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ABSTRACT The Distance Vector Hop (DV-HOP) localization algorithm, as a non ranging node localization
algorithm, its operation is simple, does not require additional measurement equipment support, with low cost.
But wireless sensor network is generally used in three-dimensional complex environment. In response to the
low positioning accuracy of this algorithm in an environment with randomly distributed nodes, research
is conducted to optimize and improve it. Firstly, by combining multiple communication radii, the hops’
quantity in nodes is decimalized to diminish errors from the hops’ quantity. Then, it calculates the average
jump distance of anchor nodes, sets a hop threshold, and eliminates anchor nodes with significant errors. It
calculates the range existing anchor nodes and unknown nodes through taking the median. Finally, a particle
swarm optimization algorithm was used instead of the maximum likelihood estimation method to obtain
the optimized Hop distance correction multi communication radius Particle swarm optimization algorithm
DV-HOP (HCMSPSO-DV-HOP) localization algorithm. The improved 3D DV-HOP algorithm was applied
to a simulation environment, and through experiments, it was found that the algorithm’s average elapsed time
was 0.49 seconds; The average positioning accuracy is 96.40%. Compared to other localization algorithms,
the localization algorithm designed by the research institute has good localization performance. It provides
technical support for WSN applications in various fields.

INDEX TERMS 3D DV-HOP algorithm, wireless sensor network, node positioning, particle swarm
optimization.

I. INTRODUCTION as deep sea, hills, and other outdoor three-dimensional spatial

As the boost of the intelligent age of human society, the wire-
less sensor network’s (WSN) value has become increasingly
prominent. It is especially widely used in industry and agri-
culture, environmental protection, military security, social
security and other fields [1]. WSN is a network including lots
of low-cost, low-consumption, perceptive, computational,
and wireless communication capable sensor nodes (SN). If
the node location cannot be determined, the various detection
information collected will be meaningless. Therefore, opti-
mizing node perception radius, reducing anchor node (AN)
energy consumption during node localization, and improving
node localization accuracy have always been the focus of
scholars’ research. In real-world application scenarios, such
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scenes, it is difficult for numerous SN to be placed in an
absolute plane for obtaining a two-dimensional WSN. When
most SN are randomly placed into a three-dimensional space
(TDS) scene, it is required that the localization algorithm can
achieve appropriate accuracy in SN localization in the TDS
scene [4]. 3D WSN involves placing SN in a complex TDS,
where the nodes obtain physical information about the sur-
rounding environment, thereby obtaining useful information
from the actual environment. Humans use this information as
a reference to make decisions that are beneficial for human
life or industrial production. Currently, the 3D DV-HOP
related algorithm without distance measurement is the main-
stream algorithm for node position in various application
scenarios. However, this algorithm still has significant posi-
tioning errors [5]. To this end, the 3D Distance Vector Hop
(DV-HOP) positioning algorithm’s error analysis is studied,
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and then the count and distance’s hop are optimized by
combining multiple communication radii (MCR) and setting
a hop count (HC) threshold. Finally, a particle swarm opti-
mization (PSO) algorithm was introduced to optimize local-
ization. Finally, the optimized Hop distance correction multi
communication radius Particle swarm optimization algorithm
DV-HOP (HCMSPSO-DV-HOP) localization algorithm was
obtained. The primary content is as follows:

A. This research systematically elaborates on the the-
ory of WSN positioning technology, common positioning
algorithms, research hotspots, and algorithm applications.
And it analyzes the algorithm principle and perfor-
mance of DV-HOP algorithm (DHA), extending DHA for
three-dimensional network environment.

B. This study aims to optimize the 3D DHA for its low
accuracy. Firstly, by combining MCR, the hops’ quantity in
nodes is reduced to a decimal point, reducing the error from
the hops’ quantity. Then, the average hop distance (AHD) of
AN is counted, and by setting a hop threshold, the AN with
larger errors are abandoned to overcome the hop distance
(HD) error from the polygonal topology structure in nodes.
After calculating the appropriate jump distance, it uses the
PSO algorithm based on linear decreasing weights instead
of the MLE estimation method. Finally, simulation experi-
ments were conducted to analyze the constructed localization
algorithm.

Il. RELATED WORKS

WSN communicates wirelessly, perceiving and monitoring
surrounding environmental information by distributing SN
as network terminals. It is a collaborative sensing network.
WSN is a major component of the Internet of Things archi-
tecture, which has arouse experts and scholars’ concerns over
the world. Luo et al. proposed routing protocol design to
solve the problems of underwater wireless sensor network
(UWSN), such as high ocean interference and noise, and
limited battery energy. Then the researchers summarized the
underwater routing protocols (URP)recently and analyzed the
different URP’s functions in detail, providing more ideas for
the research of UWSN [2]. Kim et al. found that machine
learning technology (ML) can reduce computational com-
plexity, increase the feasibility of finding the optimal solution
for WSN deployment, and improve energy efficiency by
deploying WSN in real environments. Through investigation,
various application developments of ML technology in WSN
were discussed [6]. Chowdhury et al. discussed different
energy-saving schemes for WSN in different research com-
munities, such as duty cycle methods, cross layer design, and
data aggregation, for diminishing nodeconsumption, thereby
saving the energy of the entire WSN [7]. Jia et al. compre-
hensively discussed the resource efficient distributed state
estimation and security technologies currently used on WSN.
Finally, relevant scholars discussed several challenging issues
under distributed state estimation for potential future research
[8]. Dawood et al. developed a rectangular antenna to improve
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the efficiency of converting microwaves into electrical energy
in WSN, using a rectifier bridge circuit directly connected to
aregular antenna to convert radio waves into electrical signals
[9]. Karthikeyan et al. found that currently WSN mainly for-
wards data to database servers through intermediate SN, and
this distributed routing technology reduces the energy of SN,
thereby reducing network lifespan. To this end, it reviewed
and analyzed collaborative routing algorithms for security
and load balancing [10]. Kumar et al. used an improved
convolutional neural network to identify malicious nodes and
then isolated them into malicious list boxes to avoid security
risks in WSN. This research extends the related algorithm to
cluster trusted nodes [11].

It is very essential for determining the related information
of the target node in WSN, and only by combining the posi-
tion information can the data obtained by the sensor have
practical significance. The optimization and application of
node localization technology has always been a key research
direction for scholars. Deng et al. proposed a hybrid and
parallel chaotic particle algorithm based on DE/current to
optimal operator. Then, the study dynamically optimized the
hybrid distance vector hopping algorithm using an improved
particle algorithm to accurately locate unknown nodes (UN)
in WSN [12]. For diminishing the error, Yu et al. used the
related method to initialize the memory of the gray wolf (GW)
population, and then introduced the beetle antenna search
for optimizing the GW population in time. The positioning
of the improved GW algorithm has been enhanced through
simulation comparison [13]. Song et al. proposed a special
localization algorithm to address the issues of high demand
for AN, low sampling frequency in the Monte Carlo mobile
node algorithm [14]. Tian proposed a algorithm DV-MDS-
SA to address the issue of significant positioning errors in
the application of DV-HOP and MDS-MAP positioning algo-
rithms in depressed areas. Finally, it uses a special algorithm
for optimizing the position estimation of the localization
algorithm [15]. Zhang et al. used genetic algorithms to ana-
lyze the communication constraints between location nodes
and a small number of anchor points to construct a positioning
model for the needs of smart city WSN construction [16].
Xia proposes a remote real-time position positioning method
through the relevant node positioning algorithm to address
the issues of low accuracy, low efficiency, and poor perfor-
mance of current positioning methods [17]. For enhancing
the accuracy of relevant network nodes, Yuan R improved the
initial value calculation method. Then he proposed a WSN
node localization algorithm that reduces the initial value of
the Kalman filter [18]. Yan et al. studied the privacy preserv-
ing localization problem of USN in non-uniform underwater
media and introduced a ray compensation strategy to opti-
mize the deep reinforcement learning (DRL) localization
algorithm. It accurately locates nodes while hiding private
location information of underwater sensor networks [19].

Based on the above literature, it can be concluded that
there are many studies on node localization technology
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in WSN, and scholars continue to improve and optimize
localization methods through research. Although there are
numerous research achievements on WSN localization mech-
anisms, most of them are oriented towards planar localization.
It lacks a positioning system suitable for complex three-
dimensional environments. Compared with the relatively
simple two-dimensional planar positioning in the network
environment, the complex three-dimensional spatial environ-
ment has stricter requirements for positioning algorithms,
stronger spatial complexity, and stricter requirements for
implementation conditions such as network connectivity and
node number. To this end, research will extend the DHA to
TDS and enhance and optimize it. It has positive significance
for WSN applications.

1lIl. OPTIMIZATION DESIGN OF WSN NODE LOCATION
BASED ON 3D DV-HOP ALGORITHM

A. WSN NODE LOCALIZATION BASED ON 3D DV-HOP
ALGORITHM

WSN communicates wirelessly, perceiving as well as moni-
toring surrounding environmental information by distributing
SN as network terminals. It is a kind of collaborative sensing
network [20], [21]. Figure 1 indicates the WSN network.

Sensor Signal
S Regulation
Physical ~/
Handling ® 0
Analog
to digital
Signall @)
Processing
Actuators Analog to digital
conversion

<

Signal Regulation

FIGURE 1. Wireless sensor network structure.

It has low wiring cost, high monitoring accuracy, good
system fault tolerance, and remote control. The energy carried
by WSN nodes is limited, which requires consideration of
how to fully utilize the energy of grounding when design-
ing the entire WSN. In traditional networks, nodes usually
have sufficient energy supply, and more attention is paid to
improving the networks’ service and throughput. Meanwhile,
the WSN nodes’ quantity is large, and the entire network’s
topology is often complex. The computing and storage hard-
ware resources of nodes are limited, and due to WSN being
typically deployed in some harsh environments. This makes
nodes very prone to failure. Therefore, the positioning of
nodes is very important. The hardware structure of wireless
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SN consists of four parts, namely perception unit, information
processing unit, wireless communication unit, and power
supply module. Figure 2 illustrates the common wireless SN.

| Power supply module (energy supply module) |
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Sensing module || Processing module I
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AD I Storage Processor |I
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FIGURE 2. Schematic diagram of wireless sensor node structure.

WSN localization algorithm is essentially a multi con-
strained optimization problem, which is generally separated
into two categories: distance based and distance free. The
localization algorithm utilizes a specific ranging module as
a tool to estimate the coordinate position of UN by directly
determining the angle values in nodes. The UN’ coordinates
are closely related to the range or angle in nodes. Therefore,
in ranging algorithms, it cannot be ignored to accurately
obtain the information in nodes. If there are errors in the
measurement information, it will affect the subsequent cal-
culation steps, leading to the accumulation of errors and
increasing the positioning error. The Range Free localization
algorithm generally does not require the hardware devices,
and estimates the distance based on the AN’s coordinates and
the specific relationship in the location node and the AN. The
coordinate calculation of UN is generally achieved through
the use of trilateral positioning or MIE estimation methods.

The DV-HOP localization algorithm has the characteristics
of simple implementation, no need for additional measure-
ment equipment support, and low cost.

The algorithm first obtains the hops’ minimum number
in nodes through flooding. All AN broadcast their own data
information to the network through flooding. The initial value
of the number of hops for the AN is 0. The UN communicates
with each AN, receives data information from the anchor
point, increases the hops by 1, and then continues forwarding.
UN only store the minimum of hops for multiple packets sent
by the same AN. Through this, the hops from the AN are
obtained. Then, it calculates the AHD of each node through

equation (1).
2 2
g 0= %)” + (1= )
- &)
Zj:l i i

Hopsize; =

In equation (1), (x1,y1) and (x2, y2) serve as the coordi-
nates of ANi and j; h;; serves as the number of hops in two
AN; Nserves as the number of AN; Hopsize; is the AHD
across the entire network for each AN. After obtaining the
AHD, select the HD of the nearest AN for each UN as
the HD of the UN. It obtains the range from the UN to the
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AN through equation (2).
dij = Hopsize; X hjj 2

In equation (2), dj; represents the range from UNi to
node j. Finally, the coordinates of UN are estimated using
the mathematical geometric method MLE estimation. Most
traditional DV-HOP positioning algorithms are oriented
towards planar positioning and lack a positioning system suit-
able for three-dimensional load three-dimensional environ-
ments. Compared with the relatively simple two-dimensional
flat surface in the network environment, the complex
three-dimensional spatial environment has stricter require-
ments for positioning algorithms and stronger spatial com-
plexity. Its requirements for implementation conditions such
as network connectivity and number of nodes are more strin-
gent. The models of the 2D and 3D DHA are shown in the
figure.

Unknown node

(a) 2D positioning model @ Anchor node

A
A
’ A
io
B c g

(b) 3D positioning model
FIGURE 3. 3D and 2D DV-HOP algorithm positioning model.
3D DV_HORP is calculated on a two-dimensional basis,

converting coordinates into three-dimensional, and obtaining
the average jump distance as shown in equation (3).

2 2 2
z;vzl,j;éi\/(xi — %)+ (i =)+ (i — )
Zj’vzl,j#_i hij

. / _
Hopsize; =

3

In equation (3), (x;, yi, zi) and (x;, yj, z;) serve as the coor-
dinates of known nodes (KN)i and j. From this, the distance
between nodes is obtained. According to the distance formula
between two points, obtain equation (4).

Ja -+ -3+ -2’ =d
T N
J@ =1+ 0 =33 + @ - 3) = ds
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By derivation it obtains the coordinates of UN, which is
demonstrated in equation (5).

-1
X = (ATA) ATb (5)
In equation (5), A and b are different matrices, as shown in
equation (6).

2 (x1 — xp)
2 (x2 — xp)

2(z1 —zn)
2 (ZZ - Zn)

21 —yn)
22 —yn)

2 (xp—1 = Xp) 2(Vn—1 —Yn) 2(@n—1 — zn)
xi—xé—i—yi—yéwtzi—zé—l—dé—dlz
.X2 _-xn +y2_yn+Z2_Zn+dn _d2

X m X Ve~ Vet gt dy —dy
(6)
The 3D DHA is showcased in Figure 4.
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FIGURE 4. Schematic diagram of 3D DV-HOP algorithm flow.

The DHA is a widely used localization algorithm that does
not require ranging, but it still has low localization accuracy
when nodes are randomly deployed. To this end, research
is conducted to analyze the error influencing factors of the
algorithm.
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Firstly, there are blind spots in the algorithm. In WSN,
due to the needs of the actual environment, it is relatively
rare for nodes to be uniformly distributed. In most cases,
the distribution of nodes is irregular, and nodes are scattered
in the experimental area. This leads to the numerous nodes’
presence in certain areas of the monitoring area, and several
nodes in a few other areas. And this part of the area is at a
certain distance from the area with many nodes, making it
difficult for a few nodes to communicate. This type of node
is called an isolated node.

Secondly, in WSN, the larger the AN’s ration in total nodes,
the smaller the localization error of nodes in the network.
However, when the AN’s rationachieves a certain value, the
positioning of nodes could be infinitely close to a specific
value; In time, the nodes’ ratio continuously grow, and the
positioning only changes within a small range. Moreover,
if the nodes within the communication radius (CR) of AN
is too large, the calculated AHDcould be smaller than the
true value, increasing positioning error and communication
consumption.

Thirdly, the algorithm utilizes HC information when esti-
mating node distance, so accurate HC information is of great
value. However, in the actual process, there is a significant
error in the jump value.

Fourthly,The algorithm utilizes jump distance information
when estimating node distance. However, due to the fact that
nodes are arranged in a broken line topology in actual network
topology streets, the algorithm defaults to arranging nodes
in a straight line when calculating the range in nodes. When
calculating the range from UN to KN, the nearest AN’s jump
distance is utilized, ignoring the corresponding jump range of
KN, resulting in errors.

Fifthly, after obtaining the HC and HD, the algorithm
multiplies the two to calculate the range in nodes. Then, the
coordinates’ position can be evaluated using the quadrilateral
measurement method. But both algorithms equips certain
errors.

Based on the above operations, the study analyzed the error
influencing factors of the 3D DHA, providing a theoretical
basis for subsequent optimization algorithms.

B. OPTIMIZATION STRATEGY OF 3D DV-HOP ALGORITHM
When AN communicate with neighboring nodes, the hops
of neighboring nodes within the CR is recorded as one hop,
but the range in each neighboring node and the AN varies,
resulting in significant errors. For solving the error problem
caused by a single CR, an optimization method using MCR is
studied. The three-dimensional models are shown in Figure 5.

Through error analysis of the 3D DHA, the conclusion that
the main factors influencing the accuracy of the algorithm
attribute to HC, HD, and estimation method can be obtained.
Therefore, research mainly improves the algorithm in two:
HC and HD. A three-dimensional DHAin view ofHD correc-
tion with MCR (HCMCDV-HOP) has been proposed. This
study improves the method of knowing the HD of nodes.
Firstly, it calculates the critical quantity of hops for each
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(b) Three communication radius

FIGURE 5. Three-dimensional model of single communication radius and
multiple communication radius algorithms.

AN and sets a threshold. Then, based on the comparison
between the threshold and the jump values of other nodes,
it removes AN that introduce significant errors. Finally, each
KN involved in the calculation is given a weight value, and
the AHD of the AN is obtained. The calculation method for
the HC threshold is shown in equation (7).

t; = max (d—ll,@,dl—M) 7)
R R R

In equation (7), M is the endpoints’ quantity in a TDS;
d serves as the distance from each endpoint to AN i. When the
number of hops from other AN to the target AN exceeds the
threshold #;, when calculating the target AN’sHD, it indicates
that the topology structure of the nodes in the network is
arranged in multiple lines, which can cause significant errors.
Therefore, AN with hops greater than the threshold are no
longer used for calculation. It obtains the average jump dis-

tance through equation (8).
1
6= g ——— ®)
dij/R — hops;j

In equation (8), c¢;; is the weight coefficient of ANj when
calculating the AHD of KNi; dj; is the actual range in two
AN; hops;; is the hops’ quantity between two AN; R is the
CR. The weight calculation method is shown in equation (9).
__Ci

Zf;ﬁi Cij

In equation (9), s serves as the KN’ quantity; The AHD of
AN is shown in equation (10).

s
Hosie-zz wii X
pitzei ji Y

©))

Wl'j

dij
hops;j

(10)
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Taking into account the connectivity of the network, this
study optimizes the distance calculation formula from UN to
corresponding AN as equation (11).

dij = 1/2 (Hopsize ; + Hopsize ;) x h;; (11)

The specific process of the 3D DHA with MCRin view of
skip distance correction is as follows: In the first stage, the
AN is introduced with three communication radii to broadcast
data. During network initialization, AN first broadcast packet
information to the network at a CR of R/3, while recording
the hops’ quantityin adjacent AN as 1/3 hops. After time F,
the AN then propagates the packet information to the network
at the CR2R/3. If the node receiving the AN does not have
the AN’sHC, the HC will be recorded as 2/3. If there is a
hop value, the original hop (OH) will be forwarded. After
passing through time 7' again, the AN propagates the packet
information to the network at the CRR. After receiving AN
information from neighboring nodes, if it is found that there
are no data packets stored for the AN, the HC is marked
as 1. If there is HC, the OH value will be forwarded through
the above process, and each node can obtain the minimum
HC between the AN. In the second stage, after obtaining the
minimum number of hops, the AHD of the AN is optimized
by setting the hop threshold through the hop value. In the third
stage, when calculating the range from UN to AN, the cor-
responding AN jump distance is taken into account. It takes
the median of the two jump distances as the average jump
distance. Finally, the maximum likelihood estimation (MLE)
method is utilized to count the final coordinates, which is
a parameter estimation method used when the distribution
type of the population is known. The idea is to multiply the
probability of small events occurring in all sets and then take
the maximum value. However, when using the MLE method
for counting the final coordinates, it is easy to encounter the
situation of matrix irreversibility. In response to this, the study
adopts Particle Swarm Optimization (PSO) to calculate the
estimated coordinates of UN. The process of PSO algorithm
is shown in Figure 6.

PSO is an intelligent evolutionary algorithm. It regards
every individual as a particle without weight or volume in
the D-dimensional search space. Firstly, it initializes the
environment for particle optimization and sets the objective
conditions required for particle optimization. Then it adjusts
its speed and direction based on the disparity in the historical
best value and the current value, continuously approaching
the optimal solution. The calculation method for the optimal
position of a certain particle is indicated in equation (12).

Pi@), if fXi@+ 1) =f(Pi(1)
Xi(t + 1), if fXi(t + 1) =f (Pi (1))
(12)

Pit+1) =

In equation (12), f (X) serves as the minimized objective
function; ¢ serves as the iterations’ quantity. By calculating
the optimal position of a single particle, the global optimal
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FIGURE 6. PSO algorithm flow.

position can be obtained as shown in equation (13).

Pe(t) € {P1 (1), P2 (1), ..., PN D} If (Pg (1))
=min{f (P1 (1)) .f (P2(1)),....f (P (1)} (13)

The speed and position of the population gradually evolve
with the number of iterations, and the initial process position
and speed are shown in equation (14).

Xij (0) = rdft () X (Xmax — Xmin) + Xmin

(14
Vij (0) = rdft () X vmax

In equation (14), rdft () is a floating point number between
0 and 1; The search space of particles satisfies v; €
[Vmin, Vmax]» Xij € [Xmin,» Xmax]. However, the classic PSO
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algorithm has a tendency for particles to mature prematurely,
leading to particles moving easily in a certain area and falling
into local optima, resulting in unsatisfactory solution results.
Sometimes, due to the complexity of solving problems, the
dimensions of particles are large, resulting in computational
overhead and unnecessary waste of energy. By adjusting the
parameters in the algorithm, such as weight factors, learning
factors, and other important parameters, the calculation can
be preliminarily simplified. So a particle swarm optimization
algorithm based on linear decreasing weights was used, and
the improved algorithm is abbreviated as the DV-HOP-PSO
algorithm. The linear decreasing weight formula is shown in
equation (15).

w=ws; — (Wg — W) (Maxlt/N) (15)

In equation (15), the initial inertia weight wy is set to 0.9,
and the final inertia weight w, is set to 0.4. When using a PSO
algorithm in view of linear decreasing weights to calculate the
coordinates of a node to be located, the range from the node
to a KN is taken as the target problem. If the distance between
each particle in the PSO algorithm and each KN is the closest,
then the coordinates of this particle are close to the node’s
estimated coordinates to be located. The study uses root
mean square error as a measure of the difference between the
estimated coordinate value and the actual value. The objective
function relationship is demonstrated in equation (16).

Jf &, y,2)
2
=\/$Z}i1 (\/(x—xi)2+(y—yi)2+(z—zi)2—di)
(16)

By continuously iterating and optimizing the objective
function, the final position information of the tested node is
obtained. The improved final node localization algorithm is
shown in Figure 7.

Based on the above operations and the positioning
algorithm based on MCR, this study introduces a hop thresh-
old to discard AN with larger errors and calculate the AHD of
AN. Then, the HCMSPSO-DV-HOP is obtained by replacing
the MLE algorithm with the PSO algorithm based on linear
decreasing weights.

IV. PERFORMANCE ANALYSIS OF HCMSPSO-DV-HOP
NODE LOCALIZATION ALGORITHM

To evaluate the performance of the designed algorithm in
terms of accuracy and stability, the MATLAB R2016a sim-
ulation software of the Windows 10 system was used to
simulate the network experimental environment. Study set-
ting WSN coverage area to 100m x 100m x A 100m
three-dimensional space is randomly distributed with nodes
in this environment for simulation analysis of related exper-
iments.For testing the optimization effect of the research on
the PSO algorithm, the experiment compares the improved
PSO algorithm (I-PSO) designed by the research insti-
tute with other commonly used optimization algorithms.
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FIGURE 7. DV-HOP-PSO algorithm flow based on hop distance correction
for multiple communication radii.

Including ant colony optimization algorithm (ACO), chaotic
wolf swarm algorithm (WSA), traditional particle swarm
optimization algorithm (PSO), and dragonfly optimization
algorithm (DA). Under the same simulation environment,
5 algorithms were iteratively trained, and the training results
were recorded in Figure 8.
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FIGURE 8. Comparison of iterative training of five optimization
algorithms.

In Figure 8, as the number of iterations continues to
increase, the iteration losses of each algorithm gradually
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decrease. The I-PSO only iterated 172 times to achieve the
target loss value of 0.0036; ACO achieved the target loss
value at 288 iterations, 116 more than I-PSO; WSA iterated
232 times to reach the target value, 60 more iterations than
I-PSO; PSO iteration reached the target value 246 times,
74 more iterations than I-PSO; DA iteration reached the target
value 229 times, which is 57 more iterations than I-PSO.
Based on the content in Figure 8, it can be seen that the
optimized PSO algorithm has better convergence.

For testing the performance of the node localization
algorithm designed by the research institute, the improved
HCMSPSO-DV-HOP was used to locate nodes in TDS. Then
it records the error data of node positioning in this space in
the form of a scatter plot in Figure 9.
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FIGURE 9. Error results of HCMSPSO-DV-HOP algorithm for locating
nodes in 3D space.

Figure 9 (a indicates that the distribution of WSN nodes
in this space is not uniform, with a distribution range within
the x € {0,90}, y € {5,120}, and z € {0, 72} intervals.
In Figure 9 (b), the positioning error of nodes is mainly
concentrated between 0.00 and 0.15, with less distribution of
error points above 0.15. The average relative error absolute
value of algorithm positioning is 0.048. Based on the con-
tent of Figure 9, the conclusion that the positioning error of
HCMSPSO-DV-HOP can remain within a small range and
meet the positioning requirements can be obtained.

85532

This study optimizes and improves the DHA through skip
distance correction. To test the effectiveness of the renova-
tion, DHA, HCMSPSO-DHA, and genetic algorithm modi-
fied wireless SN localization algorithm (GA-DV-HOP) were
selected for research. Under the same experimental environ-
ment, the positioning error was analyzed in equation (17).

5=y =3+ —y)? (17

In addition, other experiments use errors represented by
normalized positioning errors. The node positioning error
results are indicated in Figure 10.

45 [ —e - HCMSPSO-DV-HOP
—® — GA-DV-HOP
-4 DV-HOP

4.0

3.5

Error(m)

3.0

2.5

2.0
1.5

Node number

FIGURE 10. Change curve of sensor node positioning error for different
algorithms.

In Figure 10, the DHA has the highest node positioning
error, with a fluctuation range of 2.16 to 3.62; The error
fluctuation range of the GA-DHAexisting between 1.89 and
3.25; The error fluctuation range of the HCMSPSO-DHA
is 1.62-2.51. The HCMSPSO-DHA, which utilizes PSO for
skip distance correction, has the optimal localization compar-
ing the three algorithms. This can achieve relatively accurate
positioning.

To analyze the actual effect of SN localization using dif-
ferent algorithms, this study records the node localization
results of the three algorithms in the form of scatter plots in
Figure 11.

Figure 11 shows that genetic algorithm and PSO algorithm
have corrected the ranging error of wireless SN. Therefore,
the positioning performance of wireless SN is significantly
better than traditional DHA. In Figure 10 (b), the algorithm
finds that the aggregation direction of nodes is more con-
centrated on a certain AN; The node distribution of the
HCMSPSO-DHA in Figure 10 (c) is closer to the true node
distribution and overcomes the drawback of GA-DHA being
prone to falling into local optima.

To further test the effect of HCMSPSO-DHA, the research
compares it with the traditional DHA, HCMCDHA, 3D
hyperbola DHAin view of error weighting (3D-DV-HOP-
BEW) and Weight GWO DHA. Under the influence of
different AN ratios, communication radii, and total nodes,
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FIGURE 11. Actual positioning results of nodes using different algorithms.

the relevant error of each algorithm is compared, as shown

in Figure 12.

In Figure 12 (a), as the AN’s ration increases, the position-
ing effect of the algorithm also grows. When the AN’s ration
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FIGURE 12. Error changes of five positioning algorithms under different
influencing factors.

increases, the relevant performance of 3D-DV-HOP-BEW
algorithm and Weighted GWO DHA is much better than that
of 3D DHA. The positioning performance of the HCMCPSO-
DHA is much better than the other four algorithms, with an
average error of 0.12. In Figure 12 (b), as the CRgrows, the
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FIGURE 13. Comparison of positioning error changes of DV-HOP algorithm before and after improvement in different three-dimensional terrain

types.

positioning error of the algorithm gradually diminishes. The
error transformation amplitude of the HCMCPSO-DHA is
the smallest under different radii. This is because in situations
where the CR is small, the algorithm can promote information
transmission between nodes by increasing their connectiv-
ity, ensuring positioning accuracy (PA). In Figure 12 (c),
under different network scales, the related accuracy of the
algorithm gradually increases; The average error value of the
HCMCPSO-DHA is 0.09, which is greatlysuperior to other
algorithms and has the smallest variation. This is because
the algorithm, after replacing the MLE method with the
PSO algorithm based on linear decreasing weights, over-
comes its disadvantage of large errors in the case of matrix
irreversibility.

To further verify the positioning effect of the algorithm in
3D models, comparative experiments will be conducted on
the DHA before and after improvement. In the experiment,
different 3D terrain types were selected for WSN node local-
ization, and the variation of the algorithm’s localization error
with the increase of CR was recorded. The final positioning
result is shown in Figure 13.
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In Figure 13, the PA changes of the two algorithms are
also different under four different terrain conditions. Among
them, in flat terrain conditions, the PA of the improved
DHA is the highest among the four terrains. The PA of the
HCMCPSO-DHA in the four terrains is basically the same,
with a variation amplitude of no more than 0.02. The DHA'’s
average related erroris 0.56, while the HCMCPSO-DHA'’s
average related error is 0.12. It is 0.44 less than before the
improvement.

To comprehensively test the performance of the localiza-
tion algorithm designed by the research institute, the exper-
iment compares the node localization algorithm (Method
1) designed by the research institute with excellent node
localization algorithms in recent years. It includes the
node location algorithm based on improved Quasi radiative
transformation optimization proposed in [14] (method 2),
the node location algorithm based on signal phase search
and Kalman filter proposed in [18] (method 3), the node
location algorithm based on reverse learning social spider
optimization proposed in [20] (method 4), and the node loca-
tion algorithm based on multiple communication radius and
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TABLE 1. Comparison of positioning performance of various positioning methods.

Test 1 Test 2 Test 3
Project Running time (s) Posmom(r;/go)accuracy Running time (s) Posmom(r:)/%)accuracy Running time (s) azglsllrt;(c:)}r/n(rtl)i)
Method 1 0.48 96.42 0.51 96.43 0.49 96.36
Method 2 1.02 84.71 1.00 84.69 1.03 84.72
Method 3 0.74 90.12 0.75 90.20 0.72 90.17
Method 4 1.94 72.86 1.92 72.91 1.93 72.88
Method 5 1.32 80.30 1.31 80.32 1.29 80.29

sparrow search proposed in [21] (method 5). Five positioning
methods are used to locate WSN nodes with different num-
bers of nodes to be located, as shown in Figure 14.
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FIGURE 14. Changes in positioning accuracy of five positioning methods
under different number of nodes to be positioned.

In Figure 14, the positioning accuracy of the five posi-
tioning methods gradually decreases with the increase of the
number of nodes to be located. Among them, Method 1 has
the smallest change amplitude, only reducing by 4.2%, and its
average positioning accuracy is 96.8%. When the data size is
30, the average positioning accuracy of Method 1 is 98.7%.
When the data size reaches 360, the average positioning
accuracy is 94.4%; When the data size of Method 2 is 30,
the average positioning accuracy is 91.2%. When the data
size reaches 360, the average accuracy is 66.4%, a decrease
of 24.8%; Method 3 has an average positioning accuracy of
94.7% when the data size is 30, and 68.9% when the data size
is 360, a decrease of 25.8%; When the data size is 30, the
average positioning accuracy of Method 4 is 84.7%. When
the data size reaches 360, the average accuracy is 55.2%,
a decrease of 29.5%; Method 5 has an average positioning
accuracy of 81.5% when the data size is 30, and 59.8% when
the data size is 360, a decrease of 21.7%. Based on the content
in Figure 14, it can be seen that the positioning accuracy and
performance of Method 1 are significantly better than the
other four methods.

To further compare the performance of the algorithms,
three testing experiments were conducted and the positioning
results of each method were recorded in Table 1.
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In Table 1, the average running time (ART) of Method 1
reaches 0.49 seconds, and the average PA is 96.40%; The
running time of Method 2 reaches 1.02 seconds, which is
0.53 seconds longer than Method 1, with an accuracy of
84.71% and 11.69% less than Method 1; The running time
of Method 3 is 0.74 seconds, which is 0.45 seconds longer
than Method 1, with an accuracy of 90.16% and 6.24% less
than Method 1; The running time of Method 4 is 1.93 seconds,
which is 1.44 seconds longer than Method 1, with an accuracy
of 72.88% and a decrease of 23.52% compared to Method 1;
The running time of Method 5 is 1.31 seconds, which is
0.82 seconds longer than Method 1, with an accuracy of
80.30% and 16.10% less than Method 1. Table 1 showcases
that the WSN node localization algorithm designed by the
research institute can quickly and accurately locate the posi-
tions of each node in TDS.

V. CONCLUSION

The nodes in WSN are used to perceive, collect, and pro-
cess information about various environments and monitoring
objects when the network is distributed in complex and dan-
gerous areas. If the node location cannot be determined,
the various detection information collected will be mean-
ingless. To this end, research is conducted on 3D DV-HOP
positioning algorithm’srelevant analysis, and then combined
with MCR. This study optimizes the HC and HD by set-
ting a HC threshold, and finally introduces a PSO algorithm
based on linear decreasing weights to optimize localization.
Finally, it obtained the optimized HCMSPSO-DV-HOP local-
ization algorithm. Through experiments, it was found that
the optimized PSO algorithm achieved the target loss value
of 0.0036 after only 172 iterations, demonstrating good con-
vergence. HCMCPSO-DV-HOP is least affected by different
AN ratios, communication radii, and total number of nodes,
and the algorithm has high stability. The average positioning
error of the HCMCPSO-DHA is 0.12. It reduces the error by
0.44 compared to before improvement, and the improvement
effect is relatively obvious. The ART of the algorithm reaches
0.49 seconds, and the average PA is 96.40%. It can quickly
and accurately locate the positions of various nodes in TDS.
There is still great room for progress in research at this point.
In future work, it should be considered for enhancing the PA
while further reducing the data volume of algorithm opera-
tions to reduce time complexity. The research only focuses
on algorithms for fixed nodes, and further exploration can be
conducted on the movement of nodes.
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