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ABSTRACT Spectrum sensing vulnerabilities in cognitive radio networks can significantly degrade per-
formance. Most disruption attacks in the current literature involve spoofing of the free bands used for
sensing by making them appear busy. In this study, we proposed a different approach for sensing disruptions.
We examined the optimal strategy for an intelligent adversary with a given power to flip busy bands andmake
them appear free. The mechanism of sensing disruption was established by contaminating the noise power
measurements. This is illustrated by a two-step sensing scheme in which energy detection, in conjunction
with noise power estimation, is used by secondary users.We show that to flip busy bands, the optimal strategy
for sensing link disruptions is equal-power, and partial-band flipping. We demonstrated that the maximum
average number of missed detections can be derived under a constraint on power of the adversary. Through
analytical and numerical results, we demonstrated the effectiveness of our approach in terms of the impact
of disruption attacks on spectrum sensing.

INDEX TERMS Cognitive radio, sensing disruption, intelligent adversary, partial-band jamming, full-band
jamming, noise power estimation.

I. INTRODUCTION
As is well known, cognitive radio networks (CRNs) are tech-
nologies to address the challenge of efficiently utilizing the
spectrum [1]. It allows unlicensed secondary users (SUs) to
utilize the spectrum without causing excessive interference
to licensed primary users (PUs) [1], [2]. To accomplish this,
SUs typically perform Spectrum Sensing (SS), to detect the
presence of PUs. Many detection schemes have been studied
to sense the band of interest, such as energy detection (ED),
matched filter detection and cyclostationary detection [3], [4].
The ED is commonly used because of its simplicity of imple-
mentation [1], [3], [4]. However, one of the limitations of the
ED is its unknown noise power level [1], [3], [5]. Therefore,
the combination of ED and the estimated noise power has
been extensively studied [6], [7], [8]. In [6] and [8], noise-
only samples were obtained from an outdated (i.e., previous)
sensing duration and the noise power was estimated. This
is referred to as the estimated noise power (ENP) stage.
Reference [8] is for a cooperative spectrum sensing sce-
nario, whereas Reference [6] is for an individual spectrum
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sensing case. Another way to obtain noise-only samples is
through a training phase, as proposed in [7], where the per-
formance achieved is near-optimal. In general, limitations of
detection schemes can be exploited by adversaries to disrupt
the SS. This underscores the critical importance of developing
strategies to effectively examine these malicious activities.

A. BACKGROUND AND RELATED WORKS
The use of SS presents a new opportunity for an adversary to
attack CRNs [9], [10], [11]. The types of attacks in sensing
disruption can be spectrum sensing data falsification (SSDF)
or Primary User Emulation (PUE). First, in SSDF attacks,
the adversary acts as the SU, sending a malicious mimic
signal to mislead the global decisions. Typically, an adversary
conducts SSDF attacks with the objectives of vandalism,
exploitation, or both [12]. The objective of vandalism is to
increase fake reports about busy bands to the Fusion Cen-
ter (FC). However, the exploitation objective is to increase
false reports regarding the free bands in the FC [9].

The second class is PUE attacks. In this case, the adver-
sary attacks during the SU sensing slot, which is referred
to as ‘‘sensing disruption,’’ and it is the focus of this study.
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In [13], the feasibility of PUE attacks in CR was analyzed,
whereas [14] considered the impact of PUE on CRN perfor-
mance. One example of a PUE attack is spoofing, in which
an adversary sends a Gaussian signal to the free bands. The
goal is to launch an optimal sensing disruption with a given
power, to provide the worst-case performance for SS systems.
In [15] an optimal spoofing strategy under additive white
Gaussian noise with a power-limited adversary was derived,
which was later extended in [16] to different fading chan-
nels. The authors of [17] propose a framework for disrupting
spectrum sensing by a power-limited adversary that considers
uncertainties in the adversary’s estimates. The common goal
of sensing disruption discussed in [15], [16], and [17] only
includes spoofing free bands. Another example of a PUE
attack is presented in [18], which is modeled as a zero-sum
game between the adversary and the SU, with the assumption
that the players know the availability probabilities Neverthe-
less, detailed information about the countermeasures against
SSDF and PUE attacks can be found in [9], [10], and [11].

B. MOTIVATION AND CONTRIBUTION
The primary focus of this paper is to investigate the sens-
ing disruption caused by a power-limited adversary. Power-
limited adversaries are relevant to various applications, such
as unmanned aircraft, wireless sensor networks, vehicu-
lar networks, and Cognitive Internet-of-Things (CIoT). The
implications of sensing disruption go beyond academic inter-
ests, as they can pose threats and danger to the general
public, such as terrorism, vandalism, and other intentional
crimes.

Another motivation is to concentrate on an intelligent
adversary targeting busy bands and flipping them so that they
appear to be free. Despite their significance, these flipping
attacks have received limited attention in the existing litera-
ture, which primarily focuses on sensing disruptions of free
bands to make them seem busy to the SUs (i.e., spoofing
attacks). Flipping attacks pose significant harm to CRNs [2]
in two ways. These malicious attacks may cause interference
between SUs and PUs, contradicting the core principle of
CRNs. Additionally, these attacks can result in the incorrect
classification of the bands, leading to reduced network per-
formance and potential system failure. To the best of our
knowledge, the problem of optimally flipping busy bands
with a given total power remains unresolved. In fact, the
authors of [10] highlighted the need for further investigation
of this type of attack.

The contribution of this paper is summarized below:
• First, we propose a framework that addresses the

problem of spectrum sensing vulnerability by con-
taminating the noise power measurements at the SUs.
This contamination reduces the measurement accuracy,
resulting in missed detections of busy bands at SUs.

• Next, we employ a two-step sensing model in the pres-
ence of an adversary. In this model, we show the ana-
lytical probability of missed detections for ED-ENP.
The proposed approach models the transmitted signal

generated by an adversary as a complex Gaussian ran-
dom process.

• Finally, we demonstrate that the optimal strategy for
an adversary to disrupt spectrum sensing is equal-
power allocation, which maximizes the average num-
ber of missed detections. This strategy represents the
worst-case scenario for the two-step sensing scheme.

C. STRUCTURE
The outline of the paper is as follows: Section II presents
the system model and general formulation. The optimal strat-
egy for flipping busy bands is described in Section III. The
numerical results are presented in Section IV, and Section V
concludes this paper.

II. SYSTEM MODEL AND GENERAL FORMULATION
We examine the impact of an adversary on a CRN where
there are at least U SUs that adopt an energy detector in
conjunction with the estimated noise power (ED-ENP). Note
that the adversary intends to disrupt the sensing slot. We set
the spectral range of interest to consist of U bands. The
decision to consider the U bands as the same number of SUs
aims to achieve a worst-case analysis.

The U bands can be divided into PUs and SUs. Fur-
thermore, SUs have two sets of bands: a set of sensed-free
bands (Bfree) and a set of sensed-busy bands (Bbusy). It is
well known that ED is the simplest detection scheme; how-
ever, it is necessary to estimate the noise power level accu-
rately [1], [3], [5], [6]. In [6], a two-step detection schemewas
implemented, and the noise power level was estimated. This
scheme uses a sophisticated detector to determinewhether the
PU is present; whenever the PU is not sensed to be present,
the scheme estimates the noise power level. However, this
approach motivates an intelligent adversary to contaminate
(i.e., jam) these noise estimates, potentially disrupting the
performance of the CRN.

In Section II-A, we discuss the two-step sensing protocol
presented in [6]. The performance of an energy detector
with estimated noise power when an adversary is present
is evaluated in Section II-B. The assumptions regarding
the knowledge available to an intelligent adversary and the
framework of the attacks are presented in Section II-C.

A. TWO-STEP SENSING
The two-step sensing procedure is proposed in the IEEE
802.22 [19] and ECMA 392 [20] standards, which use spo-
radic long sensing periods (SPs) for fine sensing, and more
frequent short SPs for fast sensing, as illustrated in Fig.1.
A detailed description of the two-step detection scheme is
shown in Fig.2, where a high-precision detection algorithm
such as a feature detector is employed in the fine-SP mode.
If a given band is sensed as being free during the fine-SP
mode, the noise power level is estimated. These bands are
denoted as BENP. A simple radiometer was implemented in
the fast-SP mode. Therefore, the bands that are sensed as free
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FIGURE 1. The proposed Two step sensing in the IEEE 802.22 scheduling
mechanism [19].

FIGURE 2. Two-step Detection scheme of the kth SU that is proposed
in [6].

can be expressed as Bfree = BENP ∪ Bfast , where Bfast is the
set of sensed-free bands in the fast-SP mode.

Based on [19] and [20], the SUs in the network are either
in fine-SP mode or fast-SP mode. The rationale behind this
was to avoid measurements of overlapping for the SUs. Note
that various key parameters of the system, such as sensing
schedule and type of sensing, are publicly known [19], [20].
Therefore, an adversary can be aware of this sensing mecha-
nism and use this information to degrade the performance of
the CRN.

B. PERFORMANCE OF AN ENERGY DETECTOR WITH
ESTIMATED NOISE POWER (ED-ENP)
The detection of a signal in an AWGN channel was inves-
tigated in [21]. The energy of the received waveform at the
k th band (i.e., the k th SU), rk (t), was measured over the
bandwidthW and approximated as follows:

2
N0

∫ T

0
[rk (t)]2 dt ≈

1

σ 2
k,n

N∑
i=1

∣∣∣y(k)i ∣∣∣2 = Y (k)
ED , (1)

where N0 is the one-sided noise PSD and σ 2
k,n = N0W . The

summation in (1) from [21] was approximated as a Gaussian
statistic; therefore, we have the following detection problem:

H0 : y(k)i = n(k)i
H1 : y(k)i = x(k)i + n(k)i , (2)

where x(k)i is the i-th signal sample, the noise samples
n(k)i ∼CN(0, 2σ 2

k,SS ) are i.i.d., and H0 and H1 are the ‘‘signal
absent’’ and ‘‘signal present’’ hypotheses, respectively. The
ED test statistic, Y (k)

ED , has either a central chi-square
(
χ2
)

probability density function (PDF) with 2N degrees of free-
dom (DOF) or a noncentral χ2 PDF with 2N DOF [21]. For
a given desired probability of a false alarm, denoted as pDESFA ,
threshold K was set based on the Neyman-Pearson criterion.
This is only possible if the noise power is known [1], [3], [4].
If the SU estimates the noise power, the presence of an
intelligent adversary can contaminate the estimate. Therefore,
the test statistic of ED-ENP for the k th SU can be derived
by modifying the result of [6], to include the presence of an
intelligent adversary, as shown below:

Y (k)
ED−ENP =

1

σ̂ 2
k,A

(
1
2N

)∑N

i=1

∣∣∣y(k)i ∣∣∣2K
=
Y (k)
ED

σ̂ 2
k,A

=

(
1
2N

)∑N
i=1

∣∣∣y(k)i ∣∣∣2
1
2M

∑M
i=1

∣∣∣n(k)
−i + αk j

(k)
−i

∣∣∣2K , (3)

where M = WTfine is the number of samples in the fine-
SP mode, and N = WTfast is the number of samples in
the fast-SP mode, Tfine is the fine-SP time interval, and Tfast
is the fast-SP time interval. Also note that the term σ̂ 2

k,A in
(3) is a maximum likelihood estimate (MLE) of the noise
power. For simplicity, we assume that the samples yi for
i < 0, are those in which the SUs estimate the noise power.
In this way, y−i is described as an outdated sample, where
ideally it contains only the ‘‘noisy sample’’ (i.e., the noise
and adversary samples only), and is given by, n−i +

√
αk j−i,

for i = {1, ..,M}. The thermal noise after the bandpass filter
is modeled as zero-mean complex additive Gaussian noise at
the k th band (i.e., ∼CN

(
0, 2σ 2

k,n

)
). The adversary and the

noise signals are assumed to be independent of each other.
In addition, the adversary signal after the bandpass filter is
distributed as∼CN

(
0, 2αkPk,A

)
, and is transmitted to the k th

allowable (i.e., free) band during the fine-SP mode, where αk
is the path loss factor between the intelligent adversary and
the k th SU. Also, note that the term Pk,A is the power of the
adversary signal in the k th band. We assume that the path loss
factor, αk , is constant across all bands (i.e., αk = α) and is
assumed to be known to the adversary. This assumption is
common in the literature on CRN attacks and examples can
be found in [9] and [11]. It can be shown that for a long
observation interval, σ̂ 2

k,A ∼ χ2 with 2M DOF and a scale
parameter equal to σ 2

k,ENP [22].
One of the popularmodels used in the literature [1], [3], [6],

assumes that the PU signal is a Gaussian signal, with a PDF
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of ∼ CN(0, 2Sk ), where 2Sk is the power of the PU signal on
the k th band and the signal-to-noise-ratio (SNR) is denoted
by γk ≜ S/σ 2

k,SS of the PU in the k th band.
Because both σ̂ 2

k,A and Y
(k)
ED have a central chi-square distri-

bution, the ratio of these two distributions in (3), with proper
scaling, is a central F-distribution [6], [23], [24]. There-
fore, the false alarm probability of ED-ENP, p(k)FA,ED−ENP,
and the detection probability of ED-ENP, p(k)D,ED−ENP, can be
expressed as regularized incomplete beta functions as shown
below [25]:

p(k)FA,ED−ENP = Pr
{
Y (k)
ED−ENP > K |H0

}
= B̃

(
M ,N ,

1
Kw+ 1

)
, (4)

p(k)D,ED−ENP = Pr
{
Y (k)
ED−ENP > K |H1

}
= B̃

M ,N ,
1

K
(

w
(1+γ )

)
+ 1

 , (5)

where B̃ (u, v, z) =
1

B(u,v)

∫ z
0 x

u−1 (1 − x)v−1 dx, B(u, v) is
defined as the beta functionB (u, v) = 0 (u) 0 (v) /0 (u+ v),
and w (N/M)

(
σ 2
k,ENP/σ

2
k,SS

)
. For large N and M , the prob-

abilities p(k)FA,ED−ENP in (4) and p(k)D,ED−ENP in (5) can be
expressed using a Gaussian approximation as follows [25]:

p(k)FA,ED−ENP ≈ Q

 K −
σ 2
k,SS

σ 2
k,ENP

σ 2
k,SS

σ 2
k,ENP

√
M+N
MN



= Q

 K
σ 2
k,SS

σ 2
k,ENP

√
M+N
MN

−
1√
M+N
MN

 , (6)

p(k)D,ED−ENP ≈ Q

 K −
σ 2
k,SS

σ 2
k,ENP

(1 + γ )

σ 2
k,SS

σ 2
k,ENP

(1 + γ )

√
M+N
MN



= Q

 K
σ 2
k,SS

σ 2
k,ENP

(1 + γ )

√
M+N
MN

−
1√
M+N
MN

 .

(7)

It is challenging to design a detector if the PU signal has an
unknown deterministic waveform. However, the probability
of detection can be approximated as in (7) if the PU SNR
is in the low-SNR regime (for more details, see [6]). Note
that the false alarm probability is similar to that of detecting
a Gaussian signal because no PU is present. Therefore, for
the remainder of this paper, we consider only the case of a
PU signal as a complex Gaussian waveform.

Note that the noise power of the k th SU during the fine-SP
mode is equal to σ 2

k,ENP = σ 2
k,n

(
1 + αkPk,A/σ 2

k,n

)
, whereas

the noise power during the fast-SP mode is σ 2
k,SS = σ 2

k,n.
If there are no attacks (i.e., Pk,A = 0), then σ 2

k,ENP = σ 2
k,n.

However, a perfect estimate of noise power is impossible
in two-step sensing (i.e., σ 2

k,ENP ̸= σ 2
k,n) [1], [5], [6]. This

implies that there is some residual error when estimating σ̂ 2
k,A.

In [5], the approach used is a more practical model; that is, the
noise process is assumed to be Gaussian, but the variance is
off by some factor. As in [5], we canmodel the same approach
for two-step sensing because Y (k)

ED−ENP is also approximately
a Gaussian random variable, and we can say that the ratio
σ 2
k,SS/σ

2
k,ENP can be bounded, as σ 2

k,SS/σ
2
k,ENP ∈ [1/ρk , ρk ],

for any positive value of ρk , where ρk is a parameter that
quantifies the size of the residual error value of the ratio
between σ 2

k,SS and σ 2
k,ENP. When ρk = 1, robust detection

can be achieved. For ρk ̸= 1, the robustness of detection
cannot be achieved at SUs [1], [2], [5], [6] in a low SNR
regime. Therefore, a noise uncertainty problem may arise in
the detection scheme. Even if the SU observes an infinite
number of samples, the robustness of the detection cannot
be guaranteed because of a phenomenon known as the SNR
wall [5]. The SNRwall is defined as theminimumvalue of the
SNR at which it is impossible to detect values below it, even
when the number of observed samples approaches infinity.

For simplicity, we assume that the actual noise variance
is identical across all bands, that is σ 2

k,n = σ 2
n . Therefore,

the residual error is also the same across all the bands, which
means ρk = ρ. In addition, the SNR of the PUs is assumed to
be the same across all the bands so that γk = γ . All of these
assumptions lead to a more tractable solution.

Note that even in the absence of an adversary, there will
be missed detections of the busy bands owing to the resid-
ual error from estimating the noise power, the probability
of which is 8pMD = 1 − min

σ 2
k,ss/σ

2
k,ENP∈[1/ρ,ρ]

p(k)
D,ED−ENP =

1 − Q

(
K−(1+γ )/ρ

(1+γ )/ρ

√
M+N
MN

)
=

(
K−(1+γ )/ρ

(1+γ )/ρ

√
M+N
MN

)
, where 8 (·) is

the cumulative distribution function of the standard normal
distribution. For the remainder of this study, we express

8pMD =

(
K−(1+γ )/ρ

(1+γ )/ρ

√
M+N
MN

)
.

C. FRAMEWORK FOR FLIPPING ATTACKS
We assume that the intelligent adversary knows the receiver
structure, type of standard, sensing time, desired probability
of false alarm of the SUs, pDESFA , and status of the U bands.
Additionally, to ensure the adversary’s goal of flipping as
many bands as possible, we assume that all the U bands are
ENP bands. ENP bands refer to the available free bands dur-
ing the fine-SP mode. These U bands should be the same in
number as the SUs, as seen in [15], [16], and [26]. The adver-
sary cannot precisely estimate/learn all of the aforementioned
information that is assumed above. However, it is commonly
assumed in the literature [15], [16], [17], [18], [26] that the
adversary has full knowledge of at least some information.
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Therefore, the results of this study present a worst-case anal-
ysis and provide an upper bound for the SS disruption.

Note that the number of missed detections of busy bands
is equivalent to the number of flipped bands. This occurs
because a missed detection happens when the PU signal is
not detected, which can be caused by inaccurate noise power
estimation. When the adversary contaminates the estimated
noise power, the band is flipped, resulting in it no longer being
considered busy by the PU. Our main focus is on determining
the average number of missed detections, denoted by Bf .
Lemma 1:Let us now define qk as the probability of missed

detection in the k th band. In addition, let B = {1, 2, 3, . . . ,U}

be the set of bands available for sensing, and initially assume
that all of them are busy when the SUs sense them in fast-SP
mode (i.e.,

∣∣Bbusy∣∣ = U ). Then, Bf can be expressed as the
sum of the individual missed detection probabilities for each
band, as shown below in (8):

Bf =

∑U

k=1
qk (8)

Proof: Let Xk (k = 1, 2, . . . ,U ) be a binary random
variable, such that Xk = 1 indicates that the k th band is
successfully flipped to be free, and Xk = 0 indicates that the
attempt to flip the k th band was unsuccessful (i.e., sensed to
be busy). Therefore, the expected value of the sum of Xk over
all k values was the average number of missed detections.

Bf = E
{∑U

k=1
Xk

}
=

∑U

k=1
E {Xk} =

∑U

k=1
qk (9)

■
The objective of the adversary in the flipping attacks with a
total power PA, is to maximize the average number of missed
detections of the SUs during the fast-SP mode, subject to the
adversary contaminating the ENP bands during the fine-SP
mode. Hence, we have the following optimization problem:

max
pk,A∀k∈{1,...U}

∑U

k=1
qk ,

s.t Pk,A ≥ 0, ∀k ∈ {1, ..U} ,
∑U

k=1
Pk,A = PA. (10)

A defense strategy for SUs is to employ a more robust
detector in the fine-SP mode. However, implementing this
strategy comes at the cost of a longer sensing period, resulting
in a reduced throughput.

III. FLIPPING OPTIMIZATION
In this section, we analyze the optimal strategy for sensing
link disruption under the assumption that both the number
of ENP bands and the number of busy bands equals U , the
total number of bands.We then consider a more realistic case,
in which the number of ENP bands differs from the number
of busy bands.

A. OPTIMAL SENSING DISRUPTION FOR FLIPPING
ATTACKS
As discussed earlier, from (7), we can directly determine that
the flipping probability is equivalent to qk , which can be

shown to be

qk = 1 − p(k)D,ED−ENP

= 8

 K −
σ 2
k,SS

σ 2
k,ENP

(1 + γ )

σ 2
k,SS

σ 2
k,ENP

(1 + γ )

√
M+N
MN



= 8

 K

1(
αPk,A

σ2n
+ρ

) (1 + γ )

√
M+N
MN

−
1√
M+N
MN

 . (11)

The spoofing probability pk , from (6), can be expressed as,

pk = p(k)FA,ED−ENP = Q

 K −
σ 2
k,SS

σ 2
k,ENP

σ 2
k,SS

σ 2
k,ENP

√
M+N
MN

 . (12)

From (12), the adversary should increase σ 2
k,SS to spoof

free bands. In other words, the adversary should jam dur-
ing the SP-fast mode, similar to the techniques described
in [15], [16], and [17]. It is evident that there exists a trade-off
between spoofing and flipping attacks.

By substituting (11) into (10), we formulate the optimal
sensing link disruption as follows:

max
pk,A∀k∈{1,...U}

∑U

k=1
8

 a
1

(Pk,A+ρ)
(1 + γ )

+ b

,

s.t Pk,A ≥ 0, ∀k ∈ {1, ..U} ,
∑U

k=1
Pk,A = PA, (13)

where a ≜ K√
M+N
MN

, and b ≜ −1√
M+N
MN

. The optimization prob-

lem in (13) is convex, because the objective and inequality
constraints are both convex [27]. Using the Karush–Kuhn–
Tucker (KKT) conditions, the optimal power flipping alloca-
tion of (12) yields the following solution:

P∗
k,A =

{
PA
u , k∈ ϕA

0, otherwise
, (14)

where ϕA ≜
{
k|λ ∗

k = 0,P∗
k,A > 0

}
are the flipped bands

caused by the adversary’s flipping power, and λ ∗
k is the

Lagrangian multiplier. Note that u is the number of flipped
bands (See Appendix A).

The technique described in (14) is known as uniform
power allocation and is widely employed, as seen in previous
works [14], [15], [16]. However, the key distinction lies in the
result of the approach, which involves flipping the busy band,
whereas the other techniques spoof the free bands. Addi-
tionally, in (14), from the adversary’s point of view, equal
flipping power allocation is optimal because the adversary
is not aware of the system parameter values, in particular,
a, b, γ , and ρ for each band.
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B. OPTIMAL NUMBER OF FLIPPED BANDS
The optimal number of flips in (14) is unclear. To see this,
let the value of the objective function given in (13) for
the optimal solution given in (14) as a function of u be
as follows:

f (u) = (U − u) 8

(
aρ

(1 + γ )
+ b

)

+ u8

a
(

αPA
uσ 2

n
+ ρ

)
(1 + γ )

+ b

 . (15)

Then, the terms in (15) can be interpreted as the probability
of a missed detection in each band, multiplied by the number
of occurrences of each. This probability is enhanced by the
inaccuracy of the noise power estimate and/or the presence
of an adversary. We now replace u with the real continuous
variable x (i.e., x ∈ R+). The extreme-value theorem in [28]
states if f (x) is continuous on a closed interval [1,U ], it must
hit its maximum and minimum on that interval. To find the
extreme point x∗, we solve f ′ (x) = 0. Thus, the optimal
number of flipped bands u∗, is ⌊x∗⌋ or ⌈x∗⌉. The derivative
of f (x) is given by (16):

f ′ (x) = 8

 a
(
α PA

σ 2
n

)
(1 + γ ) x

+
aρ

(1 + γ )
+ b

−pMD

−

a
(
α PA

σ 2
n

)
(1 + γ ) x

√
2π

e

−
1
2

 a

(
α
PA
σ2n

)
(1+γ )x +

aρ
(1+γ )

+b


2

. (16)

Note that setting f ′ (x) = 0, results in a nonlinear equation,
which means that the expression x∗ cannot be derived
directly. However, the result in Appendix B shows that
f ′ (x) > 0, for 0 ≤ x < ∞ (i.e., f (x) continuously
increases as x increases for x > 0). In other words, when
the number of flipped bands increases, the average number
of missed detections also increases. Note that, while the
adversary attacks the ENP bands during the fine-SP mode,
the consequence of flipping busy bands is observed during
the fast-SP mode. Previously, it was assumed that ENP and
busy bands were the same as the total number of bands.
Because this will not always be the case, we now evaluate
the case in which |BENP| and

∣∣Bbusy∣∣ are different. As a
result, x∗ is upper bounded by |BENP| or

∣∣Bbusy∣∣, depend-
ing on which of them is smaller. This can be expressed as
follows:

-When |BENP| ≥
∣∣Bbusy∣∣, then x∗ is upper bounded

by
∣∣Bbusy∣∣, because it is impossible to flip more than number

of busy bands, regardless of how many bands the adversary
attacks. If PA is sufficiently large to contaminate all ENP
bands (i.e., P∗

k,A ≤ PA/
∣∣Bbusy∣∣), the optimal strategy is

full-band flipping. That is, the flipping power is identically

distributed and can be expressed as:

f
(
x∗
)∣∣
x∗=|Bbusy|

=
∣∣Bbusy∣∣8

a
(

αPA
|Bbusy|

+ ρ
)

1 + γ
+ b

 .

(17)

However, if the number of busy bands increase, the result is
flipping a portion of the busy bands (i.e., partial-band flip-
ping). This case can be mathematically expressed as follows:

f
(
x∗
)∣∣
x∗<|Bbusy|

= x∗8

a
(

αPA
σ 2
n x∗

+ ρ
)

1 + γ
+ b


+
(∣∣Bbusy∣∣− x∗

)
pMD. (18)

-When |BENP| <
∣∣Bbusy∣∣, the adversary’s goal is to flip

all busy bands, but this cannot be done because the adver-
sary cannot contaminate more than the ENP bands. Thus,
x∗ cannot be greater than |BENP|, which shows that the attack
strategy is partial-band flipping. From Appendix B, f (x)
continuously increases as x increases for x ≥ 0; thus, the
maximum of f (x) is achieved when x∗

= |BENP|, as shown
below:

f (x) = |BENP| 8

a
(

αPA
σ 2
n |BENP|

+ ρ
)

(1 + γ )
+ b


+
(∣∣Bbusy∣∣− |BENP|

)
pMD. (19)

Based on the analysis provided, we can conclude that it is
impossible for SUs to be flipped more than the number of
busy bands, whereas the adversary cannot contaminate more
than the number of ENP bands. Therefore, the maximum
average number of missed detections Bf , is given by

Bf = u∗8

a
( (

αPA/σ 2
n
)

u∗ + ρ

)
(1 + γ )

+ b

+
(∣∣Bbusy∣∣− u∗

)
pMD.

(20)

Overall, the ratio
(
αPA/σ 2

n
)

u∗ in (20) plays an important role in
the optimal strategy for sensing link disruption. Furthermore,
with sufficiently large adversary power, full-band flipping
is optimal, as long as |BENP| ≥

∣∣Bbusy∣∣. Otherwise, the
partial-band flipping is optimal.

C. AVERAGE NUMBER OF MISSED DETECTIONS DUE TO
THE PRESENCE OF THE ADVERSARY
In the absence of an adversary (i.e., u∗

= 0 ), the aver-
age number of missed detections in (20), caused by the
residual error from estimating the noise power, is equals to∣∣Bbusy∣∣ pMD. To demonstrate the effect of flipping attacks
dominated by the adversary, we define the average number
of missed detections primarily because of the presence of the
adversary as

1Bf = Bf −
∣∣Bbusy∣∣ pMD. (21)
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FIGURE 3. Optimal number of flipped bands u∗ versus the number of
busy bands

∣∣∣Bbusy

∣∣∣: ∣∣BENP
∣∣ = 20. (b)

∣∣BENP
∣∣ = 40.

When we substitute Bf in (20) into (21), we have

1Bf = u∗

8

a
(
PA
u∗ + ρσ 2

n /α
)

σ 2
n /α (1 + γ )

+ b

− pMD

 . (22)

Here, in the case of partial-band flipping,1Bf is proportional
to the adversary power, PA, and can be expressed as:

1Bf =
aPA

(1 + γ ) σ 2
n /α

√
2π

e
−

1
2

(
a(c∗+ρσ2n /α)

σ2n /α(1+γ )
+b
)2

. (23)

To illustrate the intuition behind (23), consider (16) and
define c∗ = PA/x∗. This allows us to express the derivative
of the function f ′ (x∗) as:

f ′
(
x∗
)

= 8

a
(
c∗ +

ρσ 2
n

α

)
σ 2
n

α(1+γ )

+ b

− pMD

−
ac∗

(1 + γ ) σ 2
n /α

√
2π

e
−

1
2

(
a(c∗+ρσ2n /α)

(1+γ )σ2n /α
+b
)2

. (24)

FIGURE 4. Optimal number of flipped bands u∗ versus the number of
busy bands

∣∣∣Bbusy

∣∣∣ : (a) γ = −3dB. (b) γ = 3dB.

If at f ′ (x∗) = 0, then (24) can be simplified as:

8

(
a
(
c∗ + ρσ 2

n /α
)

σ 2
n /α (1 + γ )

+ b

)
− pMD

=
(ac∗) e

−
1
2

 a

(
c∗+

ρσ2n
α

)
(1+γ )σ2n

α

+b


2

(1+γ )σ 2
n

α

√
2π

. (25)

In (25), whenN ,M , γ , ρ, α, σ 2
n , and p

DES
FA are fixed, then c∗ is

determined. Moreover, the optimal flipping power required
for each of the flipping bands mentioned in the previous
section is equivalent to c∗. Recall that ⌊x∗⌋ or ⌈x∗⌉ is equal
to u∗, a positive finite number that can be expressed as,
u∗

= PA/c∗. Finally, substituting (25) into (22), we obtain:

1Bf = PA/c∗

 ac∗

(1 + γ ) σ 2
n /α

√
2π

e
−

1
2

(
a(c∗+ρσ2n /α)

(1+γ )σ2n /α
+b
)2

=
aPA

(1 + γ ) σ 2
n /α

√
2π

e
−

1
2

(
a(c∗+ρσ2n /α)

(1+γ )σ2n /α
+b
)2

. (26)
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FIGURE 5. Optimal number of flipped bands u∗ versus PA: (a) γ = 0dB.

(b) γ = 3dB.

In conclusion, for the case |BENP| >
∣∣Bbusy∣∣, the adversary

will not utilize more power than c∗ in each ENP band. If the
adversary has excess power, it would look for more ENP
bands to contaminate until all the ENP bands are contami-
nated. In the other case, when |BENP| <

∣∣Bbusy∣∣, according
to the discussion in Section III-B, the optimal number of
flipped bands cannot be greater than |BENP|. Even when the
adversary increases the flipping power, there are no additional
contaminated ENP bands.

IV. NUMERICAL RESULT
In this section, the optimal sensing disruption technique
is demonstrated through numerical simulations. The adver-
sary performs equal power flipping across the ENP bands
because there is no knowledge of the system parameters
such as N , M , γ , pDESFA , and ρ. We employed equal power
flipping with varying system parameter values to evaluate
flipping optimization. Without loss of generality, we assume
that σ 2

n = 1 and α = 1. Finally, it is desirable to
compare flipping attacks with existing sensing disruptions.

FIGURE 6. Optimal number of flipped bands u∗ versus PA for different
values of: (a) N . (b) M.

However, the unconventional nature of flipping attacksmakes
it difficult to formulate a single metric that simultaneously
incorporates both spoofing and flipping.

A. OPTIMAL NUMBER OF FLIPPED BANDS
We demonstrate how the optimal number of flipped bands,
u∗, varies with

∣∣Bbusy∣∣ for different values of |BENP|, γ ,
and PA. Fig.3 shows u∗ versus

∣∣Bbusy∣∣, where the curves are
parameterized by PA for various ENP bands. The remaining
system parameters are set as follows: pDESFA = 0.05, ρ = 1,
N = 100 and M = 10N . In Fig.3, each curve exhibits a
knee, that shows a shift from full-band flipping to partial-
band flipping. The region to the left of the knee indicates
that u∗ equals the number of busy bands. As discussed in
Section III, if the number of ENP bands is greater than the
number of busy bands, and the adversary has sufficient power
to contaminate the ENP measurements of the available SUs,
the optimal strategy is to flip all busy bands. To the right
of the knee, we have

∣∣Bbusy∣∣ > |BENP|; thus, u∗ is upper
bounded by |BENP|, and even if the flipping power increases,

86438 VOLUME 11, 2023



T. Y. Alkhamees, L. B. Milstein: Different Approach for Sensing Disruption

FIGURE 7. Optimal number of flipped bands u∗ versus PA: (a) γ = 0dB.

(b) γ = 3dB.

the adversary cannot contaminate more than the number of
ENP bands. Thus, the optimal flipping strategy is partial-band
flipping. In the second case, the partial-band flipping region
occurs when |BENP| >

∣∣Bbusy∣∣, but PA is not sufficiently large
to contaminate all available ENP bands. Thus, the optimal
flipping strategy is to flip a fraction of busy bands. With
the same setup as in Fig.3, Fig.4 shows that γ of the PUs’
signals plays an important role in degrading u∗, regardless of
the number of bands that the adversary attacks. Comparing
Fig. 4(b) with Fig. 4(a) for the same values of u∗, and |BENP|,
we see that Fig. 4(a) utilizes a smaller value of PA than
Fig. 4(b) to flip the same number of busy bands. This is
because γ in Fig. 4(a) was lower than that in Fig. 4(b). Finally,
each curve exhibits a knee, which is determined by |BENP|
and

∣∣Bbusy∣∣.
B. THE EFFECT OF SYSTEM PARMETERS
In Fig.5, Fig.6, and Fig.7, we operate in the region to the
right of the knee of Fig.3, which means that the optimal strat-
egy for the adversary is partial-band flipping. In particular,

FIGURE 8. Average number of missed detection, Bf , versus
∣∣∣Bbusy

∣∣∣: (a)
PA= 10. (b) PA= 38.

we operate in the region where |BENP| >
∣∣Bbusy∣∣. In these fig-

ures, u∗ is plotted versus PA, with different system parameter
setup values. From Appendix B, it is clear that u∗ increases
as PA increases, up to the point where all ENP bands are
contaminated. In Fig.5, we set N = 100; M = 10N and
ρ = 1, and plot u∗ for different values of γ , as well as
different values of the desired probability of false alarm pDESFA .

Note that each value of pDESFA corresponds to a differ-
ent threshold value. Fig.5 (a) shows that when γ = 0dB,
u∗ increases as PA increases. This is reasonable, because
increasing the flipping power implies attacking more ENP
bands. As a result of γ increasing, u∗ significantly decreases,
as shown in Fig.5 (b).

In both Fig.5 (a) and Fig.5 (b), if pDESFA decreases, then
the adversary can utilize less power for flipping over the
same |BENP|, resulting in flipping more of the busy bands.
The reason is that the threshold, K , increases, so that it is
harder to detect the busy bands.
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FIGURE 9. Average number of missed detection, 1Bf , versus
∣∣∣Bbusy

∣∣∣: (a)

pDES
FA = 0.05. (b) pDES

FA = 0.005.

As shown in Figs.6(a) and 6(b), we plot u∗ for different
values of N and M , but we set pDESFA = 0.05, γ = 0dB,
and ρ = 1. The results show that u∗ increased asN decreased,
as seen in Fig.6 (a). This is because the more samples the SUs
observe during fast-SP, the more correct the decisions the SU
makes regarding the busy bands. In contrast, Fig.6 (b) shows
that as M increases, u∗ also increased. This is because an
increase inM implies that the SUs estimate the contaminated
noise power more effectively.

In Figs.7 (a) and 7 (b), u∗ is plotted for different values of
γ and ρ, with the other parameters set as follows: pDESFA =

0.05, N = 100 and M = 10N . Clearly, u∗ increases when
ρ increases because robust detection can no longer be guar-
anteed at the SUs, as shown in both Fig.7 (a) and Fig.7 (b).
However, if γ increases, as shown in Fig.7 (b), u∗ decreases
compared to Fig.7 (a) because the SNR of the PU increases;
thus, the SUs can better detect the busy bands.

In conclusion, the optimal number of flipped bands is
affected by pDESFA , N ,M , γ , and ρ. This implies that the

FIGURE 10. Average number of missed detection, 1Bf , versus
∣∣∣Bbusy

∣∣∣:
(a) γ = −3dB and ρ = 1 (b) γ = 0dB and ρ = 1.6.

optimal flipping power allocation is also affected by these
parameters, because P∗

k,A = PA/u
∗.

C. AVERAGE NUMBER OF MISSED DETECTION
Fig.8 shows the plots of Bf versus

∣∣Bbusy∣∣, where the curves
are parameterized by ρ. In Fig.8 (a) PA = 10, and in Fig.8 (b)
PA = 38. The other parameters were set to N = 100, M =

10N , pDESFA = 0.05 and γ = 0 dB. The interpretation of each
knee in the curves in Fig.8 is that full-band flipping becomes
partial-band flipping, for the same reasons as those in Fig.3.
As shown in Fig.8, when the slope of the curve is 45o, we are
in the full-band flipping region (i.e., u∗

=
∣∣Bbusy∣∣). In this

region, the missed detections of the busy bands are owing
to both the presence of the adversary and ρ ̸= 1, as shown
in (20). When the slope of Bf is determined only by pMD,
the slope only increases linearly with ρ. It should be noted
that Fig.8 (b) has a larger full-band region than Fig.8 (a). This
is because the adversary increases PA to contaminate all the
available ENP bands.
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D. AVERAGE NUMBER OF MISSED DETECTION DUE TO
THE PRESENCE OF THE ADVERSARY
In Fig.9, 1Bf is plotted for the case of |BENP| ≥

∣∣Bbusy∣∣.
The remaining parameters were set as N = 100, M =

10N , γ = 0 dB and ρ = 1. The interpretation of each
knee in the curves in Fig.9 is equivalent to that in Fig.3.
The difference between Fig.8 and Fig.9 is in the value of ρ,
which shows that in the partial-band region, 1Bf in Fig.9
becomes constant when

∣∣Bbusy∣∣ increases, compared with Bf
in Fig.8. Note that an increase in PA, leads to an increase
in 1Bf , as discussed in Section III-C. A comparison between
Fig.9(b) and Fig.9(a) shows that increasing pDESFA results in
a decrease in K . For the same flipped power, 1Bf is more
significant in Fig.9 (b) than in Fig.9 (a). This provides an
advantage to the adversary in spreading less flipping power
over ENP bands.

In Fig.10, 1Bf is plotted against PA, with N = 100,
M = 10N , and various values of pDESFA , γ and ρ. Addi-
tionally, we operated in the partial-band region, particu-
larly when |BENP| ≥

∣∣Bbusy∣∣. Fig.10 shows that 1Bf
linearly increases when the PA increases. In addition, we can
see that 1Bf of (23) is consistent with (22), for both
Figs.10 (a) and 10 (b).

V. CONCLUSION AND FUTURE WORK
In this paper, we analyzed the optimal sensing link dis-
ruption of a CRN subject to a constraint on power of the
adversary. We formulated the optimal sensing link disruption
by maximizing the average number of missed detections.
In particular, for a CRN in which the ED-ENP is used by
the SUs, the optimal strategy corresponds to equal-power
partial-band flipping. Our analysis leads us to conclude that
increasing the flipping power allows the adversary to flip
more bands, up to the point where all the ENP bands are
contaminated. Additionally, we observed that an increase in
the threshold, parameter ρ, or the number of samples during
fine-SP (i.e., M ) increases the chance of successful flipping
attacks, while a decrease in the number of samples during
fast-SP (i.e., N ) also increases flipping attacks. Furthermore,
for the given system parameters (ρ, N ,M , and pDESFA ), 1Bf is
proportional to the flipping power.

Future work will involve extending the problem to CRNs
with randomly distributed locations of SUs and PUs, with an
adversary that is probabilistically aware of these locations.
In addition, future work will involve examining the perfor-
mances of various fading channels.

APPENDIX A
Let P⃗A

[
P1,A, . . . ,PU ,A

]
(i.e., the power in each of

the U bands), and define the objective function to

be, fa
(
P⃗A
)

≜
∑U

k=1 8

(
a
(
fk
(
P⃗A
)
+ρσ 2

n /α
)

(1+γ )σ 2
n /α

+ b

)
, where

fk
(
P⃗A
)

≜ Pk,A. Finally, also let the constraint to

be, h
(
P⃗A
)

≜
∑U

k=1 fk
(
P⃗A
)

− PA. Then, we can

rewrite (13) as,

min
P1,A,...,PU ,A

−fa
(
P⃗A
)

s.t − fk
(
P⃗A
)

≤ 0, ∀k ∈ {1, . . . ,U},

h
(
P⃗A
)

= 0. (A-1)

The Lagrangian associated with (V)-1), is given by

L
(
P⃗A, λ⃗ , v

)
= fa

(
P⃗A
)

−

U∑
k=1

λk fk
(
P⃗A
)

+ vh
(
P⃗A
)

,

(A-2)

where λ⃗ =
[
λ1λ2 . . . λU

]
∈ RU and v ∈ R are the

Lagrangian multipliers. Suppose P⃗∗
A, λ⃗ ∗ and v∗ are opti-

mal sets of points. The necessary KKT conditions are as
follows [27]:∑U

k=1
fk
(
P⃗∗
A

)
− PA = 0, and P⃗∗

A ≽ 0, (A-3)

λ
∗
k ≥ 0, ∀k ∈ {1, . . . ,U}, (A-4)

λ
∗
k P

∗
k,A = 0, ∀k ∈ {1, . . . ,U}, (A-5)

−a
√
2πσ 2

n /α (1 + γ )
e
−

1
2

( (
P∗
k,A+ρσ2n /α

)
a

(1+γ )σ2n /α
+b

)2

− λ
∗
k + v∗ = 0,

∀k ∈ {1, . . . ,U}. (A-6)

By satisfying the complementary slackness condition (V)-5),
for some value of k , we observe that P∗

k,A > 0 and λ ∗
k = 0,

and from (V)-6), we have

v∗ =
−ae

−
1
2

( (
P∗
k,A+ρσ2n /α

)
a

(1+γ )σ2n /α
+b

)2

√
2πσ 2

n /α (1 + γ )
. (A-7)

Let the set ϕA be defined as ϕA =

{
k|λ ∗

k = 0,P∗
k,A > 0

}
,

and let the cardinality of ϕA be u(0 < u ≤ U ). From (V)-7),
we can see that v∗ is the same for each k ∈ ϕA; thus, P∗

k,A
needs to be uniformly distributed over all flipping bands,
that is, P∗

k,A = PA/u.
In the other case, P∗

k,A = 0, and λ ∗
k > 0. For those

values of k in this case, from (V)-6), we can see that λ ∗
k is

independent of k . Let the set ϕλ ≜
{
k|λ ∗

k > 0,P∗

k,A = 0
}
.

By definition, the cardinality of ϕλ is U − u. This means
that λ ∗

k is the same ∀k ∈ ϕλ . Clearly, in (V)-1), the objective
function is strictly convex because the Hessian matrix is pos-
itive definite. Therefore, KKT conditions are both necessary
and sufficient [27]. In conclusion, P∗

k,A is equal to either
P∗
k,A = PA/u, for k∈ ϕA, or P

∗
k,A = 0, for k∈ ϕλ .

APPENDIX B
From (16), it is difficult to obtain the solution of
f ′ (x∗) = 0, because it is a nonlinear expression. Con-
sequently, we evaluated f ′ (x) on its boundary. Since
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x ∈ (0, ∞), then,

f ′ (x) |x=0

= 8 (∞) − pMD

− lim
x→0+

aPA
(1 + γ ) xσ 2

n /α
√
2π

e
−

1
2

(
a(PA+xρσ2n /α)

(1+γ )xσ2n /α
+b
)2

.

(B-1)

We define ε ≜ aPA
(1+γ )σ 2

n /α
, and let η (x) =

ε

x
√
2π

, θ (x) =

e
1
2

(
ε
x +

aρ
(1+γ )

+b
)2
. Then lim

x→0+

η(x)
θ(x) =

∞

∞
, and thus, we can

apply L’Hospital’s rule:

lim
x→0+

η′ (x)
θ ′ (x)

= lim
x→0+

1
√
2π

e
1
2

(
ε
x +

aρ
(1+γ )

+b
)2 (

ε
x +

aρ
(1+γ )

+ b
)

=

1
√
2π

∞
= 0. (B-2)

Substituting (V)-2) into (V)-1), we have

f ′ (x) |x=0 = 1 − 8

(
a

1
ρ

(1 + γ )
+ b

)

= Q

(
a

1
ρ

(1 + γ )
+ b

)
. (B-3)

∵ Q (·) is a monotonically decreasing function, thus

Q
(

a
1
ρ (1+γ )

+ b
)

> 0. Additionally,

lim
x→∞

f ′ (x) = 8

(
aρ

1 + γ
+ b

)
− 8

(
a

1
ρ

(1 + γ )
+ b

)
= 0.

(B-4)

Therefore, from (V)-3) and (V)-4), f ′ (x) has a positive value
at x = 0, and approaches 0 as x approaches infinity. To exam-
ine f ′ (x), as x increases throughout the range of (0, ∞),
we need to derive f ′′ (x). The second derivative is given by:

f ′′ (x) =
∂

∂x

((
8

aPA
σ 2
n /α (1 + γ ) x

+
aρ

(1 + γ )
+ b

)

− pMD−
aPA

(
α/σ 2

n
)

(1 + γ ) x
√
2π

e
−

1
2

(
aPA

σ2n /α(1+γ )x
+

aρ
(1+γ )

+b
)2 .

(B-5)

Let y (x) ≜ 8
(

aPA
σ 2
n /α(1+γ )x

+
aρ

(1+γ )
+ b

)
− pMD, and

q (x) −
aPA

(
α/σ 2

n
)

(1+γ )x
√
2π
e
−

1
2

(
a(PA+ρxσ2n /α)

σ2n /α(1+γ )x
+b
)2

. Then, we can
express (V)-5) as

f ′′ (x) =
∂

∂x
(y (x) + q (x))

= y′ (x) + q′ (x) (B-6)

The last term in (16) represents the derivative of y (x),

which is, y′ (x) =
1

√
2π
e
−

1
2

(
a(PA+ρxσ2n /α)

σ2n /α(1+γ )x
+b
)2 (

aPA
(
α/σ 2

n
)

(1+γ )x2

)
,

and therefore q (x) = xy′ (x) . The derivative of q (x) can be
shown to be, q′ (x) = y′ (x) + xy′′ (x). Therefore, after some
algebraic manipulation, f ′′ (x) is given by,

f ′′ (x) = −

(aPA)2
(
aPA+

(
aρσ2n

α
+
b(1+γ )σ2n

α

)
x
)

√
2π
(

σ2n
α

)3

(1+γ )3x4

× e

−
1
2

 a

(
PA+

ρxσ2n
α

)
σ2n

α(1+γ )
x

+b


2

(B-7)

From (V)-7), f ′′ (x) is dependent upon a linear function,
that is, f0 (x) aPA +

(
aρσ 2

n /α + b (1 + γ ) σ 2
n /α

)
x, since

γ > 0, α > 0, σ 2
n > 0, b > 0, a > 0, PA >

0, ρ > 0, and e
−

1
2

(
a(PA+ρxσ2n /α)

σ2n /α(1+γ )x
+b
)2

> 0, then f0 (x) is a
first-order polynomial function; thus, the slope of f0 (x) is(
ρσ 2

n /α + b (1 + γ ) σ 2
n /α

)
> 0, and f0 (x) |x=0 = aPA > 0.

It is then straightforward to say that f ′ (x) > 0, for any
x ≥ 0. From the analysis above, we can conclude that f (x)
continuously increases as x increases for x ≥ 0.
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