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ABSTRACT This paper proposes a novel data augmentation scheme called the conditional generative
adversarial network minority-class-augmented oversampling scheme (CTGAN-MOS) for solving class
imbalance problems. Our methodology encompassed six key steps: data engineering using sophisticated
pre-processing techniques, identifying the type of vulnerabilities present in the data, curating good quality
synthetic data using the CTGAN model, the intelligent fusion of real and synthetic data, noise removal
from the augmented data using coin-throwing algorithm, and building classifiers with the high-quality
augmented data. Our scheme maintains higher structural similarity (data truthfulness) between the original
and the resampled data by intelligently adding high-quality samples only to the minority class, whereas
some augmentation techniques add records to the majority class, leading to poor-quality resampled data. Our
scheme removes noisy samples from the data, which has remained unexplored in the CTGAN-based data
augmentation. Furthermore, it augments data by adding fewer records compared to existing schemes, while
offering comparable performance. Experiments are conducted on benchmark datasets to prove the feasibility
of the proposed CTGAN-MOS in realistic scenarios. Results prove the improvement by CTGAN-MOS
over existing state-of-the-art (SOTA) techniques in terms of accuracy, recall, precision, F1 score, and
G-mean score. Specifically, the CTGAN-MOS has yielded accuracy values of 100% and 99.83% on two
datasets which are higher than recent SOTA techniques. On average, it has yielded the 22.58% and 29.47%
improvements w.r.t. G-mean score on two different datasets. On average, it adds 8.26% and 26.01% fewer
records than the existing SOTA methods in the two datasets. Lastly, our scheme yields highly balanced
confusion matrices compared to recent SOTA data augmentation techniques.

INDEX TERMS Imbalanced problem, data augmentation, machine learning, classifiers, noise, majority
class, minority class, model training, samples, intelligent fusion, data truthfulness, data engineering.

I. INTRODUCTION
Machine learning (ML) models have contributed to seam-
lessly solving many real-world problems in medical diag-
noses [1], fault detection in machines [2], credit card
fraud [3], survival predictions [4], pattern recognition [5],
event classification [6], and thermal image analysis [7],
to name just a few. During the COVID-19 pandemic,
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ML models have played a significant role in the detec-
tion of infection, prediction of outbreaks, severity analysis,
etc. [8]. In most of these ML applications, two elements
are vital: the code of the ML model and the data. The
code has vastly improved from multiple perspectives, but
data quality and availability are still the main barriers to the
development and adoption of ML models at a scale suitable
for many real-world applications. In most ML applications,
classifiers are mainly used to separate instances into one
of two groups (yes/no, faulty/non-faulty, fraudulent/normal,
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normal/abnormal, etc.), which therefore creates a binary clas-
sification problem. In such a problem, one class might have
more samples than the other. The class with the higher num-
ber of samples is the majority class, and the class with the
least samples is the minority class. The classifiers trained on
such skewed data only learn information well enough from
the majority class, and the minority class remains unlearned.
Consequently, ML classifiers can only correctly predict the
majority class, and theminority class cannot be predicted (not
even a single sample in some cases) [9]. The performance
of ML models when using unbalanced data with signifi-
cant skews in the class distribution is called an imbalanced
learning problem. A remedy for this problem is imperative
because ML models are increasingly used in many safety-
critical applications.

Despite the recent proliferation of data curation and avail-
ability tools, small-sized and poor-quality datasets are com-
mon in the ML domain, leading to imbalanced learning in
the classifiers. As stated earlier, a remedy for this problem
is vital to prevent negative consequences for society. For
example, poorly learned classifiers for cancer detection can
incorrectly identify unhealthy patients as healthy (and vice
versa), leading to a wide range of negative consequences.
Similarly, a classifier that was developed on poor-quality
data for COVID-19 detection may misclassify an uninfected
person, leading to social stigma or financial loss. Hence,
it is necessary to develop reliable ML models for real-life
scenarios involving high risk, particularly from binary prob-
lems [10]. Data augmentation techniques (DATs) are most
widely used to address imbalances in real-world datasets.
To date, manyDATs have been proposed to increase data size,
to balance class distributions, and to improve the generaliza-
tion of ML models [11], [12], [13]. Most DATs are based on
one of two approaches.

1) Improving the distribution of the minority class by
resampling the data (e.g., getting more samples by
utilizing information from the available samples).

2) Improving the distribution of the minority or majority
class by curating synthetic data that mimic the prop-
erties of the real data by using generative AI models
(e.g., generative adversarial networks and statistical
methods).

In the first approach, there is the possibility of losing sta-
tistical information from either the majority or minority class,
and the classifier might yield unsatisfactory performance
when data are sparse (or cannot easily be separated) [10].
In the latter approach, it is hard to identify a sufficient
amount of data, and the fusion of synthetic and real data is
tricky. Furthermore, synthetic data generation is challeng-
ing when real data are of poor quality and most attributes
have skewed distributions. Although both approaches assist
in improving data size, there are few standardized data aug-
mentation processes that can be applied to most applica-
tions using tabular data. Furthermore, it is hard to produce
synthetic data with enough diversity to compensate for a
deficiency of samples in the original data [14]. Therefore,

this study develops a practical data augmentation scheme
that explores the problems in the original data and fixes
them (e.g., size, distribution, fusion), providing better perfor-
mance than state-of-the-art (SOTA) DATs in a tabular data
environment. The major contributions of this work are as
follows.
• We explore major performance bottlenecks
(induction of noise in training data, lower accuracy,
imbalanced confusion matrices, and unnecessary record
addition) in the existing DATs when used to supplement
ML classifiers. We identify opportunities to develop
a new conditional generative adversarial network-
based minority-class-augmented oversampling scheme
(CTGAN-MOS), which effectively resolves the perfor-
mance bottlenecks of existing DATs, and yields better
performance.

• The proposed CTGAN-MOS identifies data-quality
problems in training data, and fixes them by using
sophisticated data engineering techniques, leading to
higher generalization, superior accuracy, and balanced
learning in ML classifiers, compared to previous DATs.

• The proposed CTGAN-MOS curates more data of good
quality by using a CTGAN and, with fewer records,
augments only the minority class, whereas some of
the existing DATs augment both majority and minority
classes, leading to extra overhead and low accuracy [15].

• The proposed scheme removes noisy samples from
the data by using a coin-throwing algorithm, which
has remained unexplored in CTGAN-based data
augmentation.

• To the best of our knowledge, this is the first scheme that
adds fewer synthetic records to the data but still yields
accuracy that is close to optimal (∼100%).

Experiments were performed on poor-quality datasets
to prove the effectiveness of the CTGAN-MOS. Exper-
iment analysis based on six evaluation metrics indicates
better performance from the CTGAN-MOS than from its
counterparts.

The rest of this paper is organized as follows. Section II
presents the background and a survey of the literature con-
cerning DATs, and then analyzes data augmentation tech-
niques. Section III presents the preliminaries and formulates
the problem to be solved. Section IV explains the pro-
posed CTGAN-MOS and highlights its key components.
Section V presents the results obtained from experimentation
on real-life datasets and offers comparisons with the existing
SOTA DATs. Section VI summarizes the important findings
of this work and explains other aspects related to this work.
We conclude the paper in Section VII, and list directions for
our future work.

II. BACKGROUND AND LITERATURE SURVEY
In this section, we present background information and
related studies that have addressed the imbalanced learning
problem.
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A. CLASS IMBALANCE PROBLEM AND ITS REMEDY
The class imbalance problem can be perceived as a causal
effect when one class distribution is highly skewed in one
direction and the ML classifier is unable to correctly learn
information (a.k.a. hidden patterns) in the minority class,
resulting in a deficient performance with examples of the
minority class [16]. Specifically, in some cases, the rep-
resentation of one class in the data is so high that the
classifier only learns the maximal information on this class
and ignores others. In real-world datasets, class imbalance
emerges due to flaws in the data collection process. For
example, a researcher or domain expert can be interested
in collecting data from only unhealthy persons rather than
healthy ones to validate/verify some hypothesis. Similarly,
an algorithm employed to collect data frommachines in oper-
ation can collect them at regular intervals, but the machinery
encounters faults only on some occasions. Hence, the data
representation for non-faulty parts can be significantly higher
than for faulty parts. Furthermore, in some cases, data collec-
tion for multiple classes is not possible owing to restrictions
or privacy concerns. In some cases, the feature values of two
classes can be identical, and it is hard to separate them with
a clear boundary, so the ML classifier perceives them as one
class. An example of a class imbalance problem is given in
Fig. 1(a), where the round black data points belong to the
majority class, and the square red data points are from the
minority class.

FIGURE 1. Overview of the class imbalance problem and its potential
solutions.

The imbalance in the data can be determined using the
imbalance ratio (IR) and Fischer’s ratio (FR), as expressed
in Eqs. 1 and 2, respectively:

IR =
#neg
#pos

=
|majority class|
|minority class|

(1)

where #pos denotes the # of samples in the minority class,
and #neg represents the # of samples in the majority class (a
high value for IR indicates a higher imbalance in the data)
and

FR = MAX (f ), where f =
(µci − µcj )

2

σ 2
ci + σ 2

cj

(2)

where µci and µcj denote the mean values of features that
belong to ci and cj, respectively, with σ 2

ci and σ 2
cj representing

variances of features in those classes. A higher value for FR
indicates better separability of the two classes.

To balance the class distribution, four mainstreammethods
are used, as shown in Fig. 1(b). These methods address
the imbalance problem by tuning either the data or the ML
model. In the data-level methods, the distribution of classes
is balanced by either deleting some samples from themajority
class or adding new samples to the minority class. Deleting
samples from the majority class is called undersampling,
and inserting more records to the minority class is over-
sampling. A conceptual overview of the data-level methods
used to balance the distribution of classes is shown in Fig. 2.
In undersampling methods, there is a risk of losing statistical
information and reducing the data size. In contrast, over-
sampling methods may introduce noise into the data, and
the learning ability of the ML classifiers can be impacted.
In some cases, both methods can be used jointly to solve
the class imbalance problem [17]. Both methods have been
rigorously upgraded to improve the learning ability and gen-
eralization of the classifiers.

FIGURE 2. Overview of data-level techniques used to balance data in ML.

In algorithm-levelmethods, the workflow of theMLmodel
is modified to address the imbalance problem. For example,
support vector machine (SVM) hyperplanes can be guided
with bias term b to separate two classes with a maximummar-
gin. Similarly, penalty constants can be introduced for each
class, andmisclassifyingminority class instances can bemore
expensive than misclassifying the majority class. In some
cases, objective functions of MLmodels are designed in such
a way that regions located close to the decision boundary are
givenmore attention than other regions to prevent misclassifi-
cation [18]. In addition, identifying hyperparameters that can
distinguish majority and minority classes (e.g., kernel size)
constitutes an algorithm-level method for an ML model.

In cost-sensitivemethods, the total cost ofmisclassification
is minimized by incorporating both of the previous methods
(data-level and algorithm-level). Specifically, cost-sensitive
methods assign a higher cost to the minority class than the
majority class to prevent negative consequences [19]. In these
methods, it is necessary to correctly recognize positive sam-
ples/instances, rather than negative instances. For example,
a distinct cost depending upon the outcome can be assigned
to classifiers during learning in the medical domain—the
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cost of misclassifying a patient as noncancerous requires
more tests. In contrast, the cost of misclassifying cancerous
patients (from the diagnosis point of view) can be fatal if
they are classified as healthy. In practice, themisclassification
cost of positive samples is higher than for negative sam-
ples: c(+,−) > c(−,+). These methods have been widely
used in diverse domains to address imbalanced learning
problems [20].

In ensamble methods, multiple ML classifiers/regressors
are trained to improve accuracy from imbalanced learning
problems [21]. The ensemble approach is more stable and
reliable than the single-classifier approach. In these meth-
ods, multiple classifiers are employed to boost accuracy by
combining the results of classifiers. In some cases, multiple
classifiers are used to identify the best ML model for the
given problem/task. In other cases, the code of base learners is
modified to yield superior results involving imbalanced data.

All of the above-cited methods help in addressing the
imbalanced learning problem in ML classifiers. This work
amalgamates data and the ensemble method to resolve the
imbalanced learning problem in real-world scenarios.

B. ANALYSIS OF DATA AUGMENTATION TECHNIQUES
Thus far, many DATs have been developed to address the
imbalance problem in different applications, such as medical
diagnosis, email classification, prediction of breast cancer,
etc. The existing techniques aim to address the following data
complexity factors to enhance ML model performance [22].

• Reduce the overlap between different classes.
• Address N1 complexity in the datasets.
• Avoid imbalance in the majority and minority class
samples.

• Reduce noise by removing less important samples.
• Ensure a variable spread in a chunk of the class from the
dataset.

• Apply a non-linear boundary among classes.

The two most widely used data-level techniques to address
the imbalance problem are oversampling and undersampling.
Undersampling techniques downsize the majority class and
can have limited applicability in real-world scenarios owing
to the small amount of data [23]. In contrast, oversampling
techniques upsize the minority class by adding more samples,
and have been widely used to balance class distributions in a
dataset. There is less risk from using oversampling techniques
than from undersampling techniques in terms of information
loss and data overfitting [24]. The oversampling techniques
pay attention to minority classes and balance the distribution
by adding more records, leading to better performance of
classifiers, regardless of data size [25], [26].
Before the inception of the synthetic minority oversam-

pling technique (SMOTE), the balancing of classes was
usually performed randomly, leading to overfitting issues
in most cases [27]. However, with noisy data, SMOTE has
shown better results than random sampling techniques in
terms of robustness. SMOTE generates new data points by

utilizing the k-nearest neighbor concept and information
from minority data points. The formalization of SMOTE is
in Eq. 3:

pnew = pi + (pl − pi)× w (3)

where pnew is the new synthetic data point, pi is a data point
from the minority class, pl is the k-nearest neighbor of pi, and
w is a random random where w ∈ [0, 1].
By adding new synthetic data points, the class imbalance

problem can be resolved effectively, and information loss can
be restrained. The newly generated data points are well sep-
arated, and therefore, the possibility of noisy data generation
is low, leading to better performance in most cases. Despite
the many SMOTE benefits, it is prone to technical challenges
owing to higher variations in real-world datasets, and there-
fore, SMOTE has undergone extensive improvements since
its inception.

Douzas and Bacao [28] proposed an enhancement to the
conventional SMOTE to generate data points of high quality,
leading to better performance. Their proposed G-SMOTE
can prevent class overlap and redundant data point gen-
eration. Camacho et al. [29] extended G-SMOTE to regres-
sion tasks, and improved the data generation methodology
using a geometric region concept rather than line segments.
Moutaouakil et al. [30] developed OEGFCM-SMOTE to
reduce noise while balancing the data using optimization
techniques. Their version of SMOTE performs a series
of steps, including grouping, filtering, and interpolation,
to reduce noise in the data. Zhang et al. [31] developed an
improved variant of SMOTE called SMOTE-RkNN . Their
method identifies and removes noisy samples by extract-
ing the probability density information of each data point
using RkNN . Zhang and colleagues [32] developed a SMOTE
variant called IW-SMOTE that is more universal and robust
compared to the original SMOTE. That technique extracts
location information (safe, borderline, noise, etc.) of each
data point and filters noisy data points.

Liu [33] developed SMOTE-RD to smooth the decision
boundary in imbalanced classification problems. The method
has three advantages (noise reduction, fewer parameters,
and generation of additional points in sparse regions as
well as close-to-class boundaries). Xie et al. [34] developed
IH-MGD-SMOTE to generate additional data points that
strictly follow the distribution of the original minority class
instances, leading to better performance than many exist-
ing oversamplers. Zhai et al. [35] developed two SMOTE
algorithms named BIDC1 and BIDC2 that are based on
ELMAE andGAN. The proposedmethods increase the diver-
sity in newly generated data to improve the performance
of classifiers. Li et al. [36] developed SP-SMOTE to deal
with imbalanced classification problems by using density and
space partitioning techniques. Sharma et al. [37] developed
SMOTified-GAN to solve the imbalance problem by amalga-
mating a GANwith SMOTE. The proposed approach showed
improvements of 9% over SOTA methods. Dou et al. [38]
developed a new SMOTE technique called NSS-SMOTE
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TABLE 1. Summary and comparisons of the recently developed state-of-the-art data augmentation schemes for solving class imbalanced problems.

to deal with imbalanced problems involving incomplete
datasets. The proposed technique is applied to poor-quality
datasets and is effective at reducing noise in newly curated
data. Further information about SMOTE and its latest variants
can be obtained from recent surveys [39], [40].

Apart from the variants cited above, other recent and SOTA
SMOTE techniques are random oversampling (ROS) [41],
FW-SMOTE [42], k-means SMOTE [43], Fair-SMOTE [44],
and CTGANSamp SMOTE [15]. The concrete analysis of
recently developed SOTA augmentation techniques is given
in Table 1. We contrast existing schemes based on six fea-
tures (e.g., advantages, disadvantages, the method used, #
of records added at the augmentation time, noise removal
applied, and whether CTGAN was used to curate synthetic
data) to visualize their relationship and differences. From
the analysis given in Table 1, it can be observed that most
techniques have not explored ways to reduce # of records to
be added to the data while improving accuracy. Furthermore,
the noise removal mechanism has not been applied to the
CTGAN-based data thus far. Lastly, most existing techniques
have applied fewer evaluation metrics than CTGAN-MOS
while evaluating the performance. The ROS technique ran-
domly adds more data points in the minority class by fol-
lowing either uniform or normal distributions. FW-SMOTE
curates more samples in high-dimensional settings by using
weighted Minkowski distance rather than Euclidian distance,
and the resulting data points are more relevant for classi-
fication purposes. The k-means SMOTE variant uses the
k-means algorithm to divide data into various clusters, and
then balances the distribution ofminority andmajority classes
in each cluster. Fair-SMOTEbalances the distributions of data
internally in such a way that the total number of samples
is equal in both classes w.r.t. the target class. CTGANSamp
SMOTE curates more data using the CTGAN model, and
adds some new data points in both majority and minor-
ity classes. We affirm the contributions of the above-cited
SMOTE variants, but there are four technical problems with
the above-cited DATs.

• Some DATs add new records to both majority and
minority classes, leading to loss of truthfulness and
failure to handle the imbalanced problem in a fine-
grained manner, particularly when the data size is
large [15].

• Most DATs tend to add more records to the minority
class without identifying a suitable region, leading to
excessive noise in the data and poor separability [16].

• Most SMOTE-based methods try to resolve the
imbalance between different classes while ignoring
within-class imbalance that can lead to lower accuracy
and over-generalization issues [16].

• Most DATs often ignore the quality of data being gen-
erated with GAN models from a diversity perspective,
which can lead to performance issues while minimally
improving the accuracy and other related metrics [35].

The proposed CTGAN-MOS resolves the above-cited prob-
lems in prior work without compromising performance.

III. PRELIMINARIES AND PROBLEM FORMULATION
A. DATA MODEL
In this work, we focus on a binary classification problem
in Rn, where Rn is n-dimensional real space. A real-world
dataset, D, encompassing input features and a corresponding
target class is the input. Mathematically, D = {(xi, yi)|i =
1 ∼ n}, where xi ∈ Rn denotes the input, and yi ∈ {c1, c2} =
{+,−} shows the output. I , where I = 1, 2, . . . , n, can be
used to denote the indices of both c1/+ and c2/− samples.
LetD be a data table with r×c dimensions, where c represents
the number of columns and r is the number of rows.D encom-
passes mixed attribute types, i.e., numerical and categorical.
Each row in D contains complete information of a sample,
r = xi∪yi, whereas a column contains one item of the sample
(e.g., age or gender). A common structure of D for a sample
of 6,000 instances is shown in Eq. 4, as shown at the bottom
of the next page.

In Eq. 4, all columns except the last are called input
features, whereas the last column is called the target class.
In this work, our focus is on the binary classification problem,
and therefore, the cardinality of the last column is 2, which
can be denoted with c1 (where c1 = Rhinitis) and c2 (where
c2 = Cancer). If |c1| > |c2|, then c1 is regarded as the
majority class, denoted cM . The minority class is denoted cm.
Ideally, |cM | == |cm| is preferred to ensure balanced learning
in the classifiers.

B. PROBLEM FORMULATION
Let y = ci ∪ cj, where ci and cj represent the values of
target class y. In any real-worldD, the distribution of samples
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in both ci and cj classes can be imbalanced, meaning that
the total number of samples in ci can be greater than cj,
or vice versa. To balance the distribution of ci and cj, data-
level methodM is mostly used.M can be an oversampling
method (e.g., SMOTE) or an undersampling method to alter
the number of samples in either ci or cj to yield a balanced y.
Afterward, a classifier, K, such as a random forest, an SVM,
a decision tree, or a neural network, can be trained on a
balanced subset y. However, the drawback withM is either
a reduction in data size or induction of noise in D. In recent
years, many variants of SMOTE have been developed to add
more records to an underrepresented class, to improve the
classification boundary, and/or prevent class overlap. How-
ever, addressing class imbalance issues in D is challenging
for multiple reasons: (a) how to generate more data of good
quality, (b) how to ensure that the distribution of values in
newly generated data and the original data are alike, (c) how
to ensure that newly generated samples only lie in a safe
region, (d) how to guarantee that only a small portion of data
can solve the class imbalance problem, (e) how to ensure
that augmented data improve multiple aspects of classifiers
(sampling quality, accuracy, learning ability, fair training,
etc.), and (f) how to ensure that data augmentation signifi-
cantly improves the results with the least possible computing
overhead. Furthermore, restraining the possibility of bias in,
and inappropriate conclusions from, the augmented D when
given as input toM is also tricky.

The chosen problem to be formulated is as follows. Given
a real-world tabular dataset, D, that includes various fea-
tures (age, gender, race, residence type, etc.) and a target
class (disease, salary, stroke occurrence, etc. ), there can be
multiple vulnerabilities in D such as an inadequate number
of records, big gaps in some sample values, inconsistent val-
ues for some features, records with missing values, outliers,
duplicate records, etc. In addition, there can be advanced vul-
nerabilities (e.g., skewed distributions of the target class that
can seriously impact the learning capability of classifiers,
and classifiers that only learn information about the majority
class). Consequently, the minority class remains unlearned
during the training process, and inference can be very low.
How do we produce a good-quality, augmented dataset D
where (a)D⊆D; (b) ∀ ci, cj ∈ D, |ci| == |cj| (i.e., IR ∼ 1),
where the distribution of classes is balanced; (c)M learns all

classes fairly by using D during training; (d) D= D+ Dnew,
and augmentation is performed with as few external records
as possible (e.g., |Dnew| is a very small amount of data, but
the distributions are accurately modeled); (e) the diversity of
newly generated data (Dnew) is reasonably high; (f) the new
records preserve truthfulness fromD; (g)D has the best qual-
ity for training classifiers and downstream tasks; and (h) D
improves multiple performance metrics (i.e., has significantly
high accuracy, recall, precision, F1, and G-mean score)?
Inmany data-driven solutions, the quality of the underlying

data is imperative for conducting analytics (drawing pictures
out of the data) as well as training classifiers. To this end, the
D produced with our scheme is expected to meet the demand
of analysts and can compensate for the deficiency of good
data in futuristic, data-hungry AI applications.

IV. THE PROPOSED CTGAN-MOS FOR SOLVING CLASS
IMBALANCE PROBLEM
In this section, we introduce our CTGAN-MOS for solv-
ing the class imbalance problem, and we describe its key
components. CTGAN-MOS addresses the performance bot-
tlenecks of ML classifiers when working with poor-quality
data. The problem of class imbalance is resolved using this
new scheme, which integrates data engineering techniques,
applying vulnerability analysis of the datasets w.r.t. distribu-
tion/sizes, curating high-quality data using a CTGAN, using
an intelligent fusion of newly curated and existing data,
removing noisy samples from augmented data, and building
classifiers with the final high-quality data. Table 2 presents
details on the notations used in our proposed scheme.

TABLE 2. Notations used in the proposed CTGAN-MOS.

Balancing the distribution of classes is necessary, because
many real-world datasets are skewed, messy, small-scale,
and/or noisy, leading to imbalanced learning from clas-

DU ,A =


xi x1 x2 x3 · · · xp = yi
x1 vx1 vx2 vx3 · · · vxp
x2 vx1 vx2 vx3 · · · vxp
· · · · · · · · · · · · · · ·

xn vx1 vx2 vx3 · · · vxp



=


xi x1 = age x2 = sex x3 = race xp = yi = disease
1 19 M White · · · Rhinitis
2 34 M Black · · · Rhinitis
· · · · · · · · · · · · · · ·

6, 000 35 F Black · · · Cancer

 (4)
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sifiers. Although some work recently used the CTGAN
for data augmentation, in those methods, augmentation is
performed on both majority and minority classes, which can
significantly increase data size without significant improve-
ment in results. In addition, the quality of newly gen-
erated data is not improved before augmentation, which
can degrade the truthfulness of the overall data. To the
best of our knowledge, the noise elimination method has
not been used with CTGAN-based augmentation meth-
ods. Can we offer a generic data augmentation solution
that is robust against noise, adds a minimal number of
records to balance distributions, and significantly enhance
the performance of classifiers? To answer that question,
we devised CTGAN-MOS, depicted in Fig. 3. The pro-
posed scheme encompasses six key steps that assist in
addressing the imbalance problem in real-world datasets.
Concise details of each step are explained in the following
subsections.

1) In the first step, data engineering techniques such
as cleaning, wrangling, and quality enhancement are
applied to remove basic problems from the data. With
the help of data engineering techniques, a clean dataset
is obtained for further processing. Technical details are
in subsection IV-A.

2) In the second step, vulnerability analysis of the original
dataset is performed to determine the type and nature
of vulnerabilities in the data. For example, in some
cases, the size of the dataset can be insufficient for
training models. Similarly, the distribution of classes in
the dataset can be skewed, which leads to imbalanced
learning. We call such problems vulnerabilities, and
devise algorithms to determine them in an automated
way. Technical details are in subsection IV-B.

3) In the third step, more data are curated to compensate
for deficiencies as well as to address the class skew-
ness problem. In this work, we leverage the CTGAN
model (a SOTA generative model for synthetic data
generation) to curate more data of superb quality for
augmentation purposes. Details on this step are in
subsection IV-C.

4) We then fuse the already available data and newly
curated data. Specifically, we increase the data size in
the minority class only and preserve data truthfulness.
Furthermore, we implement an optimization algorithm
to reduce the number of records to be included in
the data, whereas existing schemes simply balance the
number of samples in both classes, leading to a loss
in truthfulness and structural similarity. Details are in
subsection IV-D.

5) Through experiments, we found that data augmentation
using the CTGANmodel can introduce noise, meaning
some of the newly added data can lie in regions of
the majority class that can subsequently decrease the
performance of classifiers. To the best of our knowl-
edge, noise removal methods have not been integrated
with CTGAN-based augmentation. We apply a noise

FIGURE 3. Conceptual overview of CTGAN-MOS.

removal method to further improve the quality of fused
data. Details are in subsection IV-E.
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6) In the last step, classifiers are built upon the improved
data to verify the efficacy of CTGAN-MOS. We chose
the ensemble method to verify our scheme in terms of
accuracy and four other metrics. It is important to note
that any ML model can be used for testing. Details are
in subsection IV-F.

A. APPLICATION OF DATA ENGINEERING
In the initial step, essential data engineering techniques are
used to clean the data. Specifically, problems related to out-
liers, missing values, duplicate records, value consistency,
formats, etc., are resolved. The rigorous use of these tech-
niques is vital to improving data quality, particularly when
data are noisy, or the collection process is not reliable. In the
beginning, we remove outliers from the data using a low-cost
approach expressed in Algorithm 1.

Algorithm 1 Handling Outliers in D
Require: D,N
Ensure: D, where D has no outliers.
1: D← 0 ▷ initializing D as empty set.
2: xi← {x1, x2, x3, . . . xn}
3: for i = 1 to n do
4: if (xi == numeric) then
5: Maxxi ← Max ▷ Acquire feasible max. value of
xi.

6: Minxi ← Min ▷ Acquire feasible min. value of
xi.

7: for j = 1 to N do
8: vxi (j)← if (vxi > Maxxi ||vxi < Minxi )
9: vxi (j)← 0.0 ▷ Replacing outliers with 0.0.

10: vxi (j)← xi ∪ vxi (j)
11: end for
12: else if (xi == discrete) then
13: Uxi ← unique(D(xi)) ▷ Find unique values in xi.
14: ∀vxi ∈ Uxi ← f (vxi )
15: Sort f (vxi ) in ascending order.
16: σ1← max(f (Dxi )) ▷ Dominant values.
17: σ2← min(f (Dxi )) ▷ Less dominant values.
18: if (Cxi == |Uxi |) then
19: No outliers in xi
20: else if (Cxi ̸= |Uxi |) then
21: for j = 1 to N do
22: v′xi (j)← xi − v′xi ▷ Find wrong values.
23: v′xi ← σ2 ▷ Correcting wrong values.
24: xi← xi ∪ v′xi
25: end for
26: end if
27: end if
28: end for
29: While (D has no outliers in both columns) do
30: D← D ∪ D
31: End While
32: Return D

In Algorithm 1, D and N are input, andD (whereD has no
outliers) is returned as output. We identify the outliers from a
numerical column usingmin−max analysis, whereas outliers
from non-numeric columns are identified using the cardinal-
ity information of the columns. For example, if gender has
cardinality 2 in the description of D given by data owners,
then gender should have two unique values. If this is not the
case, and the cardinality of gender is 3 (or > 2), then out-of-
distribution values are replaced with feasible minority values
from that column. It is worth noting that most of the existing
work deletes records having outliers, which can reduce data
size significantly if the number of outliers is large. In contrast,
we do not delete the outliers and instead find suitable values
to replace them. By doing so, data size is maintained, and an
informative analysis ofD can be performed. By applying both
these concepts, the outliers from D are effectively handled,
and the possibility of incorrect conclusions is restrained.

In the next step, issues related to missing data/values are
addressed in a fine-grained manner. In the literature, there are
two commonly used approaches to deal with missing values:
deletion or imputation [45].We implement the latter approach
in order to maintain the size as well as the structure of the
real data. We impute missing values in both numerical and
categorical columns using Algorithm 2. In Algorithm 2, D
with missing values is input, and D with no missing values
is returned as output. We substitute the missing values or
values with 0.0 in numerical columns with the mean of the
respective column. Themissing values in categorical columns
are replaced with underrepresented values from that column.
By applying Algorithm 2, all missing values, as well as
outlier-related issues in numerical columns, are addressed.
After these steps, the size of the data is not reduced, and the
quality is significantly improved.

Next, we devised a method to filter duplicate records.
A record at index i is considered a duplicate if it contains
identical values of all features, including the target class to
some other record located at index j in D, and when i and j
are next to each other.1 We assume that records that are not
located next to each other are not duplicates, even though
they have identical values (e.g., they can be different records
but with identical features). In some cases, the duplicates can
also be removed using count information if emails/names
are given in D. Algorithm 3 is applied to remove duplicate
records from D. In Algorithm 3, the similarity (S) is com-
puted among records in a pair-wise fashion, and a similarity
matrix is generated. S between records can be calculated
using Eq. 5:

S(xi, xj) =
∑n

k=1 xi × xj√∑n
k=1 x

2
i ×

√∑n
k=1 x

2
j

(5)

After computing S and storing values in Z , duplicate
records are deleted from the data by exploiting informa-
tion in the similarity matrix. With the help of Algorithm 3,

1https://www.mysqltutorial.org/mysql-find-duplicate-values/
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Algorithm 2 Handling Missing Values in D
Require: D
Ensure: D, where D has no missing values.
1: D← 0 ▷ initializing D as empty set.
2: N ← |D|
3: X ← {x1, x2, x3, . . . xn}
4: for i = 1 to n do
5: if (xi == numeric) then
6: for j = 1 to N do
7: vxi (j)← vxi , where vxi ̸= 0.0 || ′ ′

8: x̄i←
∑N

1 xi/N ▷ Compute mean of values.
9: Impute missing numerical values in xi with
x̄i

10: Impute values having 0.0 in xi with x̄i
11: D← D ∪ xi
12: end for
13: else if (xi == discrete) then
14: Impute missing discrete values via Alg. 1 (20-

25).
15: D← D ∪ xi
16: end if
17: end for
18: While (D has no missing values in both columns) do
19: D← D ∪ D
20: End While
21: Return D

duplicate records are removed fromD, leading to a reduction
in computing overhead.

In the next step, various built-in functions of the R pro-
gramming language are employed to enhance the reliability
of D. To make sure that numerical columns have consistent
valuesw.r.t. type, we use the str function. Similarly, we ensure
that categorical columns also have consistent values. In some
cases, the features/attributes can be enriched using normaliza-
tion and scaling techniques. In this work, we assume data are
mixed types (e.g., numeric and categorical), and therefore,
are used as they are. Later, we analyze the domain values
of each feature to determine data diversity. In the last step,
we analyze the relationship of each feature with the target
class to pay ample attention to significant features at the time
of augmentation. With the help of the above-cited methods,
a clean D is obtained for further processing.

B. VULNERABILITY ANALYSIS OF THE REAL DATASET
In this step, vulnerability analysis of D is performed w.r.t.
distribution skew and data size by exploiting valuable knowl-
edge enclosed in the data. In many real-world cases, the size
ofD can be very small, andD cannot be used in training clas-
sifiers. For example, a drug dataset2 available at the Kaggle
repository has sufficient features (e.g., age, blood pressure,
sex, sodium-to-potassium ratio, cholesterol levels, and drug
type or target class), but the number of records is just 200.

2https://www.kaggle.com/datasets/prathamtripathi/drug-classification

Algorithm 3 Removing Duplicate Records From D
Require: D
Ensure: D, where D has no duplicate records.
1: D← 0 ▷ initializing D as empty set.
2: N ← |D|
3: Z ← ∅ ▷ Z is a similarity matrix
4: for i = 1 to n do
5: for i = 1 to n do
6: S ← sim(xi, xj) ▷ Similarity computation.
7: end for
8: Z ← Z ∪ S ▷ Similarity matrix of size N × N
9: end for
10: Analyze (Z and find records having similarity 1 and

located next to each other) do
11: Remove one of the duplicate records.
12: While (D has no duplicates) do
13: D← D ∪ D
14: End While
15: Return D

Such a small dataset cannot be used for training classifiers,
and therefore, curation of more data is necessary. In some
cases, the distribution can also be imbalanced, leading to poor
performance from classifiers. Thus, analyzing vulnerabilities
in the data is a vital step toward enhancing the performance of
classifiers. In this work, we develop an algorithm to identify
the vulnerabilities in D to prevent performance bottlenecks
in ML classifiers. In Algorithm 4, D is the input, and the
sizes of D and ζ are returned as output. The critical step in
this algorithm is determining Tζ (a threshold) for deciding a
reasonable data size. The value of Tζ can be decided based
on domain knowledge, or the data size needed to solve the
given problem. When the data size is very small, more data
can be curated asmuch as needed to solve the problem at hand
using ML. After identifying the vulnerability w.r.t. data size,
D is further analyzed for class imbalance.

Algorithm 4 Checking Data Size Vulnerability in D
Require: D
Ensure: |D|, where |D| is an integer, and ζ , where ζ = 1/0
1: N ← |D| ▷ Determining data size.
2: if N > Tζ then
3: ζ ← 0 ▷ No vulnerability related to size.
4: else if N ≤ Tζ then ▷ Tζ (a threshold for decision)
5: ζ ← 1 ▷ Vulnerability related to size.
6: end if
7: Return ζ and |D|

Algorithm 5 is the pseudocode to check for class imbal-
ance in D. Specifically, this algorithm computes IR of the
available classes to determine whether a vulnerability w.r.t.
class imbalance exists or not. Furthermore, size information
on each class is also extracted for later use. With the help
of the above algorithms, vulnerabilities related to data size
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and class imbalance are determined and fixed to yield better
performance from a classifier.

Algorithm 5 Checking for Class Imbalance Vulnerability
in D
Require: D, index[yi],N
Ensure: �, where � = 1/0, |cM | (size of majority class),

and |cm| (size of the minority class)
1: �← 0 ▷ Assuming that no imbalance exists in D.
2: Vu← unique(index[yi]) ▷ Unique values of yi.
3: λ1← Vu[0] ▷ Get 1st unique value of yi
4: λ2← Vu[1] ▷ Get 2nd unique value of yi
5: fλ1 ← |D|, where index[yi] == Vu[0]
6: fλ2 ← |D|, where index[yi] == Vu[1]
7: if (fλ1 > fλ2 ) then
8: cM ← Vu[0]
9: else if (fλ1 < fλ2 ) then

10: cm← Vu[1]
11: end if
12: IR← using Eq. 1.
13: if (IR > 1) then
14: �← 1
15: else if (IR == 1) then
16: �← 0
17: end if
18: Return �, |cm|, and |cM |

C. CURATING MORE DATA BY USING THE CTGAN MODEL
In this step, high-quality data, denoted with Dnew, is curated
to compensate for a deficiency of data as well as to balance
the distribution of classes. To curate more data, we use the
CTGAN model which is a state-of-the-art synthetic data
generation model [46]. We chose this model to generate
Dnew with higher diversity. Furthermore, it has a condition
that enables balanced learning from D and ensures that all
categories and their values are transformed correctly in the
synthetic data. It has two neural networks called the generator
(G) and the discriminator/critic (C). We use the open-source
implementation of CTGAN with modifications to generate
new data (the original implementation does not improve data
quality before use, leading to unnecessary generation of var-
ious modes and performance overhead). The following key
steps are applied while implementing the CTGAN to generate
synthetic data in tabular form.

1) Data representation and conversion: In the first step,
mixed columns are put into their respective categories,
and their values are transformed. Categorical columns
are represented as one-hot encoding vectors, whereas
numerical columns are transformed using a variational
Gaussian mixture model [15].

2) Setting up the condition: After representing data in a
unified form, a conditional vector is specified to learn
the distributions of the real data fairly. In the absence
of a condition, the generator can only create samples

for dominant values, leading to poor diversity in the
generated data. To prevent the issue of imbalanced
learning, we construct conditional vectors for categori-
cal columns. Let v′ be the value from the ith column and
row ri in a categorical column to be linked to a new
curated sample denoted as rs. In this situation, G can
be regarded as a conditional distribution of ri, which is
stated formally in Eq. 6:

rs ∼ PG(ri|Ci = v′) = P(ri|Ci = v′) (6)

The use of the condition enables G to generate data
of high quality. By applying the condition, original
distributions can be reconstructed as given in Eq. 7:

P(ri)
∑
v∈Ci

PG(ri|Ci = v′)P(Ci = v) (7)

The condition is integrated with the CTGANmodel via
hot vectors.

3) Designing a network structure: To produce data of
excellent quality, two fully connected networks are
used in both the generator and critic. The activation
function and normalization are also used in the gener-
ator. To prevent overfitting during training, optimized
dropout, leaky ReLU, Adam optimizer values, etc.,
are used. With the help of fully connected networks,
optimized parameters, and conditional vectors, a stable
training process is guaranteed.

4) Training networks and curating synthetic data: In this
step, the networks are simultaneously trained to yield
data. To prevent the vanishing gradient problem and
guarantee stable training, WGAN loss with a gradient
penalty is used [47]. The loss weights are updated
till the convergence of the models. The training pro-
cess continues until the Nash equilibrium is achieved
between the generator and discriminator.

5) Data synthesis after training: Once training is fin-
ished, the data can be gathered by applying minimal
post-processing. Since the data are encoded into hot
vectors and VGM models, data conversion to the orig-
inal form is performed. Specifically, the ReLU is used
for producing numerical columns, and Gumbel soft-
max is used for producing categorical columns. In the
end, the rows in a simplified structure synthesize the
data.

With the help of the above procedure, Dnew is curated and
can be used to address class imbalance problems. In some
cases, it can be used to compensate for a deficiency of good
data. In recent years, synthetic data generation tools have
contributed extensively to generating data that can be used in
various data-driven solutions [48], [49], [50]. In the coming
years, generative AI can contribute greatly to addressing the
problem of data shortages in many industrial and data-driven
applications for social good.

In the beginning, both the generator and discriminator
yield very poor performance because the discriminator can-
not easily differentiate the real and synthetic samples [51].
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As a result, the generator cannot get desired feedback from
the discriminator in the initial stages of training, leading
to consistently high errors. As the training time progresses,
the differences between real and synthetic samples improve
the discernment ability, which in turn guides the genera-
tor to yield samples that are very similar to the real ones.
The fluctuation in the error reflects the game process of
the discriminator and generator, and the descent trend of
the error implies that the generator can learn the distri-
bution of the actual samples. After a reasonable iteration,
the error reduced significantly, and it did not show much
fluctuation. Further, the reduction in the magnitude of error
does not differ much under various condition vectors, which
implies the universality of the GAN-based models in data
generation. To simultaneous use of the condition vector and
WGAN-GP [47] assisted in achieving a narrow gap between
bias and variance in the CTGAN model. The use of condi-
tion assisted in exploring all values regardless of their status
(e.g., major/minor) with equal probability, and therefore,
underfitting and overfitting issues were resolved, leading to
lower bias and variance of CTGAN. Lastly, the training data
size if sufficient, and therefore, the variance-bias trade-off
was effectively resolved.

D. INTELLIGENT FUSION OF DATA
In this step, data fusion is performed intelligently, meaning
fewer but good-quality records are added to the minority class
of the original data. We also improve data quality before
fusion to prevent truthfulness loss (none of the previous
studies considered this important problem). By not improving
the quality of the synthetic data, truthfulness and structural
similarity losses can be very high, impacting the performance
of classifiers and the correctness of the conclusions. Fig. 4
highlights the need for improving the quality of synthetic
data. In this example, although the quality of synthetic data is
good, some values are beyond the desirable range, compared
to the original data. For example, in the real data illustrated
in Fig. 4(a), none of the age values is > 90, but in the
synthetic data in Fig. 4(b), some age values are ≥ 100.
Therefore, rigorous improvements are needed before fusion
to yield consistent results. Based on this analysis, it is fair to
say that synthetic data quality enhancement before fusion is
imperative. It is even mandatory when synthetic data are used
in some safety-critical applications.

1) IMPROVING THE QUALITY OF SYNTHETIC DATA BEFORE
FUSION
This work is a maiden attempt to enhance the synthetic data
quality before fusion to prevent the possibility of wrong
conclusions/inferences from the augmented data. In con-
trast, most of the existing DATs fuse data without paying
due attention to the quality of the data generated, leading
to wrong conclusions from mining results. We apply a set
of sophisticated techniques to remove inconsistent samples
from the data. In the first step, Dnew is aligned with the
already available D. Specifically, we only perform alignment

FIGURE 4. Comparison of statistical information in D and Dnew .

for c′m (the minority class in Dnew) rather than all classes.
The pseudocode to align the numerical feature values is
Algorithm 6, for which D and Dnew are the input, and D′new
with aligned values of the numerical features is returned
as output. This algorithm creates a bounding box for each
numerical feature by using Min and Max information from
the original data, and values that lie outside the box are
removed from Dnew. By applying this concept, values are
brought into the desired range to lower the possibility of
incorrect conclusions or structural similarity loss during
fusion.

The values of the categorical columns are aligned using
frequency information from D. For instance, if a categorical
feature has higher frequencies for some of its values, then
some of the records are removed to balance the distribution
without losing statistical information. We also supplement
minor values with major values to increase data diversity.
By aligning the values of numerical and categorical features,
the possibility of propagating noise in the training data is
restrained, leading to high-quality augmented data genera-
tion. We also apply a set of techniques for cleaning real data
to clean the newly curated data. The application of different
techniques to synthetic data significantly improves the data
structure and quality.
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Algorithm6Alignment of Numerical Features inDnew andD
Require: D,Dnew
Ensure: D′new, where D

′
new has aligned numerical features

1: D′new← 0 ▷ Initialization with empty set.
2: Cm← using D and Alg. 5 ▷Minority class in D.
3: C ′m← using Dnew and Alg. 5 ▷Minority class in Dnew.
4: X ← {x1, x2, . . . xt }
5: X ′← {x ′1, x

′

2, . . . x
′
t }

6: for i = 1 to t do ▷ Removing values fromMax end.
7: Max(xi)← Max(D(xi))
8: for j = 1 to N do
9: if (v′xj > Max(xi)) then
10: Dnew← Dnew − v′xj
11: D′new← D′new ∪ Dnew
12: else if (v′xj < Max(xi)) then
13: Do nothing
14: end if
15: end for
16: end for
17: for i = 1 to t do ▷ Removing values fromMin end.
18: Min(xi)← Min(D(xi))
19: for j = 1 to N do
20: if (v′xj < Min(xi)) then
21: Dnew← Dnew − v′xj
22: D′new← D′new ∪ Dnew
23: else if (v′xj > Min(xi)) then
24: Do nothing
25: end if
26: end for
27: end for
28: Return D′new ▷ Highly aligned data with D

2) INTELLIGENT FUSION
In the literature, data fusion is performed in an ad-hoc man-
ner, meaning if |cM − cm| = 500, then 500 records will
be curated and added to the data. In this work, we found
that if the quality of newly generated data is good then the
number of records to be added can be restrained, leading to
a significant reduction in noise without losing guarantees on
performance metrics (accuracy, precision, recall, etc.). In this
example, 280 or 300 records can be sufficient to address
the class imbalance problem. We call the fusion method
intelligent because the new records are added only to cm,
and the number of records is also less, compared to existing
SOTA DATs. To reduce the number of records to be added
to the data, we formulate an optimization problem that can
be solved by finding candidate solutions. The overall process
has four key steps: (i) identifying important features from
real data, (ii) drawing samples from Dnew of reasonable size,
(iii) calculating the entropy of important features in samples,
and (iv) choosing samples having entropy of important fea-
tures close to the entropy of important samples in the real
data (e.g., the minority class) for augmentation. The value of

FIGURE 5. Workflow of the proposed intelligent data fusion process.

entropy H can be calculated using Eq. 8:

H (ζ ) = −
|ζ |∑
i=1

[(pi)× ln(pi)] (8)

With the help of the above process, the number of records to
be added to the data is lower, and quality in terms of diversity
is higher. The schematic of the process employed to fuse data
intelligently is depicted in Fig. 5, showing data augmentation
performed considering the closeness of distribution between
D and Dnew in cm. With the help of the improved cm and
fair samples, good-quality augmented data are obtained for
further processing (e.g., noise removal).

E. NOISE REMOVAL FROM THE AUGMENTED DATA
After data fusion, there is a possibility that some data points
may lie in unsafe regions (i.e., regions belonging to the
majority class), and therefore, noise removal is imperative.
To the best of our knowledge, noise removal methods have
not been used with CTGAN-based DATs thus far. This
paper is a maiden attempt to remove noise from CTGAN-
augmented data. To remove noise from data (especially in the
minority class), we employ a coin-throwing algorithm [52],
[53], which can also contribute to preventing small adjuncts
and class overlap problems. This algorithm amalgamates the
k-means algorithm, Euclidean distance, and probability con-
cepts in order to identify noisy samples. A sphere with radius
r is drawn by using a randomly chosen majority class sample
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Algorithm 7 Removal of Noisy Samples From cm
Require: cM , cm
Ensure: D, where D has no noisy samples in cm.
1: D← 0 ▷ Initialization with empty set.
2: DivideCM into different clusters via k-means algorithm.
3: Store all clusters into cluster set R
4: for i = 1 to |R| do
5: q(Ri)← xi ∈ cM
6: ri(Ri)← d(qi, x) ▷ x is the farthest sample from qi.
7: ∀x ∈ cm, where Ri ⊆ cm
8: Calculate d between qi and all other relevant samples
9: Calculate p between qi and all other relevant samples

10: P← {px1 , px2 , . . . , pxj} ▷ j denotes minority
samples

11: P′← {px1 = 0/1, . . . , pxj = 0/1} ▷ [0− 1] vector
12: for j = 1 to |P′| do
13: if (P′i == 1) then
14: cm← cm − xi
15: else if (P′i ̸= 1) then
16: Do nothing
17: end if
18: end for
19: D← D ∪ cm
20: D← D ∪ cM
21: end for
22: Return D ▷ Final D of excellent quality

as the center (q). The length between any two samples or
data points can be computed using Euclidean distance [54].
We assume that when r ≥ d(x, q), the minority samples are
located within the sphere. Given an n-dimensional vector,
x = {x1, x2, . . . , xn}, the distance from sphere center q, where
q = {q1, q2, . . . , qn}, can be determined using Eq. 9:

d(x, q) =

√√√√ n∑
i=1

(xi − qi)2 (9)

After computing the distance between the center and the
minority samples located within the region of the major-
ity class, we compute their probability of being noisy by
using Eq. 10:

p = 1−
d(x, q)
r

(10)

where r and q are the radius and center of the sphere, respec-
tively, and p denotes x’s probability value. If x is located
closer to q, the p value decreases, and vice versa. ∀ xi ∈ S
where p exhibits the form 0 ≤ p ≤ 1. The higher the value
of p, the higher the possibility of the x being noise. Afterward,
a threshold is established to differentiate noisy samples from
those that are not noisy. For the sake of simplicity, each
sample is transformed to either 0 or 1 using the coin-throwing
method. If p ∼ 1, then the algorithm generates 1, and it
yields 0 if p ∼ 0. Based on the analysis of d and p, the samples
located within the majority class are removed if they turn

FIGURE 6. Flowchart of the proposed CTGAN-MOS (P = problematic,
NP = non problematic).

out to be noisy. With the help of three simple steps, noise is
removed from the data, which can augment the performance
of ML classifiers built upon them [55]. The pseudocode of
the algorithm to remove noise is Algorithm 7 in which cM , cm
are the input, and augmented data D with no noisy samples
in cm is returned as output. In this algorithm, clusters are
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derived from cM , and each cluster is processed independently
to remove noise.

F. BUILDING CLASSIFIERS WITH IMPROVED DATA
In the last step, classifiers are trained from the augmented data
to yield better performance in real-world scenarios. To vali-
date the effectiveness of the augmented data, we trained with
the ensemble method (i.e., random forest). The main reason
to use the ensemble method is to ensure balanced learning
via fair samples drawn from the training data. We partition
the data for training (dtrain) and testing (dtest ). In addition,
we verify the sampling quality by analyzing feature distribu-
tions from the samples. We also reduce the parameter size
to get similar accuracy in most tests. Experimental analysis
proves that when data quality is excellent, some parameters’
values can be reduced. We hope our analysis can help reduce
computing overhead while building ML classifiers involving
big data. The flowchart of the CTGAN-MOS along with the
key steps is given in Figure 6. The workflow depicted in
Figure 6 can pave the way to understanding the proposed
CTGAN-MOS from a technical perspective. Details of sup-
portive techniques used in some steps of the CTGAN-MOS
are given in Figure 3.

V. EXPERIMENTAL RESULT
This section presents the output of the concepts discussed
in this paper. To prove the significance of our scheme,
we conducted thorough experiments on real-life datasets and
compared the results with various SOTA DATs. In the next
subsections, we present details of the datasets, the implemen-
tation setup, the evaluation criteria, and compare results with
existing SOTA techniques by using five different metrics.

A. DESCRIPTIONS OF THE DATASETS
To evaluate the performance of the proposed CTGAN-MOS,
we conducted detailed experiments on two real-life bench-
mark datasets: the adult dataset [56] and the stroke prediction
dataset [57]. Both datasets are publicly available at UCI
ML and Kaggle repositories and have been widely used
for assessing the performance of ML models. Both datasets
contain information about real-world persons with mixed
feature types (i.e., categorical and numerical). The number
of features in these datasets are 15 and 12, respectively.
In addition, both datasets encompass many quality-related
issues, which makes them more suitable for the evaluation of
our scheme. Details of these datasets are in Table 3. Within
the parentheses, C and N refer to the type of feature (cate-
gorical or numerical, respectively), and the numbers indicate
cardinality.

It is worth noting that both datasets have a binary tar-
get class, and the distribution skew is very high, as shown
in Table 4. In addition, there are many missing values as well
as redundant records. From the results, we can see that most
samples belong to <=50 K in the adult dataset. In contrast,
a large number of samples in the stroke prediction dataset
show no indication of a stroke.

TABLE 3. Details of the real-life datasets used in the experiments.

TABLE 4. Unique values of the target class, and their frequencies in D.

To perform rigorous experiments and comparisons, we sys-
tematically applied our scheme to these datasets. It is impor-
tant to note that our scheme is general, and can be applied to
any dataset with minor modifications.

B. IMPLEMENTATION SETUP
The experiments were performed on a notebook with an Intel
Core i5-3320M CPU with 8GB RAM clocked at 2.60GHz
running Windows 10 Pro. The experiments were performed
using R ver. 4.0.0 (x64) and RTools with the help of cus-
tom packages. An open-source CTGAN implementation with
reasonable modifications was employed to curate a Dnew of
superb quality. The ensemble method was implemented with
the help of two main libraries: RF and ranger3 (a fast and
customized RF code). Descriptions of some main parameters
and other necessary variables, along with a snapshot of their
values, are presented in Table 5. We used two different sets
of values for non-augmented and augmented data during the
experiments.

Apart from the details in Table 5, we used default values
for some variables. For example, node size was set to 1, the
value of the sample fraction was 0.8, and bootstrapping was
the default sampling scheme. We found these values with
the help of rigorous experiments under different conditions.
Training data was about two-thirds of the records from D,
and testing data comprised one-third of the records. Through
detailed experiments with the RF model and minimal post-
processing, we identified relationship, capital gain, marital
status, occupation, and age as salient features in the adult
dataset. In these features, there are many diverse values, and

3https://cran.r-project.org/web/packages/ranger/
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TABLE 5. Parameters used for building ML classifiers on augmented data.

instances with just one value were very few. In the stroke
prediction dataset, age, BMI, glucose level, work type, and
gender were identified as the most influential features. (One
of those values did not occur with relatively high frequency.)
Although gender usually has two values, this dataset has
three distinct values for gender, which is thus regarded as a
salient feature. Our experimental analysis encompassed the
following three approaches.

1) Experiments with real data: We used real data without
applying any modifications.

2) Experiments with augmented data (CTGAN-MOS):
We increased the data size by applying the proposed
scheme. Afterward, we computed and compared the
performance against existing DATs.

3) Experiments with augmented data (existing SOTA
DATs): We increased the data size by applying five
existing data augmentation techniques. Afterward,
we computed and compared the performance of each
DAT against our scheme.

C. EVALUATION METRICS
To gauge the performance of our scheme, we used six dif-
ferent evaluation metrics: accuracy (Acc), precision (Pre),
recall (Rec), specificity (Spe), F1 score, and G-mean score.
We obtained confusion matrices and analyzed them to
determine the values of these metrics. The confusion matrix
provides information on misclassification as well as cor-
rect classification/identification. It has four compartments
denoted Tp, Fp, TN , and FN , for true positive, false posi-
tive, true negative, and false negative, respectively. In Fig. 7,
we provide a concrete overview of these four confusion
matrix parameters from the adult dataset.

Examples of the parameters in the confusion matrix are
given below.

1) Tp: Income value <=50K marked as <=50K.
2) Fp: True income value <=50K marked as >50K.
3) TN : Income value >50K marked as >50K.
4) Fp: True income value >50K marked as <=50K.

The formalization of evaluation metrics derived from the
above four parameters is expressed in Eqs. 11-16.

Acc =
Tp + TN

Tp + Fp + TN + FN
(11)

FIGURE 7. Overview of the confusion matrix structure. Tp = true positive,
Fp=false positive, Tn=true negative, Fn=false negative.

Pre =
Tp

Tp + Fp
(12)

Rec =
Tp

Tp + FN
(13)

Spe =
TN

TN + FP
(14)

F1 = 2.
Pre× Rec
Pre+ Rec

(15)

G− mean =
√
Spe× Rec (16)

We computed the values of each evaluation metric in three
experimental settings (with real data, with our augmented
data, and with other augmented data), and compared the
results with existing DATs. Apart from these metrics, we also
made some general comparisons, such as the number of
records to be used in augmentation and the balancedness of
the confusion matrices with existing DATs.

D. BASELINE DATs
To verify the superiority of our scheme over its peers,
we compared the results with the recently developed
SOTA oversampling DATs, namely, random oversampling
(ROS) [41], FW-SMOTE [42], k-means SMOTE [43], Fair-
SMOTE [44], and CTGANSamp SMOTE [15]. All these
techniques are data-level methods used to address the class
imbalance problem. ROS balances the number of samples by
randomly adding more records until the number of samples
in both classes is equal. FW-SMOTE improves the neigh-
borhood selection procedure of the traditional SMOTE and
yields better results than SMOTE. The k-means SMOTE
scheme balances the distributions of classes by dividing data
into clusters of size k . Fair-SMOTE improves the distribu-
tion of some features of the target class. However, Fair-
SMOTE only leads to marginal improvement in the results.
CTGANSamp SMOTE is the latest technique that employs
a CTGAN to curate more data for balancing the class dis-
tribution. However, it does not improve the quality of newly
curated data, which may lead to poor separability of classes
as well as marginal improvements in results. Furthermore,
it adds records to both majority and minority classes, which
may lead to performance bottlenecks when the data size is
large. Our proposed approach addresses the limitations of the
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existing DATs and significantly improves the results without
losing truthfulness in the data.

E. NUMERICAL COMPARISONS WITH SOTA DATs
In this section, we compare our scheme with existing tech-
niques by using different evaluationmetrics.We used real and
augmented data to evaluate and compare the performance of
our scheme with existing SOTA techniques.

1) ACCURACY COMPARISONS
In the first set of experiments, we computed and compared
the performance of our scheme from the perspective of Acc.
In these experiments, we used the ensemble method on the
augmented data generated with the help of the different
DATs, including the original data. Specifically, we divided
the data for training and testing and developed the models.
In the end, we analyzed the confusion matrix and determined
Acc using the four parameters (Tp,Fp,Tn,Fn) as arranged
in Eq. 11. Fig. 8 presents the comparisons of Acc values
from our scheme against the existing DATs and the original
data. From the results, note that our scheme outperformed
the recent DATs. The Acc values from our scheme are close
to 100% for both datasets. Our scheme yielded an accuracy
of 100% on the adult dataset (e.g., Fn = 0 and Fp = 0),
which makes it more suitable for safety-critical applications.
In contrast, accuracy with the stroke dataset (99.83%) was
only marginally lower than 100% with Fp = 1 and Fn = 4.
Based on these results, it can be concluded that wrong pre-
dictions were very low, and the confusion matrix was more
balanced compared to the previous techniques.

FIGURE 8. Acc comparisons: our scheme versus SOTA DATs and real data.

These results verify the significance of our scheme in terms
of achieving better results from the perspective of data mining
and pattern extraction.

TABLE 6. Confusion matrix balance comparisons: our scheme versus
SOTA DATs.

The proposed scheme rigorously improves data quality,
and therefore, the results are more accurate and highly reli-
able. Table 6 compares the composition of each confusion
matrix in terms of balance. From the results, note that each
technique yielded different values for Tp, Fp, Tn, and Fn.
However, the confusion matrix from our scheme is more
balanced than the SOTA techniques. It is worth noting that
Acc values from some of the other schemes are high (≥ 95%)
with the stroke dataset, but the confusion matrices are not
balanced, leading to poor classification/predictions in the
minority class. The comparisons of Acc and balance in the
confusion matrix prove the superiority of our scheme over
existing SOTA techniques.

2) PRECISION AND RECALL COMPARISONS
In the second set of experiments, we computed and com-
pared the precision and recall values with the existing SOTA
DATs. The precision metric determines how frequently the
MLmodel correctly predicts a positive attribute. In our exper-
iments, the positive attributes are <= 50 K for the adult
dataset, and 0 (no probability of stroke) in the stroke predic-
tion dataset. For the recall metric, the proportion of correct
predictions for positive attributes was analyzed. Both these
metrics have been widely used to assess the performance
of ML models. These metrics capture more information
concerning the performance of ML models than Acc alone.
We performed repetitive experiments and analyzed the values
of relevant parameters to computePre andRec. Subsequently,
we compared the results with the existing SOTA augmenta-
tion techniques. Table 7 presents the results for Pre and Rec
and comparisons with existing techniques.

From the results in Table 7, most schemes yielded better
values for Pre and Rec. Through fair analysis and com-
parisons, our scheme yielded much higher values for both
Pre and Rec than other schemes. These results verify the
significance of the proposed scheme from the perspective of
accurate predictions when applyingMLmodels to noisy data.
These results prove our scheme is a better choice when highly
accurate predictions are desirable.
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TABLE 7. Pre and Rec comparisons: our scheme versus previous SOTA
DATs.

3) F1 SCORE COMPARISONS
In the third set of experiments, we computed and compared
the F1 score with existing SOTA DATs. F1 score is basically
the harmonic mean of Pre and Rec. In other words, it is
the reciprocal of the arithmetic mean of two parameters.
Since it takes into account both false positives and false
negatives, it is more suitable for the evaluation of an ML
model’s performance. An F1 score close to 1 is regarded
as ideal. Table 8 presents the results and comparisons of
F1 scores from the existing SOTA DATs. The F1 score for
most techniques is fine for the adult dataset. With the stroke
dataset, by contrast, contributions to F1 score in the other
techniques come mostly from the majority class only, leading
to higher misclassification for some minority classes in real-
world scenarios. Through comparison and analysis, we found
our scheme had a higher F1 score compared to most tech-
niques when classifying both datasets. These results verify
the significance of our scheme in terms of better performance
from the F1 score metric. In some applications (e.g., medical
diagnosis, fraud detection, email classification), a higher F1
score is desirable, and therefore, the proposed scheme is ideal
for such scenarios.

TABLE 8. F1 score: our scheme versus previous SOTA DATs.

4) G-MEAN SCORE COMPARISONS
In the fourth set of experiments, we compared the perfor-
mance of our scheme against the existing techniques by using
G-mean score, which is the geometric mean of Spe and Rec.
G-mean score has been widely used to measure the perfor-
mance of ML models in imbalanced learning problems [58].
In simple terms, to maximize the G-mean we minimize the
total training errors of each target class during imbalanced
data learning. If a G-mean value for any given model is
higher, the model is regarded better in terms of performance.
To calculate the G-mean score, we first compute the Spe

TABLE 9. Spe comparisons: our scheme versus previous SOTA DATs.

value by utilizing information from the confusion matrix; the
corresponding results are in Table 9.

From Table 9, we can see that Spe for some of the existing
DATs was lower, and therefore, classifier performance is
substandard. In contrast, our scheme yielded better values for
Spe, and correct predictions for both classes were higher than
the other techniques.

By leveraging the values of Spe and Rec, we computed
the G-mean score, and the results are illustrated in Fig. 9.
Default is the G-mean when the data used are without aug-
mentation. For the stroke dataset, the misclassification rate
for the minority class was extremely high, and therefore, the
G-mean score is very low compared to the adult dataset. The
stroke dataset was highly skewed, and only three instances
existed in the minority class, so most contributions to Acc
come from the majority class. Therefore, good-quality aug-
mentation schemes are vital.

FIGURE 9. G-mean scores: our scheme versus SOTA DATs and real data.

Similarly, the G-mean score of the k-means-SMOTE
scheme was also low owing to local balancing in each
cluster and the introduction of noise. Since our scheme
improves the quality of both real and synthetic data and
removes noise using the coin-throwing algorithm, the G-
mean scores are therefore very high with both datasets,
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compared to the other techniques and the original data.
These results validate the effectiveness of our scheme in
terms of achieving a higher G-mean, leading to wide
use in realistic scenarios when a higher G-mean value is
expected.

5) NUMBERS OF NEWLY ADDED RECORDS
In the last set of experiments, we evaluated the effective-
ness of our scheme in terms of the number of records used
in augmentation. Specifically, we determined and compared
the number of records added by our approach and by the
other techniques during data augmentation. In the proposed
scheme, the quality of data is meticulously enhanced, and
therefore, small but good-quality records help the cause.
In contrast, existing schemes do not improve the quality of
data (in particular newly curated data), and therefore, more
records are added. Although adding more records is handy to
increase training data size, in some cases, the addition ofmore
records marginally improves the results, but greatly increases
computing overhead. How to compensate for the deficiency
of data without losing guarantees on various metrics is a
challenging task. In our scheme, we intend to lower the
number of records during data augmentation while sustaining
the values of most metrics. Some DATs add records to the
majority class as well [15]. This can be handy when the
data size is very small. In large datasets, adding even 2%
more records to the majority class can introduce performance
bottlenecks. To address this, our scheme provides a new
perspective and performs augmentation with the least number
of records possible. Fig. 10 presents a comparative analysis
of the records added to datasets by the proposed scheme and
existing schemes.

FIGURE 10. Number of records added. 1 = ROS, 2 = FW-SMOTE, 3 =

k-means-SMOTE, 4 = Fair SMOTE, 5 = CTGANSamp, 6 = CTGAN-MOS
(ours).

From the results, we can see that the proposed scheme
adds fewer records than the existing techniques without los-
ing guarantees on the performance objectives. These results
verify the significance of our scheme in terms of robustness
(i.e., adding fewer records to the data while yielding higher
values for Acc, Pre, Rec, Spe, F1 score, and G-mean score).
Table 10 presents a holistic overview of the data sizes used in
the experiments.

From Table 10, we can see that our scheme has a smaller
data size than the other schemes. By adding fewer records (but
of good quality), the possibility of adding noise is reduced,

TABLE 10. Data size comparisons: our scheme versus previous SOTA DATs.

and classifier performance can be enhanced. Furthermore,
our scheme removes noisy samples from the data, and there-
fore, the possibility of advanced problems such as a small
adjunct or class overlap is also lower. Based on these results,
we conclude that the proposed scheme can vastly contribute
to augmenting the performance of ML classifiers, and can be
used in safety-critical applications.

VI. DISCUSSION
In this section, we explain various key aspects in terms of
significance, scope, novelty, etc. related to CTGAN-MOS.
Significance of the proposed scheme to the field of study:

Our paper aimed to solve the class imbalance problem that
is very common in ML applications by proposing a set of
sophisticated operations that might serve as a baseline for
future research. In the recent past, much of the work in
data augmentation investigated adding more records with-
out paying due attention to the quality of data. We affirm
the idea that adding more records is an intuitive concept to
augment the performance of classifiers. However, our work
takes the opposite approach. We introduce six sophisticated
operations, the result of asking the basic question, how can
we perform augmentation with as few records as possible
while significantly enhancing the performance and general-
ization of ML classifiers on diverse evaluation matrices?We
solved the problem by identifying vulnerabilities in data that
might hurt the performance of the ML models and curated
additional data of high quality for augmentation. We also
introduced new concepts that prevent the reduction of data
size by handling outliers and missing data whereas exist-
ing work mostly removes such parts, which can lower the
possibility of informed decisions. We applied noise removal
techniques and improved the alignment of data before fusion
for the first time in GAN-based augmentation. The sequential
application of six steps significantly improved the perfor-
mance of classifiers and accuracy reached optimal limits
in both datasets. The numerical results determined through
various tests proved the technical significance and validity
of the proposed work. We uncovered the structure of the
confusion matrix which can pose serious risks in high-stakes
ML applications when underlying data used in training is
skewed. Our solution is generic and can be applied to similar
data modalities in multiple domains. We expect that our ideas
and the corresponding solution might inspire new techniques
for task-specific or universal data augmentation in the big
data era.
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Through experiments, we found that ML classifiers trained
with imbalanced data cannot give equal importance to each
class during inference, and the misclassification rate for
some minority classes is always higher than for major-
ity classes. The main reason for this problem is that the
classifier only explores and learns features related to the
majority class during the learning/training process. However,
the CTGAN-MOS addresses this problem by increasing the
representation of the minority class in the data, which makes
some highly informative but difficult-to-learn features likely
to be perceived during the training process [59]. In simple
words, GAN-powered augmentation can change the impor-
tance score of some features and affect the learning dynamics
of the respective classifiers, and therefore, the classifiers
trained with augmented data can give equal importance (e.g.,
confusion matrix becomes more balanced) to each class dur-
ing inference time.
Objectives of the paper: There are six main objectives of

the paper: (i) To extend the applicability of theML techniques
to noisy, messy, and imbalanced datasets which are very
common in realistic scenarios nowadays, (ii) To uncover the
invisible problems with the confusion matrix in imbalanced
learning context where even an extremely high accuracy can
be problemtic becuase most contribution in accuracy can
come from one class (e.g., majority class) while other classes
do not contribute or minimally contribute, (iii) To yield better
performance on diverse evaluation metrics (e.g., accuracy,
precision, recall, F1 score, and G-mean score.) by applying
minimal changes to data (e.g., adding as minimal records
as possible), (iv) To identify and fix the hidden risks (e.g.,
class overlap, small adjunct, noise, etc.) associated with data
augmentation techniques which often remain undetected, (v)
To improve the learning dynamics/ability of ML classifiers
and to make features learning easier in ML classifiers, and
(vi) To prevent negative consequences of ML classifiers in
high stake applications (e.g., medical diagnosis, resource
planning, loan granting, etc.) where binary outcomes are
involved.
Scope of the work: The augmentation scheme proposed

and implemented in this work can be applied to any dataset
encompassed in tabular modality. Specifically, it can process
datasets of mixed attribute type without any restriction on #
of records and features. Furthermore, our scheme can process
datasets that can have only one type of feature e.g., numerical
or categorical. It was primarily proposed for binary class
datasets in which the possibility of imbalance is very high.
However, it can be applied tomulti-class problemswithminor
modifications. It can work with both types of synthetic data
generated with either generative AI tools (e.g., GANs) or
statistical methods. The augmented data curated with the
proposed scheme can be used in any supervised learning ML
model for both classification and regression tasks. Also, our
scheme proposed sophisticated pre-processing techniques
that can be widely applied to tabular data used in unsuper-
vised learning tasks (e.g., clustering) as well. It can also
reduce the complexity of building ML classifiers as only

minimal records are added to data at augmentation time, lead-
ing to applicability in resource-constrained environments.
Lastly, our scheme can contribute to balancing data which can
be used for general data ming tasks where diversity, equity,
and inclusion are imperative.
Novel aspects of the proposed work: The novel aspects of

the proposed work are explained below.

1) Maintaining the size of the real data by applying sophis-
ticated data engineering techniques rather than deleting
problematic parts of data. In an adult dataset, there
are 38.24% records with null values, and most of the
existing methods often delete records with such val-
ues [60]. However, deleting such a large amount of
data not only reduces data size but also introduces
many other problems like deleting a minor popula-
tion’s data. In this work, ample attention is paid to
repairing the problematic portion of data rather than
deleting it.

2) Adaptive augmentation rather than fixed ones. In the
literature, augmentation is performed in a fixed man-
ner which can lead to performance bottlenecks while
minimally improving the accuracy and other matrices
results. For example, if |cM | = 100 and |cm| = 10,
then 90 more records will be added to balance cm.
However, we experimentally proved that if synthetic
data has better quality and diversity, then 50/60
more records can do the same job as 90 records.
Hence, this is the novel aspect of our proposed
scheme.

3) The existing approaches add more records using GAN
models and somehow yield better accuracy. However,
through experiments, we observed that augmentation
techniques can only compensate for the deficiency of
data, leading to other severe problems such as noise,
class overlap, and small adjunct problems in some
cases. Unfortunately, the quality of the augmented data
is rarely inspected from the perspective of noise and
alignment. To the best of our knowledge, this work
makes a maiden attempt to remove noise and align
synthetic data before fusion in CTGAN-based augmen-
tation.

4) Our scheme improved the learning ability of ML clas-
sifiers to the maximal level via balanced sampling, and
optimal accuracy limits (i.e., ∼ 100 %) were achieved
with significantly reduced model size (e.g., less #
of trees) than SOTA techniques. To the best of the
authors’ knowledge, our scheme yielded significantly
higher performance than most recent augmentation
techniques. This work also lowers the complications
in the CTGAN model by pre-processing the real data
which can prevent the unnecessary mode initialization
and packing/unpacking of incomplete data while train-
ing the CTGAN model.

5) This work amalgamates data-centric techniques with
the ML classifiers which is a hot research trend in the
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big data and AI era [61]. Lastly, we analyzed the black
box nature of the confusion matrix and ensured equal
contribution from cM and cm to accuracy as opposed to
existing practice where most contributions to accuracy
come from cM only.

The proposed approach yielded better results than its
peers owing to the following enhancements: (i) sophisticated
pre-processing of data, (ii) curatingmore data of good quality,
(iii) intelligent fusion of data (minority class only, and in safe
regions), and (iv) noise removal from the augmented data.
The proposed scheme can be used in realistic scenarios when
either good data are not available to scale, or the quality
of the existing data is poor. Our approach can be used in
medical applications involving binary outcomes (e.g., disease
resistance or not). It can also be used in financial applications
(classification of legitimate and fraudulent transactions) to
prevent financial loss. Lastly, our scheme is a vital step
towards the realization of responsible data science4 where the
aim is to provide accurate and fair decisions. Furthermore, our
scheme can be used in scenarios where diversity, inclusion,
and equity are imperative.

The proposed CTGAN-MOS can enhance the overall prob-
lem in five different ways. Foremost, it provides a new per-
spective to inspect and improve synthetic data quality before
fusion which is rarely inspected/improved in the recent tech-
niques. By not improving the synthetic data quality before
fusion, the conclusion/results quality can have a higher devi-
ation from real data. Second, it provides a new insight related
to the composition of test and train data, which are imperative
for ML classifiers’ robustness. Specifically, CTGAN-MOS
yields better performance with unseen data of varied sizes
and compositions whereas existing methods often verify
performance by using one fixed-size test data. Third, it intro-
duces a new concept of vertical contractions (e.g., fewer
record addition) to significantly reduce the performance bot-
tlenecks contrary to the common concept of feature selection
(e.g., horizontal contractions) applied in many AI applica-
tions. Fourth, it suggests a new method for fixing missing
values under categorical features with under-representative
values which have not been previously explored and are
vital to reduce bias issues in real scenarios. Lastly, it sug-
gests ensuring balancedness in the confusion matrix from
all classes which is often overlooked as most preference is
given to accuracy value only, leading to poor generaliza-
tion/inference in high-stakes applications.

VII. CONCLUSION AND FUTURE WORK
In this paper, CTGAN-MOS is introduced to address
the class imbalance problem for ML classifiers involving
binary datasets. The proposed scheme amalgamates basic
as well as advanced data engineering techniques to aug-
ment poor-quality data so they no longer create performance
bottlenecks when training ML classifiers. CTGAN-MOS
encompasses six key steps that are applied sequentially to

4https://redasci.org/

produce data that are error-free, complete, dependable, and
representative of the problem under investigation. To the best
of our knowledge, this is the first pipeline that addresses
the class imbalance problem with fewer (but good-quality)
samples and that removes noise from CTGAN-powered
augmentation, leading to better performance than its peers.
The experiments were conducted to prove the validity of
our scheme in realistic scenarios using real-life bench-
mark datasets. The experiment results and comparisons indi-
cate better performance from our scheme from six differ-
ent aspects compared to other SOTA DATs. In the future,
we intend to apply our scheme to class imbalance problems
involving multiple classes. We also intend to test the efficacy
of our scheme using multiple classifiers. Lastly, we intend to
optimize the synthetic data generation process to curate data
only for the problematic portions of the original data. Finally,
we intend to integrate a feature selection strategy with our
proposal to prune the less important features from the data to
enhance the accuracy of classifiers and to lower computing
overhead.
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