
Received 25 June 2023, accepted 31 July 2023, date of publication 9 August 2023, date of current version 16 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3303430

Evaluate Solutions for Achieving High Availability
or Near Zero Downtime for Cloud Native
Enterprise Applications
ANTRA MALHOTRA 1, (Member, IEEE), AMR ELSAYED2, RANDOLPH TORRES3,
AND SRINIVAS VENKATRAMAN4
1System Engineering, Network Systems—Shared Platforms and Product, Verizon, Temple Terrace, FL 33637, USA
2System Architecture, Network Systems—Shared Platforms and Product, Verizon, Temple Terrace, FL 33637, USA
3Technical Strategy, Network Systems—Shared Platforms and Product, Verizon, Temple Terrace, FL 33637, USA
4System Engineering, Network Systems—Shared Platforms and Product, Verizon, Basking Ridge, NJ 07920, USA

Corresponding author: Antra Malhotra (antra.malhotra@verizon.com)

The study related to high availability for cloud native enterprise applications was conducted as part of the Verizon initiative to
build resilient, highly available and cloud native applications under the leadership of Sebastien Jobert (Executive Director at Verizon.
Email: sebastien.jobert@verizon.com). This study is supported and funded by the Shared Platforms and Product Organization, part
of Network Systems in Verizon.

ABSTRACT In today’s digital world, businesses heavily rely on systems for every aspect of their operations
and product life cycle. Hence, it is important to have a strong ecosystem of applications to achieve operational
efficiency and positive customer experience. High availability of mission and business critical applications is
a necessity as any downtime or poor performance can have a negative impact on the revenue and operations
of the organization. Applications transitioning to cloud are adopting modular design and distributed system
architecture. As a result, the system complexity and the number of failure points have increased. One of
the promises of cloud platforms is high availability by building redundancy in the application architecture.
However, enterprises opting for cloud often struggle to define the right framework for high availability.
In addition, even after redundancy is built at the application layer, building a similar redundant and resilient
architecture at the database layer is challenging. For near zero downtime experience, applications should be
able to perform automated application and database failover with minimum manual intervention. This could
be a valuable feature for applications that are expected to be available 24/7. In this paper we will define
a cloud native template architecture that enterprise applications can incorporate to be highly available and
evaluate techniques to perform automatic database failover for a near zero downtime experience.Wewill then
incorporate the database failover technique as part of the recommended application architecture to review
the impact during planned maintenance activities and outages.

INDEX TERMS Cloud computing, database failover, high availability, zero downtime.

I. INTRODUCTION
Asystem is considered highly available when it stays opera-
tional and continues to operate and provide service as per the
acceptable threshold for a higher percentage of time. The per-
centage here is the amount of time the system is expected to be
available and this also determines the permissible downtime
due to outages andmaintenance activities. System availability
is a non-functional requirement and can be defined based on
the service availability [1]. It can be calculated as [1] and [5]:

The associate editor coordinating the review of this manuscript and

approving it for publication was Nikhil Padhi .

Service Availability = Service Uptime/ (Service Uptime
addressxxx Service Outage)
Service Uptime: Duration of time system is available
Service Outage: Duration of time system is unavailable
We can consider a system or service as highly available

when it functions without any downtime for 99.999% of the
time; this calculation of ‘‘five nines’ is considered close.
In other words, the permissible downtime to cover for any
planned and unplanned outages is 5 minutes and 16 secs
a year [1], [2], [3], [4]. In the Fig. 1 below, the table has
a break-up of the Availability Level and Average Yearly
Downtime [1], [2], [3].

85384
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0003-1658-9075
https://orcid.org/0000-0002-9864-9857


A. Malhotra et al.: Evaluate Solutions for Achieving High Availability or Near Zero Downtime

FIGURE 1. Table showing the availability levels and the corresponding
average yearly downtime.

A highly available application is resilient, redundant and
it leverages the failover mechanisms to recover and keep
the experience seamless for the users. Now, with more and
more applications and services migrating to the cloud, high
availability is a key requirement from the cloud providers.
Here are a few examples from 2022 where cloud outages
impacted multiple users and organizations across regions.
In 2022, Google performed a routine maintenance event on
a software defined networking component and that led to an
outage of 3 hours and 22 mins at its US West 1B region in
Oregon [7]. Similarly, on July 28 2022, AWS experienced
a power loss in a single availability zone of the US East
2 region in Ohio and though the outage lasted for 20 minutes
it knocked down the Third-party services for up to three
hours [7]. This shows that high availability is still a chal-
lenge even when cloud providers promise to deliver scalable
and redundant infrastructure. There is much literature and
research work done to evaluate multiple real-life scenarios of
cloud outages [6], [7], [8], [9].

For applications migrating to the cloud, there are many
high availability architecture solutions and best practices
available. However, there is no one solution that fits all.
This paper reviews the different principles to build a highly
available and fault tolerant application and then recommends
template architecture for read intensive and write inten-
sive database applications. After the template architecture is
defined, one of the challenges to achieve zero downtime is
the ability of the database to automatically perform a failover.
Ideally, all business-critical applications must have database
resiliency within and across regions. Applications must be
able to switch automatically within a region and must be able
to switch across regions with a click of a button without any
other human intervention. This paper also evaluates the differ-
ent strategies for performing automatic database failover and
identifies the best way to perform the failover with the least
amount of human intervention and error rate. The technique
identified is then incorporated as part of the recommended
architecture and failure scenarios associated with planned
outages are executed to assess the downtime and application
availability.

II. BACKGROUND AND HISTORY
In the era that predates internet, availability of systems was
desirable but not necessarily an entitlement as computers

were used only when needed. The websites were operational
primarily during the working hours of its brick-and-mortar
counterpart. The applications were created for a specific user
base and were not product agnostic. However, with internet
there is an increase in distributed computation and ability to
meet the needs of the users across the globe. Today, applica-
tions cater to multiple functions and users in different time
zones. Hence, the necessity for the applications to operate
24/7 becomes a key expectation.

There is research done in this area to define high availabil-
ity, thresholds and different ways to calculate high availabil-
ity [1], [2], [3], [4], [5], [8]. In addition, the research includes
in- depth study on the major outages that impacted cloud
providers in last several years [6], [7], [8]. So, as business it is
important to be prepared to manage application and database
failover in case of any outage or maintenance activity. For
applications migrating to cloud having a universal template
architecture and recommendations that can be readily used
as part of their migration journey will decrease the learning
curve and give opportunities for the applications to take
advantage of the available blueprint rather than re-inventing
the wheel from the scratch.

This paper focuses on building that template architec-
ture, and uses the definitions and metrics defined in the
various literature work as a baseline to achieve high avail-
ability of 99.999% [1], [2], [3], [4], [5], [8]. The applications
are profiled as read intensive and write intensive database
applications for the template architecture. There is related
researchwork done that recommendsHighAvailability Proxy
(HAProxy) as the load balancing tool for managing the
traffic to the application layer [21], [22]. This paper builds
further on this research by leveraging High Availability
Proxy (HAProxy) and PgBouncer for automated database
failover for a cloud native application. In addition, this paper
simulates the recommended architecture for read intensive
and write intensive database applications and executes the
failover scenarios in a test environment to record the down-
time and assess the feasibility of achieving high availability
in a cloud environment.

III. GUIDING PRINCIPLES FOR APPLICATION
ARCHITECTURE
Enterprise, cloud-based applications are studied to define the
template architecture for high availability and to evaluate
database failover techniques [9], [10]. Two database appli-
cations are considered:
Application (1) Read intensive database applicationwhich

is a centralized enterprise location primary data platform.
It provides a one-stop service for standardization and vali-
dation for domestic and international addresses.
Application (2) Write intensive database application that

receives transactions from the users and data feeds to update
the site locations, equipment/antenna database and perform
project management for field operations.

As an initial step, the guiding principles for near zero
downtime experience are defined in the section below and

VOLUME 11, 2023 85385



A. Malhotra et al.: Evaluate Solutions for Achieving High Availability or Near Zero Downtime

FIGURE 2. Microservices based architecture showing modular design of
the application.

then keeping the Application (1) and Application (2) in con-
text, the template architecture is recommended.

A. MICROSERVICES BASED ARCHITECTURE AND
MODULAR DESIGN
Unlike monolithic design where all processes are coupled
together to run as a single service, the microservice based
architecture enables every function to run as an indepen-
dent component. These components are micro-services that
communicate by exposing APIs (Application Programming
Interface) for other clients and microservices. Refer Fig. 2
below for the microservice based architecture showing a
modular design of the application. The application layer pro-
vides the unified interface for these services. Each service can
be managed, deployed, updated and scaled independently.
These services do not share any code or implementation
with other services. This modular design helps to break out
the complex code into smaller chunks for easy maintain-
ability. This supports fault isolation as the failures can be
independently addressed or replaced. Multiple instances of
the application can be deployed and using load balancing
capabilities the traffic can be diverted to the available mod-
ule, thereby increasing the redundancy and resilience of the
system [9], [11], [12], [13], [14].

B. CLUSTERED ARCHITECTURE FOR APPLICATION
A clustered application enables load distribution and failover
in case of any service disruption. Our objective is to uti-
lize a cloud native application architecture as mentioned in
Fig. 3 along with a Kubernetes (K8S) cluster infrastructure
to balance traffic across application zones and/or regions
by defining multiple availability zones. These zones can
automatically scale up or down based on workloads and in
addition there is a secondary region with the same setup of
distributed zones for redundancy and ability to distribute the
load during a partial or full outage situation [15], [16], [24].

FIGURE 3. Clustered architecture of the application across multiple
availability zones.

FIGURE 4. Global load balancer routing traffic across zones for better
utilization of the instances running in different data centers.

Rather than reinventing the different solution compo-
nents we have utilized existing tools and capabilities, inte-
grated them together to accomplish this template architecture,
as such Global Load Balancer (GLB) tool is integrated to
constantly check the health of the application and perform
a geo-location based routing, wherein the requests are routed
to the nearest region [17], [18]. Fig. 4 below shows Global
Load Balancer integrated with the application.

This can be accomplished by setting global load balancer
rules to utilize user’s IP address to determine the region with
the closest proximity to serve the user requests. In addition,
be context aware of the existence of multiple regions and
define the routing tables according to the defined rules to
accomplish the highest availability possible using the up and
running resources [19].

C. STATELESS APPLICATION DESIGN
A stateless application design eliminates the complexity for
the application to hold any data and session information. All
the requests from the user are treated equally and no infor-
mation of the prior requests or sessions is saved. An example
of a stateless application will be a website hosting a static
page that is served every time a request is received. The
site does not save information of prior requests. This helps
to load balance evenly across multiple servers or instances
without being concerned about maintaining the sessions and
data consistency. New instances of the application can be
spun up to accommodate increase in traffic and traffic can
be re-routed to an available instance in case of any fail-
ures. A stateful application on the other hand will present
multiple different challenges related to synchronization of
the state, redundancy and replication. The Fig. 5 below
shows multiple pods are instantiated to support any spike

85386 VOLUME 11, 2023



A. Malhotra et al.: Evaluate Solutions for Achieving High Availability or Near Zero Downtime

FIGURE 5. Autoscaling of the pods across the availability zone to manage
any increase in traffic.

FIGURE 6. Table showing a synopsis of the high availability principles
and mechanisms used to derive the template architecture.

in the traffic to the services hosted in stateless microservice
architecture.

IV. RECOMMENDED APPLICATION ARCHITECTURE
Keeping the guiding principles explained above in consid-
eration, this section recommends the system architecture
for read intensive and write intensive database applications.
In addition to the principles, the architecture leverages a
subset of high availability mechanisms defined in the cloud
taxonomy proposed in the Journal of Computer and Network
Applications as summarized in Fig. 6 below. The mecha-
nisms considered include Redundancy Model, Redundancy
Distribution, Overload Protection and Recovery Action [1].
This paper combines the principles and mechanisms to rec-
ommend the template architecture for high availability.

A. RECOMMENDED ARCHITECTURE FOR READ
INTENSIVE APPLICATIONS
For read intensive database applications, read and write oper-
ations are segregated. The application is deployed in primary
and secondary region. The services are active in both regions
and the global load balancer forwards the user requests to a
given region based on close proximity of user’s geographic
location with the region. The primary database instance is
the primary writer and the read replica is set up for read
operations. The read replicas offload the read requests and
this helps with the performance and stability of the pri-
mary database. The read requests are sent to both regions
and write transactions are sent to the primary instance of

TABLE 1. High availability mechanisms – read intensive applications.

FIGURE 7. Recommended architecture for read intensive applications.

the writer database. In addition to routing the traffic, the
global load balancer constantly performs the health check
prior to sending the traffic to a particular service in a given
region. The recommendation provided for a read intensive
application is explained below and architecture is shown
in Fig. 7.

1) APPLICATION LAYER REDUNDANCY: N-WAY-ACTIVE
All the instances play an active role and requests are routed
in a load sharing manner. The same request can be fulfilled
by any available instance. This is achieved by maintaining
multiple instances across multi-zones

2) DATABASE LAYER REDUNDANCY: N-WAY-ACTIVE
For the database there is an active primary instance and there
are two stand-by read instances. The data is replicated from
the writer instance to the standby. The read instances serve
as redundant elements though actively supporting the read
transactions. The architecture has 1-active write in primary
region and 1 – reader instance in each primary and secondary
region. The reader will be promoted to a writer in case of any
failure.

3) REDUNDANCY DISTRIBUTION: GEOGRAPHIC AND
CLUSTER
The primary and secondary regions are in two different
geographic regions. Also, the Kubernetes cluster is across
multiple-zones within a given region

VOLUME 11, 2023 85387



A. Malhotra et al.: Evaluate Solutions for Achieving High Availability or Near Zero Downtime

TABLE 2. High availability mechanisms – write intensive applications.

4) OVERLOAD PROTECTION: AUTOSCALING AND LOAD
BALANCING
The Kubernetes cluster is across multi-zones and the appli-
cation is replicated in multiple pods. The number of pods
can scale up in case of more traffic. At any point there is a
minimum number maintained to manage the regular traffic.
Similarly, the global load balancer is responsible to route
the traffic based on geo-location and the application load
balancer distributes the traffic within the region.

B. RECOMMENDED ARCHITECTURE FOR WRITE
INTENSIVE APPLICATIONS
For write intensive database applications, redundancy is built
by distributing the traffic between the two regions. In this
use case, location-based data split is performed where the
database is split and the data is stored based on the loca-
tion and geographic region. This approach helps to optimize
the access to data based on geographic proximity. Traffic
originating from a particular geographic location is always
diverted to the database belonging to that region. The global
load balancer routes the traffic between the primary and
secondary region. The application is deployed in both the
region, whereby the services are available from both the
region to serve any incoming requests. The recommendation
for the write intensive applications is explained below and
architecture is shown in Fig. 8.

1) APPLICATION LAYER REDUNDANCY: N-WAY-ACTIVE
Similar to read intensive recommendation, all the instances
play an active role and requests are routed in a load sharing
manner. The same request can be fulfilled by any available
instance. This is achieved by maintaining multiple instances
across multi-zones.

2) DATABASE LAYER REDUNDANCY: N+M
For the database there is an active primary instance in both
the regions and there is a standby to support failover when the
primary instance experiences any sort of service disruption.
The data is split geo-location wise between the two primary
instances for performance and scalability of the database. The
requests originating from a given regionwill be directed to the
database setup as primary for the given region. Both regions
have a writer instance to manage the traffic originated from

FIGURE 8. Recommended architecture for write intensive applications.

TABLE 3. Automatic database failover mechanisms for evaluation.

that region and in case of any failures, the traffic will failover
to the standby available in the other region.

3) REDUNDANCY DISTRIBUTION: GEOGRAPHIC AND
CLUSTER
The primary and secondary regions are in two different
geographic regions. Also, the Kubernetes cluster is across
multiple-zones within a given region.

4) OVERLOAD PROTECTION: AUTOSCALING AND LOAD
BALANCING
The Kubernetes cluster is across multi-zones and the appli-
cation is replicated in multiple pods. The number of pods
can scale up in case of more traffic. At any point there is a
minimum number maintained to manage the regular traffic.
Similarly, the global load balancer is responsible to route
the traffic based on geo-location and the application load
balancer distributes the traffic within the region.

V. EXPERIMENTAL ANALYSIS TO BUILD DATABASE
FAILOVER MECHANISM
With the pointers mentioned above, we can bring high avail-
ability, redundancy and scalability in the application architec-
ture. The Global Load Balancer (GLB) and Application Load
Balancer (ALB) helps with seamless switch over to the avail-
able resources and regions for the application layer. However,
one of the biggest challenges is to perform automatic failover
of the database. To resolve this challenge, two options are
considered with a goal being to perform automated database
failover and balance the traffic to the available database based
on the continuous health checks [20], [21], [32]. The solution
is also expected to reduce the overhead of managing multiple

85388 VOLUME 11, 2023



A. Malhotra et al.: Evaluate Solutions for Achieving High Availability or Near Zero Downtime

FIGURE 9. PgBouncer and high availability proxy (HAProxy) setup for
database failover.

database connections and thereby improve performance and
response time to the requests from the application.

The assessment was performed using the read inten-
sive application and the acceptance criteria being perfor-
mance and reliability to automatically failover to an available
database during an outage or failure.

PgBouncer is a lightweight connection pooler for Post-
greSQL and is designed to improve the database performance
by reducing the overhead of connecting to the database.
PgBouncer can manage multiple clients by reusing the pool
of created connections [26]. This helps in reducing spin up
of new connections and the idle connections are kept low,
thereby increasing the performance, availability and reducing
any possible database failures. In addition, for the database
to be highly available High Availability Proxy’s TCP load
balancing capability are exercised along with PgBouncer.

High Availability Proxy (HAProxy) is an open-source
reverse-proxy offering high availability and load balancing
for TCP and HTTP based applications [22]. It performs
continuous health checks on the database servers and routes
the traffic to the most available server as mentioned in
Fig. 9. In this solution, we use the leastconn algorithm
for load balancing [23]. With the leastconn algorithm, the
server with the lowest number of connections receives the
connection. This algorithm is recommended for long lived
connections.

Relational Database Service (RDS) Proxy is a fully-
managed database proxy feature from Amazon and it helps
improve the scalability and performance of the applications
by managing and sharing the pool of database connec-
tions [27]. The setup for Relational Database Service (RDS)
Proxy is shown in Fig. 10.
The High Availability Proxy (HAProxy) configuration file

consists of four key sections: global, defaults, frontend and
backend. We use the external-check command to call a cus-
tom shell script to implement a health check. In our case,
we use this simply to ascertain if the backend server is the pri-
mary or secondary. We do this with a simple SQL command
calling a PostgreSQL function called pg_is_in_recovery(),
which returns a Boolean value to indicate whether it’s the
writer or the reader node. This check is needed as insurance
to cover scenarios where in case of a failover, a reader node
can be promoted without notice to a primary. Therefore, it’s

FIGURE 10. High availability proxy (HAProxy) and relational database
service (RDS) proxy setup for database failover.

FIGURE 11. Commits and central processing unit (CPU) utilization
captured for HAProxy/PgBouncer and HAProxy/Relational Database
Service (RDS) Proxy.

FIGURE 12. Throughput and error rate captured for HAProxy/PgBouncer
and HAProxy/ relational database service (RDS) Proxy.

necessary to keep checking the status of a write replica to
ensure that the application is connected to a writer node.
Although the writer node on the west is always part of the
High Availability Proxy (HAProxy) list of servers behind
the endpoint, this custom health check ensures we do not use
the writer node on the west and turn off the active flow of
sessions against it. Similarly, in the event of a failover, the
same script makes sure that the writer (which is now a reader
node after a state change) gets its fair share of sessions to
serve.

A validation setting at the PgBouncer level is the
‘‘server_check_query’’, which we use to make sure that the
connections are not handed back to application servers before
checking their validity. This is similar to the validate or
validate on match feature present in some connection pool
frameworks. This acts as insurance against handing off old
dead sessions to the application [28].

VOLUME 11, 2023 85389



A. Malhotra et al.: Evaluate Solutions for Achieving High Availability or Near Zero Downtime

Relational Database Service (RDS) Proxy sits between
High Availability Proxy (HAProxy) and the database. As it
is a managed service, its operations, scaling and maintenance
overhead gets reduced but when it comes to being cloud
agnostic, it has greater dependency on Amazon. It has a very
limited set of configuration options which are available to the
user for fine tuning and has dependency on Amazon support
for troubleshooting and solution.

As shown in Fig. 11, High Availability Proxy (HAProxy)
and PgBouncer combination had a comparatively less utiliza-
tion of the processing resources even with a higher number
of commits, compared to Relational Database Service (RDS)
Proxy. Though, the max number of database connections
pooled by PgBouncer were higher compared to Relational
Database Service (RDS) Proxy. Dummy traffic was also cre-
ated to evaluate the performance and the error rate.

It was observed that PgBouncer and High Availability
Proxy (HAProxy) support fine-tuning of configuration and
can scale based on the request. Wherein, Relational Database
Service (RDS) Proxy does not support configuration tuning
but takes care of scaling with its managed capabilities. As per
Fig. 12, the application error percentage while using, Rela-
tional Database Service (RDS) Proxy has increased to 1.67%
butwith PgBouncer wewere able tomanage it at 0% error rate
by fine tuning the configuration. On a whole, PgBouncer +

High Availability Proxy (HAProxy) worked out well with
respect to application response time and error percentage
along with high availability and near zero downtime setup.
This reduces the overall workload on the database and enables
a productive usage of the aurora cluster. Now let’s consider
the impacts of not incorporating proposed PgBouncer and
High Availability Proxy (HAProxy) components for traffic
redirection.

A. ABSENCE OF PGBOUNCER
Processing time will significantly increase due to the dis-
tribution of the connection pooling tasks across application
services where each service is not context aware of what is
consumed on the other service. Higher number of connections
would be sitting idle due to the lack of coordination across the
application services that requires database connections. Also,
support for services to restart or upgrade without dropping the
client connections would be lost

B. ABSENCE OF HAPROXY
Support for automatic recognition of the database caused
outages and gracefully redirecting traffic would be lost. Abil-
ity to perform zero downtime maintenance activities on the
database would be significantly limited and would result
in additional manual steps that would increase the overall
recovery time and as a result not meet the high availability
requirement of at least 99.999%

By adding PgBouncer and High Availability Proxy
(HAProxy) services to the solution components we have
saved manual processing time during the failover/failback

FIGURE 13. Read intensive database application architecture including
PgBouncer and high availability proxy (HAProxy).

FIGURE 14. Write intensive database application architecture including
PgBouncer and high availability proxy (HAProxy).

(Please refer to Table 6 in Section (V) for more details on
how this been calculated and concluded)

VI. FAILOVER SCENARIOS
We included PgBouncer and High Availability Proxy
(HAProxy) services to the solution as to perform automated
application and database failover scenarios [29], [30], [31].
For the purposes of this exercise, we have defined our Recov-
ery Time Objective (RTO) to be ‘‘30 seconds’’ and Recovery
Point Objective (RPO) time to be ‘‘5 minutes’’ to accomplish
the high availability percentage of 99.999%. RTO is the
maximum reasonable time for the service to be interrupted
andRPO is themaximum time allowed between the two back-
ups [33], [34]. Reference the following architecture diagram
in Fig. 13 and Fig. 14 for read and write intensive database
applications:

A. ENVIRONMENT SETUP
We have the used the following system components to setup
the study environment, however these are not compulsory
and the environment can be setup in a different way. Two
regions are used for this exercise where Region (1) is the

85390 VOLUME 11, 2023



A. Malhotra et al.: Evaluate Solutions for Achieving High Availability or Near Zero Downtime

TABLE 4. Failover scenarios considered for assessment.

TABLE 5. Application in - region failover evaluation.

primary region while Region (2) is the secondary and for
each region two zones are assumed as Zone (1) and Zone
(2). Application deployment is required for each zone and
for each region. There is a Global load balancer (GLB) to
balance traffic across regions. Also, a Kubernetes cluster per
region as primary and secondary. The Kubernetes worker
nodes are setup for each cluster/region with a minimum
of (3) nodes across multiple availability zones. There is
an Application Load Balancer (ALB) configured to balance
the traffic across services for each region. The application
deployed consists of Service (1) and Service (2) for execut-
ing failover scenarios. The exercise utilized the benefits of
stateless microservices along with the underlying Kubernetes
deployment capabilities to run each service with two or more
pods per service and these pods can auto scale as needed
based on the workload. The auto scaling is set up based on
workload. PgBouncer service is used part of the application
services for connection pooling combined with a lightweight
connection pool handler PGBouncer to reduce the processing
and memory pressure and downtime at the database layer.

TABLE 6. Database failover evaluation.

High Availability Proxy (HAProxy) service is used as part
of the application services for heart beat checks and traffic
redirections. The High Availability Proxy (HAProxy) service
on Region(1) primary is configured with a database cluster
read endpoints on the same region with maximum weightage
to increase the connection priority to its respective regions
endpoint and to reduce the network latency. A Database
cluster for read intensive consists of two nodes for Region
(1) where node (1) acts as a writer and node (2) acts as a
reader. The node on Region(2) acts as a reader to handle read
transactions and will be promoted as a writer in case of any
failures. The database cluster for write intensive includes two
nodes for each region where node (1) acts as a writer and node
(2) acts as a standby. Health check script is configured as part
of the High Availability Proxy (HAProxy) service. The health
check script can be an external check commandwith a custom
shell script that indicates the status of the database writer,
reader/standby nodes. For example, database failover checks
and PostgreSQL in recovery APIs can be used or any other
APIs of choice depending on the database used. Also, for
this exercise the method of replication followed is Amazon
aurora replication for read intensive application and golden
gate replication for write intensive application.

VOLUME 11, 2023 85391



A. Malhotra et al.: Evaluate Solutions for Achieving High Availability or Near Zero Downtime

TABLE 7. Application full region failover evaluation.

B. FAILOVER SCENARIOS CONSIDERED
See Table 4.

C. ASSUMPTIONS
The write intensive operational model stated here is based on
the specific region data split principle where each region has
its own set of data sets. These data sets are not required to be
accessible across regions. Regional data split is achieved by
separating database repositories that holds the specific data
sets for each region. The assessment is done on the prescribed
application architecture and does not include scenarios for
write intensive applications without region split and read
intensive with region split. PgBouncer and High Availability
Proxy (HAProxy) though appear to be single points of failure
as per the Fig. 13 and Fig. 14, however the risk can be
mitigated with further redundancy for both services across
regions and additional traffic rules for routing. In an event
High Availability Proxy (HAProxy) and PgBouncer has to
fail, in order to avoid a complete outage or failed requests
from services, it is assumed that there exists circuit breaker
that will help notify the global load balancer to failover the
traffic to the secondary region. Presence of application logic
and business rules to ensure that the application is shutdown

gracefully to avoid any data losses in case of a failover.
In the absence of a graceful application shutdown, data in the
application and database memory will be lost. However, data
stored or persisted at the time of failover will be saved.

D. RESULTS
To trigger in-region failover when there is a partial application
failure, Service (1) is deleted in the primary region. Simi-
larly, for a full application layer failure, both Service (1) and
Service (2) are deleted in the primary region. For a full region
failover, the entire region is disconnected from the global load
balancer.

Observations recorded are in tables Table 5, Table 6,
Table 7. Table 5 captures in-region full and partial failover
with no impact to the database layer. Table 6 captures the
database failover behavior and provides SLA for High Avail-
ability Proxy (HAProxy) and PgBouncer. Finally, Table 7
captures the scenario for full region failure and provides the
SLAs recorded when both application and database are down
in the primary region.

VII. CONCLUSION
A highly available application is key for the success of the
business therefore the focus is to evaluate different solutions
to achieve high availability or near zero downtown using
cloud native architecture. Database applications migrating
to cloud have guidance to achieve high availability, how-
ever building resiliency and performing automated database
failover can be challenging. In our solution we have profiled
the database applications as read intensive and write intensive
and then evaluated the recommended architecture for high
availability. Microservices based architecture, modular and
stateless design are an integral part of the design principles
considered in this study. The recommended application archi-
tecture for high availability has a geographically distributed
application model with multiple zones that support within
region failures. Application and database redundancy is built
using N-way Active/Active or Active/Passive with auto scal-
ing. Global and Application load balancer to manage traffic
across and within region. To build redundancy at the appli-
cation layer, services are deployed as replicas across region
with auto scaling parameters and database replication using
either regional or non-regional split approach depending upon
the application and business use case. PgBouncer and High
Availability Proxy (HAProxy) services are incorporated for
optimized connection pooling and health checks for routing
traffic for failover and failback.

These principles and recommendations enabled us to
achieve availability level at 99.999% or a permissible down-
time of 5 minutes, 16 seconds. In addition, leveraging
PgBouncer and High Availability Proxy (HAProxy) enabled
failover of the database with a click. In this exercise, planned
outages or maintenance activities are executed and there is
opportunity to further experiment with unplanned outages as
there may be other factors that are necessarily not covered in

85392 VOLUME 11, 2023



A. Malhotra et al.: Evaluate Solutions for Achieving High Availability or Near Zero Downtime

this experiment. An uninterrupted service is a non-functional
requirement and the solution can vary based on the size of
the application, the amount of data being processed and its
footprint. However, the principles, architecture and failover
mechanisms prescribed in this paper can be a starting point
to build resilient applications. The blueprint architecture and
failover techniques recommended in this paper can be cus-
tomized as needed tomatch an application’s unique needs and
it is important to factor the cost involved and the business
case that is being addressed to assess the high availability
requirements for a given application.

ACKNOWLEDGMENT
The authors would like to thank the support and contribution
of these team members toward the study and implementation
of best practices for high availability and near zero downtime
experience.

• DevOps Engineers: Rubankumar Sathyamoorthy and
Yaswanth Nadella

• Application Development Engineers: Deepak Kumar,
Aris Fernandez and Archana Dodanari

• Verizon India Partners: Saravanan Ramasamy, Saranya
Kumaraguruparan, Ritu Sharma, Suvarna Thatiparthi
and Thejesh Kanuparthi.

REFERENCES
[1] M. Nabi, M. Toeroe, and F. Khendek, ‘‘Availability in the cloud: State

of the art,’’ J. Netw. Comput. Appl., vol. 60, pp. 54–67, Jan. 2016, doi:
10.1016/j.jnca.2015.11.014.

[2] M. Toeroe and F. Tam, ‘‘Introduction to service availability,’’ in Service
Availability Principles and Practice. Hoboken, NJ, USA: Wiley, 2012.

[3] H. Rohani and A. K. Roosta. Calculating Total System Availability.
Whitepaper. Accessed: Apr. 15, 2023. [Online]. Available: http://
d1.awsstatic.com/whitepapers/architecture/CalculatingTotalSystem
Availability.pdf

[4] R Publishing. Availability and the Different Ways to Calculate it,’
Weibull.Com—Free Data Analysis and Modeling Resources for Reli-
ability Engineering. Accessed: Mar. 10, 2023. [Online]. Available:
https://www.weibull.com/hotwire/issue79/relbasics79.htm

[5] E. Bauer and R. Adams, ‘‘Service reliability and service availability,’’
in Reliability and Availability of Cloud Computing. Hoboken, NJ, USA:
Wiley-IEEE Press, 2012.

[6] P. T. Endo, G. L. Santos, D. Rosendo, D. M. Gomes, A. Moreira, J. Kelner,
D. Sadok, G. E. Gonçalves, and M. Mahloo, ‘‘Minimizing and managing
cloud failures,’’ Computer, vol. 50, no. 11, pp. 86–90, Nov. 2017, doi:
10.1109/mc.2017.4041358.

[7] W. T. Millward. The 15 Biggest Cloud Outages of 2022. CRN.
Accessed: May 10, 2023. [Online]. Available: https://www.crn.com/
news/cloud/the-15-biggest-cloud-outages-of-2022

[8] C. Pham, P. Cao, Z. Kalbarczyk, and R. K. Iyer, ‘‘Toward a high
availability cloud: Techniques and challenges,’’ in Proc. IEEE/IFIP Int.
Conf. Dependable Syst. Netw. Workshops (DSN), Jun. 2012, pp. 1–6, doi:
10.1109/dsnw.2012.6264687.

[9] Z. Kerravala, V. Jain, M. Stern, B. Herzberg, S. Salamone. (2022).
Lessons Learned From the Top Cloud Outages of 2022. Network Com-
puting. [Online]. Available: https://www.networkcomputing.com/cloud-
infrastructure/lessons-learned-top-cloud-outages-2022

[10] D. Gannon, R. Barga, and N. Sundaresan, ‘‘Cloud-native applica-
tions,’’ IEEE Cloud Comput., vol. 4, no. 5, pp. 16–21, Sep. 2017, doi:
10.1109/mcc.2017.4250939.

[11] G. Reese, Cloud Application Architectures: Building Applications and
Infrastructure in the Cloud. Beijing, China: O’Reilly, 2010.

[12] Y. Izrailevsky and C. Bell, ‘‘Cloud reliability,’’ IEEE Cloud Comput.,
vol. 5, no. 3, pp. 39–44, May 2018, doi: 10.1109/mcc.2018.032591615.

[13] S. G. Haugeland, P. H. Nguyen, H. Song, and F. Chauvel, ‘‘Migrating
monoliths to microservices-based customizable multi-tenant cloud-native
apps,’’ in Proc. 47th Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA),
Sep. 2021, pp. 170–177, doi: 10.1109/seaa53835.2021.00030.

[14] C. Richardson. What are microservices? Accessed: May 10, 2023.
[Online]. Available: https://microservices.io/

[15] H. Sun, J. J. Han, and H. Levendel, ‘‘A generic availability model for
clustered computing systems,’’ in Proc. Pacific Rim Int. Symp. Dependable
Comput., 2001, pp. 241–248, doi: 10.1109/prdc.2001.992704.

[16] G. Sayfan, ‘‘High-availability best practices,’’ in Mastering Kubernetes:
Automating Container Deployment and Management. Birmingham, U.K.:
Packt Publishing, 2017.

[17] S. K. Mishra, B. Sahoo, and P. P. Parida, ‘‘Load balancing in cloud
computing: A big picture,’’ J. King Saud Univ. Comput. Inf. Sci., vol. 32,
no. 2, pp. 149–158, Feb. 2020, doi: 10.1016/j.jksuci.2018.01.003.

[18] S. Meera and K. Valarmathi, ‘‘Load balancing techniques in cloud
environment—A big picture analysis,’’ in Proc. 1st Int. Conf.
Comput. Sci. Technol. (ICCST), Nov. 2022, pp. 307–310, doi:
10.1109/iccst55948.2022.10040387.

[19] (2023). Load Balancer—Amazon Elastic Load Balancer (ELB)—AWS.
[Online]. Available: https://aws.amazon.com/elasticloadbalancing

[20] M.-L. Yin, ‘‘Assessing availability impact caused by switchover in
database failover,’’ in Proc. Annu. Rel. Maintainability Symp., Jan. 2009,
pp. 401–406, doi: 10.1109/rams.2009.4914710.

[21] I. D. Addo, S. I. Ahamed, and W. C. Chu, ‘‘A reference architecture for
high-availability automatic failover between PaaS cloud providers,’’ in
Proc. Int. Conf. Trustworthy Syst. Their Appl., Jun. 2014, pp. 14–21, doi:
10.1109/tsa.2014.12.

[22] J. E. C. de la Cruz and Ing. C. A. R. Goyzueta, ‘‘Design of a high availabil-
ity system with HAProxy and domain name service for Web services,’’ in
Proc. IEEE 24th Int. Conf. Electron., Electr. Eng. Comput. (INTERCON),
Aug. 2017, pp. 1–4, doi: 10.1109/intercon.2017.8079712.

[23] A. B. Prasetijo, E. D. Widianto, and E. T. Hidayatullah, ‘‘Performance
comparisons of web server load balancing algorithms on HAProxy and
heartbeat,’’ in Proc. 3rd Int. Conf. Inf. Technol., Comput., Electr. Eng. (ICI-
TACEE), Oct. 2016, pp. 393–396, doi: 10.1109/icitacee.2016.7892478.

[24] A. Garg and S. Bagga, ‘‘An autonomic approach for fault tolerance using
scaling, replication andmonitoring in cloud computing,’’ inProc. IEEE 3rd
Int. Conf. MOOCs, Innov. Technol. Educ. (MITE), Oct. 2015, pp. 129–134,
doi: 10.1109/mite.2015.7375302.

[25] HAProxy. (2023). The Reliable, High Performance TCP/HTTP Load Bal-
ancer. [Online]. Available: https://www.haproxy.org/

[26] PgBouncer. (2023). News. [Online]. Available: https://www.
pgbouncer.org/

[27] D. Kopitz and B. Marks. RDS: The Radio Data System. Amazon.
Accessed: May 20, 2023. [Online]. Available: https://aws.amazon.com/
rds/proxy/

[28] L. Q. Ha, J. Xie, D. Millington, and A. Waniss, ‘‘Comparative perfor-
mance analysis of PostgreSQL high availability database clusters through
containment,’’ IJARCCE, vol. 4, no. 12, pp. 526–533, Dec. 2015, doi:
10.17148/ijarcce.2015.412150.

[29] S. Sengupta and K. M. Annervaz, ‘‘Multi-site data distribution for disaster
recovery—A planning framework,’’ Future Gener. Comput. Syst., vol. 41,
pp. 53–64, Dec. 2014, doi: 10.1016/j.future.2014.07.007.

[30] Y. Ping, K. Bo, L. Jinping, and L. Mengxia, ‘‘Remote disaster recovery
system architecture based on database replication technology,’’ inProc. Int.
Conf. Comput. Commun. Technol. Agricult. Eng., Jun. 2010, pp. 254–257,
doi: 10.1109/cctae.2010.5544352.

[31] Z. Huang, J. Chen, Y. Lin, P. You, and Y. Peng, ‘‘Minimizing data redun-
dancy for high reliable cloud storage systems,’’ Comput. Netw., vol. 81,
pp. 164–177, Apr. 2015, doi: 10.1016/j.comnet.2015.02.013.

[32] D. Singh, J. Singh, and A. Chhabra, ‘‘High availability of clouds: Failover
strategies for cloud computing using integrated checkpointing algorithms,’’
in Proc. Int. Conf. Commun. Syst. Netw. Technol., May 2012, pp. 698–703,
doi: 10.1109/csnt.2012.155.

[33] D. Agrawal, S. Das, and A. El Abbadi, ‘‘Big data and cloud computing,’’ in
Proc. 14th Int. Conf. Extending Database Technol., Mar. 2011, pp. 13–53,
doi: 10.1145/1951365.1951432.

[34] A. Lenk and S. Tai, ‘‘Cloud standby: Disaster recovery of distributed
systems in the cloud,’’ in Proc. Adv. Inf. Syst. Eng., pp. 32–46, 2014, doi:
10.1007/978-3-662-44879-3_3.

VOLUME 11, 2023 85393

http://dx.doi.org/10.1016/j.jnca.2015.11.014
http://dx.doi.org/10.1109/mc.2017.4041358
http://dx.doi.org/10.1109/dsnw.2012.6264687
http://dx.doi.org/10.1109/mcc.2017.4250939
http://dx.doi.org/10.1109/mcc.2018.032591615
http://dx.doi.org/10.1109/seaa53835.2021.00030
http://dx.doi.org/10.1109/prdc.2001.992704
http://dx.doi.org/10.1016/j.jksuci.2018.01.003
http://dx.doi.org/10.1109/iccst55948.2022.10040387
http://dx.doi.org/10.1109/rams.2009.4914710
http://dx.doi.org/10.1109/tsa.2014.12
http://dx.doi.org/10.1109/intercon.2017.8079712
http://dx.doi.org/10.1109/icitacee.2016.7892478
http://dx.doi.org/10.1109/mite.2015.7375302
http://dx.doi.org/10.17148/ijarcce.2015.412150
http://dx.doi.org/10.1016/j.future.2014.07.007
http://dx.doi.org/10.1109/cctae.2010.5544352
http://dx.doi.org/10.1016/j.comnet.2015.02.013
http://dx.doi.org/10.1109/csnt.2012.155
http://dx.doi.org/10.1145/1951365.1951432
http://dx.doi.org/10.1007/978-3-662-44879-3_3


A. Malhotra et al.: Evaluate Solutions for Achieving High Availability or Near Zero Downtime

ANTRA MALHOTRA (Member, IEEE) was born
in New Delhi, India. She received the master’s
degree in business and finance from Mumbai Uni-
versity, Mumbai, India, in 2006, and the master’s
degree in computer science from the Georgia Insti-
tute of Technology, Atlanta, GA, USA, in 2022.

In 2023, she was appointed as a Guest Faculty
with the Hillsborough Community College, ICCE,
for teaching cloud concepts and technologies. She
is currently with the Verizon Network Systems

Team, as a Senior Manager of the Systems Engineering, Temple Terrace, FL,
USA. She is responsible for the application development and software deliv-
ery for the two big data platforms that provide intelligent location services,
product availability and business intelligence for Verizon’s Enterprise and
Consumer business groups. Prior to joining Verizon, she was with Hutchison
3GUK,Mumbai, andAcclaris (Product based company in Tampa, FL,USA).
Her research interests include cloud technologies, application stability, and
big data management.

Mrs. Malhotra has earned the AWS Solution Architect Certification.

AMR ELSAYED was born in Cairo, Egypt. He is
a technology geek. He currently holds the posi-
tion of the Principal Engineer-SystemArchitecture
with Verizon, Temple Terrace, FL, USA. He plays
a pivotal role in providing innovative solutions
across Verizon’s Network Systems. Before joining
Verizon, he was with the IBM Clients Innovation
Center, where he honed his skills and expertise
in the technology field. His diverse talents and
dedications make him a valuable asset in the tech-

nology industry and a source of inspiration for aspiring writers.

RANDOLPH TORRES was born in Miami, FL,
USA. He received the Bachelors of Arts in Sci-
ence and Computer Science degree from Florida
International University, USA.He is currently with
Verizon Network Systems, Temple Terrace, FL,
USA, and leads the architecture and technology
strategy for the shared platforms organization.
His responsibilities range from AI/ML modeling
to complex architectures relating to high per-
formance computing, data integration, and fault

resilience. He has contributed to Open Config and holds many patents for
network systems in production today at Verizon.

SRINIVAS VENKATRAMAN was born in
Chennai, India. He received the Master of Engi-
neering degree from the Indian Institute of Science
in Metallurgy. He is currently the Director of the
Systems Engineering, leading the Shared Platform
Portfolio for Verizon, Basking Ridge, NJ, USA.
In his current role, he manages suite of enter-
prise applications and tools that facilitate address
and location management, product availability
intelligence, common system of engagement, data

warehouse, and large-scale workflow platforms. He is passionate about
technology and leads the technology recommendation group across network
systems.

85394 VOLUME 11, 2023


