, and (b) AND cell TC-DA LUTs [40].

product block indicate that at the output a delay element is
present. This delay element or register separates the accu-
mulation stage from the error computation stage. The final
output of the accumulation is delayed output sample y[n−1].
Thus, the desired response should also be delayed accord-
ingly. The result of this comparison is then right shifted two
times. Which means that the step size is chosen to be µ =

1/N = 1/4. Two right shift in binary number representation
perform division by 4. After scaling another delay element
is inserted to separate error computation from the weight
increment or weight update block. The oldest input sample
is further delayed to match the delay of the error sample as
per the update rule of DLMS. The weight update block is
done the similar way as conjugate TC-DA design [23] shown
in Fig. 9.

The register-based LUT introduces several adders and a
considerable amount of registers. Thus, pipelined DA-ADF
designs with multiplexed LUT and AND cell LUT have been
proposed in [40]. Both multiplexing and AND operations are
used to select a TC-DA combination of input samples which
are then summed by an adder tree to output the correct DA
partial product. Length 4 multiplexed LUT and AND cell
LUT are illustrated in Fig. 23, wherewij is jth bit of ith weight.
In both cases, if weight bit is zero, corresponding input sam-
ple will not be present in the final TC-DA combination. This
LUT design uses less adders and less registers. However, the
critical path is increased due to the adder tree.

Three pipelined OBC-DA ADF designs have been pro-
posed in [39]. These design mainly differ in the OBC-DA
LUT structure which are demonstrated in Fig. 24. First

85178 VOLUME 11, 2023



S. Yergaliyev, M. Tahir Akhtar: Systematic Review on DA-Based Hardware Implementation of ADFs

FIGURE 24. (a) OBC-DA LUT Type 1, (b) OBC-DA LUT Type 2, and (c) OBC-DA LUT Type 3 conjugate OBC-DA LUT designs [39].

design, actually resembles the transpose FIR filter struc-
ture. The main feature of this structure is that the critical
path is minimized. However, the timing issues occur as this
design cannot be driven by iteration clock and bit clock
simultaneously. Second design can be operated with one
clock. It has less registers, and less XOR gates at bit level,
but he critical path increases linearly with filter order. Third
design employ an adder tree which reduces the critical path
as it will increase logarithmic with filter order. In addition to
OBC-DA LUT designs, a radix-4 OBC encoding have been
proposed in [39] to reduce the number of partial products.
Due to higher radix encoding the CSA accumulator have been
improved with minus-minus-plus redundant adder to reduce
the critical path.

C. BLOCK PROCESSING DA ADFs
1) DA FORMULATION OF BLMS
Matrix-vector multiplications in the BLMS algorithm should
be converted to vector multiplications to implement it with
DAmethod. First, the input block matrixX[n] of size (L×N )
is decomposed into M = N/L square matrices Aj[n] of size

(L × L) that are defined as:

Aj[n] =


x[j′L] x[j′L − 1] · · · x[j′L − L + 1]

x[j′L − 1] x[j′L − 2] · · · x[j′L − L]
...

...
. . .

...

x[j′L − L + 1] x[j′L − L] · · · x[j′L − 2L − 2]

 ,

(26)

where j′ = n − j. The weight and weight increment vectors
should be also both decomposed into M smaller vectors of
length L as follows:

fj[n] = [wjL[n] wjL+1[n] · · · wjL+L−1[n]]T , (27)

1fj[n] = [1wjL[n] 1wjL+1[n] · · · 1wjL+L−1[n]]T . (28)

Both vectors fj[n] and 1fj[n] are of length L, and j =

0, · · · M − 1. Then, the filter output and weight increment
can be computed as follows according to (18) and (22):

y[n] =

M−1∑
j=0

Aj[n]fj[n], (29)

1fj[n] = µAj[n]e[n]. (30)
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FIGURE 25. Block processing DA-ADF working principle illustration [46].

In (30), the transpose is omitted because matrix Aj[n] is
symmetrical by definition in (26). The common squarematrix
Aj[n] can be decomposed into row vectors as:

aij[n] = [x[j′L − i] x[j′L − 1 − i] · · · x[j′L − L + 1 − i]],

(31)

where i = 0, · · · L−1, and aij[n] is the (i+1)th row vector of
the matrix Aj[n]. Filter output sample and weight increment
element can be computed as follows:

y[nL − i] =

M−1∑
j=0

aij[n]fj[n], (32)

1wjL+i[n] = µaij[n]e[n]. (33)

As a result (32) and (33) involve vector multiplication
that can be implemented with DA method. Conjugate DA
structure fits BLMS DA the most due to common row
vector aij[n]. Thus, storing the DA combinations of the
input block samples in LUTs and access them by addresses
formed by weights and error samples is the most efficient
approach.

2) BLOCK PROCESSING DA ADFs
Initial DA BLMS design have been based on conjugate
TC-DA structure due to the two matrix-vector multiplica-
tions (33), (32) involving the same input sample block [46].
Hence, the same collection of LUTs containing the DA
combinations of input sample can be used for filtering and
weight increment computation processes. An example of
BLMS DA-ADF with filter length N = 6 and block length

L = 2 is illustrated in Fig. 25. After every new block of
data and block iteration LUTs are essentially right shifted.
The right most LUT with the oldest samples is discarded
and a LUT with the newest samples is formed in the left
most side. Physically transport LUT contents is an inef-
ficient process. Instead it is better to rotate the weights
that are actually static in Fig. 25. Thus, the oldest LUT is
always overwritten with newest sample, while other LUTs
remain the same. This technique is called inter-iteration LUT
reuse.

Yet another, technique applied in BLMS DA is LUT shar-
ing. From Fig. 25, one sample overlap can be observed
between subsequent LUTs. The meaning is that some of the
contents are identical and can be shared to reduce hardware.
To be able to tap specific LUT contents only the register
based LUT shown in Fig. 20. So called, intra-iteration LUT
sharing has been first proposed in [47]. An OBC BLMS DA
implementation of this scheme have been proposed in [48].
By applying recursive OBC scheme the LUT sizes have
been reduced by a factor of 4. Thus, reducing the LUT
access time, area, and power. However, as the recursive
OBC increases the critical path delay another design have
been proposed in [49]. Initial OBC LUT is divided into
two smaller LUTs based on the address reducing the LUT
access time. In [50] the notion of intra-iteration LUT sharing
has been applied to OBC BLMS DA architecture in form
of two composite-LUT designs that support LUT sharing.
In [51] the previous design has been further optimized.
The redundancies of upper and lower LUT decomposition
have been exploited further in context of intra-iteration LUT
sharing.
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TABLE 2. Summary of DA-ADF designs.

V. CONCLUSION
In this paper, a review of most important DA-ADF designs
has been performed. Three main types of designs have been

identified: non-pipelined, pipelined, and block processing.
Discussed designs have been summarized into several key
features. Non-pipelined designs are the most simplistic and
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block processing designs are the most complex to implement.
A trend has been observed that each design type converges
to conjugate OBC-DA. They do not need any auxiliary LUT
and the memory requirement is further reduced by OBC
technique. In general, it can be said that first direct TC-DA
structures are proposed and then improved by either apply-
ing conjugate DA or OBC-DA. Except for the discussed
approximate DA-ADF [33], which employed AxC to effi-
ciently implement ADF. Most of the designs only considers
LMS-type adaptive algorithms for implementation due to
its simplicity and satisfactory performance. No DA-ADF
designs has been found that discusses implementation of
more advanced adaptive algorithms like Recursive Least
Square (RLS).

AxC is a new emerging design philosophy that can benefit
hardware-efficient implementations to a high degree. Thus,
another possible future work is to apply AxC to already
proposed designs to further reduce the hardware cost. Also,
AxC can help to mitigate the computational complexities of
more advanced adaptive algorithms like RLS and allow a fea-
sible hardware efficient implementation of these algorithms.
A systematic summary of designs reviewed in this article
is provided in Table 2, which lists key features of various
designs for DA-based implementation of ADFs.

Targeting new adaptive algorithms that may exhibit useful
symmetries in DA implementation framework is also another
feasible direction of future research. One particular example
are tensor adaptive algorithms [52]. Due to the assumption
of linear separability of the parameter space, estimation of
which is the goal of adaptive filtering, some symmetries may
arise which can be exploited in DA implementation.
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