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ABSTRACT Ship sailing is a complex endeavour, requiring carefully considered proactive and reactive
strategies in choosing the course of action that best suits the various events to be managed. Humans are
already supported by different technologies for sailing, however these technologies are usually available
in isolation. In this paper we show how to use simultaneously three different technologies by fusing their
information in order to provide enhanced support for ship sailing. To the best of our knowledge no similar
approach is reported in the literature from an operational point of view. In particular, we show how to fuse
the video acquired from a camera with the information available from a radar/Lidar and an AIS receiver.
The video frames are analyzed in order to automatically detect surrounding ships and seamarks, the Lidar
is used to determine the average or minimum distance from the ship to the acquired targets and finally the
AIS receiver logs are queried to determine, if available, useful information related to the surrounding ships,
such as their geographic location, type of ship etc. Our experimental results are promising and encouraging.
We believe that the simultaneous use of these technologies is a step towards fully autonomous ship sailing.

INDEX TERMS Ship detection, deep learning, lidar, AIS receiver, situation awareness, image processing.

I. INTRODUCTION
Ship sailing is a complex endeavour, requiring carefully
considered proactive and reactive strategies in choosing the
course of action that best suits the various events to be man-
aged. Moreover, sailing is becoming increasingly complex
due to the need to optimize the route. In other words, the aim
of sailing is not just to reach a predefined destination, but it
has to be cost-effective as well.

Sailing may be affected by several factors, including the
water and weather conditions. As an example, the impact
of wind on a ship is not uniform, since it depends on the
draught condition of the ship. Therefore, different parts of a
ship are affected differently. Ocean currents represent another
important aspect that must be given full consideration. A key
factor, related to secure sailing, is the so-called stopping
distance. Ships differ in terms of distance actually covered
in the event of a stop signal, owing at least to their size and
actual load and ballast. When a stop signal is sent, a ship does
not stop immediately owing to inertia, but instead continues
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moving along its direction, covering a certain distance before
coming to a complete stop. The stopping distance is also
heavily influenced by the wind and sea conditions, since wind
and waves acting behind (or in front of) the ship increase (or
decrease) the stopping distance.

Humans are already supported by different technologies
for sailing, however these technologies are usually avail-
able in isolation. Examples include GPS (Global Positioning
System), chartplotter, magnetic and gyro compass, radar,
AIS (Automatic Identification system) etc. Nowadays, the
data coming from those technologies are not displayed on
the same device. Moreover, their human interfaces are quite
cumbersome and require a lot of space. Operators are forced
to continuously switch from one Human Machine Interface
(HMI) to another and extrapolate global information on their
own. Fusing the information coming from various systems
into one HMI helps operators to quickly understand the
surrounding environment and operate properly on the ves-
sel from the very beginning even if they have a limited
experience [1], [2], [3], [4], [5]. Moreover, it reduces signifi-
cantly the required space in the wheelhouse. Therefore, ships
can have the possibility of hosting several sensors without
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decreasing the living space in the wheelhouse. Often, very
helpful sensors are not installed on vessels due to the lack of
space in the wheelhouse.

In this paper we show, to the best of our knowledge for the
first time, how to use simultaneously three different technolo-
gies by fusing their information in order to provide enhanced
support for ship sailing. In particular, we show how to fuse the
video acquired from a camera with the information available
from a Lidar (Laser Imaging Detection and Ranging) radar
and an AIS (Automatic Identification System) receiver. Since
every vessel longer than 15 meters must be equipped with
AIS and GPS and since point-cloud sensors, such as radar or
Lidar, are widely installed on vessels, those sensors have been
selected to be used to track target location. The cameras have
been selected to extrapolate the information deriving from
human eye (e.g. target category) and to present the data to
the user more accurately. The fused data related to a specific
target are overlaid on the target itself.

The video frames are analyzed in order to automatically
detect surrounding ships and seamarks whilst the Lidar is
used to determine the average or minimum distance from
the ship to the acquired targets and the AIS receiver logs are
queried to determine, if available, useful information related
to the surrounding ships, such as their geographic position,
type of ship etc. Our experimental results are good and
encouraging. Although more research is certainly needed,
we believe that the simultaneous use of these and additional
technologies is a step towards fully autonomous ship sailing.

The rest of this paper is organized as follows. Section II
recalls related work. We review the most important datasets
in Section III whilst Section IV recalls the state of the art
algorithms for object detection and tracking. We discuss
relevant requirements for our problem in Section V; this
section outlines possible problems and risks to be mitigated
along with possible solutions. We believe this is an additional
contribution of the manuscript. Next, we introduce and dis-
cuss our software architecture in Section VI, and present our
corresponding algorithmic solution in Section VII. Training
and evaluation of the deep learning model used are reported
respectively in Section VIII and IX.We draw our conclusions
and outline possible future directions in Section X.

II. RELATED WORK
In this section we briefly recall related work. However,
we remark here that, to the best of our knowledge, no previous
work has dealt with simultaneously ship/seamark detection
and tracking fusing the information obtained by a Lidar radar
and an AIS receiver. Indeed, almost all of the previously
published papers deal only with ship detection/classification.
Some of them deal with a different combination of sensor
families.

In [6], the authors propose a review of the operational
requirements related to autonomous vessels, and then proceed
to consider suitable sensors and relevant AI techniques for
an operational sensor system. They discuss the integration
of Global Navigation Satellite System (GNSS, a term that

refers to a constellation of satellites providing signals from
space that transmit positioning and timing data to GNSS
receivers) receivers and Inertial Measurement Unit (IMU,
an electronic device that measures and reports a body’s spe-
cific force, angular rate, and sometimes the orientation of
the body, using a combination of accelerometers, gyroscopes,
and sometimes magnetometers)), visual sensors (monocular
and stereo cameras), audio sensors (microphones), sensors
for remote-sensing (RADAR and LiDAR, which is a method
for determining ranges by targeting an object or a surface
with a laser and measuring the time for the reflected light to
return to the receiver) and Automatic Identification System
(AIS, an automatic tracking system that uses transceivers on
ships and is used by vessel traffic services). However, the
manuscript is just a review and no actual integration of these
technologies has been implemented.

The authors of [7] propose combining radar (but not Lidar)
and AIS. They propose fusing the radar acquired targets with
the AIS information using a Poisson multi-Bernoulli mixture
filter. The manuscripts [8], [9], [10], and [11] all deal with the
processing of remote sensing images, in particular Synthetic
Aperture Radar (SAR) images with the information provided
by an AIS receiver.

Related work in which ship detection is done using a
Lidar include [12]. Among the many studies related to the
use of SAR (or other types of remote sensing images)
and/or infrared images, we recall here the following recent
ones: [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40], [41], [42], [43].

The papers more similar to our work, with regard to
ship detection and tracking are the following ones. The
authors of [44] use a YOLOv3 model in conjunction with
AIS information, whilst [45] is based instead on YOLOv4.
The paper [46] is based on YOLOv5 and DeepSort. Auto-
mated detection of small ships is the primary aim of [47],
in which the authors propose the use of a mask regional
Convolutional Neural Network (Mask-CNN) along with the
Colliding Body’s Optimization (CBO) algorithm with the
weighted regularized extreme learning machine (WRELM)
technique to classify detected ships. Detecting small ships
is also discussed in [48], in which the authors propose the
use of a Generative Adversarial Network (GAN along with a
CNN). An enhanced Convolutional Neural Network (CNN)
is used in [49] to obtain more reliable and robust detection
results under adverse weather conditions, e.g., rain, haze, and
low illumination. The authors of [50] and [51] both use a
YOLOv3 model for ship detection.

Additional references can be found in surveys such as [52],
[53], [54], [55], [56], [57], and [58].

To recap, there is a huge amount of related work, since
this particular research fields attracted and still attracts many
researchers approaching the problem using different solu-
tions, especially targeting remote sensing images. Again,
to the best of our knowledge, our work is the first one in
which the ship/seamark detection and tracking is performed
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by analyzing video frames from a camera using the deep
learning model YOLOv6, fusing the information related to
the targets acquired by a Lidar and the data provided by an
AIS receiver.

III. DATASETS
A. DATASETS OF IMAGES OR VIDEOS
Here we recall the datasets related to images or videos includ-
ing objects of interest, i.e., ships and/or sea markers.

The SeaSAw (Sea Situational Awareness) dataset [59] is a
new dataset comprising 1.9 million images with 14.6 million
objects associated with 20.4 million attributes of 12 object
classes, making it the largest maritime dataset for object
detection, classification and tracking. In addition, this dataset
consists of 9 sources in combination with various RGB
cameras mounted on different moving vessels, operating in
different geographical locations globally, with variations in
scenery, weather and lighting conditions. Data collection took
place over 4 years, with rigorous efforts to select, annotate,
manage and analyze the data in order to improve marine
perception technology. Although access to this dataset was
requested from the Sea Machines company that produced it,
no response was provided by the company.

ABOships [60] is a dataset for the detection of marine
vessels in the open sea and along the coast. The authors
collected a dataset consisting of ship images taking into
account several factors: background variation, weather, illu-
mination, visible proportion, occlusion, and scale variation.
Instances of vessels (including nine types of vessels), mar-
itime signals and various floats were accurately annotated.
Although [60] reports that the dataset is available on the
website https://www.fairdata.fi/en/ in reality it is available on
Zenodo [61].

Singapore Maritime Dataset [54], [62] was created using
Canon 70D cameras in Singapore waters. All videos were
captured in high definition (1080× 1920 pixels). The dataset
was divided into two parts: shore-based video and shipboard
video, acquired by a camera placed ashore on a fixed platform
and a camera placed on board a moving vessel, respectively.
The videos were acquired at different locations and routes and
thus do not necessarily capture the same scene. The third part
consists of near-infrared (NIR) videos, also acquired using
another Canon 70D camera with the hot mirror removed and
the BP800 Near-IRMid-Opt bandpass filter. This dataset was
acquired by Dilip K. Prasad and annotated by student volun-
teers. The dataset was acquired under various environmental
conditions such as pre-dawn (40 minutes before sunrise),
dawn, mid-day, afternoon, evening, after sunset (2 hours after
sunset) and with haze and rain from July 2015 to May 2016.

SeaShips [63] is a dataset comprising 31,455 images with
6 classes of ships. The images were collected from fixed
surveillance cameras mounted on the coast, and thus lack
variation in camera position and movement. This dataset is
not freely available.

Harbor Surveillance dataset [64] includes 70,513 ships in
48,966 images collected from 10 different vantage points.
As in the case of SeaShips, the intended use case is limited
to the surveillance of a port area and is therefore a dataset
without dynamic environments, which are required to aid
sailing and collision avoidance. This dataset is not freely
available.

The McShips dataset [65] contains images and videos with
a resolution of at least 500 × 500 pixels, collected by web
crawling. The dataset includes 13 classes (7 civilian ships and
6 warships) with different lighting, views, and positions.

The Marvel dataset [66], [67] includes 2 million images of
109 ship classes collected by the Shipspotting website. The
main purpose is limited to image classification because the
images are typically of ships in an ideal situation (close-up
view, plain background, and clear weather). The images are
not representative of real scenarios with varying scale objects
and harsh weather and lighting conditions and therefore will
not be considered.

The GLSD dataset [68] includes 140,616 objects annotated
from 100,729 images. Some of the images were collected
with a video monitoring system, while the others were col-
lected by web crawling. Although the web images are differ-
ent, they are not similar to the views and challenges observed
during collection on a moving vessel, and therefore this
dataset will not be considered. TheVAIS dataset [69] includes
paired ship images in the visible and infrared, consisting of
1623 visible images from 15 categories; since it is limited in
quantity, it will not be considered.

B. DATASETS RADAR/LiDAR AND AIS
The availability of specific radar/LiDAR and AIS datasets
is scarce. Moreover, specifically, radar/LiDAR datasets are
strictly dependent on the type and characteristics of the hard-
ware with which the data are acquired. Therefore, although
some datasets are available (e.g., ‘‘Dataset for LiDAR-based
Maritime Perception’’ [70]), they have not been used in the
context of this work as the AIS data provided by Fincantieri
NexTech S.p.A. were found to be sufficient. Regarding AIS
data, various examples are available, but in this case, the for-
mal specification of AIS message encoding [71] is sufficient
to proceedwith decoding and use of related information when
available.

C. DATASETS PROVIDED BY FINCANTIERI NexTech S.p.A
Fincantieri NexTech S.p.A. provided a dataset acquired from
a campaign in open water sailing by acquiring both photo-
graphic images, LiDAR data, and raw data obtained from the
AIS receiver installed on the vessel (no data on the vessel’s
GPS position). The data all have a time marker that allows
the different datasets to be synchronized. The images have a
resolution of 960 × 1280 pixels and are acquired from 6 dif-
ferent angles around the vessel, one of which is oriented in the
direction of sailing. Images are acquired at an average rate of
57 images per minute; the dataset contains a combined total
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of 9476 images. Each image is associated with a timestamp
that allows it to be correlated with LiDAR and AIS data. The
LiDAR data are in CSV (Comma Separated Values) format
with the following fields:

• point Date and Time;
• point x coordinates;
• point y coordinates;
• point z coordinates;
• point intensity value.

The dataset provided contains an acquisition over a time
window of 57 minutes with an average frequency of approx-
imately 21400 points per second. The associated AIS data
were acquired from the on-board AIS receiver and consist
of textual Log files in raw format with AIVDM-encoded
messages. The messages in the Log files are mainly posi-
tioning messages of type 1, 2 or 3 and for which no specific
timestamp is associated. The timestamp is associated with the
file, thus indicating the start of the acquisition. GPS data from
the vessel are not available.

IV. DETECTION AND TRACKING: STATE OF THE ART
Object detection is one of the basic problems for computer
vision, in which it is necessary to predict whether objects
belonging to certain categories are present in an image
and to provide their location (bounding box or pixel-level
localization in the case of segmentation) if any are found.
Typically, this is achieved by extracting features from an
image and comparing them to trained images. Traditional
approaches use sliding windows to generate proposals, then
visual descriptors to generate an embedding, which are then
classified using approaches such as SVM, bagging, cascade
learning, and AdaBoost. Traditional algorithms with the best
performance focus on accurate descriptor design to extract
features (SIFT, Haar, SURF). However, more and more limi-
tations of this approach have emerged since 2008 [55]:

• hand-annotated visual descriptors provided a large num-
ber of proposals, which caused a high rate of false
positives;

• visual descriptors extract low-level features, but are not
suitable for high-level features;

• each stage of a detection pipeline is optimized sepa-
rately, so global optimization is difficult to achieve.

In the early 2010s, deep learning approaches came to the
fore and began to replace traditional ones. Object detec-
tion networks can be classified into two types: one-stage
detectors and two-stage detectors. The structure of the latter
resembles traditional object detectors in that they gener-
ate proposal-regions and then classify proposals, whereas
the former consider locations within an image as potential
objects and try to classify them immediately. The tradi-
tional sliding-window approach to proposal generation is
still used in CNN convolutional neural networks, but other
noteworthy advances have emerged that enable more efficient
proposal generation, such as anchor- and keypoint-based

approaches (CenterNet is one of the most notable examples
of its kind) [55].

However, the fundamental difference between traditional
object detection and CNNs stems from the way visual
descriptors are generated. With CNNs, instead of creating
visual descriptors by hand, convolutional layers are used.
Instead of defining feature extractors by hand, basic CNNs
train multiple convolutional layers to extract high-level and
low-level features, which are then classified with the help
of fully connected layers. The resulting network essentially
solves all the major limitations of a traditional approach, but
the trade-off is that it requires significantly more training
images for hyperparameter optimization [56]. Although the
requirement for a large number of training samplesmay prove
to be a major obstacle, one of the advantages of CNN-based
models is that they can be generalized to other domains with
similar characteristics through transfer learning. By training
a model on a specific dataset, the backbone of the model
can later be used to extract features in other domains with
similar characteristics. For this reason, the goal of recent
CNNmodels has been to be as general as possible, since with
the help of transfer learning they can be specialized for the
field of interest.

The challenge, however, arises when these generic models
are not suitable feature extractors for a new field and there is
insufficient data to train them [57]. In these specific cases, the
only possible solution is the creation of new datasets. In light
of the deep learning paradigm, recent research has focused
on two main directions to increase the performance of neural
networks dedicated to object detection. The first is based on
improving the convolutional neural network itself by adjust-
ing the underlying architecture or increasing the depth of the
network. The first attempt to adjust the network architecture
was made by the ZF network in 2014 [72]. Other repre-
sentative examples include Google’s Inception series [73],
[74], [75]. Based on the idea that deeper networks should
lead to higher accuracy in object detection, a number of
studies have engaged in deepening the layers of the network.
Representative works in this branch include VGGNet [76]
and ResNet [77]. In addition, Inception ResNet [78] and
ResNetXt [79] combine the advantages of these two, achiev-
ing better detection results.

With reference to the second direction, research has
focused on optimizing deep learning-based object detec-
tion algorithms, including region-based and regression-based
detection algorithms. Region-based algorithms begin with R-
CNN [80] and later researchers proposed a number of variants
such as SPP-net [81], Fast R-CNN [82], Faster R-CNN [83],
R-FCN [84] and Mask R-CNN [85]. The amount of com-
putation of these types of algorithms is high, although the
detection accuracy is very high. End-to-end object detection
algorithms generally include YOLO in its various versions
and many variants [86], and SSD [87]. They allow location
and category to be determined directly from a single neu-
ral network. As a result, multiple objects in an image can
be quickly detected, although at the same time accuracy in
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detecting location is sacrificed. SiamRPN++ [88] is a recent
algorithm based on Siamese neural network.

Object tracking schemes can be classified as region-based
tracking, active contour-based tracking, feature-based track-
ing and pattern-based tracking [58]. In region-based track-
ing, object tracking is achieved by using the variations of
image regions that correspond to the moving object. Active
contour-based tracking uses the object contour as the bound-
ing contour and updates the contour dynamically in succes-
sive frames. Feature-based tracking uses the elements of an
object (such as color, area, segment, and vertex) as features,
which are then matched between successive frames to per-
form object tracking. In model-based tracking, object track-
ing is achieved by matching a projected model of the object
to image data, where the object model is produced based on
available prior information. Hu et al. [89] use a region-based
approach for ship tracking as it is fast and easy to implement.
The block-matching algorithm is the most commonly used
method for region-based tracking due to its simplicity and
efficiency for finding motion information. Hu et al. introduce
an improvement of the full search algorithm based on adap-
tive block matchings with the removal of sea waves present in
the background of the images to achieve fast and reliable ship
tracking. The full search algorithm uses a modified search
region obtained with a coarse to fine pattern. The complete
search algorithm is able to find the best matching block
among all possible search locations in the modified search
region. This algorithm can greatly reduce the computational
cost of obtaining the optimal motion estimation result. The
full search algorithm proposed by Hu et al. outperforms the
other block matching algorithms (full search (FS), three-step
search (TSS), four-step search (FSS), diamond search (DS),
hexagon-based search (HEXBS) and block-based gradient
search (BBGDS)) in terms of matching error, execution time
and number of searches [90].

Algorithms for tracking include Deep Sort, often used for
vessel tracking [91]. The algorithm adds matching of appar-
ent feature information to improve tracking performance.
This extension allows the algorithm to track the target over
a longer period of occlusion, effectively reducing the num-
ber of identity exchanges between overlapping objects. The
algorithm uses the classical Kalman filter algorithm to pre-
dict the position of the tracked target in the current frame
and update the tracker parameters. Other algorithms include
STARK [92] and QDTrack [93]. Lee et al. [44] proposed
detection, localization and trackingmethods applied to videos
taken from real vessels. The results obtained were compared
with AIS data and showed that the proposed algorithm can be
effectively used for environmental awareness. An approach
aimed at identifying and tracking objects in the maritime
environment by combining probabilistic data is reported in
the study proposed by Haghbayan et al. [94].

V. REQUIREMENTS
Our research was aimed at defining an algorithmic solution
suitable for the identification and tracking of floating objects

TABLE 1. Valid resolutions.

by a moving vessel based on surveys made by a video camera
and a 360Â◦ radar/LiDAR scanner; when available, AIS data
will also be used. The algorithmic solution should be able to:

• automatically detect the presence of static or moving
floating objects on the water plane in the field of view
of a video camera installed on board a vessel at the bow
in combination with the acquisitions of a 360Â◦ LiDAR
Scanner installed on the vessel;

• enable the identification and tracking of objects encoun-
tered during sailing (buoys, small rowing boats, small
motor boats, fishing boats, yachts, merchant ships, naval
vessels, etc.).

The effective identification capability of the algorithmic
solution has been evaluated on the basis of the objects appear-
ing in the available datasets and the effectiveness in iden-
tification and tracking in operational scenarios. It is worth
recalling here that the solution must not necessarily work in
real-time, in the sense that the first identification of the object
may take a few seconds, but once the identification is con-
firmed, it should be able to perform tracking in near real-time
regardless of its movements with regard to the video camera
and LiDAR, with performance referring to a workstation of
adequate characteristics and in any case such that its use on
board a ship is feasible. In order to design our algorithmic
solution, we took into account the constraints presented in
the following subsections.

A. REQUIREMENTS FOR VIDEO DETECTION AND
IDENTIFICATION OF STATIC OR MOVING FLOATING
OBJECTS ON THE WATER PLANE
Regarding video detection and identification of static or mov-
ing floating objects on the water plane, the requirements are
as follows: the camera installed at the bow of the vessel must
have a minimum resolution of 1080p. Table 1 shows a set of
possible resolutions valid for this application.

However, it should be emphasized that resolution alone is
not enough to ensure adequate quality footage. Indeed, the
camera sensor is also characterized by additional parameters
that determine its ability to capture high-quality images even
in low light or, conversely, in situations where there is exces-
sive sunlight. Finally, situations in which a high dynamic
range (WDR) is present can be a problem. The sensor can
be of two types: CCD (Charge Coupled Device) or CMOS
(Complementary Metal Oxide Semiconductor). CCD is used
in professional cameras, costs more but produces better qual-
ity, brighter images. CMOS is commonly used in consumer
cameras, partly because CMOS-type sensors have improved
their performance over time, narrowing the quality gap with
CCD sensors.
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Other parameters to consider are the following ones.

• Frames per second (fps): represents the number of
images captured in one second. Since in addition to the
‘‘detection’’ of objects of interest, their ‘‘tracking’’ is
also required, a minimum of 15 fps is necessary. A rate
of 24 fps is adequate for detection and tracking; higher
values, from 60 fps onward, are useless as they do not
achieve better accuracy while requiring more processing
time;

• type of lens: the lens should be a wide-angle type, with
a focal length between 18 mm and 35 mm. This type of
lens has a larger angle of view, and it widens the view,
making it ideal for framing panoramas and landscapes.
However, the framed objects are smaller, so the ini-
tial detection is more complicated. Taking into account
that the overall analysis also involves data acquired by
radar/LiDAR, it is preferable to use a wide-angle lens
rather than a normal lens with a focal length between
50mm and 70mm. These lenses are characterized by a
field angle roughly equivalent to that of the human eye,
so objects appear larger, but the area imaged is less large;

• lens focus: this is a critically important parameter,
as improper focus does not allow capturing sharp
images, making detection and tracking tasks much more
difficult or even impossible. From this point of view, it is
necessary to set up the camera for the use of autofocus
(Auto Focus, AF and continuous AF), by which the
camera constantly attempts to focus on objects, even if
they are moving. Although modern autofocus systems
exhibit good performance, it is good to remember that,
in any case, there are limitations, whereby an AF system
may exhibit various problems with small and/or moving
objects, i.e., one of the use cases of the application,
where detection and tracking of new objects that become
part of the view taken by the camera but are located far
away from the vessel is necessary;

• stabilization of the lens: since the sea is not always calm,
the camera will consequently be subject to wave and
jerk movements. From this point of view, it is worth
noting that, depending on sea conditions, with reference
to the Douglas scale (or with reference to wind strength
to the Beaufort scale) exceeded values 2 (2 or 3 for the
Beaufort scale, respectively), it is highly likely that the
detection and tracking capability of the algorithmwill be
strongly affected, being adversely affected by excessive
deviations of the imaged view. Therefore, although lens
stabilization certainly cannot completely solve the prob-
lems associated with prohibitive sea conditions (from a
value of 3 on the Douglas scale and a value of 4 on the
Beaufort scale), it is certainly a useful aid. A quality
image requires that the lens be equipped with optical
rather than digital stabilization, both because optical
stabilization is inherently superior to digital stabilization
and because of the processing time required by digital
stabilization;

• angle of incidence of the camera with respect to the sea:
since it is not possible to install the camera so that the
captured view coincides the plane corresponding to the
level of the calm fluid with the last acquisition line of a
frame, the angle of incidence of the camera with respect
to the sea must be such as to maximize the detection and
tracking capability;

• the video captured by the camera should not be subject
to any compression: for example, cameras allow the
resolution to be artificially reduced by compressing the
video in order to save storage space. For this applica-
tion, no compression and/or artificial reduction of image
quality must be active;

• brightness must be such that images are captured that
are not affected by noise and that any objects in the
camera’s view can be distinguished: specific adverse
weather conditions affect brightness even during the
daytime, and as one approaches sunset or in periods after
sunset, brightness gradually decreases to the point where
images usable in the application cannot be captured.

B. REQUIREMENTS FOR FUSION OF FLOATING OBJECT
DATA IDENTIFIED THROUGH VIDEO ACQUISITION
PROCESSING AND LiDAR DATA
In order to correlate the data obtained by processing the video
stream from the camera installed at the bow of the vessel with
the data from the radar/LiDAR, the following requirement
is essential: the radar/LiDAR must be installed so that it
completely covers the view taken by the camera. Typically,
a radar/LiDAR has a horizontal field of view of 360Â◦, but
a limited vertical field of view. In addition, the measurable
range is typically less than 750 m.

Consequently, because the view taken by the camera using
a wide-angle lens can easily exceed a range of 750 m, and
because depending on the actual installation of the LiDAR
and the camera, it is very easy for the LiDAR not to pro-
vide a 100% overlap with the camera view, correlation may
not be possible for all objects detected using the camera or
radar/LiDAR. It will also be necessary to proceed with time
synchronization between data acquired from radar/LiDAR,
from the camera, and AIS data (where available). In addi-
tion to time synchronization, it is necessary that the spatial
reference system be consistent between LiDAR and camera.
Specifically, it is necessary to calibrate both the LiDAR and
the camera so that they are oriented at the same angle and the
positioning offset is known.

This calibration can take place offline at the time of instal-
lation of the devices on board the vessel or online, that is,
during data acquisition. In the latter scenario, it will be neces-
sary to provide fixed markers, whose coordinates with regard
to radar/LiDAR are known, to be placed on the vessel so that
they are visible from both the camera and the radar/LiDAR
to record the video images and radar/LiDAR data with each
other using the appropriately placed markers as a reference.
The radar/LiDAR data allow the detection of obstacles using
a reference system relative to the vessel itself, whilst the AIS
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data provide the position of any neighbouring vessels using
a terrestrial reference system; in order for the AIS data to be
fused as well, it is necessary to acquire the GPS coordinates
of the vessel with its timestamp.

C. REQUIREMENTS FOR TRACKING DETECTED FLOATING
OBJECTS, OPERATING ON VIDEO USING THE OUTPUT
RESULTING FROM VIDEO AND RADAR/LiDAR DATA
FUSION
Tracking of detected objects by operating on the video stream
is completely independent of radar/LiDAR data processing.
For tracking, the use of an object detector capable of sup-
porting real-time tracking on a CPU or GPU of adequate
power is essential. Therefore, the choice of the specific
object detector must not be based solely on considerations
exquisitely related to parameters such as accuracy, support
for a specific programming language etc., but also on the
performance that can be achieved by evaluating the time
required for inference. As for the radar/LiDAR data, it will
be used exclusively for objects detected by radar/LiDAR;
this will be a subset of the objects detected by video stream
analysis. Whenever possible, radar/LiDAR data will be used
to confirm the video detection and possibly estimate the
distance.

D. REQUIREMENTS FOR INTEGRATION OF FUSED VIDEO
AND RADAR/LiDAR DATA WITH AVAILABLE AIS DATA
AIS data related to objects detected by analysis of the video
stream and/or radar/LiDAR radar data will not necessarily be
available (e.g. small boats are not equipped with an AIS radar
system, or objects such as buoys etc.). To take advantage of
any available AIS data requires:

• the availability of an appropriate SDK (Software Devel-
opment Kit) that allows, through specificAPIs (Applica-
tion Programming Interfaces), to make queries related to
the geographic area corresponding to the camera view;

• the geographic area being queried will be identified by
latitude and longitude, for which a Global Positioning
System (GPS) receiver is itself essential as a minimal
requirement or, if possible, a Galileo receiver since the
Galileo system provides better accuracy.

VI. SOFTWARE ARCHITECTURE
This section will provide detailed information about the
architectural specification of the software. Specifically, the
architecture is based on the following components:

• Management of messages provided by AIS;
• Management of the point cloud provided by the
radar/LIDAR;

• Management of video frames acquired by the camera.

A. MANAGEMENT OF MESSAGES PROVIDED BY AIS
The purpose of this software component is to allow the
user a query that, taking as input a log file produced by
the AIS and a bounding box defined by two points in

geographic coordinates (latitude, longitude) around the ves-
sel, performs decoding of AIS messages in which the geo-
graphic coordinates provided by neighbouring vessels are
present, and reports as output every vessel (among those
in the AIS messages available in the log) whose geo-
graphic coordinates fall within the bounding box provided in
input.

INPUT: <AIS log stream pathname> <lat1> <lon1> <lat2>
<lon2>

Specifically:

• positive latitude values correspond to latitude in the N
(northern) hemisphere;

• negative values of latitude correspond to latitude in the
S hemisphere (south);

• positive values of longitude correspond to longitude in
the E hemisphere (east);

• negative longitude values correspond to longitude in the
W hemisphere (west);

OUTPUT: data structure containing <key, value> associa-
tions in which:

• the key field is an integer that uniquely identifies a vessel
in the corresponding AIS radar message;

• the value field represents a geographic point via coordi-
nates (latitude, longitude).

Therefore, for the correct definition of the geographic
region to be used for the query, it is necessary to know
the geographic coordinates (latitude, longitude) of the ves-
sel on which the camera, AIS receiver and LIDAR radar
are installed. In addition, it is also necessary to know the
course, heading and bearing of the vessel. The course is the
intended direction of travel. Ideally (but rarely) it coincides
with the heading. On a GPS receiver, the actual direction of
movement is called Course Over Ground (COG). Heading is
the direction in which a ship is pointing at any given time.
It is expressed as an angular distance from north, usually 0Â◦

north, clockwise up to 359Â◦, in degrees of true, magnetic,
or compass heading. It is a value that constantly changes
as the boat swerves back and forth on course due to the
combined effects of sea, wind, and steering error. Generally,
determining the course is the job of the IMU (inertial mea-
surement unit). However, only the best IMUs are able to do
this well at low speed. Under such circumstances, a GNSS
device with two antennas can be used.

A bearing is the direction from one location to another,
measured in degrees of angle from an accepted reference line.
When using compass bearings, the reference line is north,
so ‘‘the beacon is on a bearing of 270Â◦’’ means ‘‘the beacon
is west of us.’’ When using relative bearings, the reference
line is the centerline of the boat. Thus, at the bow is 0Â◦,
and a buoy to starboard (a nautical term meaning ‘‘90Â◦ to
the right when facing forward’’) corresponds to 90Â◦. GPS
receivers provide a constantly updated bearing of an active
waypoint. Using the vessel’s coordinates and course, heading,
and bearing information, it is possible to derive the two points
to be used for the query.
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B. MANAGEMENT OF THE POINT CLOUD PROVIDED BY
THE RADAR/LIDAR
The purpose of this component is the management and use
of the point cloud provided by the radar/LIDAR, in order
to infer information about the approximate distance of a
point corresponding to a pixel in a frame acquired by the
camera. Therefore, a pre-processing and filtering operation
of the points that constitute the radar/LIDAR point cloud is
necessary in order to extract the points corresponding to the
acquired frame and then project them onto the related image.
Once the points have been extracted, their estimated distance
can be calculated using the Euclidean distance formula.

C. MANAGEMENT OF VIDEO FRAMES ACQUIRED BY THE
CAMERA
The purpose of this component is the detection and track-
ing of boats and buoys by analyzing frames acquired by a
camera installed at the bow on the boat. Specifically, this
software component is responsible for extracting frames from
the acquired video, and providing them as input to an artificial
intelligence-based model that can classify objects in a frame
as belonging to either the boat class or the seamark class. The
model must also be able, after performing object detection,
to proceed with tracking the detected object where present in
subsequent frames of the video stream.

VII. THE DATA FUSION APPROACH
Fusion of multi-source data can be challenging due to dif-
ferent (i) spatio-temporal reference systems, (ii) density of
information and (iii) data formats among the various sensor
streams to be fused. Furthermore, particular settings, such as
navigation aid systems, put additional computational burden
on the fusion process in order to ensure real-time process-
ing. In particular, the first challenge to be faced in order to
compute the 2D projection of 3D point cloud to the image
plane is related to deriving the correct intrinsic and extrinsic
camera parameters. Intrinsic parameters, which are camera
specific, include the focal length (fx , fy) and optical centers
(cx , cy). These parameters are then used to create a camera
matrix, which is again camera specific. Extrinsic parame-
ters are related to the required geometric transformations,
and include rotation and translation vectors needed for the
projection from a 3D point cloud object coordinate space
to the camera coordinate space. Moreover, another vector
related to distortion coefficients is also required in order
to correct radial and tangential camera distortions. To solve
these issues, Fincantieri NexTech did a calibration process
directly on board the ship which acquired the experimental
dataset used in this work. The calibration takes advantage
of a well-known target, a specific marker corresponding to
key positions of the sensors. The output of the calibration has
been then hand-tuned to optimise the extrinsic parameters to
be used. An additional issue is related to the different time
of acquisition of the Lidar and the camera sensor data, which
requires extracting from the data streams matching 3D Lidar

points and corresponding camera frame with regard to time.
In our case, owing to different frequencies of acquisition,
we had to match 3D point clouds and camera frames within
one second. We remark here that this tolerance is acceptable,
considering the ship sailing dynamics. Regarding AIS data,
the main challenge in the fusion process was to match the
video frame acquisition time to the timestamp of the AIS
log files. In order to solve this issue, since AIS positioning
messages of type 1, 2 and 3 do not include a full timestamp,
Fincantieri NexTech provided us with AIS log files whose
filename included a timestamp. The tolerance in this case was
set to one minute.

Regarding the proposed algorithmic solution, this is based
on the three components described in the section on software
architecture.

A. AIS MESSAGES
The implementation of the geographic query is based on the
C++ library libais v0.15 developed by Kurt Schwehr, avail-
able as open-source at the url https://github.com/schwehr/
libais. However, since several modifications to the library
itself were necessary, the provided software also includes the
modified library. Specifically, the decoded AIS messages are
as follows:

• messages 1, 2, 3: Position reports;
• message 4: Base station report
• message 5: Ship static and voyage related data, used by
Class A shipborne and SAR aircraft AIS stations;

• message 18: Standard class B equipment position report,
output periodically and autonomously instead of Mes-
sages 1, 2, or 3 by Class B shipborne mobile equipment,
only.

Message decoding is based on the specification document
‘‘Recommendation ITU-R M.1371-5 (02/2014) Technical
characteristics for an automatic identification system using
time division multiple access in the VHF maritime mobile
frequency band,’’ available at url https://www.itu.int/rec/R-
REC-M.1371-5-201402-I. The implemented functionality is
accessible via a Python wrapper, developed using PyBind11,
available at https://github.com/pybind/pybind11.

B. RADAR/LiDAR DATA
Since the radar/LIDAR radar data were provided in csv
(comma separated values) format, it was necessary to use the
following tools, available as open-source:

• LASTools: https://rapidlasso.de/product-overview/
• OpenCV: https://opencv.org
LASTools was used for data conversion to the standard

LAS format, and subsequent point cloud filtering. OpenCV is
a library for software development based on computer vision
algorithms. This library was used for the projection of points
onto the frame acquired by the camera. Again, the interface
is available through Python. The point cloud acquired by
radar/LIDAR is projected onto the image corresponding to
the frame acquired by the camera through the point projection
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algorithm available in OpenCV. Since the technical specifi-
cations of the camera (precise positioning in space relative
to the LIDAR radar, focal length (fx , fy), and optical centers
(cx , cy)) were not available, manual tuning was performed
to determine the intrinsic camera matrix. Similarly, manual
tuning was necessary to determine the extrinsic parameters
(rotation matrix and translation vector).

C. VIDEO FRAMES
Among the various available model, YOLO (You Only Look
Once) v6, available as open-source at url https://github.com/
meituan/YOLOv6, was chosen. Although YOLO v7 was also
available, YOLO v6 was officially released after YOLO v7
and was therefore the most recent of the available YOLO
models. YOLO v6 provided impressive results, excelling in
terms of detection accuracy and inference speed. The initial
code for YOLO v6 was released in June 2022. The first doc-
ument, together with the updated version of the model (v2),
was released in September 2022. YOLO v6 is considered the
most accurate of all object detectors. This is evident from the
fact that the YOLOv6 nano model achieved a mAP of 0.363
(36.3%) on the 2017 COCO dataset (400 epochs). It also runs
at over 1200 FPS on an NVIDIA Tesla T4 GPU with a batch
size of 32. The following datasets were chosen for model
training:

• ABOships;
• COCO 2017, which is a large-scale dataset for object
detection, segmentation and captioning. Specifically,
3146 images with class ‘‘boat’’ were extracted from the
dataset to be used in addition to those in the ABOships
dataset. The corresponding annotations are 11189.

Since the annotations in the ABOships dataset are in
YOLO format while the annotations in the COCO dataset
are in a different format (COCO format, based on JSON),
a conversion of the COCO annotations was necessary. Taking
into account that the ABOships dataset includes 9 types of
vessels (corresponding to the classes boat, cargoship, cruise-
ship, ferry, militaryship, miscboat, miscellaneous, motorboat,
passengership, sailboat) and one buoy object (correspond-
ing to the class seamark), we decided to consider only one
generic class boat and the class seamark. However, only
7670 annotations are related to seamark class objects, whilst
there are 34,297 annotations related to boat class objects.
The 7670 annotations related to seamark class objects are
found in 3744 images, whilst the 34,297 annotations related
to boat class objects are found in 6136 images. Thus, we expe-
rienced the so called ‘‘class imbalance’’ problem, and we
decided to proceed by extending the dataset through addi-
tional seamark class images generated through data augmen-
tation. For this purpose, we used the Albumentations library,
available as open-source at the url https://albumentations.ai.
Therefore, the starting dataset included a total of 13,026
images (of which 840 were discarded because they lacked
annotations) and 53186 annotations. After the data augmen-
tation process, the final dataset includes 30903 images and

91298 annotations. The operations performed to create the
new images include:

• Horizontal Flip;
• Rotation;
• Changing brightness and contrast values;
• Addition of Gaussian noise;
• Motion Blur;
• Defocus.

D. PUTTING ALL TOGETHER
The algorithmic solution is based on the OpenCV library
for handling the video stream from the camera. The video
stream is acquired one frame at a time and processed by the
YOLOv6 model. The software processes the data from the
radar/LIDARby extracting from the point cloud the 3D points
corresponding to the frame acquired from the camera in order
to project them onto the frame and estimate the distance of the
objects identified in the camera frame. In addition, the soft-
ware performs a geographic query using -if available-anyAIS
messages in the AIS log file. The purpose of the application
is to output a succession of frames in which any boat-class
and/or seamark-class objects have been correctly identified.
For each object, the software provides the estimated distance
to the radar/LIDAR installed on board the boat and, in the
case of objects corresponding to boats that have sent AIS
messages within a relatively short time of their identification,
also additional information such as IMO number, call sign,
name, and geographic coordinates, if available.

We remark here that, to the best of our knowledge, this is
the first attempt to fuse information coming from a camera,
a radar/LIDAR and an AIS receiver. We experienced techni-
cal issues that have been reported, in terms of corresponding
requirements, in Sections V-B, V-C and V-D. In particular,
it is in general difficult to properly project the radar/LIDAR
cloud made of 3D points onto the 2D frame acquired by the
camera, registering the points through the correct geometrical
transformations (rotations, translations etc).

VIII. TRAINING THE YOLO MODEL
For training, we selected a YOLOV6 nano model (YOLOv6-
n) because, although it is the smallest available model size,
it already includes a number of weights to be learned equal
to 4.3 million and is the fastest in inference (albeit with
lower accuracy than the other models with a larger number
of weights). The model was trained using a parallel clus-
ter compute node equipped with 2 IBM POWER9 AC922
3.1 GHz 16 cores processors, 256 GB RAM and 4 NVIDIA
Volta V100 GPUs, Nvlink 2.0, 16GB. Model training was
performed using The following parameters:

• Optimization algorithm: Sthocastic Gradient Descent
with momentum and cosine decay learning rate;

• Weight decay: Exponential Moving Average;
• Training dataset: 70% of the dataset, chosen pseudo-
randomly;
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• Validation dataset: 15% of the dataset, chosen pseudo-
randomly;

• Test dataset: 15% of the dataset, chosen pseudo-
randomly.

The model was trained for 800 epochs with batch size
of 128, and took a total of about 26 hours to train
using 4 NVIDIA Volta V100 GPUs. The metrics commonly
used for performance validation are Average Precision and
Average Recall. Average Precision (mAP) is a metric used to
evaluate object detection patterns. Average Precision (AP) is
calculated on the recall values from 0 to 1. The mAP formula
is based on the following secondary metrics:

• Confusion matrix;
• Intersection over Union (IoU);
• Recall;
• Precision.

A. CONFUSION MATRIX
The confusion matrix includes four attributes:

• True Positives (TP): The model predicts a label, and
the label is correct (with respect to ground truth, a term
for the certain information we have: for each training,
validation and test image, the ground truth includes the
class of objects in it and the bounding rectangles of each
object);

• True Negatives (TN): the object is not part of the ground
truth, and the model does not predict a label. This
attribute is not used in object detection tasks, as it is not
useful for the purpose;

• False Positives (FP): The model predicts a label, which
is not part of ground truth (type I error);

• False Negatives (FN): The model does not predict a
label, which is part of the ground truth (type II error).

As an example of a TP, given a dog object, there is a dog
prediction, whilst for a FP given cat object there is a dog
prediction. Similarly, as an example of a FN given a dog
object there is a non-dog prediction whilst for a TN given
a cat object there is a non-dog prediction.

B. INTERSECTION OVER UNION
Intersection over Union (IoU) indicates the overlap of the
coordinates of the bounding box predicted by the model
(related to the identification of a given object) with the actual
bounding box. A higher IoU indicates that the coordinates of
the predicted bounding box are very similar to those of the
actual bounding box. Specifically, IoU is the ratio of the area
of the intersection to the area of the union.

C. PRECISION
Precision is defined as the total number of correctly identified
objects with regard to the total number of identified objects.
Therefore, this metric quantifies the number of false positives
reported by an algorithm in output: a precision of 1 (or 100%)
means that there are no false positives (i.e., precision is a
quality metric). Specifically, precision is defined as the ratio

of TP to the sum TP + FP. For object detection, an IoU
threshold is normally used whereby a given detected object
is classified as FP (IoU of object < IoU threshold) or TP (IoU
of object > IoU threshold).

D. RECALL
Recall, on the other hand, is the total number of correctly
identified objects reported versus the number of correctly
identified objects provided by an exact algorithm: a recall
equal to 1 (or 100%) means that there are no false negatives.
Therefore, this metric is a measure of completeness (i.e.,
recall is a quantitative metric). Specifically, recall is defined
as the ratio of TP to the sum TP + FN.

E. AVERAGE PRECISION
Average Precision (AP) is calculated as a weighted average
of the accuracies obtained for each threshold; the weight
is the increase in recall from the previous threshold. Mean
Average Precision (mAP) is the average of the APs for each
class. However, the interpretation of AP and mAP may vary
in different contexts. For example, in the COCO challenge
evaluation paper for object detection, AP and mAP are the
same thing.

The following steps should be taken to calculate AP:

• Generate prediction scores using the model;
• Convert the prediction scores into class labels;
• Determine the confusion matrix TP, FP, TN, FN;
• Compute precision and recall metrics;
• Compute the area under the precision-recall curve;
• Measure average precision (mAP) by determining the
AP for each class and then averaging the values.

The mAP takes into account the trade-off between preci-
sion and recall and considers both FPs and FNs. This property
makes it valid as a metric for object detection applications.
The metric for the 2017 COCO challenge is computed as
follows:

• compute the AP for the IoU threshold of 0.5 for each
class;

• precision is determined for each recall value (0 to 1 with
a step of 0.01), then repeated for IoU thresholds of 0.55,
0.60,. . . ,0.95;

• the average is computed over all of the 80 classes in
the COCO dataset and over all of the 10 thresholds
used; moreover, additional metrics are used to identify
the accuracy of the model on different scales of objects
(APsmall , APmedium, and APlarge).

Specifically: APsmall is related to small objects (area <
322), APmedium is related to medium-sized objects (322 <
area < 962) and APlarge is related to large objects (area >
962). Finally, Average Recall is computed by considering
images in which there is at most 1 detection (at most one
object is identified by the model), at most 10 detections and at
most 100 detections. For this purpose, values called ARmax=1,
ARmax=10 and ARmax=100 are commonly reported. But, also
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for Average Recall, values are computed with regard to the
dimensions ARsmall , ARmedium and ARlarge.

The results obtained at the end of training with respect
to the metrics Average Precision and Average Recall are as
follows:

Average Precision
(AP)@[IoU=0.50:0.95 | area= all | maxDets=100] =

0.251
(AP)@[IoU=0.50 | area= all | maxDets=100] = 0.539
(AP)@[IoU=0.75 | area= all | maxDets=100] = 0.199
(AP)@[IoU=0.50:0.95 | area= small | maxDets=100] =

0.138
(AP)@[IoU=0.50:0.95 | area= med | maxDets=100] =

0.417
(AP)@[IoU=0.50:0.95 | area= large | maxDets=100] =

0.604
Average Recall
(AR)@[IoU=0.50:0.95 | area= all | maxDets= 1 ]= 0.142
(AR)@[IoU=0.50:0.95 | area= all | maxDets= 10 ] =

0.345
(AR)@[IoU=0.50:0.95 | area= all | maxDets=100 ] =

0.390
(AR)@[IoU=0.50:0.95 | area= small | maxDets=100] =

0.272
(AR)@[IoU=0.50:0.95 | area= med | maxDets=100] =

0.594
(AR)@[IoU=0.50:0.95 | area= large | maxDets=100] =

0.724
Note that the accuracy obtained, equal to AP @[

IoU=0.50:0.95 | area=all | maxDets=100 ] = 0.251 is in line
with the quality of the dataset used for training, and consistent
with the use of a YOLOv6 nano model with a limited number
of weights to be learned (equal to 4.3 millions). From this
point of view, it is worth recalling here that there is a tradeoff
between the size of the model used, the computational time
required for training, and the achievable accuracy. Higher
accuracy values can be easily obtained by using larger, higher
quality datasets and larger model sizes.

IX. VALIDATION OF RESULTS
The dataset provided by Fincantieri NexTech S.p.A., which
includes some images, radar/LIDAR data and AIS logs
acquired during an experimental campaign, was used for
performance evaluation. The following images (see Figures
1, 2 and 3), produced as output by the software, show the
detection and tracking of objects performed by the software
as the vessel moves, along with the computation of the aver-
age distance of the identified object from the vessel. In the
images, red points represent points acquired via radar/LIDAR
(3D point cloud), projected onto the 2D image. Note that
the boat at the bottom of the images is correctly detected
by YOLOv6 nano (the bounding rectangle is drawn), but
because the radar/LIDARdoes not cover the distance required
to acquire the corresponding 3D points, the average distance
cannot be computed.

FIGURE 1. Approaching a vessel: frame 1.

FIGURE 2. Approaching a vessel: frame 2.

It was not possible to validate the software with regard to
the use of AIS information, as the information on the geo-
graphic coordinates of the vessel, course, heading and bearing
was not provided. However, a verification of the correspond-
ing module was performed by assuming that this information
was known and deriving the geographic coordinates of the
two points needed to make an AIS query. The query outputs
the correct information, related to the vessels in the rectangle
bounded by the two points. For example, assuming that the
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FIGURE 3. Approaching a vessel: frame 3.

vessel is located at the geographic coordinates latitude 37 N,
longitude 15 E at 08:52 and 29 seconds on 06/09/2022,
a query related to the AIS data with the two points delimiting
the geographic area equal to (36 N, 14 E) and (38 N, 16 E),
respectively, produces the following output:

Ship ID: 2470036 - Lat: 37.11668 N - Lon: 14.825 E
Ship ID: 2470074 - Lat: 37.56477 N - Lon: 15.10375 E
Ship ID: 209582000 - Lat: 37.20307 N - Lon: 15.20979 E
Ship ID: 215486000 - Lat: 37.22097 N - Lon: 15.20121 E
Ship ID: 229370000 - Lat: 37.22511 N - Lon: 15.19940 E
Ship ID: 240575000 - Lat: 37.11593 N - Lon: 15.267 E
Ship ID: 241604000 - Lat: 37.12299 N - Lon: 15.26652 E
Ship ID: 247055200 - Lat: 37.22149 N - Lon: 15.19253 E
The software, running on a MacBook Pro equipped with

an 8-core, 2.3 GHz Intel Core-i9 cpu and 64 GB RAM, was
evaluated by processing a dataset consisting of 1536 images,
corresponding radar/LIDAR data and AIS log files. Specif-
ically, the measured throughput for the entire pipeline con-
sisting of reading an image from filesystem, processing the
image, projecting 3D radar/LIDAR points onto the 2D image,
geographic query related to AIS data, and writing the pro-
cessed image to filesystem, was 6.5 FPS. When run on a
compute node of the Marconi cluster, equipped with 2 IBM
POWER9AC922 3.1GHz 16 cores processors, 256GBRAM
and 4 NVIDIA Volta V100 GPUs, Nvlink 2.0, 16GB, the
throughput – using only one GPU and eliminating output
writing – was 10 FPS. Since reading the images from the
filesystem is computationally expensive, and in the case of
the proposed application unnecessary (since the video-related
frames are immediately available from the acquiring camera),
we estimate a throughput between 10 FPS and 20 FPS, which
is enough considering the radar/LIDAR acquisition time.

X. CONCLUSION
Ship sailing is a complex endeavour, requiring carefully
considered proactive and reactive strategies in choosing the
course of action that best suits the various events to be man-
aged. Humans are already supported by different technolo-
gies as technologies for sailing, however these technologies
are usually available in isolation. In this paper we have shown
how to use simultaneously three different technologies by
fusing their information in order to provide enhanced support
for ship sailing. To the best of our knowledge no similar
approach is reported in the literature from an operational
point of view. In particular, we have shown how to fuse the
video acquired from a camera with the information available
from a radar/Lidar and an AIS receiver. The video frames are
analyzed in order to detect automatically surrounding ships
and seamarks whilst Lidar is used to determine the average
or minimum distance from the ship to the acquired targets
and finally the AIS receiver logs are queried to determine,
if available, useful information related to the surrounding
ships, such as their geographic position, type of ship etc.

Although more research is certainly needed, we believe
that the simultaneous use of these technologies is a step
towards fully autonomous ship sailing; moreover, multi-
sensor data fusion into one HMI helps operators to quickly
understand the surrounding environment and operate prop-
erly on the vessel from the very beginning even if they have
a limited experience, whilst simultaneously reducing signifi-
cantly the required space in the wheelhouse. Our findings are
encouraging and show the effectiveness of our approach.

In order to evaluate the effectiveness of the proposed
approach, future work may include the implementation of
a corresponding novel dashboard for on field testing; from
this perspective, it will be interesting to collect and analyze
questionnaires administered to the relevant operators to infer
their precious feedback regarding both the Human Machine
Interface and the effectiveness of the information provided by
the dashboard to support ship sailing. This is particularly rel-
evant especially for young operators with limited experience
in operating properly the vessel.

Additionally, it is certainly important the ability to detect
different navigational aids such as lateral marks, cardinal
marks, and other IALA (International Association of Marine
Aids to sailing and Lighthouse Authorities) defined marks.
Also of interest is the possible inclusion of additional tech-
nologies as well such as, for instance, Motion Reference
Units. Our goal is to complement the art of ship sailing,
currently based on a mix of knowledge and experience, with a
novel tool which can allow taking better, informed decisions
leveraging advanced technologies.
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