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ABSTRACT Reliably predicting the motion of contestant vehicles surrounding an autonomous racecar is
crucial for effective and performant ego-motion planning. Although highly expressive, deep neural networks
are black-box models, making their usage challenging in this safety-critical applications of autonomous
racing. On the other hand, physics-based models provide high safety guarantees for the predicted trajectory
but lack accuracy. The method presented in this paper targets this trade-off. We introduce a method to
predict the trajectories of opposing racecars with deep neural networks considering physical constraints to
restrict the output and to improve its feasibility. We report the method’s performance against an LSTM-based
encoder-decoder architecture on data acquired from multi-agent racing simulations. The proposed method
outperforms the baseline model in prediction accuracy and robustness. Still, it fulfills quality guarantees of
smoothness and consistency of the predicted trajectory and prevents out-of-track predictions. Thus, a robust
real-world application of the model with high prediction accuracy is proven. The presented model was
deployed on the racecar of the Technical University of Munich for the Indy Autonomous Challenge 2021.
The code used in this research is available as open-source software at www.github.com/TUMFTM/MixNet.

INDEX TERMS Autonomous racing, hybrid deep neural networks, motion prediction, scenario
understanding.

I. INTRODUCTION
Developing reliable autonomous vehicles has various
purposes, including safer, and more efficient traveling.
To fuel innovation, autonomous vehicle competitions such
as the DARPA Grand Challenge [1] have taken place. There
is, however, an aspect of autonomous driving challenges
that has not been covered before: full-scale multi-vehicle
racing against other competitors. The Indy Autonomous
Challenge (IAC) [2] and its successor, the Autonomous
Challenge at the CES 20221 (AC@CES) were meant to
take this enormous next step. In the competition, the teams
were provided with the same hardware and developed their
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own autonomous software stacks. Wheel-to-wheel racing
poses serious challenges. Among these is predicting the
future motion of other dynamic objects to operate safely
and efficiently in the dynamic environment. To tackle this
problem, there are multiple approaches from literature, which
use the current estimated state of the vehicle and extrapolate it
using a physics-based model [3], [4], [5], [6]. Although these
methods appeal due to their transparency and small com-
putational demands, the predicted trajectories become less
reliable in the long term due to the simplified assumptions.
Other approaches use machine learning techniques to match
the motions of the objects to learned patterns and predict
accordingly. These methods often provide long-term trajec-
tory predictions of up to 8 s. However, the used approximators
are often black-box models, so quality guarantees are hard
to give.
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FIGURE 1. Exemplary scenario: The inputs to the MixNet, which are object history and sampled track boundaries, and the different prediction modes of a
rail-based approach, the benchmark model, and the MixNet are shown. MixNet combines the best of two worlds: the superposition of continuous base
curves and the comprehensive, learned scenario understanding.

Our method combines these two approaches. We propose
a constrained deep neural motion prediction model, the
MixNet. Our approach uses neural networks (NNs) to encode
the scenario but outputs weight parameters for predefined
base curves along the race track based on the latent informa-
tion. So in contrast to common approaches, which determine
the future trajectory in the decoder step entirely by deep
neural network, MixNet calculates weighting parameters
for the superposition of dynamically feasible base curves
derived from the track. The output is a smooth and continuous
trajectory with the guarantee to stay inside the race track
and consistency between consecutive predictions. By this,
the holistic scenario understanding of NNs is combined with
external constraints given by the race track.

An illustrative example is given in Figure 1. MixNet pre-
dicts a smooth trajectory based on the encoded scenario with
high accuracy. In comparison, the benchmark model, which
has the same encoder architecture, and thus, incorporates the
same scenario understanding, determines the prediction by
means of a LSTM-based decoder and can not guarantee a
stable output. Especially on a long prediction horizon, the
trajectory gets noisy. To conclude, the main contributions of
this work are:

• A novel trajectory prediction method for autonomous
racing, which combines an NN-based encoder for
comprehensive scenario understanding with the super-
position of physics-based feasible trajectories for a con-
strained, but accurate output. The approach guarantees
smoothness and consistency and trajectory predictions,
which lie inside the track.

• A holistic prediction module comprising plausibility
checks, external velocity fusion, and an interaction
model besides the prediction algorithm for the robust
application in a full autonomous racing software stack.

• A synthetic dataset with wheel-to-wheel autonomous
racing scenarios to develop and benchmark prediction
and planning algorithms

II. RELATED WORK
To give an overview of the state of the art in the field of
motion prediction, we structure this section as proposed
in [7]. Accordingly, the methods are categorized into physics-
based, pattern-based, and planning-based approaches.

After introducing the methods for motion prediction in gen-
eral, we discuss the applicability of autonomous racing in the
last subsection. For further details about the overall state of
the art of software for autonomous vehicle racing the reader
is referred to [8].

A. PHYSICS-BASED APPROACHES
In non-interactive scenarios with independent vehicle behav-
ior and for short-term prediction up to 2 s, the application of
kinematics- or dynamics-based vehicle models is a suitable
choice [9]. Most commonly, deterministic or probabilistic
kinematic models are propagated forward using a constant
input assumption. One can choose various longitudinal and
turning-related signals input. Hence models with constant
velocity, acceleration, yaw rate, and steering angle or a
combination of these can be obtained. Schubert et al. [6]
provide a review of these models and conclude that Constant
Turning Radius and Acceleration (CTRA) models provide
the best compromise between prediction accuracy and com-
putational demands. To incorporate uncertainty information,
Bayesian Filters, especially Kàlmàn Filters [10] are com-
monly used. If the linearity assumption of the Kàlmàn Filter
does not hold, the Extended (EKF) or Unscented (UKF)
versions are applied. By means of an Interaction Multiple
Model (IMM) various kinematic models can be combined
based on heuristics to improve the expressiveness in het-
erogeneous scenarios [11]. Another physics-based approach
is reachable set predictions [12], which utilize the set of
physically possible behaviors. Thus all possible trajectories
within the dynamic limits are determined, which are covered
by a convex hull. Considering only the trajectories allowed by
the traffic rules can limit the solution space accordingly and
allows the use in a real vehicle for online verification [13]. For
use in autonomous racing, these types of predictions are too
conservative for long-term prediction due to the wide range
of driving dynamics of the racing vehicle and the lack of
explicit rules as in road traffic. The application of the online
verification concept in a supervisor module with the use case
of autonomous racing is shown in [14].
In general, physics-based methods are computationally

cheap and their operation is transparent and well-studied,
which makes them appealing in safety-critical application
domains such as autonomous driving. The main limitation

VOLUME 11, 2023 85915



P. Karle et al.: MixNet: Physics Constrained Deep Neural Motion Prediction for Autonomous Racing

arises from the simplified input assumption. This results in
fairly accurate predictions on the short horizon. However, the
prediction accuracy get insufficient in the long term (>2 s)
as the assumption of constant movement does not hold any-
more. Hence, these methods are often combined with other
approaches which tend to produce more reliable long-term
predictions [4], [5].

B. PATTERN-BASED APPROACHES
Pattern-based approaches build on the idea of taking obser-
vations of an object, matching it to a pattern, and carrying
out the prediction based on it. The pattern assigned to a
vehicle can be handcrafted or learned. Furthermore, patterns
can be learned by clustering data points or in an abstract
space such as the hidden representations of encoder-decoder
models. Most of these methods are data-based approaches,
hence the need for sufficiently rich datasets is inherent. When
using handcrafted patterns, themotion of an object is assigned
to one of the predefined maneuver classes. Then, the output
prediction is constructed considering the assigned maneu-
ver type and usually involves the usage of prototypes. The
classification can be carried out based on heuristics [15] or
ML models, such as Support Vector Machines (SVMs) [16],
Hidden Markov Models (HMMs) [17], [18], [19] or
RNNs [20]. HMMs and RNNs are commonly used due to
their inherent capability of interpreting the temporal evolu-
tion of amotion history. Instead of using handcrafted patterns,
it is also possible to learn clusters from data. Afterward,
a single prototype trajectory [21] or a probabilistic represen-
tation [22] is obtained for each cluster. During inference time,
the output is constructed by classifying the given scenario
into a specific cluster and applying the respective represen-
tative. Encoder-decoder neural network architectures have
recently shown huge potential for motion prediction tasks by
dominating the leaderboards of various prediction challenges
on public real-world datasets [23], [24]. For the use case of
motion prediction, the encoder creates a latent summary of
the motion history of an object and the environment infor-
mation, which serves as an abstract pattern of the scenario.
Conditioned on this abstract representation, the decoder
determines the future movement of the object. The encoder
and the decoder models can both be based on Convolu-
tional Neural Networks [25], [26], RNNs [27], [28] or even
Convolutional-RNNs [26], [29]. Attention mechanisms are
also commonly used, to allow the network to focus on
the relevant parts of the input [27], [28] or to take inter-
actions between vehicles into account [30]. Alternatively,
Graph Neural Networks (GNNs) can be used to model
interactions in a non-euclidean space. A learned graph rep-
resentation of the scene is applied to model individual
interaction between the single agents. The application on
public real-world datasets shows a significant improvement
in prediction performance [31], [32]. Another advantage of
graph-based prediction models is the more efficient repre-
sentation in contrast to grid-based approaches, which leads

to a reduced calculation time [33]. The bottleneck to provide
a sufficiently rich dataset to train a performant algorithm is
mitigated in terms of Encoder-decoder architectures due to
the fact that no labeled data is needed to create a dataset. The
reason for this is that the observation of an object’s movement
serves as ground truth for output of the prediction algorithm.
Thus, the trajectories can simply be split into history and
ground truth prediction parts and used in the self-supervised
learning setup [34].

C. PLANNING-BASED APPROACHES
Planning-based approaches consider objects to be rational
agents acting in an environment according to their hidden
policies to reach their goals. The basis of planning-based
approaches is the Markov Decision Process (MDP). The
approaches usually differ in approximating different parts of
the MDP. One approach is to derive handcrafted cost func-
tions to model the agent’s behavior [35]. However, the cre-
ation of a comprehensive cost function and rule set requires
dedicated knowledge and complex traffic scenarios are chal-
lenging to represent. Alternatively, the driving behavior can
be learned from data, which refers to the field of learning from
demonstration. On the one hand, it is possible to apply Inverse
Reinforcement Learning, which aims to derive a cost function
that fits the observed expert behavior [36], [37], [38]. On the
other hand, in the case of Imitation Learning the policy is
directly learned from the observed data, i.e., the observation
is directly related to a specific behavior [39]. To enhance the
robustness of the learned policy generative methods are used,
one common approach is Generative Adversarial Imitational
Learning [40].
Both pattern-based and planning-based approaches are

usually capable of producing more reliable long-term pre-
dictions compared to physics-based methods because more
comprehensive features can be inputted into the model to
consider the interaction between different road users and map
constraints. Their shortcomings come from the fact that these
methods are primarily data-based and rely on learned policies
or patterns. Hence, their performance highly depends on the
underlying dataset, which has to represent the Operational
Design Domain (ODD) sufficiently. Besides the amount of
data, the balance of scenario types influences the predic-
tion performance in edge cases such as safety-critical situa-
tions. So, the under-representation of these scenarios directly
impacts the applicability. The application in combination
with safeguarding methods is also challenging as data-based
methods lack of explainability. Hence their functionality can
not be adequately supervised.

D. APPLICABILITY FOR AUTONOMOUS RACING
In the following the state of the art is evaluated regarding the
applicability for autonomous racing. In our case, we focus
on the Indy Autonomous Challenge (IAC), the target for
the presented approach. In the inaugural edition, the IAC
was held on the Indianapolis Motor Speedway (IMS) and
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FIGURE 2. Overview of the MixNet prediction module. It combines a comprehensive, learned scenario understanding through an RNN-encoder and
semantic knowledge to constrain the output by base curves extracted from the track map.

the Las Vegas Motor Speedway (LVMS), both oval circuits.
The circuits do not offer any lanes to define lane-keeping or
lane-changing maneuvers. Also, overtaking is assumed to be
non-cooperative and the track layout offers many different
overtaking options. The prediction algorithm developed for
the given race has to fulfill some prerequisites:

1) Due to the chosen planning [41], [42] and overall soft-
ware [43] concept and high velocities up to 270 kmh−1

the output should be a single trajectory for each object
with a 5 s prediction horizon.

2) The target inference time is 20ms on a single CPU core
due to the available hardware in the race car and the
correlation of software latency and performance [44].

3) Motivated by the real-world application of the wheel-
to-wheel race the algorithm has to be robust against
noise from the perception stack and output a smooth
and feasible, i.e., inside the track, trajectory for reliable
motion planning.

4) No public race dataset is available for the development
of the code.

In consideration of missing traffic lanes, the prediction length
does not allow the usage of purely physics-based methods as
constant movement assumptions do not hold and the set of
dynamically reachable states gets too large. The factors of
missing lane information and data discourage the application
of classification or clustering-based approaches. The appli-
cation of planning-based algorithms is questionable because
these algorithms require even more comprehensive data to
derive the expert behavior correctly and, especially in terms
of IL, the robustness towards outliers is not given.

The design factors that motivate our approach combining
data-based encoding with dynamically feasible superposition
of base curves are the real-time capability and the need for
robustness and performance guarantees. Using the encoder
network, we can extract patterns from observation. These
patterns cover comprehensive object behavior that complex
scenarios can bemodeled. The superposition of base curves in
the decoder constrains the possible prediction to lie inside the
race track and guarantees robustness in case of outliers in the
input, smoothness of the predicted trajectory, and consistency
between consecutive predictions. Thus, the applicability can

be enhanced significantly. However, the superposition of base
curves is still flexible enough to output a high prediction
accuracy as the evaluation (section IV) shows. The interaction
model using fuzzy logic guarantees collision-free predictions
and further improves the real-world applicability.

III. METHOD
In this section, we introduce MixNet, our encoder-decoder
neural network architecture with physical constraints for
motion prediction. Figure 2 outlines the method. The object’s
past movement and map information are passed through
the network, which outputs the weighting parameters. The
base curves for the superposition are derived from the map.
The object movement is also used for plausibility checks,
described in section III-C. The last step is the interaction
model, which considers the movement of multiple agents in
the scene using a fuzzy logic. External velocity information
fusion III-B is also part of the approach, which improves
the real-world applicability besides the plausibility checks.
Besides that, an implemented fuzzy logic that models over-
taking maneuvers improves the interaction-awareness of our
approach to resolve non-feasible trajectory predictions III-D.
Finally, we describe the data mining and training procedure
at the end of this section.

A. NETWORK ARCHITECTURE
The proposed network architecture of MixNet is shown in
Figure 3. The LSTM layers in the encoder create a latent
summary by encoding the object motion histories. The inputs
to the network are the H = 30 historic 2D-positions up to 3 s
in the past, sampled with f = 10Hz. Besides that, the relevant
map information, which are the left and right track bound-
aries starting from the current object’s position, equidistantly
sampled in vector representation, is inputted to the network.
Considering the expected racing speed and prediction hori-
zon, we sample the boundaries up to a horizon of 400m with
20m sample distance. During inference, N objects are fed
into the network batch-wise. Figure 1 shows an exemplary
input of history and track boundaries. The hidden states of the
encoding LSTMs are then concatenated and passed to a linear
layer, which outputs the latent representation of the scenario.
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FIGURE 3. The architecture of MixNet. The prediction comprises a path prediction by superposition of base curves and the prediction of an acceleration
profile to apply a piece-wise linear velocity profile. Inputs to the network are H = 30 past 2D-positions of N objects and the related left and right track
boundaries in driving direction in vector representation with B samples. Output is the trajectory prediction of N objects in 2D with a horizon of
F = 50 steps.

The decoder, the generative part of the model, creates a pre-
diction conditioned on the latent summary. In contrast to other
works [27], [28], the future states are not the direct output
of an LSTM network, but the forecast trajectory is generated
systematically from known schemes. First, the trajectory is
obtained by predicting a path and applying a velocity profile
to it. Both of these components are generated in a constrained
way. The path is created through superpositioning various
predefined base curves according to weights predicted by the
network through the Linear SoftMax output. The velocity
profile is piece-wise linear and is determined by predicting
an initial velocity and five constant acceleration values, one
for each second of the prediction horizon. The initial veloc-
ity is calculated by the Linear Sigmoid output activation.
The five acceleration values are determined by LSTM layers
with Tanh output activation. The final output trajectory is
obtained by resampling the path according to the velocity
profile. In this way, the set of possible output trajectories is
constrained by construction.

We use four base curves for superpositioning: the two track
boundaries, a pre-computed minimal curvature raceline [45],
and the centerline of the track. The curves are represented
by discrete 2D-points of equal number. The points of the
boundaries and the raceline are defined by their distances
from the centerline points. Hence, the points of each curve at
any index i correspond to the same cross section on the track.
Due to this fact, the superpositioned curve can be obtained as
follows:

ρsup(s) =

∑
c∈C

λcρc(s) with (1)

λc ∈ [0, 1] ∀c ∈ C and
∑
c∈C

λc = 1 (2)

where ρsup(s) is the superposed curve along the arc length s
of the track with base curves ρc(s) and their corresponding
weights λc in the set of base curves C. Since all base curves
are sampled along the same cross sections, s is equal for all
base curves. Equation 2 provides the constraints for the super-
positioning weights, which result in curves that lie between

the left and right boundaries. These constraints can easily be
enforced by applying the softmax activation to the output of
the linear layer.

We emphasize that this method does not guarantee that
a predicted trajectory starts exactly from the actual position
of a vehicle, but a lateral offset can occur. This is because
the superposition weights by Equation 1 are constant along
the path and the model is trained to output a prediction
with the smallest overall error along the prediction horizon.
Hence, a lateral offset at the beginning of the predicted path
is possible. To remedy this issue, during the first second of
the motion, we apply a plausibility check to the output of
the network using a comparison between the current object
position and the predicted path. Above a specified threshold,
a correction function is applied, which fades from the current
position to the predicted path to keep consistency. Especially
in transient scenarios, this characteristic is beneficial: If the
current motion of the vehicle is strongly transversal, the net-
work learns to predict a path that fits the later parts of the
ground truth better by sacrificing accuracy at the beginning
of the horizon. With the application of the correction shift,
the consistency of the predicted motion is secured so that an
additional quality guarantee can be given. During inference,
if an adjustment of the first part of the trajectory is triggered to
connect the actual position to the prediction path, trajectories
similar to lane-change maneuvers can be obtained.

B. VELOCITY INFORMATION FUSION
A further advantage of modular trajectory prediction is that
it can also incorporate velocity information from another
source to fuse it with the outputted path of the network. The
proposed implementation of MixNet offers two possibilities
for incorporating external velocity information. First, one can
take the complete velocity profile from an external source
and use it instead of the one predicted by MixNet. The other
possibility is to predict the piece-wise constant accelerations
with MixNet but use the external velocity information only to
determine the current velocity as initialization.
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A reliable source of such information is object tracking
which contains the filtered states of the surrounding vehicles.
While the current velocity can be extracted from the tracked
object’s state independently from the ODD a complete veloc-
ity profile underlies specific assumptions. For our use case
of autonomous racing on a closed track, we propose to deter-
mine a complete velocity profile along the whole prediction
horizon by forward propagating the tracked object’s state
utilizing the underlying state-space model. However, this
assumption is limited to scenarios with objects at race speed.

C. SAFETY OVERRIDE POSSIBILITY
Predicting accurately at the beginning of the horizon is a
safety-relevant issue. On the other hand, significant inac-
curacies towards the end of the prediction horizon lead to
inefficient planning and bad performance during the race.
This trade-off mainly occurs during overtaking maneuvers
and when entering into turns. This is because, as stated
in 1 and 2, the superposition weights to output the predicted
trajectory are constant along the length s of the track. So,
a lateral offset can occur. To solve this conflict, our predic-
tion method recognizes and overrides dynamically infeasible
predictions with a large lateral offset at the beginning of the
horizon. Accordingly, our goal is to probabilistically identify
the cases where this happens. Our measure of probability
for having generated an initially highly inaccurate forecast
is based on the raw path prediction output of the MixNet
and the actual state of the vehicle. As stated before, without
adjustment, the predicted path does not necessarily start at
the actual position of the object. Thus, if the predicted path
lies too far from the vehicle considering its actual position
and orientation, the prediction is identified as invalid. In this
case, we override it with a prediction approach, called the
rail-based prediction. This approach is derived from the
tracked object state and offers high robustness and guarantees
kinematic consistency with the current object’s state, which
is of high importance as a fallback option. The rail-based
prediction is composed of a separate path and velocity profile.
The path is sampled starting from the current object position
in parallel to the track boundaries. The velocity profile is
determined by forward propagation of the state-space model
as described in III-B. An exemplary prediction by means of
the rail-based approach is shown in Figure 1. It can be seen
that the rail-based prediction is consistent and accurate at the
beginning of the prediction horizon, but has a high lateral
error on the long-term horizon.

D. INTERACTION MODELING
As it can be seen in Figure 3 no information about sur-
rounding race cars is fed into the neural network. Hence,
there is no explicit interaction-awareness given by the model.
Although this assumption holds for many race scenarios with
cars following their raceline, interactive scenarios such as
overtaking or blocking, which are highly interactive, require
additional modeling. In the literature, these interactions are

modeled using game theory [46] or learned by a prediction
network [47]. These approaches have the disadvantage that
they either require a lot of computing time due to iterations
or require a vast amount of relevant data with interactions.

Therefore, we propose a two-step approach for trajectory
prediction on the racetrack. This first predicts each vehicle
by itself and then adjusts the predicted trajectories based on
interactions in a second step. In doing so, we take advantage
of the set of rules inmotorsports. Similar to other racing series
such as Formula 1, for safety reasons themovement options of
an overtaken vehicle are restricted by the rule set. In the Indy
Autonomous Challenge, the vehicle in front is even forced to
‘‘hold its raceline’’ [48]. In other words, it may not block the
overtaking vehicle or initiate other unpredictable maneuvers.

Our approach is to predict each vehicle individually,
including the ego-vehicle, as a first step. Subsequently, all
existing predicted trajectories of the different vehicles are
examined for collisions. If no collision is detected, we assume
that the influence of the interaction is minor and no adjust-
ment of the trajectories is necessary. However, if at least one
collision is detected, we do adapt the trajectories to account
for interactions. For this, we examine the race order for
each collision and adjust the predicted trajectory of the rear
vehicle, since the front vehicle is not allowed to adjust its
behavior according to the rules.

To adjust the predicted trajectory, a high-level decision
is first made: the faster rear vehicle will either overtake on
the left, overtake on the right or not overtake at all and stay
behind the front vehicle. This high-level decision is made
by a fuzzy logic that takes into account the absolute and
relative positions as well as the velocities of the participants.
According to the decision, the predicted trajectory is adjusted
laterally (in case of an overtake) or longitudinally (in case
of no overtake). The adjusted trajectories do not necessarily
have to be collision-free, since new collisions with other
predicted trajectories may occur. Therefore, the procedure
can be repeated as often as necessary until all predictions
are resolved collision-free or a termination criterion occurs.
In our application, it has proven to be useful in a second
iteration to ensure only that the ego vehicle is collision-free
with vehicles in the rear. Otherwise, it could happen that
the trajectory planning tries to avoid this collision and even
makes room for an overtaking vehicle, which would be con-
trary to winning the race.

E. DATASET
An essential part of Machine Learning applications is a
dataset, which covers a diverse set of scenarios expected dur-
ing inference. However, since this race is the first of its kind,
building a dataset from previous races is not possible. Also,
there is no public racing dataset available. In this respect, one
of the key challenges to be solved is building a dataset for
training our neural network approach.

Real-life data was not available until the last weeks before
the race itself since real-world tests on the IMS track only
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took place then. Hence, training data had to be acquired
by simulating our software pipeline [43] in a multi-agent
simulation on a Hardware-in-the-Loop (HIL) simulator. The
HIL-simulator is able to simulate the full autonomous soft-
ware stack of up to ten agents in real-time with the same
interfaces and callback functions as on the real vehicle. The
only constraint is a simplified perception input to reduce the
computation load, i.e., the perception pipelines are bypassed
with a synthetic object list generator that is input to the
tracking module. However, this generator comprises various
features to imitate real perception behavior such as limited
sensor range and field-of-view, the addition of Gaussian
and normal noise, variation of measured objects states, and
the simulation of false positives and false negatives. Multi-
vehicle races on the HIL-simulator and data from the official
simulation race of the IAC, both with highly interactive and
complex scenarios, are the basis of our dataset. The recorded
logs contain the output of the tracking module [49], which is
used to recreate the trajectories of each vehicle during a race.
Using the tracking module output to build our dataset has
the advantage that the training input distribution of tracked
objects and tracking quality will be as close as possible
to the expected input distribution during the race. Besides
that, the synthetic object list generator is used to vary the
perception quality with the aforementioned features to aug-
ment the dataset. We added Gaussian noise during the data
generation process with mean µ = 0 and different variances
in longitudinal and lateral directions based on the evaluated
perception and tracking performance.

From these recovered trajectories and the map of the race-
track, it is possible to generate a dataset for training the
model. As it was stated before, the input of our model consists
of the (x, y) positions of the historical trajectory and the track
boundaries around and ahead of the vehicle. Before inputting
these points to the model, they are transformed into a local
coordinate system, which has its origin at the left boundary
next to the current object position and is oriented with its
x-axis tangential to the left boundary. With the process above
we created 1,569 trajectories from 226 races with an average
of 3.4 vehicles per race. From these trajectories, we created
358,025 input-output data pairs.

F. TRAINING
The loss function we defined for training has two terms,
one for the fit of the interpolated curve, which relates to the
error in the lateral direction, and one for the velocity profile,
which reflects the accuracy in the longitudinal direction. The
loss Lpath related to the lateral deviation of the interpolated
curve x̂ from the ground truth x is costed with a Weighted
Mean Square Error (WMSE) at the beginning of the curve as
follows:

Lpath =
1
F

(Lwmse + Lmse) (3)

Lwmse =

k∑
i=1

(x̂i − xi)2
(
1 + w

(
1 −

i− 1
k

))
(4)

Lmse =

F∑
i=k+1

(x̂i − xi)2 (5)

with w = 0.5, k = 10, F = 50 (6)

The WMSE decreases linearly from the first prediction
step with an additional weight w along the weighting hori-
zon k . The remaining prediction horizon is weighted with 1.0,
which corresponds to the conventional Mean Square Error
(MSE). The weighting turned out to be beneficial to limit
the lateral offset at the beginning of the prediction, even if an
additional correction shift is applied at inference. The loss of
the velocity profile is also theMSE coming from comparing it
to that of the ground truth velocity profile. The overall loss L
is then obtained from the path loss Lpath and the velocity
loss Lvel as follows:

L = Lpath + 1t2 · Lvel (7)

where 1t = 1/f = 0.1 s is the timestep size of the pre-
diction in seconds. The multiplication of the velocity error
with 1t2 comes from the following intuition: The velocity
error ev results through integration in a 1t · ev displacement
error and a 1t2 · e2v squared displacement error if the MSE is
applied. By considering the relation e2v ∼ Lvel, it follows that
multiplying the velocity loss term with1t2 is necessary to be
able to add two loss terms with the same unit, which is m2.

The hyperparameters are optimized by Bayesian opti-
mization [50]. To train the network we use a learning rate
of 5·10−5 with a rate decay of 0.997 per epoch. The L2 weight
regularization has a strength of 10−7 and we use a batch
size of 128. We train the model for 50 epochs and take the
model with the best validation for the evaluation presented
in Section IV. The final net and training parameters are
published in the open-source code.

In conclusion, the proposed method offers guarantees
that the predicted trajectories are always smooth and lie
inside the racetrack by means of the structured composition
of the prediction. Besides that, it is possible to fuse velocity
information from other sources such as the state estimation to
enhance the kinematic consistency of the predicted trajectory.
Finally, it is possible to probabilistically detect predictions
that are highly incorrect at the beginning of the horizon.
In these cases, it is possible to override the predictions. For
autonomous racing on a closed track, we propose to use a rail-
based prediction, which outputs a constant velocity trajectory
in parallel to the track boundaries starting from the current
object’s position.

IV. EXPERIMENTS
In this section, we describe the test procedure, which
comprises details about the test dataset, and present a com-
prehensive evaluation of MixNet’s prediction performance.
The conducted experiments reveal the overall prediction per-
formance and analyze the model’s robustness. Besides that,
we investigate the composition of the base curves.
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FIGURE 4. Lateral (top) and longitudinal (bottom) error distribution on
the prediction horizon. The solid and dashed lines denote the median and
mean errors respectively. The colored areas illustrate the range between
the Q1 and Q3 quartiles.

A. TEST PROCEDURE
MixNet is compared to a purely LSTM-based encoder-
decoder architecture at the evaluation. The encoder architec-
ture of the benchmark model is identical to MixNet’s. The
difference lies in the decoder architecture, which is in the
case of the benchmark model also constructed with LSTM-
layers. Thus, the model iteratively outputs a 2D trajectory
prediction with a shape of F x 2 for N objects. MixNet and
the benchmark model have 198, 214 and 193, 797 trainable
parameters respectively. We train both models on the same
dataset which is described in subsection III-E. For MixNet,
we incorporate initial velocity information from object track-
ing into the velocity profile but use the piece-wise constant
acceleration outputted by the MixNet.

For reproducibility, we have recorded 10 scenarios on our
HIL simulator. These include interactive race scenarios with
different numbers of vehicles with various speed limits. The
recordings can be replayed identically to the pipelines using
the two predictionmodels. For the recording of the interactive
scenarios, we used MixNet as the prediction model to run the
full software stack. We would like to emphasize that this does
not induce any bias in the evaluation process as the respective
planning behavior of each object differs from the MixNet
model behavior. We report the performances of the models
by analyzing the absolute error distributions in the lateral
and longitudinal directions with respect to the horizon length

using the Mean Average Error (MAE), which is defined as
follows:

MAE =
1
F

F∑
i=1

|x̂i − xi|2 (8)

B. OVERALL PREDICTION PERFORMANCE
Experimental evaluation shows that combining the tracked
initial velocity and the piece-wise constant acceleration pre-
dicted by the MixNet provides the most accurate velocity
profile predictions. Hence, similar to path prediction, the
combination of an external constraint through the initial
velocity and the scenario-aware data-based acceleration pre-
diction performs best.

The overall MAE on the recorded interactive scenar-
ios of MixNet and the benchmark model is 4.91m and
5.36m respectively. The reason why MixNet, although being
constrained, outperforms the benchmark model becomes
apparent when we look at the lateral and longitudinal error
distributions on the prediction horizon illustrated in Figure 4.
As it can be seen, the magnitude of errors in the lateral
direction is very similar in the two cases. This result justifies
the hypothesis that obtaining the prediction path by super-
positioning our chosen base curves covers the set of possible
trajectories properly. The superiority of MixNet in the overall
error comes from the fact that it produces smaller errors in
the longitudinal direction. Thus, it can be concluded that the
combination of the initial velocity from the tracking module
and the assumption of piece-wise constant acceleration mod-
els the longitudinal movement of the objects more accurately
than the iteratively determined output of the LSTM-decoder.

The error distributions with respect to the average velocity
of the history are shown in Figure 5. The predictions are
separated into the three bins v < 30m s−1, 30m s−1 < v <

60m s−1 and 60m s−1 < v based on the average velocity
of their histories, which are associated with a slow-speed
and start scenario range, a mid-speed range, and a top-speed
range. As Figure 5 shows, the models have similar character-
istics regarding their velocity-dependent accuracy. The mean
error is the highest at low speeds and it gradually decreases
as the velocity grows. There are two main reasons for this.
Firstly, most of the transient scenarios like start scenarios,
which are challenging to predict, happen at lower speeds.
Once the cars have reached their normal racing speed, the
scenarios tend to be more steady in the longitudinal direction.
Secondly, since most of the racing happens at high speeds, the
majority of the training data could be acquired in this velocity
range.

The number of vehicles does not have a large effect on
the accuracy of the predictions (Figure 6). This is due to the
fact that the fuzzy logic can resolve prediction conflicts accu-
rately by deciding between right and left overtake. Moreover,
maneuvers with more than two vehicles racing wheel-to-
wheel at the same time, which would result in strong lateral
interaction, are rare. Instead, scenarios with more than two
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TABLE 1. Robustness of the benchmark model and MixNet against zero-mean Gaussian noise.

FIGURE 5. The error distributions over the object velocity of the
benchmark model (orange) and the MixNet (blue).

vehicles mainly result in sequential overtaking maneuvers
between two vehicles respectively.

C. ROBUSTNESS AGAINST NOISE
To investigate the robustness properties of both data-based
approaches, we have replayed the test scenarios with extra
Gaussian noise added. It should be noted that the original
test data is already noisy, but its magnitude is much smaller.
We carried out several experiments, all with zero-mean distur-
bances with different variances in the lateral and longitudinal
directions. Table 1 reviews theMAEs of the approaches in the
different test cases. As the analysis reveals, MixNet and the
benchmark model are both robust against the added noise in
the chosen range, although performance degradation occurs.
However, it can be noticed that the MAE of the MixNet is
lower in all cases. In the case of adding noise in lateral and
longitudinal direction, the MAE of the benchmark model
increases less than that of the MixNet in case of a stan-
dard deviation of 0.5m in each direction. However, a bigger
standard deviation of 1.0m in both directions results in a
significant increase in the MAE of the benchmark model
by 21.2%. In contrast, the MixNet’s relative increase in the

FIGURE 6. The error distributions over the number of objects of the
benchmark model (orange) and the MixNet (blue).

MAE is only 13.4%. This observation indicates that the con-
straints applied to the MixNet result in the desired model
behavior that the model is more robust against variations
of the input. The application of Gaussian noise in only one
direction reveals that the benchmark model is less sensitive
in the lateral direction. However, the relative increase in the
MAE for both models is similar. The application of Gaussian
noise in the longitudinal direction clearly shows a big advan-
tage of the MixNet. The incorporation of external velocity
information from the tracking module results in significantly
more robust prediction accuracy as the relative increase in
the MAE is only half as big as in the case of the benchmark
model.

D. SUPERPOSITIONING WEIGHTS
To investigate how consistently MixNet predicts the weights
for curve superpositioning, we input synthetic history trajec-
tories generated with random weights at the entrance of one
of the turns on the racetrack. We then observe how well the
outputs of MixNet match the inputs. Figure 7 illustrates the
input and output weights of the four base curves.

Ideally, the model would output the exact same
weights with which the input history is built up resulting

85922 VOLUME 11, 2023



P. Karle et al.: MixNet: Physics Constrained Deep Neural Motion Prediction for Autonomous Racing

FIGURE 7. The relation between the inputted superpositioning weights of the synthetically generated trajectories and the outputted weights of
MixNet.

in 45◦ straight lines in all of the plots. The closest to this
is the figure of the raceline weights. The centerline weights
hardly seem to correlate with the input at all. Generally, the
network seems to overuse the raceline. The reason for that
is that the trajectories in the data usually have a strong race-
line component. Hence, the network often assumes raceline
following, although the current object might differ from the
raceline. Such an example of raceline overuse can be seen
in Figure 8. In the turn, the prediction fits the ground truth
very well close to the inner bound. However, in the turn exit,
the model assumes more optimal driving and a lateral error
occurs compared to the ground truth, which follows a more
narrow line. The example also reveals that even though the
same lateral position results at a specific point, a different
combination of superposition weights influences the overall
prediction path. As it can be derived from Equation 1 and 2
any point on the racetrack can be obtained through infinitely

FIGURE 8. Exemplary scenario with overuse of the raceline in a turn. The
driving direction is counter-clockwise.

many different weighting combinations of the 4 base curves.
Thus, in this case, a higher weight of the left boundary would
result in the same lateral position in the turn, but a different
position at the turn exit.

Even though the superposition weights differ from the
inputted ones, the overall errors of the prediction are very
low in these synthetic cases. The fact that the centerline is
underused indicates that this base curve is indeed redundant
as it lies close to the middle between the left and right bound-
ary for the major part of the track. Hence, we conduct the
following analysis to prove this hypothesis and approximate
the centerline as follows:

ρcenter(s) ≈ 0.5 · ρleft(s) + 0.5 · ρright(s) (9)

In this case, the weights corresponding to the centerline
can be redistributed and added to the left and right boundary
weights without changing the overall superpositioned output
as follows:

λleft = λleft + 0.5 · λcenter (10)

λright = λright + 0.5 · λcenter (11)

If we plot the left and right boundary weights again, we get
the input-output weight relationships illustrated in Figure 9.
Here, the weights for the right boundary already match very
well the desired linear figure. The left boundary is still
mostly substituted by overweighting the raceline. From this,
we conclude that the superpositioning weights produced by

FIGURE 9. The relation between the input superpositioning weights of
the synthetically generated trajectories and the outputted weights of
MixNet if one redistributes the weights of the centerline to the right and
left boundaries.
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the network, although they do not match exactly the input
weights, which is also not expected, due to the redundancy
of the base curves, are consequent and reasonable.

E. COMPUTATION TIME
The average computation times for predicting four vehi-
cles on a single core of an Intel i7-4720HQ 2.6 GHz
CPU for MixNet is 9ms and 15ms for the benchmark
model. The models have encoders of identical sizes, but
the LSTM-decoder of the benchmark model takes longer to
execute due to iterative calculation of the vehicles’ future
trajectory, which is the reason for the higher calculation time.
Even on a CPU-single core, the computation time is low
enough that the model can be applied in a full stack without
GPU-usage.

V. CONCLUSION
The given work presents a motion prediction algorithm for
autonomous racing, which was part of the software of TUM
Autonomous Motorsport developed for Indy Autonomous
Challenge, the first high-speed wheel-to-wheel autonomous
racing competition.

The proposed method is an encoder-decoder neural net-
work architecture with physical output constraints called
MixNet. It contains the scenario understanding of NNs
but avoids infeasibilities, which occur in the case of full
black-box models. The predicted trajectories are guaran-
teed to be smooth and consistent and lie inside the race-
track. These guarantees can be given through the restricted
base curves, which are superposed by weighting parame-
ters predicted by the network. Furthermore, a rule-based
overtaking logic resolves collisions between predicted tra-
jectories and improves interaction awareness. The results
show that the method is still flexible enough to produce
accurate predictions. It outperforms the benchmark model,
an unrestricted LSTM-based encoder-decoder architecture,
in the overall accuracy and robustness against noisy inputs.
In addition, the algorithm is real-time capable on a single
CPU core. The entire code and recorded data are publicly
available. The source code additionally comprises a ROS2
launch configuration and a Docker build file.

An interesting future research direction could be to deter-
mine a richer set of base curves for superpositioning. In addi-
tion, the flexibility of the approach could be enhanced by
outputtingmultiple weights along the path instead of one con-
stant set of weight parameters. Thus, the trade-off between
accurate prediction towards the end of the prediction horizon
and a low lateral offset between the current object position
and the start of the predicted trajectory could be solved.
However, both future directions require more data and add
complexity to the training process. Besides that, the robust-
ness of real-world applications has to be reviewed in the case
of the more flexible network with varying superpositioning
weights.

Moreover, interaction-awareness could be improved by
directly incorporating surrounding objects into the input.

Our presented fuzzy-logic is robust, explainable, and
performs well with fewer cars (< 4). However, the scalability
of the approach is limited because the sequential application
of the decision results in an increasing number of prediction
collisions when applied to a higher number of vehicles.
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