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ABSTRACT Hyperspectral image denoising is an important research topic in the field of remote sensing
image processing. Recently, methods based on non-local low-rank tensor approximation have gained
widespread attention towing to their ability to fully exploit non-local self-similarity. However, existing non-
local low-rank tensor approximation methods fall short in capturing the correlations between various modes
in hyperspectral images, thus failing to achieve the optimal approximation. To solve this issue, a novel three-
directional log-based tensor nuclear norm (3DLogTNN)–based non-local hyperspectral image denoising
model NL3DLogTNN is proposed. The correlation between the various modes of the model was obtained
by performing TNN decomposition in three directions on the extracted non-local comparable blocks, better
capturing the global low-rank property of the image. To effectively solve the proposedNL3DLogTNNmodel,
we developed an approximate alternating direction method of multipliers (ADMM)-based methodology
and offered a thorough numerical convergence proof. Extensive experiments are conducted on hyper-
spectral image datasets with simulated noise and real-world noise, which demonstrated that the proposed
NL3DLogTNN model outperforms state-of-the-art methods in terms of quantitative and visual performance
evaluation.

INDEX TERMS Hyperspectral image denoising, non-local self-similarity, 3DLogTNN decomposition.

I. INTRODUCTION
Hyperspectral remote sensing images possess abundant
spectral-spatial information and demonstrate high spatial res-
olution, playing a substantial role in ‘‘mineral detection’’ [1],
‘‘precision agriculture’’ [2], ‘‘urban planning’’ [3], envi-
ronmental monitoring, management and supervision. How-
ever, extrinsic factors, including atmospheric absorption of
reflected signals, equipment vibration during transmission,
incorrect data conversion, and sensor failures will inevitably
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impact the acquisition and subsequent processing of hyper-
spectral remote sensing images. Hyperspectral images are
prone to pixel damage and a range of noise pollutants,
including Gaussian and impulse noise, which are typically
distributed across various bands and pixels. Deadline noise
and stripes appear occasionally in the adjacent spectral bands.
These problems ultimately cause significant degradation of
the visual quality of hyperspectral images, adversely affect-
ing the precise extraction of ground object information.
Consequently, subsequent operations, such as hyperspectral
image unmixing [4], [5], [6], classification [7], [8], [9] and
fusion [10], [11]. These factors pose challenges for removing
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noise from hyperspectral images are also greatly impacted.
These factors pose challenges for removing noise from hyper-
spectral images. Hence, researchers have proposed a series
of denoising algorithms to solve the degradation of hyper-
spectral images. These denoising algorithms can be classified
based on how they process data into denoising algorithms that
convert hyperspectral images into two-dimensional matrix
data, and those based on tensor algebra models.

Researchers have proposed a series of denoising algo-
rithms mainly model-based and deep learning-based,
to remove noise from hyperspectral images.

Methods based on network learning have accomplished
the end-to-end restoration of hyperspectral images, allowing
the learning of discrepancies between different structures
in the images. These methods implicitly model the prior
information of hyperspectral images within the network. For
example, the HSI-DeNet model [38] is based on dilated con-
volutions and residual learning; the HSID-CNN model [43]
that exploits the correlation between a certain spectral band
and its neighbouring bands; and the 3-D QRNN model [44]
that employs 3D convolutions to extract both spectral-spatial
correlation and global spectral correlation in hyperspectral
images. However, network-based methods require a large
amount of hyperspectral data for training and also exhibit lim-
ited generalisation ability compared tomodel-basedmethods,
often being able to handle only a single task.

Model-based methods can be classified based on data
processing: denoising algorithms that convert hyperspectral
images into two-dimensional matrix data [12] and denoising
algorithms based on tensor algebra models.

Denoising algorithms for hyperspectral images [12] treat
hyperspectral data as a collection of two-dimensional images
stacked together based on two-dimensional matrix data and
eliminate noise from the hyperspectral image data by process-
ing each band or pixel. For example, Yang et al. [13] viewed
hyperspectral data asmatrix image blocks with various bands.
First, they used sparse coding and local redundant correlation
in the spectral domain to model the global redundant corre-
lation within the spatial scope. Subsequently, sparse coding
and compressed representation techniques were employed
to eliminate noise from the images. Zhang et al. [14] pro-
posed a low-rank matrix restoration model called LRMR for
hyperspectral image denoising. To enhance the performance
of this model, different non-relief low-rank approximation
functions [15] were introduced to investigate the low rank-
ness of flat matrices with hyperspectral images. He et al.
[16] further integrated a unified framework that simultane-
ously considered spectral and spatial low rankness. This was
accomplished by employing the nuclear norm to exploit the
low-rank structure and total variation regularisation to capture
the hyperspectral images’ spectral smoothing information.

However, matrix-based methods compel high-dimensional
hyperspectral images to be flattened into a two-dimensional
structure, destroying the spatial-spectral correlation of hyper-
spectral images and making it impossible to achieve better

denoising performance. It is crucial to consider both spa-
tial and spectral features for effective noise cancellation to
maintain the inherent structure of hyperspectral images more
effectively. Recently, researchers have examined denoising
algorithms based on tensor decomposition models. These
denoising algorithms view hyperspectral images as a whole
and directly explore them using multi-dimensional linear
tensor algebraic decomposition models. Tucker decompo-
sition [17], [18], [19], [20], [21] and CP decomposition
[22] were the most commonly used models for denoising.
Prominent methods based on CP decomposition include
Multi-Layer Sparse Tensor Decomposition (MLSTD) [39],
among other notable approaches. Meanwhile, tensor tubal
rank defined by tensor singular value decomposition (t-SVD)
has demonstrated promising results in LRTA, including ten-
sor completion [23], [24] and tensor robust principal com-
ponent analysis (TRPCA) [25], [26] and multi-modal core
tensor factorisation methods based on Tucker decomposi-
tion and t-SVD [40]. Fan et al. [27] denoising model based
on low-tubal-rank tensor recovery addresses mixed noise in
HSI. Chang et al. [37] proposed a Weighted Low-Rank Ten-
sor Recovery model, integrating the efforts of low-level HSI
recovery tasks into a unified framework to fully exploit the
structural spectral-spatial correlations in three-dimensional
HSI.

However, the aforementioned methods directly consider
the global correlation and discard the redundancy of locally
repeated patches in the spatial patterns of HSI, i.e., non-
local self-similarity (NSS) [28].To maximise the exploitation
of prior NSS in noise reduction, numerous non-local-based
noise reduction methods [28], [29], [30], [31], [32], [33] have
been proposed. Non-local-based methods attempt to divide
images into overlapping patches and group similar patches.
The differences between local and non-local correlations
were considered in [41], and a sparse modelling scheme
that fully exploits these two various types of correlations
was proposed. An optimal low-rank tensor model was pro-
posed in [42], combining the spectral and non-local induced
low-rank models. Peng et al. [28] first proposed a tensor dic-
tionary learning (TDL) method to deal with non-local similar
groups, but its robustness was poor. Many state-of-the-art
HSI denoising methods based on the TDL architecture have
been proposed, including the inherent tensor sparsity (ITS)
measure approach [29], [32] and the Laplacian-regularised
one-way low-rank tensor recovery problem (LLRT) [30].
However, the ITS approach has reduced flexibility because
of the exponentially increasing number of parameters (vari-
ables) as the tensor dimension increases, which makes the
denoising process challenging. Furthermore, CP decomposi-
tion can yield satisfactory results only under relatively large
ranks, and the ITS approach cannot sufficiently preserve
the correlation between non-local patterns. The correlation
between the global spectra and local space cannot be captured
by LLRT, despite being an effective method, since it only
assumes a low rank under non-local patterns. He et al. [31]
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FIGURE 1. Illustration of low-rank prior of the reconstructed non-local
similarity blocks in HIS Washington DC Mall.

showed that balancing the correlation between the spectra
and NSS can enhance denoising performance. The perfor-
mance of HSI denoising can still be significantly improved
by identifying a tensor representation method, balancing the
correlation between all modes, and improving the effective-
ness of previous non-local-based methods.

Recently, a novel tensor representation method called
3DLogTNN has been proposed [26]. It extends t-SVD to
the k-t-SVD mode and simultaneously removes tension in
three directions, making the HSI’s low-rank display more
flexible and precise. Furthermore, it introduces convex and
non-convex three-way logarithmic TNN to further extend
TNN, and 3DTNN and 3DLogTNN as their convex and
non-convex relaxations, respectively. The 3DLogTNNmodel
has been widely employed in hyperspectral image denoising
and outperforms other tensor-decomposition-based denoising
models by efficiently eliminating mixed noise while preserv-
ing important information.

In this study, the proposed denoising model is based on
non-local 3DLogTNN decomposition, which is inspired by
the superior effectiveness of the 3DLogTNN representation.
A better balance between capturing the worldwide spectral
coherence and non-local self-resemblance present in HSI can
be achieved via application of 3DLogTNN decomposition
for the representation of non-local tensors. Existing high-
spectral-image denoising algorithms primarily deal with a
single type of noise. However, a real HSI is often subject to
the mixed interference of numerous types of noise. Therefore,
this study aims to examine HSI denoising algorithms that
employ non-local tensor decomposition for heterogeneous
noise.

A. MOTIVATIONS AND CONTRIBUTIONS
This article primarily makes two contributions: First, we pro-
pose a novel denoising model called NL3DLogTNN that
is based on the concepts of non-local self-resemblance and

three-mode tensor decomposition, to efficiently eliminate
mixed noise from hyperspectral images. The proposed model
has two primary advantages. On the one hand, non-local patch
processing operations are conducted on hyperspectral images
to investigate their global similarity and repetitive patterns.
On the other hand, tensor-decomposition-based on t-SVD
is conducted individually along each mode when dealing
with tensors that have undergone non-local block operations.
The multi-mode low-rank features of tensor non-local blocks
are effectively captured using the flexible and accurate HSI
representation capabilities of 3DLogTNN. Figure 1 shows the
HSI Washington DC Mall as an example, we observe that
the reconstructed patches under all modes of the non-local
similarity block approximation exhibit low-rank behaviour.
This shows that both quantitatively and visually, spatial and
spectral correlations as well as NSS can be considerably
observed.

Second, we develop an approximate alternating direction
method of multipliers (ADMM)-based methodology as the
solver for the NL3DLogTNN model. In this study, the exper-
imental results on simulated and real datasets demonstrate
that the proposed NL3DLogTNN method surpasses related
non-local methods for denoising high-dimensional images.

B. ORGANISATION
This article is organised as follows. Section II provides an
overview of the notation and framework for HSI denoising.
Section III describes the proposed NL3DLogTNN decompo-
sition and its optimisation method. Section IV presents the
experimental results and parameter analysis of the simulated
and real datasets. Finally, Section V concludes the study.

II. NOTATIONS AND PROBLEM FORMULATION
A. NOTATIONS
Bold lowercase letters (e.g., x) denote vectors, uppercase let-
ters (e.g., X ) denote matrices, and calligraphic letters (e.g.,X )
denote tensors. A tensor is a multi-dimensional data structure,
and an n-dimensional tensor (n ≥ 3 ) is denoted using
a calligraphic symbol such as X ∈ RI1×I2×I3×...×In . The
value of an element in position (i1, i2, . . . , in) is represented
as X (i1, i2, . . . , in) or Xi1,i2,...,in . This study adopts a type
of tensor metrication, also known as unfolding, which is
defined as follows: In [26], the concept of normal mode-k
unfolding of a tensor is introduced and denoted as Moreover,
the Frobenius norm of tensor x can be computed as ||X ||F :

(
∑

i,j,s |X (i, j, s)|2)1/2.

B. HSI DENOISING VIA TENSOR DECOMPOSITION
The problem of image noise reduction is difficult because
it is frequently poorly posed. HSI signal restoration can be
expressed as a mathematical optimisation problem with reg-
ularisation. The noisy HSI can be depicted as an addition
of a noise component and a pure HSI, where is the width
and length of the image and is the count of the spectral
channels. Based on its intensity distribution characteristics,
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this noise can be portrayed as a mixture of stochastic and
sparsity-induced noise. Consequently, the corrupted hyper-
spectral image can be represented as a displacement of the
denoised image, and the denoising challenge can be consid-
ered a barrier to inferring the denoised hyperspectral image
from noisy observations.

Y = X +N + S (1)

The task of denoising hyperspectral images (HSIs) based
on the degradation model (1) is difficult and usually involves
recovering a clean signal from a noisy observation. Owing
to the complex nature of this issue, it is often considered
poorly posed. Therefore, to solve the difficult and ambigu-
ous problem of eliminating noise from hyperspectral images,
a regularisation framework can be used by incorporating
prior knowledge of HSI. This framework can be described
as follows:

argmin J (X ,S,N ) + βR(X ) (2)

where J (X ,S,N ) denotes the distribution characteristics of
various noises; R(X ) represents the prior information of the
unknown clean HSI; β denotes a non-negative regularisation
parameter used to balance the two regularisation terms. In the
regularisation framework, both the prior information and the
noise distribution are crucial, in determining the accuracy of
the recovery result.

Using a low-rank prior for HSI, the regularisation frame-
work can be straight-forwardly stated as follows:

min
X ,N ,S

rank(X ) + λ1||N ||
2
F + λ2||S||1 (3)

where rank(X ) represent the tensor rank, λ1 and λ2 are
regularisation parameters.

Based on Model (3), the critical issue in restoring the
hyperspectral image from the noisy image more precisely
and effectively is to design suitable regularisation constraints
to recover the hyperspectral image. Numerous tensor-based
methods use tensor low-rank decomposition to denoise the
hyperspectral image since the hyperspectral image is a
three-dimensional tensor instead of a two-dimensional image.
This involves the use of methods based on low matrix and
tube ranks to denoise HSIs.

A degraded image may contain both original image infor-
mation and noise information, and the original image infor-
mation can be considered as an array of data with reduced
dimensionality. The rank can be used to indicate the degree of
information included in an image. As described by the matri-
ces, an image can be denoted as a matrix, and if the figure
of linearly independent vectors that correspond to the matrix
is small, the matrix’s rank is also small, suggesting that the
image is low-rank. Based on mathematical knowledge, if the
rows or columns of a matrix can be linearly represented by
other rows or columns, then it can be deduced that the matrix
(image) contains a significant amount of redundant informa-
tion. Thus, redundant information in these low-rank matrices

can be used for image denoising and the reconstruction of
clean images.

In denoising HSI by defining tensor tube rank, tensor
singular value decomposition (t-SVD) has proved effective.
However, the t-SVD method has limits in its ability to handle
varied correlations in various modes of HSI, which can cause
suboptimal denoising results. Specifically, t-SVD uses SVD
to capture spatial correlations and circular convolution for
spectral correlations, which may not be adequately flexible
to capture all forms of correlations. This unyielding HSI
representation often results in suboptimal denoising perfor-
mance. The flexible handling of each mode is predicted to
compensate for this inadequacy.

These methods use the inter-band correlation present
in the HSI to decrease spatial-spectral redundancy. How-
ever, the direct application of tensor-based representations
to complete HSI data limits the investigation of non-local
self-correlation priors [29]. Recently, it was shown that
non-local methods achieve the best results in denoising
HSIs [28], [29], [30], [32]. Similar to the regularised model
for whole HSI denoising, the following optimisation formula-
tion can be employed to maximise a non-local HSI denoising
model:

argmin J (X ,S,N ) + βR(Xi) (4)

The crucial issue, similar to model (3), is to explore the
preceding knowledge of Xi and design relevant regularisa-
tions for the optimised model (4). The global correlation
can be explored through patch clustering based on similar-
ity both in spectral and non-local patterns. To investigate
these correlations, numerous denoising methods consider
the spatial-spectral NSS before HSIs, i.e. considering sim-
ilar three-dimensional cubes instead of two-dimensional
image patches as the fundamental entity for denoising,
including BM4D [34], MSPCA-BM3D [35], methods based
on non-local TDL [28], and methods based on ITS
regularisation [29].

III. PROPOSED NON-LOCAL 3DLOGTNN
DECOMPOSITION FOR HSI DENOISING
Despite the satisfactory results attained by the non-local
tensor-based HSI denoising methods mentioned above, there
is still potential for further advancement. Zheng et al. sug-
gested a 3DLogTNN algorithm [26] that can process each
channel in 3D hyperspectral data while considering the spec-
tral information in the 3D data, resulting in better extraction
of both local and global information. This method is distinc-
tive for its significantly accurate and flexible low-rank scatter
representation of HSI. This approach can retain the structure
more effectively, unlike matrix low-rank-based methods that
involve unfolding operations and may not maintain the inher-
ent structure of information. In addition, compared with tubal
low-rank-based methods, it can fully and directly leverage
both spatial and spectral correlations, improving denoising
performance.
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A. 3DLOGTNN DECOMPOSITION
The uniqueness of the 3DLogTNN model lies in its exten-
sion of t-SVD to modal kt-SVD, introducing a new tensor
rank named tensor-fibered rank and improving a more adapt-
able and accurate representation of the HSI. It also uses
a new regularisation term called the three-dimensional ten-
sor nuclear norm that can make the most of the structural
characteristics of high-dimensional spectral images and offer
useful constraints for decomposing both low-rank and sparse
components.

As mentioned earlier, the t-SVD method has drawbacks
when it comes to handling different correlations in various
dimensions of HSIs, resulting in an incomplete representa-
tion of the spectral modes. To overcome this drawback, the
3DLogTNNmethod proposes a mode-k-tensor singular value
decomposition (mode-kt-SVD) approach.
Theorem 1 (Mode-k t-SVD): A three-dimensional tensor

X ∈ Rn1×n2×n3 can be decomposed into a multilinear fac-
torization form as follows:

X = Uk∗kSk∗kVTkk
where UK and VK denote the mode-k orthogonal tensors and
SK ∈ Rn1×n2×n3 denotes the mode-k diagonal tensor.

Considering the different observation degradations due to
diverse noise reduction techniques. In this study, the HSI
denoising method introduced using the prior assumption of
a low fibre rank can be mathematically expressed as follows:

min
X ,N ,S

rankf (X ) + λ1||N ||
2
F + λ2||S||1

Y = X +N + S (5)

where X ∈ Rn1×n2×n3 denotes the fundamental HIS, Y
denotes the noisy hyperspectral image, N represents the
Gaussian noise, S denotes the sparse noise,and λ1 and λ2
denote the regularisation parameters.

We define the following definition of tensor-fibered rank,
combining the fibre rank of all modes k. However, the tensor
tubal rank represents the fibre rank of the third axis of a tensor.
Definition 1 (Tensor Fibered Rank): The fibered rank of

a three-dimensional tensor X ∈ Rn1×n2×n3 , is given by a
vector, denoted as rankf (X ), where the kth element represents
the mode-k tensor-fibered rank.

Because directly minimising the proposed fibered rank
is NP-hard, the 3DLogTNN is introduced as a non-convex
variant of the proposed fibered rank relaxation to provide a
suitable computational approach.
Definition 2 (Mode-k LogTNN): The tensor nuclear norm

based on the mode-k logarithm of a tensor X ∈ Rn1×n2×n3 is
defined as:

LogTNNk (X , ε) :=

nk∑
i=1

LogMNN ((
__
Xk )

(i)
k , ε)

where (
__
Xk )

(i)
k denotes the i th mode-k slice of

__
Xk with

__
Xk =

fft(X , [], k) and LogMNN (X , ε) :=

m∑
i=1

Log(σi(X ) + ε).

Definition 3 (3DLogTNN): The 3DLogTNN of a tensor
X ∈ Rn1×n2×n3 is defined as:

3DLogTNN (X , ε) :=

3∑
k=1

ωkLogTNNk (X , ε)

where ωk ⩾ 0(k = 1, 2, 3) and
3∑

k=1
ωk = 1.

Under the definition of 3DLogTNN, the proposed HSI
denoising model based on 3DLogTNN is typically formu-
lated as:

min
X ,N ,S

3∑
k=1

ωkRk (X ) + λ1||N ||
2
F + λ2||S||1

s.t.Y = X +N + S (6)

where the functionRk (X ) is set to be LogTNNk (X , ε) in the
3DLogTNN-based HSI denoising model, respectively.

B. NON-LOCAL 3DLOGTNN DECOMPOSITION MODEL
The definition and characteristics of 3DLogTNN factori-
sation show numerous advantages compared with alterna-
tive tensor factorisation techniques. First, the 3DLogTNN
algorithm is a tensor decomposition-based method that can
handle three-dimensional hyperspectral data more flexibly
while maintaining a certain degree of low rankness. However,
when processing hyperspectral data, other tensor decomposi-
tion methods may excessively compress or stretch specific
directions of the data, which results in the underutilisa-
tion of data features. Second, the 3DLogTNN algorithm
can process each channel in three-dimensional hyperspectral
data while considering the spectral information in the data,
improving global feature extraction. Other tensor decompo-
sition methods can only handle one channel in hyperspectral
data and cannot fully consider spectral information in three-
dimensional data. Third, when processing hyperspectral data,
the 3DLogTNN algorithm is more robust and generalisable
because of the use of low-rank regularisation that reduces
noise. Compared with other tensor decomposition methods,
the 3DLogTNN algorithm is more sensitive to noise and can
better handle hyperspectral data with strong noise.

Based on the benefits of 3DLogTNN decomposition,
we propose a high-dimensional method for eliminatingmixed
noise named NL3DLogTNN, which considers both global
spectral low rankness and spectral association, and captures
non-local self-resemblance. To capture the overall spectral
concordance, we specifically use the 3DLogTNN model to
match the groups of similar image blocks in high-dimensional
space using a non-local framework. Therefore, the proposed
method can be characterised as:

min
Xi,Ni,Si

3∑
k=1

ωkRk (Xi) + λ1||Ni||
2
F + λ2||Si||1

s.t.Yi = Xi +Ni + Si (7)

The proposed method composes three components:
exploiting low-fibered-rank tensor decomposition to represent
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FIGURE 2. Framework of the proposed HSI denoising method.

topographical non-local self-resemblance and high correla-
tion among feature images, incorporating F-norm to account
for Gaussian noise, and employing the norm term to handle
sparse noise.

The NL3DLogTNN method consists of four main steps:
1) For each local block, use KNN to search for its similar

blocks;
2) Perform an unfolding operation to combine identical

blocks from the same cluster into a three-dimensional tensor
Xi;

3) Perform low-rank tensor decomposition in three direc-
tions for denoising, obtaining Yi;

4) Perform a fold inverse operation to restore it to the
original local tensor block.

This method involves unfolding and stack operations. Let
X ∈ Rs×s×b denote the 3-D patches of I, where s denotes
the spatial size of the 3-D patch and b denotes the spectral
dimension. The fold operation unfolds each 3-D patch into a
2-D matrix of size s2 × b, whereas the stack operation stacks
the 2-Dmatrices obtained by unfolding the 3-D patches in the
same similarity cluster along the third dimension to recon-
struct a s2 × b × k three-dimensional tensor. Please refer to
the flowchart for a better understanding of these operations.

The Integration of the 3DLogTNN algorithm and non-
local self-resemblance led to a substantial improvement in the
denoising performance of the proposed methodology. Non-
local self-resemblance allows the extraction of texture and
structural information from the image, further reducing the
impact of noise. Simultaneously, in the process of low-rank
tensor decomposition of the 3DLogTNN, using NSS can
also improve the effectiveness of low-rank factorisation and
capture both local and global features more efficiently. Com-
pared to combining other tensor decomposition methods
with non-local self-resemblance, combining the 3DLogTNN
algorithm with NSS has higher flexibility, better denoising
performance, and robustness, and can handle hyperspectral
image data better.

C. OPTIMIZATION METHOD AND CONVERGENCE
ANALYSIS
Model (7) is solved using the ADMM, which involves intro-
ducing three additional variables Ik (k = 1, 2, 3) to transform
the model into an equivalent form. Thus, the problem can be
reformulated as:

min
Xi,Ni,Si

3∑
k=1

ωkRk (Xi) + λ1||Ni||
2
F + λ2||Si||1

s.t.

{
Yi − (Xi +Ni + Si) = 0
Xi − Ik = 0, k = 1, 2, 3

(8)

The augmented Lagrangian function of (8) is

Lαk,β (Ik ,Xi,Ni,Si,Mk ,V)

=

3∑
k=1

{
ωkRk (IK ) + ⟨Xi − IK ,Mk ⟩ +

αk

2
||Xi − IK ||

2
F

}
+ λ1||Ni||

2
F + λ2||Si||1 + ⟨Yi − (Xi +Ni + Si),V ⟩

+
β

2
||Yi − (Xi +Ni + Si)||2F (9)

whereMk (k = 1, 2, 3) and V represent the Lagrange mul-
tipliers; αk (k = 1, 2, 3) and β represent the penalty param-
eters. Within the framework of ADMM, Ik ,Xi,Ni,Si,Mk ,

and V are alternately updated as:

I t+1
k = argminEkLαk ,β (Ik ,Xit ,Ni

t ,Sit ,Mt
k ,V t )

Xit+1
= argminXiLαk ,β (I

t+1
k ,Xi,Ni

t ,Sit ,Mt
k ,V t )

Ni
t+1

= argminNiLαk ,β (I
t+1
k ,Xit+1,Ni,Sit ,Mt

k ,V t )
Sit+1

= argminSiLαk ,β (I
t+1
k ,Xit+1,Ni

t+1,Si,Mt
k ,V t )

Mt+1
k = Mt

k + αk (Xit+1
− I t+1

k )
V t+1

= V t + β(Yi − Xit+1
−Ni

t+1
− Sit+1)

(10)

We introduce two theorems to further solve (10):
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Theorem 2 (Mode-k TNN-Based t-SVT): Assuming that
I ∈ Rn1×n2×n3 is a three-way tensor, a minimizer to

argmin
I

τ ||I||TNNk +
1
2
||I − Y||

2
F

is represented using mode-k tensor nuclear norm-based
tensor singular value thresholding (TNN-based t-SVT).

I = Dτ
tnn(Y, k) := U∗kSτ∗k

tnnVTk

Theorem 3 (Mode-k LogTNN-Based t-SVT): Suppose that
is a three-way tensor. Then, a solution that minimizes the
following expression is sought:

argmin
Z

τLogTNNk (Z, ε) +
1
2
||Z − Y||

2
F

is obtained by employing the mode-k LogTNN-based ten-
sor singular value thresholding (t-SVT) method.

I = Dτ,ε
1t (Y, k) := U∗kS1tτ,ε∗k V

Tk

We can use Theorems 2 and 3 to solve the Ik (k =

1, 2, 3) subproblems in the proposed HSI method based on
NL3DLogTNN, which can be expressed as

I t+1
k = D

ωk
αk

,ε

1t (Xit +
Mt

k

αk
, k) (11)

Theorem 3 can easily be proven using [29] (Th. 2).
Drawing on the above solving strategy, the subproblem of

X ,N ,S is

S t+1
i = shrink

(
Yi − X t+1

i −N t+1
i +

V t
β

, λ2
β

)
X t+1
i =

3∑
k=1

αk

(
I t+1
k −

Mt
k

αk

)
+β

(
Yi−N t

i −S ti +
V t
β

)
3∑

k=1
αk+β

N t+1
i =

β
(
Yi−X t+1

i −S ti +
V t
β

)
2λ1+β

(12)

where shrink(., ζ ) is the tensor soft thresholding operator
with threshold ζ , that is,

[shrink(X , ζ )]ijs = sgn(xijs) max(|xijs| − ζ, 0). (13)

Algorithm 1 summarises the entire HSI denoising process.
Based on the optimisation algorithm framework in refer-
ence [34], this algorithm can optimise the objective function’s
point during convergence. The proposed approach is antic-
ipated to achieve a crucial stage of the objective function
during convergence.

D. COMPUTATIONAL COMPLEXITY
The time complexity to compute all local blocks for a noisy
tensor Y with the sizeM ×N ×C is O(MN ). For each tensor
block formed by stacking each similar cluster, denoted as Yi,
with size n1×n2×n3 (where n1 represents the block size and
n2 represents the spectral size, and n3 represents the number

Algorithm 1 NL3DLogTNN Method for HSI Denoising
Input: The noisy HSI Y, parameters α = (α1, α2, α3), P, K,
δ = 0.1.
Initialisation: Let X (0)

= Y,Y (0)
= Y.

1: for j = 1: J do
2: Calculate Y (j)

= Y (j−1)
+ δ(Y − X (j−1)).

3: for each exemplar patch Yi do
4: The grouping of non-local similar patches to form a
tensor Yi.
5: Initialise Xi(0) = 0, Ni

(0)
= 0, Si(0) = 0, Ik (0) = 0,

Mk
(0)

= 0, V (0)
= 0.

6: for t = 1: T do
7: Update Ik (t+1)via(11), k = 1, 2, 3.
8: Update Xi(t+1),Ni

(t+1),Si(t+1)via(12).
9: UpdateMk

(t+1),V (t+1)via(10).
10: end for
11: end for
12: Aggregate all Xi to achieve the denoised HSI X (j).

13: end for
Output: Denoise HIS result X (j).

of blocks included in the similar cluster), the time complexity
of tensor decomposition is:

O(n1n2n3(log(n1n2n3) +

3∑
i=1

min(ni, ni+1))).

Thus, in this study, the total time complexity of
the proposed model is O(MNO(n1n2n3(log(n1n2n3) +
3∑
i=1

min(ni, ni+1)))).

Despite the relatively high time complexity of the pro-
posed model, it exhibits good denoising performance for
mixed noise. Furthermore, since the reconstruction of each
non-local similar block is an independent task that does not
affect each other, parallel computing can be utilized to reduce
the computational time of the model. Additionally, the use of
grouping preprocessing techniques can also reduce the time
consumption in the similar block matching stage.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
We performed experimental tests on both simulated and real
data to assess the result of the proposed NL3DLogTNN
model for denoising HSI in the presence of degradation.
We assessed the validity of our proposed NL3DLogTNN
model on both simulated and real HSI datasets and compared
it with six existing denoising methods that are extensively
recognised as state-of-the-art and representative methods:
NLTR [36], LRTDTV [20], LRTDGS [18], 3DTNN [26],
3DLogTNN [26] and FGSLR1/2 [45]. To ensure optimal
denoising performance, we carefully read the papers on
each model and selected the recommended parameter com-
binations in line with the recommendations of the authors.
The patch size P = 25 and the number of similar patches
K = 200 were employed for all experiments. Section IV-C
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provides a comprehensive analysis of the parameter selection
for the NL3DLogTNN. δ was set to 0.1, and the other parame-
ters were robust and consistent with those in the 3DLogTNN.

Since the noise in HSIs is often an amalgamation of various
noise types commonly encountered in real-world scenarios,
we investigated the following five scenarios:

Case 1 (Gaussian noise): Apply zero-mean Gaussian noise
with a standard deviation randomly selected from the range
[0.1, 0.2] to all spectral bands of the hyperspectral image.

Case 2 (Gaussian noise + salt-and-pepper noise): Similar
to Case 1, Gaussian noise with the same settings was added
to all bands. Additionally, salt-and-pepper noise with a noise
ratio randomly selected from the range [0.2, 0.3] was added
to all the bands.

Case 3 Case 3 (Gaussian Noise + Salt-and-Pepper Noise +
Stripe): The process for adding Gaussian noise and salt-
and-pepper noise is identical to that in Case 2. In addition,
we added stripes at random to 40%of the images. The number
of stripes inserted in every selected region was randomly
selected from the set [15, 6, 7,. . . ]. In particular, if a column
was selected for stripe addition, all entries in the column were
assigned a value randomly selected from the range [0.6, 0.8].

Case 4 (Gaussian Noise + Salt-and-Pepper Noise +Dead-
line): The procedure for adding Gaussian noise and salt-and-
pepper noise is similar to that in Case 2. Furthermore, 20%
of the total bands were randomly selected, and stripes of a
randomly selected width were added from the set [1], [2], [3].
The number of stripes in each selected band was randomly
chosen from the set [10, 6, 7,. . . ]. If a column is selected for
the introduction of stripes, all the elements in that column are
set to zero.

Case 5 (GaussianNoise + Salt-and-Pepper Noise + Stripe +
Deadline): The addition of Gaussian noise and salt-and-
pepper noise is similar to that in Case 2. Additionally,
in cases 3 and 4 the same procedure for the introduction of
stripes and dead pixels is involved.

A. MIXED NOISE REMOVAL ON SIMULATED DATA
In this section, we evaluate the validity of contrastive
denoising models using three extensively employed hyper-
spectral imaging datasets: Pavia City Center, Washington
DC Mall and CAVE. We conducted an evaluation of var-
ious models’ denoising performance on subsets of three
datasets. Specifically, we selected subsets from the City
Center and Washington DC Mall datasets, with dimensions
of 200×200×50 each. Additionally, we chose a subset from
the CAVE dataset, specifically the balloons image, to assess
the models’ performance on larger-scale data. The size of
this subset was set to 350×350×50 to provide a comprehen-
sive evaluation of the models’ capabilities in handling larger
image sizes under different noise conditions. We employ
three objective metrics, namely peak signal-to-noise ratio
(PSNR), structural similarity (SSIM), and spectral angle
mapper (SAM), to comprehensively evaluate the denoising
results. PSNR and SSIM have commonly employed metrics
for image restoration, whereas SAM is based on a spectral

evaluation. Higher PSNR and SSIM values show a better
denoising performance, whereas smaller SAM values show
better results. Furthermore, we present denoised images for
visual comparison.

1) Quantitative Comparison: Table 1 presents the quantita-
tive results for five various noise scenarios in the two datasets.
We obtained the MPSNR, MSSIM, and MSAM indicators by
calculating the central tendencies of the PSNR, SSIM, and
SAM for all bands.

Table 1 shows we gauged the performance of our proposed
NL3DLogTNN approach against six widely employed and
advanced denoising methods under different noise condi-
tions in the three datasets. The experimental results showed
that the NL3DLogTNN model performed excellently in all
the noise scenarios. In the Pavia City Center dataset, the
NL3DLogTNNmodel performed particularly well in Case 3,
Case 4, and Case 5 noise scenarios, withMPSNR andMSSIM
scores reaching the optimal level. In theWashington DCMall
dataset, the NL3DLogTNN model accomplished the highest
MPSNR score in the Case 1-5, noise scenarios, while some
MSSIM and MSAM scores were slightly below the optimal
level but were still comparable. In the Cave-Balloons dataset,
due to the pronounced low-rank prior and non-local prior
of this dataset, the NL3DLogTNN model exhibited excel-
lent denoising performance in all five noise scenarios. The
MPSNR and MSSIM scores reached the optimal level, with
only slightly lower MSAM scores in Case 4 and Case 5 sce-
narios compared to the FGSLR1/2 model of 2022. Further-
more, even though the NL3DLogTNN model’s denoising
performance did not reach the optimal level in some specific
noise scenarios, it demonstrated good denoising performance
in all types of noise scenarios and therefore outperformed
other models in comprehensive denoising performance.

Figure 3 shows the PSNR values of each band after denois-
ing under various noise conditions. The proposed model
outperformed the compared models in terms of PSNR mea-
surements for each band under various noise conditions. This
indicates that the NL3DLogTNN model exhibits superior
denoising performance across various scenarios, leading to
an overall improvement in the denoising performance.

2) Qualitative Comparison: Figures 4-6 visually demon-
strate the denoising results of each model in the Case 3 sce-
nario using the Pavia City Center dataset, Washington DC
Mall dataset, and CAVE-Balloons dataset. By zooming in on
local denoising effects, these figures provide a more intuitive
comparison of the recovery outcomes in terms of visual
perception.

In the Pavia City Center dataset, all the models com-
pared could efficiently eliminate Gaussian noise and salt-and-
pepper noise. However, NLTR, 3DTNN, and 3DLogTNN
failed to completely eliminate the stripe noise. NLTR is
a model based on a non-local prior that partially elimi-
nates stripe noise; however, some residues remain globally.
3DTNN and 3DLogTNN are built upon low-rank tensor
decomposition, which has a limited effect on stripe denois-
ing but indicates clearer local details. On the other hand,
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FIGURE 3. Quantitative comparison of seven denoising models over all spectral bands under various noise levels.

the proposed NL3DLogTNN model performs well in global
noise removal and also shows clearer local details, which
is more similar to a clean image and has better denoising
performance.

Regarding the Washington DC Mall dataset, except for
NLTR, 3DTNN, and 3DLogTNN, most of the compared
models can eliminate blended noise effectively, whereas
the three models were ineffective in removing stripe noise.
Although having slightly lower scores on some metrics com-
pared to the best model, the overall denoising performance of
the recommended NL3DLogTNN model outperformed that
of all other models. Additionally, the NL3DLogTNN model
demonstrated superior visual results in terms of preserving
the global structure and local details, highlighting its robust
stability and excellent performance.

Regarding the CAVE dataset, except for NLTR, 3DTNN,
and 3DLogTNN, most of the compared models efficiently
eliminate mixed noise, while the three models were ineffi-
cient in removing striped noise. Although having achieved
slightly lower scores on certain metrics compared to the
top-performing model, the overall denoising performance of
the recommended NL3DLogTNN model surpassed that of
all other models. Furthermore, the NL3DLogTNN model
exhibited superior visual outcomes in terms of preserving the

overall structure and intricate details, showcasing its robust
stability and outstanding performance

B. MIXED NOISE REMOVAL ON REAL DATA
The experiments described above-involved simulations to test
the efficacy of the NL3DLogTNNmethod. However, in prac-
tical situations, the noise distortion is substantially more
complicated. Thus, we chose two well-known datasets with
real noise for testing to demonstrate the NL3DLogTNN’s
ability to handle real-world HSI noise: the WHU HongHu
dataset with a size of 940×475×270 , and the HYDICE
Urban dataset with a size of 307×307×210.

oth of these datasets consist of Gaussian noise, salt-and-
pepper noise, stripe noise, and deadline noise. We selected
a subset of 50 consecutive spectral bands with severe noise
from these two datasets for experiments, with sizes of
200×200×50 and 200×200×50 , because some bands
only have a relatively small amount of real noise.

Figure 7 demonstrates that all seven compared models
effectively removed Gaussian and salt-and-pepper noise on
the WHU HongHu dataset when compared to the initial
noisy image. However, the other six models were unable to
completely eliminate stripe and deadline noise. In contrast,
the proposed NL3DLogTNNmethod successfully eliminated
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TABLE 1. Performance comparison of 7 denoising models under different noise conditions.
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FIGURE 4. Denoising results of Pavia City Center dataset under Case 3. (a) Original. (b) Noisy. (c) NLTR. (d) LRTDTV. (e) LRTDGS. (f) 3DTNN.
(g) 3DLogTNN. (h) FGSLR1/2. (i) NL3DLogTNN.

FIGURE 5. Denoising results of Pavia City Center dataset under Case 3. (a) Original. (b) Noisy. (c) NLTR. (d) LRTDTV. (e) LRTDGS. (f) 3DTNN.
(g) 3DLogTNN. (h) FGSLR1/2. (i) NL3DLogTNN.

both stripe and deadline noise within the visual scope,
exhibiting excellent performance in terms of visual quality
and detail preservation in the denoised images.

This section discusses the vertical mean profile results
obtained from different models on theWHUHongHu dataset,
as shown in Figure 8. It should be noted that all the models
considered in the comparison have effectively reduced the
noise in the original images to some extent. However, except
for FGSLR1/2 and NL3DLogTNN, other models still exhibit
residual noise in their denoised results. In this scenario, the
proposed NL3DLogTNN model stands out with remarkable
denoising performance, as the line artifacts in the plane pro-
files are almost eliminated.

Figure 9 shows the visual denoising results for the
HYDICE Urban dataset as described in this passage. It is
observed that the NLTR, LRTDTV, 3DTNN, and 3DLogTNN
models still visually preserve some stripe noise. The pro-
posed method presented in this study demonstrated superior
denoising performance and enhance visual quality compared
to the other methods. In particular, the proposed model suc-
cessfully removed all stripe residues from the visual results
and preserved more local details, indicating its effectiveness
in dealing with complex real-world noise.

Figure 10 illustrates the performance of contrastive models
on the HYDICE Urban dataset by analysing their vertical
mean profiles, as discussed in this paragraph. It is important
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FIGURE 6. Denoising results of the CAVE dataset under Case 3. (a) Original. (b) Noisy. (c) NLTR. (d) LRTDTV. (e) LRTDGS. (f) 3DTNN. (g) 3DLogTNN.
(h) FGSLR1/2. (i) NL3DLogTNN.

FIGURE 7. Denoising results on the WHU HongHu dataset. (a) Original/Noisy. (b) NLTR. (c) LRTDTV. (d) LRTDGS. (e) 3DTNN.
(f) 3DLogTNN. (g) FGSLR1 /2 . (h) NL3DLogTNN.

to note that when compared to the original noisy image, all
themodels under comparison show some level of noise reduc-
tion. However, the NLTR, 3DTNN, and 3DLogTNN models
cannot adapt to complex noise and have a large number of
residual fluctuations. On the other hand, the proposed model
exhibits substantially better denoising performance compared
to the other models, almost removing all noise fluctuations,
further confirming the effectiveness of combining non-local
priors with low-rank tensor decomposition.

C. DISCUSSION
Before running Algorithm 1 for the NL3DLogTNN model,
several parameters must be determined, including the patch

size P, the number of similar patchesK , and the parameter for
3DLogTNN. Although the model includes multiple parame-
ters, they are all highly robust and can be maintained constant
across different experiments

1) Analysis of Patch Size P: Figure 11 shows how the
MPSNR values vary with the modification of parameter P
under contrastive noise levels.

In this study, the denoising performance exhibited by the
model proposed is affected by parameter P, and the MPSNR
varies considerably with various values of P. Figure 9 shows
the MPSNR of the model increases gradually as P increases.
When the magnitude of P is less than the range [23], [25],
the model achieves its best denoising performance when the
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FIGURE 8. The horizontal mean profiles of the WHU HongHu dataset. (a) Original/Noisy. (b) NLTR. (c) LRTDTV. (d) LRTDGS. (e) 3DTNN. (f) 3DLogTNN.
(g) FGSLR881/2. (h) NL3DLogTNN.

FIGURE 9. The denoising results of the HYDICE Urban dataset. (a) Original/Noisy. (b)NLTR. (c)LRTDTV. (d)LRTDGS. (e)3DTNN.
(f)3DLogTNN. (g) FGSLR1/2. (h)NL3DLogTNN.

magnitude of P lies within the interval [23], [25]. However,
the model performance began to decline when the numerical
parameter P exceeded 25. In this study, considering both the
denoising effect and computational cost, P was set to 24 in all
experiments.

2) Analysis of the Number of Similar Patches K : Figure 12
shows the correlation between the MPSNR and the number
of similar patches K. When the number of non-local similar
patches is 200, NL3DLogTNN obtains the highest MPSNR
value. Thus, in all the experiments, we set K according to this
experience.

3) Analysis of parameter αk for 3DLogTNN: We exam-
ined the stability of the weight parameter in the 3DLogTNN
component of the proposed NL3DLogTNN model for Wash-
ington DC Mall and Pavia City Center HSIs in various
scenarios.

The weight parameter in the proposed NL3DLogTNN
method was used to regulate the correlation weights of the
individual HSI modes.

According to 3DLogTNN research, the correlation along
the spectral mode in the HSI is predicted to be significantly
more robust than that along the spatial mode. Furthermore,
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FIGURE 10. The vertical mean profiles of the HYDICE Urban dataset. (a) Original/Noisy. (b) NLTR. (c) LRTDTV. (d) LRTDGS. (e) 3DTNN. (f) 3DLogTNN.
(g) FGSLR1/2. (h)NL3DLogTNN.

FIGURE 11. Variation of MPSNR values with parameter P at different noise levels.

since KNN is employed in this study for clustering similar
patches, the correlation along the third dimension is equal
to or stronger than that along the spectral dimension. Thus,
we empirically set the weight control parameter θ2 of the

spectral dimension to 1, and select the weight control param-
eter θ1 of the similar patch dimension from the range [1,4]
and the control parameter θ3 of the spatial correlation strength
from the range [1,0]. We use the MPSNR denoising results
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FIGURE 12. The relationship between 3DLogTNN parameters and MPSNR values under various noise levels. (a) Case 1 (b)Case 2 (c) Case 3 (d) Case 4
(e) case5.

as a function of the parameters θ1 and θ3, and compute
the weight parameter α through (θ1, θ2, θ3)/(θ1 + θ2 + θ3).
Figure 12 shows the change of θ1 is more significant as
the noise level increases. When the mixed noise level is
highest (i.e. Case 5), θ1 takes the minimum value because

the spatial dimension correlation is the smallest. At the same
time, we notice that the variation of θ3 is relatively stable
with the increase in noise level, showing its good robustness
and adaptability to noise. Thus, without loss of generality,
we simulated and performed experiments on real data with
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TABLE 2. Parameters setting in the proposed NL3DLogTNN-BASED HSI denoising methods for simulated data.

FIGURE 13. Convergence analysis experimental figure.

various values of θ1 and θ3 for different noise levels. The
values of θ1 and θ3 used in the experiments are described as
Table 2.

4) Convergence Analysis: First, the NL3DLogTNN
algorithm’s optimisation objective function demonstrates
convexity, which ensures mathematical algorithmic con-
vergence. Additionally, we computed the relative change
indicator RelCha to measure the relative change in tensor
information between two iterations. Figure 13 shows the
RelCha changes of the proposed model for various iteration
numbers under the Case 2 scenarios of the Pavia City Mall
and Washington DC Mall datasets.

Figure 13 shows that RelCha decreases rapidly in the early
stages and gradually reaches stability after three iterations.
Therefore, it is feasible to conclude that the NL3DLogTNN
model presented in this study demonstrates a rapid conver-
gence within the ADMM framework.

V. CONCLUSION
This study presents a novel method for denoising HSI called
NL3DLogTNN that makes use of 3DLogTNN decomposi-
tion to exploit the self-similarity and spectral coherence of

hyperspectral imagery. To address the proposed NL3DLog
TNN decomposition model for HSI denoising, an algorithm
based on ADMM was developed. Empirical convergence
analysis was also conducted. Comparative experiments
were conducted using various state-of-the-art HSI denois-
ing methods on simulated and real datasets, and the results
demonstrated the superior denoising performance of the
NL3DLogTNN method. Future research may extend the
3DLogTNN denoising platform to other image-processing
endeavours. Although the proposed model’s noise removal
capability is promising, there is still potential for improving
the model’s performance. Our future study will focus on inte-
grating the NL3DLogTNN model with convolutional neural
networks to improve the model’s capacity to remove mixed
noise, while also decreasing its computational complexity by
learning more suitable factor regularisation.
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