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ABSTRACT As our world becomes increasingly urbanized, smart cities are leading the way in using
technology to create more efficient, connected, and sustainable environments. However, amidst all the talk
of connectivity and smartness, it’s crucial not to lose sight of one of the most basic human needs: access
to nature in cities. This research describes a novel open-source framework for investigating the availability
and accessibility of green recreation spaces using open-source data and statistical analytic approaches. The
framework includes a comprehensive set of tools for data extraction, processing, analysis, and visualization,
thereby enabling reproducible geospatial research. We test our framework on five international cities:
Medellin, Milan, Chicago, Singapore, and Mumbai. Through geospatial analysis and statistical modeling
of data sourced from OpenStreetMaps, we explore and comprehend the characteristics and distribution of
spatial accessibility related to green recreation spaces in five cities. We find significant clustering of green
recreation spaces in all these cities, indicating that a majority of such spaces are located in close proximity
to each other within small areas. Our findings also shed light on the potential implications of unequal
distribution of green recreation spaces for the health and well-being of city residents and highlight the need
for policies and initiatives that promote equitable access to green recreation spaces in smart cities.

INDEX TERMS Accessibility, cities, geospatial analysis, recreation spaces, open-source.

I. INTRODUCTION
Urbanization is one of the defining trends of the twenty-
first century, with cities now housing more than half of
the world’s population [1]. While cities provide numerous
advantages, such as economic opportunities and cultural
diversity, they also pose significant challenges, such as traffic
congestion, environmental pollution, and social inequal-
ity [2], [3], [4], [5], [6]. By harnessing technology to build
more sustainable, efficient, and livable urban settings, smart
cities have emerged as a possible answer to these difficul-
ties [7]. However, the traditional emphasis on data-centric
techniques and connectivity has frequently overlooked the
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relevance of nature and accessibility in influencing the urban
quality of life. Accessibility is a multifaceted concept that
encompasses several dimensions, including physical, and
socio-economic aspects. In the context of urban planning,
accessibility refers to the ease with which people can reach
and use essential services and amenities, such as green
recreation spaces [8]. These spaces, which include parks,
gardens, and other natural environments for recreation, play
an important role in promoting physical and mental well-
being, fostering social cohesion, and enhancing the overall
quality of life for urban residents [9], [10]. As cities
continue to grow and become more densely populated, it is
important to consider the role that green recreation spaces
play in promoting community well-being [11], [12]. Green
recreation spaces can provide a variety of benefits to city

102014
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-8954-8731
https://orcid.org/0000-0001-9558-8895
https://orcid.org/0000-0003-0026-5423


J. Martinez, S. Mahajan: Smart Cities and Access to Nature

residents, including improved mental and physical health,
social cohesion, and a sense of community pride [13], [14].
There is a growing body of evidence that demonstrates the
positive impact of green spaces on health. For example,
a recent study found that living near green space is associated
with a lower risk of mortality [15], while another found
that exposure to green space can lead to reductions in stress
and anxiety [16]. In addition, green recreation spaces can
also promote physical activity, which is an important factor
in maintaining good health [17]. As we delve deeper into
the development of smart cities, it becomes increasingly
apparent that the significance of access to nature, such
as green recreation spaces has been undervalued. The
conventional understanding of what constitutes a smart city
has largely centered on the deployment of cutting-edge
technologies such as Artificial Intelligence (AI), the Internet
of Things, etc. to optimize the efficacy and efficiency of
government services [18], [19]. While this approach has
yielded positive results in many parts of the world, there
remains room for a paradigm shift from a data-driven
to a data-informed approach. By leveraging technological
advancements and available data, this approach could
prioritize promoting community well-being and access to
nature, instead of solely prioritizing government efficiency
and productivity. As a result, there is a growing need for
a more comprehensive strategy that integrates technology,
community, and nature to develop sustainable, healthy,
and inclusive urban environments that promote livability,
sustainability, and resilience. This transition is critical for
addressing urbanization-related issues such as limited access
to green spaces and the detrimental impact on community
well-being.

In this study, we propose an open-source,1 reproducible,
and extendable framework that can be used to investigate
the distribution and accessibility of green recreation spaces
(as well as other amenities) in cities using open-source
data. As compared to the previous works in this area that
look at the accessibility of infrastructure like green spaces
through the lens of socio-economic factors, we follow a more
quantitative approach that looks into the spatial distribution
of green recreation spaces by performing statistical analysis
to understand their spatial arrangement in the cities followed
by a network analysis to understand the accessibility of those
spaces. We evaluate the framework on five global cities,
namely Medellin, Milan, Chicago, Singapore, and Mumbai,
in order to identify potential disparities in green recreation
space distribution and access. Our findings suggest that
despite the differences in geography, level of development,
and planning strategies across these cities, green recreation
spaces tend to cluster in certain areas, which impacts
their accessibility to citizens. By analyzing the accessibility
of green spaces, our approach offers a systematic and
quantitative means for city planners to identify areas that
require improvement in order to promote greater access for

1https://github.com/sachit27/Accessibility-Analysis

all members of society. In this way, our research contributes
to the development of a more equitable and sustainable urban
environment.

The rest of the paper is organized as follows: In Section II,
we discuss the related work. In Section III, we describe
the methods used, followed by the presentation of results in
Section IV. The discussion is encapsulated in Section V, and
finally, Section VI concludes the study.

II. BACKGROUND
In this section, we briefly go through the related work in
the area of accessibility analysis of city amenities like green
recreation spaces. We also discuss the commonly used terms
as well as methods that are widely used in the literature to
discuss the accessibility of social infrastructure in cities as
well as the use of digital technology and open-source data for
decision-making in smart cities.

The growing availability and use of Volunteered Geo-
graphic Information (VGI) has helped to improve the analysis
and prediction capabilities of sectors such as urban planning,
energy infrastructure, etc. In the past, researchers have used
data sources like OpenStreetMap (OSM) data, Mapillary
data as well as Google Places data to analyze urban
areas [20], [21], [22]. Many studies have investigated the
accessibility of urban green spaces [23], [24] as well as
other amenities in cities [25], employing various methods
and metrics. Some researchers have used distance-based
measures, such as the proximity of residential areas to
the nearest green space [26], while others have used more
sophisticated approaches, such as the two-step floating
catchment area method, which accounts for both supply
and demand factors [27]. Additionally, researchers have
explored the role of socioeconomic factors in shaping acces-
sibility patterns, revealing that lower-income and minority
communities often face greater barriers to accessing green
spaces [28], [29]. There has also been a significant increase in
the use of open-source digital technologies as well as openly
available data to map cities as well as create data-driven
applications [30], [31], [32], [33]. Several recent works have
utilized OSM data [25], [34], remote-sensing data [35], [36]
as well as sensor-based data to understand how the resources
and infrastructure are distributed in cities and how it has
changed over the time [37].

To further understand the existing literature, we conducted
a keyword co-occurrence network analysis to gain insights
into the evolution of the research field, identify trends, and
uncover research opportunities and gaps. This type of analysis
allows us to visualize how different keywords, representing
various research themes, are interconnected based on their
co-occurrence in the same papers. It provides a holistic view
of the research landscape, highlighting the main areas of
focus and their interrelations.

For this analysis, we used a query2 to search for relevant
papers in the Web of Science database. This query was

2‘‘city’’ AND ‘‘accessibility’’ AND ‘‘green space*.’’
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FIGURE 1. Representation of various research themes and clusters, derived from the keyword co-occurrence network analysis of existing literature.

designed to capture papers that focus on the intersection
of cities, accessibility, and green spaces, which is the core
interest of our study. The search resulted in a total of
640 papers published between 2003 and 2023. From these
papers, we extracted keywords and constructed a network
with 50 nodes, each representing a unique keyword. Nodes
were connected if the corresponding keywords co-occurred
in the same papers, with a minimum of 2 edges required for a
connection. To identify clusters of closely related keywords,
we used the Louvain method for community detection.
Based on the keyword co-occurrence network (as shown
in Figure 1), we can observe several clusters of research
themes and trends in the field of cities, accessibility, and green
spaces.

• Cluster 1 (Red): This cluster underscores the exploration
of the link between green space accessibility and health
outcomes, with a focus on mental and physical health
benefits and broader ecosystem services.

• Cluster 2 (Blue): This cluster is focused on the
relationship between green space and physical activity,
including walking, perceptions of green space, and the
built environment.

• Cluster 3 (Green): This cluster emphasizes research on
equitable green space distribution and its implications
for environmental justice.

While the existing research clusters provide valuable
insights into the field of cities, accessibility, and green spaces,
our work introduces innovative approaches that address two
significant gaps:

• Innovation through Open-Source Tools: Current studies
in the field have not extensively utilized open-source
tools for analyzing accessibility and green spaces. Our
research proposes an open-source framework specifi-
cally designed to investigate the availability and accessi-
bility of green spaces. The novelty of our approach lies

in the adaptability of open-source tools, which can be
widely adopted, integrated with various data sets, and
updated continuously. This makes our methodology a
versatile and valuable resource for ongoing research in
this field.

• Advancement through Quantitative and Statistical Anal-
ysis: While there is a lot of discussion around envi-
ronmental justice and other indicators, there seems to
be limited quantitative and statistical analysis that can
support data-informed decisions. Our work contributes
to addressing this gap by using statistical analytic
approaches to explore and comprehend the character-
istics and distribution of spatial accessibility related to
green recreation spaces.

III. METHODOLOGY
In this section, we will discuss in detail the methodology
that is used in this work. Figure 2 provides an overview
of the framework that is used for understanding the spatial
distribution of green recreation spaces in a city as well
as analyzing the accessibility of those recreation spaces.
The framework comprises three integrated workflows. The
first workflow is used to extract the street network of
a location using OSM API. The OSM data is accessed
using the ‘‘osmnx’’ package in Python [38]. This package
provides easy-to-use functions for retrieving, processing, and
manipulating OSM data. This workflow takes the name of the
city as well as the network type to extract the street network.
In this work, we used the ‘‘walk’’ network type to extract
the street network suitable for pedestrians. The extracted
street network is then converted into a GeoDataFrame that
contains the nodes and edges of the street network. The
second step in this workflow entails retrieving the location’s
green recreational spaces. We then extract the polygons of
green recreation spaces in the city. We specify the tags
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FIGURE 2. A schematic representation of the proposed framework consisting of three workflows.

to narrow down the green spaces with the tags ‘‘leisure’’
and ‘‘landuse’’ that are connected with parks and recreation
areas.

The second workflow uses the extracted green recreation
spaces data to first visualize the distribution of the green
recreation spaces as a density heatmap. The density estima-
tion is performed using a kernel density estimation (KDE)
algorithm [39]. KDE calculates the density at each point
as a weighted sum of nearby points. This is followed by
a point pattern analysis approach to understand the spatial
distribution of green recreation spaces. Point pattern analysis
is a statistical method used to study the spatial arrangement
of points in two-dimensional space. This approach is widely
used in geospatial analysis, ecology, and epidemiology to
analyze the spatial patterns of different variables [40], [41].
In our case, we are interested in understanding how green
recreation spaces are distributed in a region of interest. To do
this, we create a point pattern object from the coordinates of
the green recreation spaces within the specified window. The
window represents the extent of the region of interest. We use
the K function [42] to quantify the spatial distribution of
points in a point pattern. It is defined as the expected number
of points within a certain distance of any point in the pattern,
normalized by the density of the points. K function can be
represented as:

K (d) =
1
n

n∑
i=1

n∑
j̸=i

1
A

I(∥xi − xj∥ ≤ d) (1)

where K (d) is the value of the K-function at distance d , n
is the total number of points in the study region, xi and xj
are the locations of the i-th and j-th points and A is the area
of the study region. The function I returns the value 1 if
the distance between points i and j is less than or equal
to d , and 0 otherwise. The envelope test is a method of
hypothesis testing that is commonly used to determine if
the pattern of points is significantly different from a random
spatial distribution. It involves generating a large number
of simulated point patterns and calculating the K function
for each simulation. The results are then used to create
an envelope of confidence intervals around the observed K
function values. Following the point pattern analysis, we use
the nearest neighbor approach [43] to quantify the degree
of clustering or dispersion of points in a point pattern. This
approach calculates the distances between each point (in this
case, the green recreation spaces) and its nearest neighbors.
By examining the distances between the points, we can
determine if the distribution is random, clustered or dispersed.

To perform the nearest neighbor analysis, we first create a
neighbor list object and set the distance range between 0 and
1000 meters to identify the neighboring points within this
range. The formula for the nearest neighbor distance (d) is
given below:

d = min(dist(xi, xj)) (2)

where d is the nearest neighbor distance, xi is the location of
the ith point in the pattern, and xj is the location of the nearest
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neighbor to the ith point. The G function is used to quantify
the degree of clustering or dispersion in a point pattern [44].
It is defined as the cumulative distribution function of the
nearest neighbor distances. The formula for the G function
is given below:

G(d) = P(d(xi) ≤ d) (3)

where G(d) is the value of the G function at distance d , d(xi)
is the nearest neighbor distance of point i, and P(d(xi) ≤ d)
is the probability that the nearest neighbor distance is less
than or equal to d . The expected value of the G function
for a random spatial distribution is given by the following
equation:

G(r) = 1 − exp
(

−
πr2

λ

)
(4)

where G(r) is the expected value of the G function at
distance r , λ is the intensity of the point pattern (i.e., the
number of points per unit area), and exp

(
−

πr2
λ

)
is the

Poisson probability of finding a point within a distance r
of a randomly chosen point in a Poisson point process with
intensity λ. The ratio of the observed G function to the
expected G function is called the K function, which is the
same as theK function used in point pattern analysis. We also
use an envelope approach to create a confidence interval
around the nearest neighbor histogram. The confidence
interval is calculated by simulating 1000 point patterns and
calculating the nearest neighbor distances for each simulated
pattern.

The point pattern analysis and nearest neighbor approach
are appropriate methods to understand the distribution of
green recreation spaces in cities. These methods allow us
to determine if these spaces are randomly distributed or if
they are clustered or dispersed. This information can help
urban planners and policymakers make informed decisions
about the location and distribution of green spaces in the city.
Additionally, this approach can be applied to other cities to
compare the distribution of green spaces and identify areas
that may require additional green spaces.

The final workflow deals with understanding the accessi-
bility of green recreation spaces in cities by calculating the
shortest walking distance from the nearest node to the points
of interest (POI). The POI here is the location data of the
green recreation space. The methodology using POI data has
been widely used in several application domains such as air
quality analysis, land-use analysis, finding crime hot spots,
etc. [45], [46]. To perform this, we first calculate the nearest
node to each POI using the nearest neighbor search algorithm.
We then select the nearest node that is part of the pedestrian
network. This is followed by the calculation of the shortest
walking distance from the nearest node to the POI using the
Dijkstra algorithm. The Dijkstra algorithm finds the shortest
path between nodes in a graph, in this case, the pedestrian
network. This is represented mathematically as:

D(i, j) = min
v∈V

dist(i, v) + D(v, j) (5)

TABLE 1. The number of green recreation spaces in cities analyzed in this
article.

FIGURE 3. Density maps showing the distribution of green recreation
spaces in (a) Medellin, (b) Milan, (c) Chicago, (d) Singapore, and
(e) Mumbai. The legend ‘‘level’’ refers to the density level of the green
recreation spaces.

where D(i, j) is the shortest path between node i and node j,
v is the set of all nodes in the graph, dist(i, v) is the distance
between node i and node v, and D(v, j) is the shortest path
between node v and node j.

After calculating the shortest walking distance from
each POI to the nearest node on the pedestrian network,
we aggregate this information to understand the accessibility
of green recreation spaces in the city. It is important to
consider here that our analysis did not take into consideration
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FIGURE 4. Histograms of observed nearest neighbor distances, with envelopes of expected frequencies for (a) Medellin, (b) Milan, (c) Chicago,
(d) Singapore, and (e) Mumbai.

the total number of green recreation spaces, but rather
the proximity of the nearest green recreation space to
each node. This technique is based on the convention that
accessibility measures are often linked to the number of
amenities at specific places, such as POI numbers or other
POI features [47].

IV. RESULTS
In this section, we will discuss the results obtained after
testing the proposed framework in five global cities:
Medellin, Milan, Chicago, Singapore, and Mumbai. The
five global cities chosen for this study - Medellin, Milan,
Chicago, Singapore, and Mumbai - were selected due to
their diverse geographical locations, cultural contexts, and
varying stages of urban development. This diversity allows
us to test the applicability of our framework across different
contexts and draw more generalizable conclusions. Medellin,
a South American city noted for its modern urban planning
projects, is included to provide unique insights into how
green recreation spaces are dispersed and utilized in a
developing urban setting. Milan, a European city known
for its commitment to sustainability, represents a blend
of historical and modern urban planning, serving as a
model for green space distribution in a densely populated
metropolitan setting. Chicago, a major North American
city with a well-planned grid system, offers insight into

green space accessibility in a densely populated and diverse
metropolis. Singapore, a Southeast Asian city-state famed for
its rigorous urban planning, exemplifies how a dense urban
setting may provide universal access to green recreational
spaces. Lastly, Mumbai, one of the world’s most populous
cities, presents a unique case study on the challenges of
providing equitable access to green areas in a densely
populated, fast-expanding urban environment. Each city’s
unique characteristics and levels of urbanization contribute to
a comprehensive understanding of green space accessibility
across different urban contexts. By selecting these diverse
cities, we aimed to capture a broad range of urban landscapes
and examine the distribution and accessibility of green
recreation spaces across different contexts. Table 1 shows
the cities and the number of green recreation spaces. This
is based on the data till December 2022. Figure 3 shows
the density of green recreation spaces based on their spatial
distribution in different cities. The regions are divided into
bins and the density of green recreation spaces is calculated
in each bin. The intensity or concentration of green recreation
spaces in various parts of the map is represented by these
density maps. The maps show kernel density surfaces, with
colored values representing a condensed representation of
the spatial variance in the density of green recreation spaces
across the study areas. Figure 3 shows that the distribution
of green recreation places is not uniform across cities.
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FIGURE 5. The heatmaps display the walking time required to reach the closest green recreation space for each of the five cities analyzed in this
study, including (a) Medellin, (b) Milan, (c) Mumbai, (d) Chicago, and (e) Singapore.

The heat maps reveal distinct patterns in different cities.
In Figure 3, the color intervals are determined by KDE.
This calculates the density of green spaces at each point
on the map, and the color of each area corresponds to
this estimated density. The color scale is continuous and
based on the range of these density levels, rather than
being divided into quantiles. Medellin and Mumbai show
notable clusters of green spaces in specific areas within
the city. In comparison to the other cities, Milan has a
less concentrated distribution of green spaces. In Chicago,
there is a large clustering of green recreation places around
the city center, whereas, in Singapore, significant clustering
is evident in the city’s eastern part. While the heat maps
provide a visual understanding of the distribution of green
recreation spaces, further statistical analysis is required
to comprehensively understand the distribution patterns.
Therefore, our next step involves conducting a point pattern
analysis.

Following up on the previous analysis, we performed
a point pattern analysis to get a more detailed picture of
the distribution of green recreation spaces in the selected
cities. Our primary focus was on investigating distribution
patterns using the nearest-neighbor approach, as shown in
Figure 4. To do this, we created histograms of the actual
data’s distances to the nearest neighbor, as well as an
envelope of expected values acquired through simulation.
This involved creating 1000 random point patterns with a
Poisson distribution, the intensity of which was determined
by the density function produced from the original data.

Then, for each bar in the histogram, we generated the 95%
confidence interval and superimposed it on the original
histogram. This methodology draws inspiration from the
work of Bevan et. al in [43]. The primary goal here is
to establish if the observed distribution of nearest-neighbor
distances matches our expectations or is completely random.
This could be done using the Clark and Evans test [48]
as it has been used in the past, but we used a more
robust alternative.We generate random point patterns through
Monte Carlo simulation [49] to simulate a comparable
number of random points in the study areas. These simulated
point patterns are used to establish an expected distribution
and create an envelope of expected values for the nearest-
neighbor distances. By comparing the observed distribution
of nearest-neighbor distances to the simulated distribution,
we can determine whether the observed pattern deviates
significantly from randomness. There are three ways to
analyze the relationship between the bars and the envelope
(Figure 4).
1) If the bars are constantly within the envelope, it indi-

cates that the observed distribution of nearest neighbor
distances is consistent with a random pattern. In this
scenario, the green recreation spaces are dispersed
in the manner that would be expected if they were
randomly placed within the study area.

2) If the bars continuously surpass the upper bounds of
the envelope, this suggests a clustering pattern. In this
case, it suggests that the green recreation spaces tend
to be closer to each other than would be expected by
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FIGURE 6. The histograms show the count of nodes against the walking time required to access the nearest green recreation spaces in: (a) Medellin,
(b) Milan, (c) Mumbai, (d) Chicago, and (e) Singapore.

chance, indicating a non-random spatial organization
with significant clustering.

3) If the bars continually fall below the envelope’s lower
bounds, this indicates a dispersed pattern. In this
scenario, this indicates that the green recreation spaces
are more equally spaced apart than would be expected
by random chance, showing a non-random spatial
organization with a dispersed distribution.

As observed in Figure 4, in the case of Medellin, variations
from the expected nearest neighbor distances for a Poisson
process with similar density are seen. The graph demonstrates
a clustering pattern, with a larger concentration of green
recreation spaces, than expected observed within 100 meters.
Beyond around 200 meters, however, fewer spaces are
concentrated, indicating a more dispersed distribution. For
Milan, little clustering is observed within a distance of
150 meters, indicating a tendency for green recreation spaces
to be located in closer proximity to each other within this
range. Above this threshold, however, the observed distribu-
tion more closely resembles a random pattern, as indicated by
the bars falling within the envelope. In the case of Chicago,
a clustering pattern for green recreation spaces within
a 300-meter distance is seen. After 500 meters, the distribu-
tion falls below the expected values, indicating a deviation

from a random spatial layout. Similarly, for Singapore,
clustering can be observed within approximately 400 meters,
followed by a dispersed distribution of green recreation
spaces beyond that point. Lastly, for Mumbai, a similar
pattern emerges, with a strong clustering observed within
200meters, followed by dispersed distribution of green recre-
ation spaces. One takeaway from the analysis of all the cities
is that a high frequency of green recreation spaces is clustered
within an average distance of 200 meters (approximately).
There are higher densities at shorter distances and there is a
gradual decrease in density of green recreation spaces as the
distance increases. There are some occasional fluctuations in
counts that suggest the existence of distinct clusters or zones
with varying densities.

While the nearest-neighbor analysis has provided valuable
information about the distribution and clustering patterns of
green recreation spaces within the study areas, understanding
the proximity of these spaces alone is not enough in assessing
their true accessibility. In the next step, we aimed to analyze
the accessibility of green recreation spaces by calculating the
shortest distance from the nearest node to the POI i.e. a green
recreation space. The results of our analysis are presented in
Figure 5, which shows heatmaps for each city that illustrate
the walking time (in minutes) from all nodes in the pedestrian
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network to the nearest green recreation space. Additionally,
Figure 6 presents a histogram for all five cities, showing the
number of nodes, and walking time (in minutes) required to
reach the nearest green recreation space. Our findings show
that the average walking time to the nearest green space is
7.8 minutes for Medellin, 8.3 minutes for Milan, 6.7 minutes
for Mumbai, 10 minutes for Chicago, and 14 minutes for
Singapore. Despite the reported differences in walking time
to the nearest green in these cities, it is critical to account
for changes in node density and distribution within each
city network. For example, Chicago, with almost 16k nodes,
and Singapore, with more than 10k nodes, have a more vast
and complicated network structure than Medellin, which has
only 3.5k nodes, and Mumbai which has only 4k nodes. The
accessibility and closeness of green recreation areas may be
influenced by differences in network complexity.

V. DISCUSSION
A. THE IMPORTANCE OF GREEN SPACES IN SMART CITIES
The notion of smart cities is still developing, and many ele-
ments are taken into account while creating and implementing
smart city programs. While access to nature and green spaces
is crucial in urban development, it is not necessarily the
major emphasis of smart city projects. There is a growing
recognition of the importance of access to nature and green
areas for human health and well-being, and this should be
reflected in the development of smart city programs. Access
to green recreation spaces has been shown to have numerous
benefits for mental and physical health. Studies have shown
that spending time in nature can reduce stress and improve
overall well-being [50]. In addition, green space can help
to improve air and water quality, reduce urban heat island
effects [51], and provide habitat for urban wildlife [52].
Furthermore, green space can serve as an important public
gathering space for communities. Parks, gardens, and other
green spaces can provide a place for people to come
together and socialize, promoting a sense of community
and improving social cohesion. While there have been a lot
of ongoing discussions about nature in the cities, potential
benefits as well as frameworks to create more inclusive
cities [53], [54], there is still a lot to do when it comes to
access to green recreation spaces in cities. The uneven spatial
distribution of green spaces in cities can have a significant
impact on the city’s sustainability, environment, and quality
of life for city residents [55]. One of the major issues is a
lack of precise data and sufficient tools for understanding
the distribution and accessibility of these areas. Despite
considerable advances in recent years, utilizing this data for
informed decision-making remains difficult due to limited
technological infrastructure and complexity. Addressing
these challenges requires a coordinated effort to create and
implement tools and technology that enable data-informed
decision-making, not just for the decision-makers but also
for city residents. Open-source tools and technology have
demonstrated significant promise in facilitating collective

intelligence and participatory resilience [56], [57]. These
tools can aid in democratizing information availability and
encouraging public engagement and feedback in decision-
making processes.

B. INTEGRATING GREEN SPACE ACCESSIBILITY INTO
SMART CITY DISCOURSE
Despite the growing body of literature on green space
accessibility, its integration into the smart city discourse
remains limited. Smart city initiatives often prioritize tech-
nological solutions, such as sensor networks, data analytics,
and intelligent transportation systems, while overlooking the
importance of equitable access to green spaces [58], [59].
The existing research gaps highlight the critical need for
a comprehensive understanding of accessibility within the
context of smart cities, as well as innovative techniques to
enhance the availability and distribution of green recreation
spaces. Furthermore, it is critical to use digital infrastructure
to develop user-friendly frameworks and tools that allow
decision-makers as well as other stakeholders to make
informed decisions about urban planning initiatives. If done
the right way, smart cities have the ability to seamlessly
integrate technology, community, and nature, and to create
equitable access to resources while increasing communal
well-being.

C. DATA LIMITATIONS
While OSM has shown to be a great resource for under-
standing urban landscapes, is also important to acknowledge
the limitations of using OSM data. Its reliance on volunteer
contributions may result in data gaps or discrepancies,
especially in areas with low levels of community engagement
or technical expertise. OSM data may suffer from coverage
and data quality biases. Certain geographic areas, particularly
those with a more active OSM community or higher technical
expertise, might have better representation compared to
others [60]. This could potentially lead to inaccuracies
or incomplete information in the analysis. OSM data is
continuously updated by volunteers, which means the data’s
temporal variability could impact the analysis. For instance,
new green spaces might be added or existing ones removed
after the data was collected, which could affect the results.
Also, the lack of a formal validation process for OSM data
means that some data might be inaccurate or outdated. This
could potentially impact the reliability of the findings.

Despite these limitations, we believe that OSM remains
a valuable resource for urban data analysis. Its open-
source nature, wide coverage, and vast amount of geospatial
information it providesmake it a useful tool for understanding
the spatial distribution and accessibility of green recreation
spaces. To further enhance the comprehensiveness and
accuracy of OSM data, other data sources can be integrated
with it. These include street view data [61] for detailed visual
information, remote sensing data for land use and vegetation
cover, as well as government datasets for accurate records.
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Each of these sources can complement OSM data, addressing
some of its limitations while providing a richer and more
nuanced understanding of green space accessibility.

VI. CONCLUSION AND FUTURE WORK
In this study, we proposed an open-source and extendable
framework that gives statistical insights and visualizations
of the distribution and accessibility of green recreation
places in cities. The proposed framework was applied to
five global cities: Medellin, Milan, Chicago, Singapore, and
Mumbai, to analyze the distribution of green recreation
spaces and assess their pedestrian accessibility. While the
cities represented different geographical and cultural settings,
we found that for all of them, most of the green recreation
spaces were clustered in small areas resulting in uneven
distribution. In terms of accessibility, we found that the
walking time to the nearest green space was highest in
Chicago and Singapore. Given that our framework utilizes
OSM data, it offers adaptability and simplifies the process of
testing it for different amenities and locations. Furthermore,
the open-source structure allows collaboration and encour-
ages community participation in the tool’s development and
enhancement. The flexibility for developers and researchers
to add new functionality and features to the existing code
base considerably saves the time and effort required to build
equivalent tools from the ground up.

In terms of future work, we envision expanding our
framework to further support the development of smart
cities that prioritize accessibility to nature. Specifically,
we aim to incorporate predictive modeling capabilities
into our framework. This enhancement would allow for
the exploration of various urban planning scenarios and
the assessment of potential outcomes of different policy
interventions, providing a dynamic tool for the strategic
development of green recreation spaces.

ACKNOWLEDGMENT
(Jenny Martinez and Sachit Mahajan contributed equally to
this work.)

REFERENCES
[1] 68% of the World Population Projected to Live in Urban Areas by 2050,

Says UN, UN, New York, NY, USA, May 2018.
[2] M.Mayer, ‘‘The ‘right to the city’ in the context of shifting mottos of urban

social movements,’’ City, vol. 13, nos. 2–3, pp. 362–374, Jun. 2009.
[3] S. L. Harlan, A. J. Brazel, L. Prashad, W. L. Stefanov, and L. Larsen,

‘‘Neighborhoodmicroclimates and vulnerability to heat stress,’’ Social Sci.
Med., vol. 63, no. 11, pp. 2847–2863, Dec. 2006.

[4] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, ‘‘Urban computing:
Concepts, methodologies, and applications,’’ ACM Trans. Intell. Syst.
Technol., vol. 5, no. 3, pp. 1–55, Sep. 2014.

[5] S. Mahajan, J. Gabrys, and J. Armitage, ‘‘AirKit: A citizen-sensing toolkit
for monitoring air quality,’’ Sensors, vol. 21, no. 12, p. 4044, Jun. 2021.

[6] S. Mahajan, C.-H. Luo, D.-Y. Wu, and L.-J. Chen, ‘‘From do-it-yourself
(DIY) to do-it-together (DIT): Reflections on designing a citizen-driven
air quality monitoring framework in Taiwan,’’ Sustain. Cities Soc., vol. 66,
Mar. 2021, Art. no. 102628.

[7] V. Albino, U. Berardi, and R. M. Dangelico, ‘‘Smart cities: Definitions,
dimensions, performance, and initiatives,’’ J. Urban Technol., vol. 22,
no. 1, pp. 3–21, Jan. 2015.

[8] E. Talen and L. Anselin, ‘‘Assessing spatial equity: An evaluation of
measures of accessibility to public playgrounds,’’ Environ. Planning A,
Economy Space, vol. 30, no. 4, pp. 595–613, Apr. 1998.

[9] J. Maas, ‘‘Green space, urbanity, and health: How strong is the relation?’’
J. Epidemiology Community Health, vol. 60, no. 7, pp. 587–592, Jul. 2006.

[10] A. Chiesura, ‘‘The role of urban parks for the sustainable city,’’ Landscape
Urban Planning, vol. 68, no. 1, pp. 129–138, May 2004.

[11] B. Chen, S. Wu, Y. Song, C. Webster, B. Xu, and P. Gong, ‘‘Contrasting
inequality in human exposure to greenspace between cities of global north
and global south,’’ Nature Commun., vol. 13, no. 1, p. 4636, Aug. 2022.

[12] J. R. Wolch, J. Byrne, and J. P. Newell, ‘‘Urban green space, public health,
and environmental justice: The challenge of making cities ‘just green
enough,’’’ Landscape Urban Planning, vol. 125, pp. 234–244, May 2014.

[13] C. Wan, G. Q. Shen, and S. Choi, ‘‘Underlying relationships between
public urban green spaces and social cohesion: A systematic literature
review,’’ City, Culture Soc., vol. 24, Mar. 2021, Art. no. 100383.

[14] A. C. K. Lee and R. Maheswaran, ‘‘The health benefits of urban green
spaces: A review of the evidence,’’ J. Public Health, vol. 33, no. 2,
pp. 212–222, Jun. 2011.

[15] P. J. Villeneuve, M. Jerrett, J. G. Su, R. T. Burnett, H. Chen, A. J.
Wheeler, and M. S. Goldberg, ‘‘A cohort study relating urban green space
with mortality in Ontario, Canada,’’ Environ. Res., vol. 115, pp. 51–58,
May 2012.

[16] S. Wan, D. Rojas-Rueda, J. Pretty, C. Roscoe, P. James, and J. S. Ji,
‘‘Greenspace and mortality in the U.K. biobank: Longitudinal cohort
analysis of socio-economic, environmental, and biomarker pathways,’’
SSM, Population Health, vol. 19, Sep. 2022, Art. no. 101194.

[17] F. Li, R. Wang, J. Paulussen, and X. Liu, ‘‘Comprehensive concept
planning of urban greening based on ecological principles: A case study in
Beijing, China,’’ Landscape Urban Planning, vol. 72, no. 4, pp. 325–336,
May 2005.

[18] Smarter Cities for a Better Future, NTU, Singapore, Aug. 2022.
[19] F. Li, A. Nucciarelli, S. Roden, and G. Graham, ‘‘How smart cities

transform operations models: A new research agenda for operations
management in the digital economy,’’ Prod. Planning Control, vol. 27,
no. 6, pp. 514–528, Apr. 2016.

[20] Y.-L. Lin, M.-F. Yen, and L.-C. Yu, ‘‘Grid-based crime prediction using
geographical features,’’ ISPRS Int. J. Geo-Inf., vol. 7, no. 8, p. 298,
Jul. 2018.

[21] K. Hopf, ‘‘Mining volunteered geographic information for predictive
energy data analytics,’’ Energy Informat., vol. 1, no. 1, pp. 1–21,
Dec. 2018.

[22] X. Ding, H. Fan, and J. Gong, ‘‘Towards generating network of bikeways
from mapillary data,’’ Comput., Environ. Urban Syst., vol. 88, Jul. 2021,
Art. no. 101632.

[23] D. Liu, M.-P. Kwan, and Z. Kan, ‘‘Analysis of urban green space
accessibility and distribution inequity in the city of Chicago,’’ Urban
Forestry Urban Greening, vol. 59, Apr. 2021, Art. no. 127029.

[24] J. Yang, C. Li, Y. Li, J. Xi, Q. Ge, and X. Li, ‘‘Urban green space, uneven
development and accessibility: A case of Dalian’s Xigang district,’’ Chin.
Geograph. Sci., vol. 25, no. 5, pp. 644–656, Oct. 2015.

[25] L. Nicoletti, M. Sirenko, and T. Verma, ‘‘Disadvantaged communities have
lower access to urban infrastructure,’’ Environ. Planning B, Urban Anal.
City Sci., vol. 50, no. 3, pp. 831–849, Mar. 2023.

[26] H. E. Wright Wendel, R. K. Zarger, and J. R. Mihelcic, ‘‘Accessibility and
usability: Green space preferences, perceptions, and barriers in a rapidly
urbanizing city in Latin America,’’ Landscape Urban Planning, vol. 107,
no. 3, pp. 272–282, Sep. 2012.

[27] W. Luo and F. Wang, ‘‘Measures of spatial accessibility to health care in
a GIS environment: Synthesis and a case study in the Chicago region,’’
Environ. Planning B, Planning Design, vol. 30, no. 6, pp. 865–884,
Dec. 2003.

[28] J. Wolch, J. P. Wilson, and J. Fehrenbach, ‘‘Parks and park funding in
Los Angeles: An equity-mapping analysis,’’ Urban Geogr., vol. 26, no. 1,
pp. 4–35, Feb. 2005.

[29] A. Rigolon, ‘‘A complex landscape of inequity in access to urban parks:
A literature review,’’ Landscape Urban Planning, vol. 153, pp. 160–169,
Sep. 2016.

[30] L.-J. Chen, Y.-H. Ho, H.-C. Lee, H.-C. Wu, H.-M. Liu, H.-H. Hsieh, Y.-
T. Huang, and S. C. Lung, ‘‘An open framework for participatory PM2.5
monitoring in smart cities,’’ IEEE Access, vol. 5, pp. 14441–14454, 2017.

[31] P. Hamel et al., ‘‘Mapping the benefits of nature in cities with the invest
software,’’ NPJ Urban Sustainability, vol. 1, no. 1, p. 25, Jun. 2021.

VOLUME 11, 2023 102023



J. Martinez, S. Mahajan: Smart Cities and Access to Nature

[32] S. Mahajan, W.-L. Wu, T.-C. Tsai, and L.-J. Chen, ‘‘Design and
implementation of IoT-enabled personal air quality assistant on instant
messenger,’’ in Proc. 10th Int. Conf. Manage. Digit. EcoSyst., Sep. 2018,
pp. 165–170.

[33] S. Mahajan, ‘‘Design and development of an open-source framework for
citizen-centric environmental monitoring and data analysis,’’ Sci. Rep.,
vol. 12, no. 1, p. 14416, Aug. 2022.

[34] T. Dogan, Y. Yang, S. Samaranayake, and N. Saraf, ‘‘Urbano: A tool to
promote active mobility modeling and amenity analysis in urban design,’’
Technol., Archit. Des., vol. 4, no. 1, pp. 92–105, Jan. 2020.

[35] S. Law, B. Paige, and C. Russell, ‘‘Take a look around: Using street view
and satellite images to estimate house prices,’’ ACM Trans. Intell. Syst.
Technol., vol. 10, no. 5, pp. 1–19, Sep. 2019.

[36] S. Mahajan and J. Martinez, ‘‘Water, water, but not everywhere: Analysis
of shrinking water bodies using open access satellite data,’’ Int. J. Sustain.
Develop. World Ecology, vol. 28, no. 4, pp. 326–338, May 2021.

[37] Y. Liu, F. Wang, Y. Xiao, and S. Gao, ‘‘Urban land uses and traffic
‘source-sink areas’: Evidence from GPS-enabled taxi data in Shanghai,’’
Landscape Urban Planning, vol. 106, no. 1, pp. 73–87, May 2012.

[38] G. Boeing, ‘‘OSMnx: Newmethods for acquiring, constructing, analyzing,
and visualizing complex street networks,’’ Comput., Environ. Urban Syst.,
vol. 65, pp. 126–139, Sep. 2017.

[39] C. C. Weiss, M. Purciel, M. Bader, J. W. Quinn, G. Lovasi, K. M.
Neckerman, and A. G. Rundle, ‘‘Reconsidering access: Park facilities and
neighborhood disamenities in New York City,’’ J. Urban Health, vol. 88,
no. 2, pp. 297–310, Apr. 2011.

[40] A. C. Gatrell, T. C. Bailey, P. J. Diggle, and B. S. Rowlingson, ‘‘Spatial
point pattern analysis and its application in geographical epidemiology,’’
Trans. Inst. Brit. Geographers, vol. 21, no. 1, pp. 256–274, 1996.

[41] T. Wiegand and K. A. Moloney, Handbook of Spatial Point-Pattern
Analysis in Ecology. Boca Raton, FL, USA: CRC Press, 2013.

[42] P. Haase, ‘‘Spatial pattern analysis in ecology based on Ripley’s K-
function: Introduction and methods of edge correction,’’ J. Vegetation Sci.,
vol. 6, no. 4, pp. 575–582, Aug. 1995.

[43] A. Bevan, E. Jobbová, C. Helmke, and J. J. Awe, ‘‘Directional layouts
in central lowland maya settlement,’’ J. Archaeol. Sci., vol. 40, no. 5,
pp. 2373–2383, May 2013.

[44] G. L. W. Perry, B. P. Miller, and N. J. Enright, ‘‘A comparison of methods
for the statistical analysis of spatial point patterns in plant ecology,’’ Plant
Ecol., vol. 187, no. 1, pp. 59–82, Oct. 2006.

[45] A. de Araujo, J. Marcos do Valle, and N. Cacho, ‘‘Geographic feature
engineering with points-of-interest from OpenStreetMap,’’ in Proc. KDIR,
2020, pp. 116–123.

[46] A. Psyllidis, S. Gao, Y. Hu, E.-K. Kim, G. McKenzie, R. Purves, M. Yuan,
and C. Andris, ‘‘Points of interest (POI): A commentary on the state of the
art, challenges, and prospects for the future,’’ Comput. Urban Sci., vol. 2,
no. 1, p. 20, Jun. 2022.

[47] W. G. Hansen, ‘‘How accessibility shapes land use,’’ J. Amer. Inst.
Planners, vol. 25, no. 2, pp. 73–76, May 1959.

[48] B. D. Ripley, ‘‘Tests of ‘randomness’ for spatial point patterns,’’ J. Roy.
Stat. Soc. B, Methodol., vol. 41, no. 3, pp. 368–374, 1979.

[49] C. P. Robert, G. Casella, and G. Casella,Monte Carlo Statistical Methods,
vol. 2. New York, NY, USA: Springer, 1999.

[50] J. Roe, C. Thompson, P. Aspinall, M. Brewer, E. Duff, D. Miller,
R. Mitchell, and A. Clow, ‘‘Green space and stress: Evidence from cortisol
measures in deprived urban communities,’’ Int. J. Environ. Res. Public
Health, vol. 10, no. 9, pp. 4086–4103, Sep. 2013.

[51] K. Van Ryswyk, N. Prince, M. Ahmed, E. Brisson, J. D. Miller, and P. J.
Villeneuve, ‘‘Does urban vegetation reduce temperature and air pollution
concentrations? Findings from an environmental monitoring study of the
central experimental farm in Ottawa, Canada,’’ Atmos. Environ., vol. 218,
Dec. 2019, Art. no. 116886.

[52] M. B. Haverland and J. A. Veech, ‘‘Examining the occurrence of mammal
species in natural areas within a rapidly urbanizing region of Texas, USA,’’
Landscape Urban Planning, vol. 157, pp. 221–230, Jan. 2017.

[53] Q. Liu, H. Ullah, W. Wan, Z. Peng, L. Hou, T. Qu, and S. Ali Haidery,
‘‘Analysis of green spaces by utilizing big data to support smart cities and
environment: A case study about the city center of Shanghai,’’ ISPRS Int.
J. Geo-Inf., vol. 9, no. 6, p. 360, Jun. 2020.

[54] D. D’Alessandro, M. Buffoli, L. Capasso, G. Fara, A. Rebecchi, and
S. Capolongo, ‘‘Green areas and public health: Improving wellbeing
and physical activity in the urban context,’’ Epidemiologia Prevenzione,
vol. 39, no. 5, pp. 8–13, 2015.

[55] M. Triguero-Mas, P. Dadvand, M. Cirach, D. Martínez, A. Medina, A.
Mompart, X. Basagaña, R. Gražulevičienė, and M. J. Nieuwenhuijsen,
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