
Received 21 July 2023, accepted 5 August 2023, date of publication 10 August 2023, date of current version 17 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3303966

ICNN-Ensemble: An Improved Convolutional
Neural Network Ensemble Model for Medical
Image Classification
JAVOKHIR MUSAEV 1, ABDULAZIZ ANORBOEV 1, YEONG-SEOK SEO 1, (Member, IEEE),
NGOC THANH NGUYEN 2,3, (Senior Member, IEEE), AND DOSAM HWANG 1
1Department of Computer Engineering, Yeungnam University, Gyeongsan 38541, South Korea
2Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
3Faculty of Information Technology, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam

Corresponding author: Yeong-Seok Seo (ysseo@yu.ac.kr)

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea Government (MSIT)
(No. NRF-2023R1A2C1008134). Also, this work was supported by the 2017 Yeungnam University Research Grant.

ABSTRACT Deep learning (DL) classification has become a major research topic in the areas of cancer
prediction, image cell classification, and image classification in medicine. Furthermore, DL classification is
the core of other subfields. Owing to various forms of ensemble models, DL models have achieved state-of-
the-art performances in fields such as medicine. However, the existing models cannot solve the problem of
generalization perfectly and proposed solutions only for tasks with specific datasets. Most state-of-the-art
classification models presented their results in ImageNet dataset, and models elaborate on the insights of
the dataset. Nonetheless, model architectures or pretrained models cannot provide the same accurate results
for datasets with different classes than ImageNet. Hence, this research proposes an improved convolutional
neural network ensemble (ICNN-Ensemble) based on the representation of high-resolution image channels
(RHRIC) and a systematic model dropout ensemble (SMDE). ICNN-Ensemble exploits image channels after
applying RHRIC and RGB images in their original forms, which accesses more residual feature connections
and represents more insight into image channels. Furthermore, SMDE is applied to choose ensemble
members, considering the changes of the accurate prediction field (APF) in the ICNN-Ensemble model.
In addition, the proposed model executes ensembling during the test set prediction, which allows the model
to be trained with larger batches and images compared to ensemble model’s final results during training,
allowing maximal effective usage of the graphics processing unit (GPU). Despite the small size of the model,
the results of benchmarking forMalaria cell images dataset clearly illustrated that the ICNN-Ensemblemodel
achieved significantly more accurate results than other base state-of-the-art models.

INDEX TERMS Representation of high-resolution image channels, systematic model dropout, accurate
prediction field.

I. INTRODUCTION
Image classification is a deep learning (DL) computer vision
task that specialized in categorizing input images into pre-
defined image classes by obtaining and representing insights
of the images beneficial for further preprocessing. Distinct
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from image segmentation and detection tasks with means of
classification [1], [2], the image classification problem is a
considerable part of all DL tasks. Medical image classifi-
cation task is a crucial part of DL in which a small error
may lead to colossal damage to human life; therefore, any
improvements serve as a contribution to future advances
in the field. Numerous classification models have real-life
applications in astronomical research [3], the food industry,
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agriculture, and farming [4], [5], [6]. The most beneficial and
noteworthy application of image classification is in the field
of medicine, where it has been applied in clinical treatment
and medical diagnosis [7]. Currently, the main application of
image classification is in diagnosis. Its real-life implementa-
tion requires very accurate results to make a clear diagnosis
of the disease. The role of DL image classification is to save
time for feature extraction and classification. However, most
current DLmodels propose solutions for specific datasets that
are outside the scope of medicine. This creates a huge gap in
DL image classification for medical image datasets. Further-
more, the application and development of a combination of
new and previous methods has become a secondary research
interest in the field. These factors encouraged us to conduct
research on improvements in medical image classification.
The main goal of this study was to provide an accurate
solution for medical image classification by proposing amore
effective and accurate model. In this study, an improved
convolutional neural network ensemble (ICNN-Ensemble)
model was proposed to classify the Malaria cell images
dataset; the model managed to achieve the most accurate
results with respect to other baseline models. From the early
steps of DL evolution, the classification task was the basis for
all the other subfields of DL.

To increase the probability of a high number of true predic-
tions, systematic model dropout ensemble (SMDE) requires
the difference of the accuracy of the ensemble members to
be in an interval of 3%, which leads to a decrease in the
error rate of the model. In the proposed model, four ensemble
members were used prior to the SMDE. The SMDE, which
filters models according to SMDE rules, was developed
considering most of the factors in ensemble learning that
decrease the error rate in the predictions. A more detailed
introduction of the SMDE is presented in Section III. Each
step of this work presented valuable tools to develop an
accurate DL classification model for medical image clas-
sification. In this work, SMDE was developed, provided a
detailed view of the accurate prediction field (APF), and
used the representation of high-resolution image channels
(RHRIC) to increase the number of training images, which
resulted in 99.67% accuracy for the Malaria cell images
dataset. The result was advantageous differ from baseline
models as long as it reached too close to the perfect accu-
racy. Moreover, parts of the proposed model with demon-
strated effect can be used in different tasks. This work brings
the following contributions to medical image classification
area:

1) An increased amount of training data was obtained
using representation of high-resolution image channels
(RHRIC). Models were introduced with four times
more data than baseline models, which led to learning
more insights of the images than using RGB images
only.

2) A clear understanding of the behavior of the accurate
prediction field (APF) during improvements in model
and data representation. A detailed presentation of the

APF allowed the manipulation of the data to achieve
better results.

3) Using properties of systematic model dropout ensem-
ble (SMDE) to increase APF. Another crucial part of
the work is selecting the best possible combination of
ensembles to avoid the loss of APF. False predictions
of each model can transform the predictions of other
ensemble members into false predictions.

4) More accurate classification of the dataset. By combin-
ing all the abovementioned tools and methods, better
accuracy was achieved than the baseline models that
were pretrained with ImageNet.

Overview of the proposedmethod and short presentation of
the results of the proposed model was presented in Section I.
Section II included representation of the main ideas of the
relatedworks, initial motivation and the gaps in the researches
which lead to conduct the research. Section III illustrated
the detailed introduction of the proposed method including
comprehensive tools of the proposed method. Furthermore,
each part of the proposed method was illustrated graphically.
In-depth analysis of the experiments and results was cov-
ered in Section IV. In addition, evaluation metrics, dataset
for training and testing, baseline model, training setup were
introduced in this section. The last section gave conclusion to
the proposed method and conducted research.

II. RELATED WORK
Medical image analysis in DL is becoming a hot topic of
state-of-the-art research; depending on the research problem,
it primarily uses image segmentation and detection models
in addition to image classification. In recent years, many
machine learning [8], [9], and DL models [10], [11], includ-
ing convolutional neural networks (CNNs) [12], [13], and
recurrent neural networks, have been evaluated in image
classification tasks. To address the limitations of conventional
classification approaches, [14] proposed a novel ensemble
learning paradigm for medical diagnosis with imbalanced
data, which consisted of three phases: data preprocessing,
training base classifier, and final ensemble. Visual trans-
formers outperformed the residual neural network (ResNet)
in terms of accuracy on ImageNet. In addition, in [15],
the authors introduced a multilayer perceptron (MLP)-mixer
that proved that CNNs or an attention-based models are not
necessary. The MLP-mixer also used image patches as an
input but included two types of layers: one MLP applied
independently to each patch and another MLP applied across
image patches. [7] used feature fusion to merge data from
sensor data and electronic medical records, and only rele-
vant and meaningful data was chosen for further training
with the DL ensemble model. Modern healthcare systems
are likely to be major designers and purchasers of DL
goods. Qummar et al. [16] employed pretrained Resnet50,
Inceptionv3, Xception, Dense121, and Dense169 models and
ensembled them to achieve the best results in the field for
diabetic retinopathy identification. Unlike existing models,
the suggested ensemble model could predict all stages of
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diabetic retinopathy and outperformed them. The ensemble
of CNNs and deep residual neural networks is an effective
tool for hyperspectral image classification, outperforming
other state-of-the-art models [10]. Depending on the quality
of the dataset, each of the aforementioned models has dis-
tinct advantages. Unbalanced, complex, high-dimensional,
and noisy data are common research obstacles. Ensem-
ble learning [17] is a useful approach for addressing these
issues. Various methods, such as unified data fusion, mod-
eling, and mining, have been developed to help build mod-
els more effectively and get better outcomes. The ultimate
goal of all models was knowledge discovery and better
predicting results. Existing ensemble learning approaches
were divided into four categories to make it easier to
describe ensemble models: supervised ensemble classifica-
tions, semi-supervised ensemble classifications, clustering
ensembles, and semi-supervised clustering ensembles [18].
Reference [19] presented multi-label learning to improve the
results of drug-target interaction tasks performed with binary
classification models. Researchers demonstrated excellent
results in this work by facilitating multi-label categoriza-
tion with a community detection strategy for drug-target
interactions. The semi-supervised rotation forest technique,
proposed by Lu et al. [20], is an improved rotation forest
algorithm that uses semi-supervised local discriminant analy-
sis as a feature rotation tool. The gained knowledge of the dis-
criminative and local structural information of small labeled
and big unlabeled data samples was the cause for superior
results utilizing this technique. It was demonstrated that [21]
investigated the effect of image size on model accuracy.
In addition, many other researches [23], [24], [25] focused on
providing solution to the problems in the medicine using DL
tools and ensemble learning techniques. Reference [24] used
EfficientNetB0 architecture to prove that the architecture can
serve as reliablemodel to predict malaria cells in during blood
cells analysis. There are many ensemble strategies and meth-
ods [26] that are used in developing DL models. Unweighted
Model Averaging, Majority Voting, Bayes Optimal Classi-
fier, Stacked Generalization, Super Learner, Consensus and
Query-by-Committee strategies are used for most of the
models. Considering the importance of the generalization,
state-of-the-art fuzzy ensemble models were proposed in var-
ious applications of the AI. A fuzzy rank-based ensemble
of CNN models for classification of cervical cytology [27]
was proposed which ensembled three models during the
test set evaluation. Reference [28] conducted research on
human activity recognition using nonlinear fuzzy ensemble
of deep neural networks. The developed model’s ensemble
part consisted of implementation of fuzzy score generation
from Mitscherlich, Blumberg and Weilbull functions, calcu-
lation of gross rank score and gross confidence score, and
rewarding of classes. The model reached to 100% accuracy
overcoming all the baseline models for MHEALTH dataset.
Another research [29] presented ensemble of Inception V3,
VGG19, and MobileNet while using Sugeno integral method

for COVID-19 detection from X-ray images. Reference [30]
proposed a concise Takagi-Sugeno-Kang fuzzy ensemble
classifier for high-dimensional problems. The study inte-
grated improved bagging and dropout which improved the
trade-off between accuracy and interpretability in TSK fuzzy
systems. Also, the study transformed the high-dimensional
feature space into a series of low-dimensional feature random
subsets. Another research [31] presented ensemble of four
different pretrained models which applied three non-linear
functions for the prediction scores of the ensemble members.
Newly published surveys [32], [33], [34], [35] shows that het-
erogeneous ensemble learning models exploding on various
subfields of artificial intelligence. Turbidity in water treat-
ment plant is quit important task for different environmental
and public health perspectives. Reference [36] developed
neuro-fuzzy approach using two different optimizations of
fuzzy inference system (FIS). As a result, proposed model
increased the accuracy up 15% in test set. Reference [37]
proved that using fuzzy aggregation based ensemble can help
to reach accurate and stable feature selection. The framework
consist of three main parts: distribution generation of feature
importance, distribution ensemble using fuzzy aggregation,
and defuzzification for feature ranking. To detect broken
rotor bar in nonstationary environment [38] introduced an
ensemble-based fuzzy rough active learning approach which
includes an ensemble framework, fuzzy rough active learn-
ing, and drift detection. Another study [39] applied DL
classification to predict mental state of the person using
speech features. Authors used variety of the DL models,
including the Naive Bayes Network, SOTA algorithm, Fuzzy
Rule, Probabilistic Neural Network, Decision Tree, Gradi-
ent Boosted Tree, Random Forest, Tree Ensemble, and an
ensemble approach. Results of the experiments showed that
ensemble approach obtained higher accuracy than most of the
single models. It was stated that the ranking of the methods
depend on the choice of the training set and evaluation metric.
Heterogeneous ensemble models are being used in numerous
fields, including medicine. Especially, diagnosis of post brain
surgery injuries is considered as arduous task by most of the
professionals in the field. There numerous researches that
specialized in detecting, classifying diseases in different parts
of human body. One of the important part of the human
body is kidney that is in the study center of AI tools such as
ensemble learning. References [40], [41], [42], [43], [44], and
[45] applied different ensemble methods to identify the dis-
eases in the kidney. Reference [40] used C5.0, support vector
machine, Bayes, and XGBoost algorithms to develop ensem-
ble model and applied it to early prediction of acute kidney
injury in patients admitted to the neurological intensive care
unit. The other research [41] focused on detecting chronic
kidney disease which is considered as one of the most serous
health problem in the world. The study used dataset with
24 features and feed it to the AdaBoosting ensemble which
lead to 99% at early kidney disease detection. The same
field was studied in [42]. Homogeneous ensemble method
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FIGURE 1. Convolutional neural network model architecture.

applied in this research. The authors used weighted average
to ensemble the models for computer tomography images to
detect the disease. Despite advances of homogeneous ensem-
ble methods, there many heterogeneous ensemble methods
that overcome many homogeneous ensemble or sing mod-
els. Reference [46] presented effectiveness of the heteroge-
neous ensemble model for predicting protein-DNA binding
affinity. The method compared with six different methods
and obtained highest, 0.84%, average correlation coefficient
among them.

Reviewing the aforementioned research, a gap was found
in that none of the studies considered the effect of image
resolution and model dropout during ensemble could cre-
ate effective tools to add more power to the classifier. This
motivated us to develop a new model for medical image
segmentation.

III. PROPOSED METHOD
To address the research gap found in the literature review,
the ICNN-Ensemble model was proposed which effectively
managed the training and achieved the best results on the
dataset. Using images only in the RGB form is a classic
form of training, in which other tools and methods were
included to obtain more insights from the training data.
This study incorporated the advantages of many studies and
added effective tools to understand, evaluate, and manip-
ulate the training and testing data of the ICNN-Ensemble
model. The research focused on developing a general DL

FIGURE 2. Graphical illustration of proposed methodology. (Images from
Malaria cell images dataset were used to build the figure.)

FIGURE 3. Illustration of the effect of unique true prediction (UTP), using
Model A and Model B, on accurate prediction field (APF). (Images from
malaria cell images dataset were used to build the figure.)

classification model that should present better results than
most widely used pretrained models. The ICNN-Ensemble
consists of RHRIC, CNN model architecture, and SMDE.
In this section, detailed analysis and brief explanation were
provided for each of them. Another important point of this
work is the presentation of the reasons that explained why this
model achieved better results than baseline models’ results.
The first step included preparing RGB images for the first
model and applying RHRIC for the remaining three models.
The RHRIC step consist of separating the image channels
and creating three different datasets with only one image
channel out of the main dataset. Different image sizes pre-
sented different features to the model, which led to preferred
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FIGURE 4. Loss values of baseline models and ensemble members during the training and validation.

results for the datasets. In the study, considering the posi-
tive effect of image resolution, each one-channel image was
resized. Image channel sizes were changed to 224 × 224,
128 × 128, and 64 × 64 for the R, G, and B channels, respec-
tively. The ICNN-Ensemble model includes the following
steps:

• Preparing data and resizing them. In the experiments,
images of themain datasets were called, resized to 224×

224 × 3, and re-scaled dividing each pixel by 255. This
enabled a comparison of the dataset’s final classification
results with the pretrained model classification.

• Preparing the R channel of the images for the second
CNN model. Each image was called to the training
environment, resized to 224 × 224 × 3, and re-scaled
dividing each pixel by 255. Next, out of three channels
only the first R channel was chosen for the training.
The final image for the training had 224 × 224 × 1
shape or in a tensor form; image[:,:, 0] which presents
image with only the first channel. R channel images with

224 × 224 × 1 shape were saved for the training in the
next steps of the training.

• Preprocessing the G channel of the image. In this step,
the images were resized to 128× 128× 3, rescaled each
image pixel into [0,1] interval, chosen only G channel
of the image by using image[:,:, 1] tensor which finally
gave 128 × 128 × 1 image tensor for the training and
saved for the future usage in the training.

• Preparing the B image channels for the training. Initially,
the original images from the dataset was called and
resized to 64× 64× 3. In the next step, each image pixel
were rescaled into [0,1] interval, chosen only B channel
of the image by using image[:, :, 2] tensor which finally
gave 64× 64× 1 image tensor for the training and saved
for the future usage in the training.

• The next step was to feed the outputs of Steps 1, 2,3,
and 4 into the CNNmodels. The previous steps represent
the RHRIC, in which various image sizes were. In this
step, all the outputs of the RHRIC were separately fed
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FIGURE 5. Accuracy of baseline models and ensemble members during the training and validation.

into CNN models. The CNN models have the same
architecture as that described in Fig. 1. To distinguish
the input data, CNN models were designated as CNN1,
CNN2, CNN3, and CNN4, which used the main dataset,
R channel dataset, G channel dataset, and B channel
dataset, respectively. All datasets were trained.

• The SMDE was applied to the models trained on
four datasets. The SMDE checked for the following
conditions:
1) Did the model reach the highest accuracy?
2) Is it the main model that trained with main dataset?
3) b:=True: Is the accuracy of the model 4% less than

accuracy of the best model?
4) b:=False: Is the accuracy of the model 3% less than

accuracy of the best model?
• After checking the models for the SMDE conditions,
only those that satisfied SMDE conditions, were used
to develop the ensemble model. In this step, the optimal
models for ensembling were selected.

• The outputs of the previous step were ensembled using
appropriate prediction probabilities for the test. Let the
predictions for each dataset be denoted as P0,P1,P2,
and P3. Mi represents ith image of the test set. For each
of ith image in the dataset, the prediction was calculated
and added them in the following form: P0(Mi)+ =

P1(Mi) + P2(Mi) + P3(Mi).
• P0 was used to calculate the accuracy of the final step.
The shape of P0 was 2754 × 2, for 2754 images and two
classes.

This method was developed considering various factors
that help increase the APF and decrease errors in predic-
tions. Fig. 2 shows the architecture of the proposed model,
where four different inputs and training data of different sizes
were used for each CNN model. As described previously,
the images were separated into different channels and used
for training. The architecture of the CNN model is shown
in Fig. 1. Despite the simplicity of the CNN model and the
small number of training parameters, the model managed to
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transfer large amounts of insights from images into the final
classification layer for accurate classification. The rectified
linear unit (ReLU), softmax activation functions and max
pooling were used. Cross-entropy loss was used for the final
loss evaluation.

M (b) =
γ (b− mean(b))
√
var(b) + ϵ + β

. (1)

The goal of batch normalization is to keep the mean
output close to zero and the standard deviation close to 1.
Equation (1) presents batch normalization as a functionwhere
the input is a batch (b), and the output is the normalized form
of the input. γ , β, and ϵ are the small constant, learned offset
factor, and configurable constant, respectively.

ReLu = f (a) = max(0, a). (2)

σ (z)i =
ezi∑K
j=1 e

zi
(3)

Except for the final layer, all CNN model layers used the
ReLu activation function. The softmax function transforms
inputs into a probability distribution, whereas the ReLu
function returns the positive part of its inputs. Softmax
function (3) normalizes the vector z ofK class predictions into
K probabilities. The softmax function (3) takes the vector z of
the K class predictions and normalizes it into K probabilities.
The softmax function δ : RK → (0, 1)K , i = 1, . . .K and
z = (z1, . . . zK ) ∈ RK whereas K is greater than one.

Cross entropy loss =

v∑
i=1

yi log pi (4)

In (4), is the number of classes, y is the label of the input,
and p denotes the predicted values for the input.

An important part of this study is to understand the APF
and its effect on the model. The APF is the set of all true
predicted images and their indexes. If 10000 images were fed
to the model and obtained the prediction for the input, all true
predicted images and their indexes are chosen as APF. The
APF is affected by the unique true predictions (UTP) of each
model during ensembling. As given in (5), X is the prediction
scope of model X, and Y is the prediction scope of model Y.

UTP(X ,Y ) = X − X ∩ Y (5)

Increasing the number of accurate predictions was the main
goal of this study. To achieve this, the study focused on
understanding the behavior of the APF and manipulated it
using UTP. Initially, each image was marked with unique
indexes, for 10000 images, numbers from 1 to 10000 were
used as images’ indexes. The UTP represents a unique pre-
diction for each model with respect to the other. For instance,
model1 can truly predict the label of the images with indexes
[101-2000] whenmodel2 can give true predictions for images
with indexes [1001-10000]. In this example model1 has 19%
accuracy and model2 reached 90% accuracy. When UTP is
analyzed, model1 has advantage on predicting images from

index 101 to index 2000 and model2 cannot give true predic-
tions for images with indexes [101-2000]. In this example,
UTP(model1, model2)=100% which was explained with all
true predicted images of model1 wasn’t truly predicted by
model2.

Every model can include different true predicted images
from the same dataset. Fig. 3 illustrates the effect of UTP on
the APF. True predictions of each model can differ as they
represent different insights. To use this as a tool to enlarge
the APF, models were ensembled and analyzed their UTP.
If there were two Models A and B, and Model A had 95%
accuracy, and Model B had 94% accuracy, then Model A
can predict parasite image malaria cells more accurately than
Model B, and Model B can predict uninfected malaria image
cells better than model A. When the models were combined,
their prediction powers were combined as well. This allowed
us to predict both types of cells better than using only one
model. Another problem in ensemble models is the effect of
errors on the predictions of the ensemble. Existing features
that lead to incorrect predictions in the models can also
grow after ensembling them. To address this problem, SMDE
was developed. This carefully selects models for ensembling
and filters them based on specific requirements. Another
advantage of this work is that the models were trained with
the outputs of Steps 1,2,3, and 4. Subsequently, all training
processes were stopped and only testing included SMDE and
resulted in the ICNN-Ensemble model. Therefore, ICNN-
Ensemble achieved better results than expected and added
extra knowledge to the ensemble, decreasing the effect of
errors on predictions. Studying the behavior of the UTP
allowed us to manage the APF of the ensemble model, which
provided more opportunity to modify the model and obtain
better classification than with most pretrained models.

IV. EXPERIMENTS AND RESULTS
In this study, theMalaria cell images dataset was used to eval-
uate the proposed model. In this part of the study, accuracy
and UTP metrics were chosen to evaluate the experiments.
In this section, a comprehensive analysis of the experi-
ments and the results is provided. Furthermore, the section
includes the baseline models, training setup, and a detailed
presentation of the results.

A. DATASET
The Malaria cell images dataset1 is a dataset in the medi-
cal image classification field that provides valuable data for
DL classification and is considered one of the best datasets
to prove the effectiveness of medical image classification
models. Considering these factors, the dataset was used. The
collection contains 27558 infected and uninfected pictures.
The dataset is balanced and includes photographs of various
sizes, rather than images with normalized sizes. To conduct
the study, the photos were enlarged to 224 224 and rescaled
by 255. For the test set, 2000 photos were chosen, and

1https://lhncbc.nlm.nih.gov/LHC-downloads/dataset.html
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the remaining 25558 images were utilized for the training
and validation sets; the validation set was 10%. The dataset
of 27558 photos was divided into three separate datasets.
Each of the three datasets constructed featured only one
picture channel, deleting the other two channels from the
27558 photos. The first dataset was constructed using R chan-
nels from the 27558 photographs, the second using G chan-
nels from the 27558 images, and the third using B channels
from the 27558 images.

B. BASELINE MODEL
In this study, pretrained EfficientNetB0, NASNetMobile,
EfficientNetV2L, MobileNetV2, ResNet50 and Xception
models, and ConvMixer were used to compare the results and
analyze the impact of the proposed method. These models
are the most used in DL classification tasks because they
represent pretrained features of the ImageNet dataset and
easily reach accurate predictions. Themain goal was to obtain
a higher accuracy than that of these models.

C. TRAINING SETUP
Python 3.6.12 and TensorFlow 2.1.0 were used to develop the
CNN model architecture for the suggested method’s train-
ing. The trials were carried out using a 12 GB GeForce
RTX 3080 Ti with CUDA 10.2 on a PC with an Intel core-i9
11900F CPU and 64 GB of RAM. The model’s weights were
randomly initialized and trained for specific epochs during
training. The Adam optimizer with a default learning rate
of 0.001 and the cross entropy loss function were used to
train the ICNN-Ensemble. The model was trained using the
Malaria image cell dataset.

D. EVALUATION METRICS
To present comparable and useful results, the model was eval-
uated using accuracy, precision, recall and f1 score. The met-
rics weremainly chosen tomeaningfully explain themethod’s
achievements for the dataset. UTP was used, as described in
Section III, and accuracy metrics. The main goal of this study
is to achieve as high an accuracy as possible with minimal
loss of image knowledge during training. The accuracy was
defined as the ratio of the number of true predictions to the
total number of cases used to evaluate the model.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
. (6)

Precision =
TP

TP+ FP
. (7)

Recall =
TP

TP+ FN
. (8)

F1 score =
2 × Precision× Recall
Precision+ Recall

. (9)

TP represents true predicted positive outcomes, TN rep-
resents true predicted negative results, FP represents false
predicted positive results, and FN represents false predicted
negative results.

UTP(X ,Y ) = X − X ∩ Y (10)

TABLE 1. UTP of the models trained on ‘‘R’’,‘‘G’’, ‘‘B’’ image channels and
main dataset (MD).

FIGURE 6. Examples of test samples from the Malaria cell images
dataset. a and b belong to ‘‘Infected’’ and ‘‘Uninfected’’ classes,
respectively.

To present detailed explanation of the reasons and tools of
the research success, UTP was used. X and Y represents two
different models’ APF by including index of the inputs. The
exact role of the model in the field can be determine by
calculating the accuracy. F1, precision and recall scores helps
to find other gaps and includes practical insights to continue
the research for further developments.

E. EXPERIMENTAL RESULTS AND DISCUSSIONS
Our research primarily focused on improving accuracy and
maintaining a small model size. The baseline models have
millions of parameters that require a huge amount of time and
computation for training and testing. To propose an affective
light model with the highest accuracy, the APF was ana-
lyzed and UTP of the models used for the ICNN-Ensemble.
As presented in Table 1, each model trained on different
channels of the image had UTPs that differed from the other
models. These differences were very small. When they were
ensembled, the main part of the unique prediction delivered
to the ensemble model.

1) ERROR ANALYSIS
Fig. 6 presents some examples from the Malaria cell images
dataset where most of the base classifiers made wrong predic-
tions on the sample, but the proposed ensemble model made
correct prediction. Fig. 6a is a sample from the ‘‘Infected’’
class of the dataset, which is classified as ‘‘Uninfected’’
with 91% confidence by ICNN1, ‘‘Uninfected’’ with 88%
confidence by ICNN2, ‘‘Infected’’ with 100% confidence
by ICNN3, and ‘‘Infected’’ with 99.5% accuracy ICNN4.
Despite the low confidence and wrong predictions, SMDE
find a way to ensemble the ensemble members to reach true
prediction label with 99.75% confidence. Effective selec-
tion of ensemble members presented its advance in Fig. 6b.

86292 VOLUME 11, 2023



J. Musaev et al.: ICNN-Ensemble Model for Medical Image Classification

FIGURE 7. Test set evaluation of the baseline and proposed models using Malaria cell images
dataset. Acc., Pre., Rec., and F1 represents accuracy, precision, recall, and f1 scores,
respectively.

TABLE 2. Test set accuracy of the models using malaria cell images
dataset.

The image was taken from the ‘‘Uninfected’’ images in
the dataset. Nevertheless, ICNN3 classified it as ‘‘Infected’’
image with 100% confidence and ICNN4 classifies it as
‘‘Infected’’ with 98.1% confidence. But, the other two classi-
fiers, ICNN1 and ICNN2, classified it as ‘‘Uninfected’’ with
93% and 99% confidence. The role of SMDE in accurate
final predictions was demonstrated in this situation as well.
The proposed ICNN-Ensemble model predicted this image
as ‘‘Uninfected’’.

2) STATISTICAL ANALYSIS
To analyze the proposed model, McNemar’s [47] statistical
test was performed. McNemar’s test is a non-parametric anal-
ysis of the distribution of paired nominal data. The ‘‘p-value’’
represents the likelihood of two models being similar; con-
sequently, a lower p-value is preferred. The p-value must
be less than 5% to reject the null hypothesis that the two
models are similar. That example, if p-value < 0.05, we may
confidently conclude that the two models under study are
statistically distinct. The result of the performed statistical

TABLE 3. Results of the McNemar’s test performed between the
proposed ensemble model (ICNN-Ensemble) and the base learners used:
null hypothesis is rejected for all cases.

analysis showed that all the base classifiers are different than
ICNN-Ensemble model. Table 3 shows that p-value for all
ensemble members are equal to zero when p-values were
rounded to the nearest thousandth.

Combining the UTPs of each model led to a larger APF.
The APF is the main source of achieving high accuracy in the
model. All the baseline models achieved lower accuracy on
the dataset; however, their accuracies were suitable for many
fields. A classification accuracy of more than 90% is consid-
ered an effective model for implementation. Fig. 4 and Fig. 5
shows the loss and accuracy of the proposed and baseline
models. Analyzing them it can be seen that,in some cases,
there are overfitting and irregular trend of the accuracy.
Despite it, proposed method applied and obtained marvelous
results on test set. As shown in Table 2 and Fig. 7, proposed
model achieved 99.67% accuracy, whereas the other models
achieved an accuracy of approximately 95%. EfficientNetB0,
NASNetMobile, EfficientNetV2L, MobileNetV2 and Xcep-
tion reached around 94% accuracy on the given dataset.
Despite having huge amount of parameters, the models can-
not produce better outcomes than ICNN-ensemble. When
true positive predictions were examined, ResNet50 provided
the best prediction on true positives, with a precision score of
98%. When recall score of the models were studied, CNN3
presented the highest score outcoming all of the models.
F1 score were calculated to obtain stronger behavior of the
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TP, TN, FP, and FN. In this case, EfficientNetV2L with
119 mln trainable parameters reached the highest score. This
can be described with the help of UTP and APF changes.
All baseline models had an average of 10 times more train-
able parameters. With a very small model, the number of
inputs was increased and decreased incorrect predictions in
the ensemble model. To achieve these results, the proposed
model was divided into two-sections: training and testing.
The training part continued only up to the SMDE part of
the ICNN-Ensemble, while the test set went through all steps
of the ICNN-Ensemble. Nevertheless, the test set evaluation
required a smaller model than the training set because the
ineffective ensemble members were excluded. In addition,
only the best epoch from the training part of the model
was used. All of these factors yielded expected goal of the
study. Looking at the accuracies of the ensemble members,
ICNN1, ICNN2, ICNN3, and ICNN4, it can be seen that their
accuracies for fed input are lower than the accuracy of ICNN-
Ensemble model. By contrast, when SMDE was applied, the
results were improved. This can only be explained by the
positive effect of UTP on the APF, which yielded the highest
accuracy for the dataset.

V. CONCLUSION
The study proved that using UTP and enlarging the APF
can lead to a considerable change in the true predictions
of the model. Systematic dropout and its rules(SMDE) to
choose ensemble members were great tools for developing
the ICNN-Ensemble model, which reached a final accuracy
of 99.67%, outperforming all baseline models that were pre-
trained with one million images. None of the baseline models
could achieve the results of the ICNN-Ensemble, despite the
fact that the ICNN-Ensemble had amuch smaller size andwas
trained only with the Malaria cell images dataset. The dataset
contains less than 30000 images, and training with this num-
ber of images does not create the effect of a large dataset, such
as that with one million images. The obtained results can be
accepted as an outcome of the ICNN-Ensemble architecture.
There is still a gap that other research can address. It can be
tried to decrease the model size and, at the same time, obtain
better results on the dataset. In addition, a generalization
problem remains to be addressed: the model was not checked
on other datasets, and the tools in the ICNN-Ensemble should
be generalized.

In the future work we plan to use collective intelligence
for achieving higher accuracy of the DL classification-based
method by means of using user opinions in social media.
We will use ontology tools for building a social system
and consensus methods for integrating the user opinions.
This can help much in increasing the effectiveness of
classification [48], [49], [50].
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