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ABSTRACT The detection of defects in wood is valuable for promoting the efficient exploitation of wood.
So it is significant to further increase the accuracy of the detection of wood defects and enhance the real-time
detection. In this paper, the YOLOv5 convolutional neural network is applied to wood defects detection,
and the model is modified for both the YOLOv5n and YOLOv5m scales. The SimAM attention model
was first incorporated into the network, and the learning rate decay strategy was replaced with CosLR,
with Ghost convolution employed to minimize the model parameters. Finally, the modified network was
tested for five types of wood defects, including live-knot, resin, dead-knot, knot-with-crack, and crack. It is
demonstrated that the improvements resulted in a 1.5% increase in mAP0.5:0.95 for YOLOv5n-C3Ghost and
a 1.6% increase in mAP0.5:0.95 for YOLOv5m-C3Ghost. In addition, there is a 51% and 63% difference in
the number of model parameters, and a decrease in inference time and floating point operations respectively.
The experiments indicate that our improved method not only enhances the accuracy of YOLOv5 in detecting
wood defects, but also enables a reduction in the volume and computational cost of the model parameters.

INDEX TERMS Wood defects detection, convolutional neural networks, YOLOv5, SimAM.

I. INTRODUCTION
As the vast majority of carbon in terrestrial ecosystems,
forests perform a distinctive and essential role in lowering
the concentration of greenhouse gases in the atmosphere and
mitigating global warming.With high toughness, low thermal
conductivity, rich color and grain tones, aesthetics, acces-
sibility, and biodegradability, wood is an environmentally
friendly natural material [1]. In recent years, the function
of forest resources has turned from timber usage to ecolog-
ical conservation, and such a transition has inhibited wood
supply [2]. However, the raw wood material is invariably
subject to various defects such as knots, cracks, mold and
decay due to natural, external or biological factors. Such
defects impair the appearance of the wood as well as the
quality of the wood product and considerably shorten its
service life. Consequently, it is necessary to identify defects in
wood during manufacture and to remove the defective parts
in time to facilitate the efficiency of the wood. Distinctive
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faults in timber vary in appearance and they can be identified
visually. However, manual visual inspection often requires a
certain amount of experience and high labour costs. It also
causes worker fatigue when there is a high volume of timber,
which makes inspection inefficient [3]. Novel techniques are
required to replace manual labour in order to achieve accurate
and rapid identification of timber defects when processing
timber, to optimize timber utilization and to reduce timber
inspection costs.

Based on the above requirements, a large amount of
research on visual wood defect detection has emerged. Tra-
ditional machine learning methods include Support vector
machine (SVM), grayscale co-occurrence matrix, convex
optimization, Back propagation (BP) neural network, etc [4].
Xiang et al. combined Local binary patterns (LBP) with
wavelet transform to detect wood defects, and the accuracy
of recognition results for cracks, live knots, and dead knots
were over 90% [5]. Gu et al. used an improved support vector
machine to classify four types of wood knot defects, and the
average accuracy could reach over 96.5% [6]. Zhang et al.
used principal component analysis (PCA) and crush sensing
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to process wood images, which not only improved the accu-
racy of detection but also improved the accuracy of detection
[7]. Despite the good accuracy of traditional machine learning
for defect classification, it suffers from the need for complex
manual feature extraction and sophisticated classifier design,
and the recognition accuracy still needs to be raised.

In recent years, Convolutional neural networks have made
deep learning the mainstream of computer vision, with the
advantages of automatic feature extraction and simple classi-
fier [8], [9]. Yang et al. used a combination of deep learning
feature extraction method and Extreme learning machine
(ELM) classification method to fabricate a deep extreme
learning machine model, and the average accuracy of iden-
tifying three defects reached 96.72% with a test time of
187 ms [10]. He et al. proposed a mix full convolutional
neural network (Mix-FCN) to detect six defects, and the
detection accuracy could reach 99.14% [11]. Gao et al.
designed a BLNN network structure, and the classification
accuracy of four wood knot defects could reach 99.20%
[12]. Hu et al. employed progressive adversarial genera-
tive network to enhance the dataset, and followed by Mask
R-CNN networks to identify three types of defects [13].
The above wood defects classification methods are highly
accurate, but they can only classify single defects images
and do not facilitate detection of wood with multiple target
defects.

With the development of target detection frameworks, such
as Faster R-CNN, SSD, and YOLO networks, computers can
automatically locate the location of wood defects on pictures
with multiple targets while making judgments about their cat-
egories. Urbonas used the Faster R-CNN network migration
learning approach to locate and classify wood defects [14].
Ding et al. [15] and Yang et al. [16] detect wood defects by
improving the SSD network and achieve good results. Wang
et al. improved YOLOv3 by adding GridMask and Ghost-
Block to the network to increase the detection capability of
wood defects [17]. However, the target detection network
still has problems such as many parameters and complex
models, which make the computer consume more computa-
tional resources and take longer time to perform training and
detection.

The target detection network of YOLO series has been
characterized by the one stage, which generates the location
information and category information of the target directly
using the features extracted by backbone [18]. YOLOv5
is the fifth generation of YOLO series, which has the
advantages of small network model, fast inference and high
detection accuracy, and has been applied to many fields
[19], [20].

In this paper, the YOLOv5 convolutional neural network
is refined by substituting Ghost convolution for conventional
convolution, adding a cosine annealing learning rate decay
strategy, and incorporating a SimAM attention mechanism
model. The improved network provides higher accuracy on
the one hand and reduces the number of parameters of the
model on the other.

FIGURE 1. Principles and results of the mosiac operation. (a) Principles.
(b) Results.

TABLE 1. Our wood defects dataset.

II. METHODOLOGY
A. ACQUISITION AND PRE-TREATMENT
OF WOOD SAMPLES
The wood defects detection dataset in this paper was obtained
from a public web dataset [21]. This dataset contains a total of
5429 images covering 10944 defects in 5 categories including
live knot, resin, dead knots, knots with crack and crack. The
size of the image is 640 × 640. Each image features several
different wood defects, and Table 1 presents the number of
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TABLE 2. Different parameters of YOLOv5n and YOLOv5m.

FIGURE 2. General framework of the original YOLOv5 algorithm. Original
YOLOv5.

these five defects. The images in the dataset are divided into
a training set, a validation set and a test set in a ratio of 6:2:2.

The Mosiac operation was implemented into the data pre-
processing process. As shown in FIGURE 1 (a), the Mosiac
operation is performed by randomly selecting 4 images from
a batch, and then casually cropping, scaling and stitching
these 4 images. The brightness and contrast of these 4 images
are also stochastically altered when stitched together. Finally,
the randomly misaligned portion of the intercept using the
Mosiac template is taken as the input sample for the network.
FIGURE 1(b) displays the results of the Mosiac operation,
which increases the diversity of the input dataset, improves
the richness of the samples and enhances the network’s detec-
tion of small sample targets.

YOLOv5 is a first-order target detection model, proposed
by Lenn Jocher in 2020. In FIGURE 2, the backbone network
of YOLOv5 adopts DarkNet53 and SPPF. The neck network
employs a combination of FPN and PANet. The detection
heads of three sizes can predict targets at three scales, large
and small on the featuremAP. Themodel of YOLOv5 is avail-
able in several different sizes by altering the depth parameter
and the width parameter of the network. The larger the model
size, the more complex the structure and the higher the accu-
racy, but at the same time the more resources the computation
consumes. Therefore, considering the performance of the
experimental apparatus, this paper chooses to experiment and
refine on YOLOv5n and YOLOv5m. Table 2 illustrates the
number of channels and modules of backboon for YOLOv5n
and YOLOv5m. The width parameter of YOLOv5n is 0.25,
the depth parameter is 0.33, and the number of parameters is

FIGURE 3. Linear decay strategy and CosLR.

1.7 M. The width parameter of YOLOv5m is 0.75, the depth
parameter is 0.67, and the number of parameters is 19 M.

B. IMPROVED YOLOv5 NETWORK
1) COSLR
FIGURE 3(a) displays the learning rate decay strategy
adopted by the original YOLOv5, which combines linear
learning rate decay and preheating. In this experiment, cosine
annealed learning rate (CosLR) learning rate decay was
availed. In FIGURE 3(b), cosine annealing is carried out
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FIGURE 4. The ordinary convolution and the ghost module.

by learning rate decay using a quarter-cycle of the cosine
function. It is difficult to find the optimal solution when the
learning rate decays to a small level if the network falls into
a local minimum when solving the loss function. Therefore,
a sudden increase in the learning rate when falling into a local
minimum can cause the loss to jump out of the local minimum
and thus continue the search for the global optimal solution.
In this experiment, the growth frequency of cosine annealing
is varied. The initial period is 5 epochs with a growth rate
of 2. The epochs with the highest learning rate are 5, 15, 35,
75 and 155.

2) GHOST MODULE
The Ghost module featured in GhostNet by Han et al. reduces
the number of parameters of the model [22]. It is showed in
FIGURE 4 The Ghost module starts with a 1x1 convolution
kernel to downscale the input feature maps to 1/2 the number
of channels, and then convolves it with a group equal to the
number of channels. Finally, the feature maps of the two
convolutions are concatenated to obtain the feature maps with
the number of channels equal to the initial input. As shown
in FIGURE 5.5, the C3 module and SPPF module of Yolov5
are replaced with C3Ghost and SPPFGhost modules in this
experiment.

3) SimAM ATTENTION MODEL
In FIGURE 6, Channel attention and Spatial attention focus
on 1-dimensional and 2-dimensional relations, while SimAM
attention can focus on 3-dimensional attention relations
[23]. SimAM attention does not require additional training
parameters and uses the energy function E to calculate the
relationship between the target pixel point and the surround-
ing pixels. Equation 1 is the energy function, where t is the
target neuron and λ is a constant, while µ and σ 2 are the
mean and variance of the target neuron removed within this
channel. In Equation 2, the energy function is converted to
pixel weights using the sigmoid function, and a range of value

FIGURE 5. Some module structure of the improved YOLOv5.

restrictions is taken.

E =
4(σ 2

+ λ )

(t − µ)2 + 2 + 2λ
(1)

X̃ = sigmoid(
1
E
) ⊙ X (2)

III. DISCUSSION
For the evaluation of networkmodels in this paper, themetrics
are mean accuracy (mAP0.5:0.95), parameters (Params), time
and floating point (FLOPs). The mAP0.5:0.95 is the average
accuracy computed for all defect classes at an IOU threshold
of 0.5 : 0.95. Params is the number of weighted parameters
of the network. Time is the average inference time of the
model. FLOPs is the number of floating point operations
consumed by the model in operation. The following is the
solution process for mAP0.5:0.95.

P =
TP

TP+ FP
(3)

R =
TP

TP+ FN
(4)
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TABLE 3. Evaluation metrics of improved YOLOv5n.

TABLE 4. Evaluation metrics of improved YOLOv5m.

FIGURE 6. Comparisons of different attention module. (a) Channel-wise
attention. (b) Spatial-wise attention. (c) SimAM.

APi =

∫ 0

1
P(R)d(R) (5)

mAPj =
1
N

∑N

i=1
APi (6)

mAP0.5:0.95 =
1
10

∑
mAPj(j = 0.5, 0.55, 0.6, 0.65,

0.7, 0.75, 0.8, 0.85, 0.9, 0.95) (7)

where, TP is the amount of correctly predicted samples for a
category, FP is the amount of false detections, and FN is the
amount of true samples that were not detected. P is the rate
of Precision. R is the rate of Recall. AP is average precision.
mAPj is the mean average precision of the one defect. N is
the kinds of wood defects.

The timber-deficient dataset was trained on Faster RCNN,
SSD, YOLOv5n and YOLOv5m respectively. As shown in

FIGURE 7. mAP0.5:0.95 of all networks at training time.

FIGURE 7, where the mAP0.5:0.95 of Faster RCNN, SSD
and YOLOv5n was smoothed out. The improved YOLOv5n-
C3Ghost and YOLOv5m-C3Ghost did not converge until
225 calendar hours due to training with cosine annealing.
In contrast, YOLOv5m andYOLOv5m-C3Ghost was already
overfitted at 200 epochs. Once all the networks had con-
verged, the model was used to test the data in the test set.
On the test set, the mAP0.5:0.95 values of YOLOv5n-C3Ghost
and YOLOv5m-C3Ghost were much higher than those of the
Faster RCNN and SSD in FIGURE 8. In addition, YOLOv5n-
C3Ghost has the least number of parameters, and the number
of parameters of YOLOv5m-C3Ghost were much lower than
those of the Faster RCNN and SSD.

In Tables 3 and 4, the mAP0.5:0.95 of YOLOv5m and
YOLOv5n improved after the learning rate was attenuated
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FIGURE 8. The metrics of all networks on the test set.

using cosine annealing. Specifically, the mAP0.5:0.95
improved by 0.9% for YOLOv5n and 1.6% for YOLOv5m.
This suggests that a learning rate decay strategy involving
the use of cosine annealing assists the network in finding the
optimal point. The addition of SimAM toBackbone enhanced
the feature extraction capability of the network, resulting in
improved final detection results. mAP0.5:0.95 improved by
1.2% for YOLOv5n and by 0.9% for YOLOv5m. At the
point when both SimAM and CosLR were added to the
network, mAP0.5:0.95 improved by 1.9% for YOLOv5n and
2.3% for YOLOv5m. Finally, following the introduction
of Ghost convolution, the number of model parameters for
the improved YOLOv5m-C3Ghost was 37% of that for the
original YOLOv5m, while the number of model parameters
for the improved YOLOv5n-C3Ghost was 50% of that for the
original YOLOv5n. In addition, the average inference time
per graph was reduced by 0.1 ms and 0.2 ms, respectively,
and the floating-point operations were reduced by 41% and
59%. However, the mAP0.5:0.95 was reduced by 0.4% for
YOLOv5n-C3Ghost and by 0.5% for YOLOv5m-C3Ghost.

IV. CONCLUSION
In this paper, two different scales of wood defect detection
models, YOLOv5n and YOLOv5m, are modified and the
following conclusions are obtained.

1) The YOLOv5 networks before and after the improve-
ment outperform the traditional Faster RCNN, SSD
network in terms of performance. The mAP0.5:0.95 of
the improved YOLOv5n-C3Ghost is 43.3%, and the
mAP0.5:0.95 of the improved YOLOv5m-C3Ghost is
45.2%.

2) The recognition accuracy of YOLOv5n-C3Ghost
and YOLOv5m-C3Ghost for wood defect samples
increases with the incorporation of the SimAM atten-
tion mechanism.

3) By adopting the CosLR learning rate decay strategy, the
YOLOv5n-C3Ghost and YOLOv5m-C3Ghost break
through the local minima in solving the loss function
and can find better weights.

4) Used the C3Ghost and SPPFGhost modules. The
improved YOLOv5n-C3Ghost has 0.82 M param-
eters, and the improved YOLOv5m-C3Ghost has
7.46 M parameters. The average inference time of the
improved YOLOv5n-C3Ghost is 1.4 ms, and that of the
improved YOLOv5m-C3Ghost is 4.8 ms. The FLOPs
of the improved YOLOv5n-C3Ghost is 2.4 G, and that
of improved YOLOv5m-C3Ghost is 19.4 G.
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