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ABSTRACT Complex fuzzy (CF) sets (CFSs) play an important role in modeling two-dimensional
information challenges. Researchers exploring decision-making systems have recently become interested in
CFS extensions. The complex T-spherical fuzzy (CT-SF) set (CT-SES) is a recent extension of the CFSs.
The present study aims to devise the Frank operational laws for the CT-SF environment and to verify
their required properties. Subsequently, some CT-SF Frank aggregation operators are explored, such as
CT-SF Frank weighted averaging (CT-SFFWA) operator, CT-SF Frank weighted geometric (CT-SFFWG)
operator, CT-SF Frank ordered weighted averaging (CT-SFFOWA) operator, and CT-SF Frank ordered
weighted geometric (CT-SFFOWG) operator, CT-SF Frank hybrid averaging (CT-SFFHA) operator, CT-SF
Frank hybrid geometric (CT-SFFHG) operator, and their peculiar cases are examined. Based on the devised
operators, a novel multi-criteria group decision-making (MCGDM) methodology is investigated to tackle
MCGDM problems under the CT-SF environment. Lastly, the practicality and effectiveness of the presented

methodology are conducted by parameter analysis and comparative exploration.

INDEX TERMS Frank T-norms, complex T-spherical fuzzy set, aggregation operators, MCGDM.

I. INTRODUCTION

Multi-criteria group decision making (MCGDM) is a way to
choose the best option or rank the options based on more than
one factor, assessed by decision experts (DEs). This method
has a wide variety of applications in many disciplines [1],
[21, [31, [41, [5], [6], [7], [8]. Owing to the complexity and
ambiguity of objective things and human cognition, the topic
of MCGDM problems in uncertain contexts has received con-
siderable interest. To handle problems in uncertain situations
and find better solutions, Zadeh [9] developed fuzzy sets
(FSs), which are defined by their membership grade p. Since
FS only gives a membership grade subject to a value within
[0, 1] to support a fuzzy expression issue, but lacks a non-
membership grade. In view of true and false membership
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grades, Atanassov [10] suggested intuitionistic fuzzy sets
(IFSs) based on the FS theory, which consider both the mem-
bership grade u(0 < w < 1) and non-membership grade
v(0 < v < 1), with the restriction that the sum of the two
membership grades cannot exceed one, i.e., u + v < 1.
Motivated by the idea of IFSs, to widen the space of the DEs’s
judgment regarding membership grade and non-membership
grade, Yager [11], [12] originated two modified FSs called
Pythagorean fuzzy sets (PyFSs) and g-rung orthopair fuzzy
sets (q-ROFSs) one after another, which meet the require-
ments ,u2 + 12 < 1 and u?+v? <1(g = 1), respec-
tively. IFSs, PyFSs, and q-ROFSs are useful for tackling real
MCGDM problems, and significant academic progress has
been made [13], [14], [15], [16], [17].

Howeyver, there are a few scenarios in the real world where
human opinions require more answers of types: yes, no,
abstain, and rejection. Voting is an appropriate example of
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such a circumstance, as human voters can be divided into
four categories: vote for, abstain, vote against, and refuse
to vote [18]. To address this type of situation, Cuong and
Kreinovich [19] introduced the Picture FSs (PFSs), which
are described by membership grade (0 < p < 1), non-
membership grade v(0 < v < 1), and neutral grade ¢(0 <
¢ < 1), with the constraint that the total of the three grades
cannot cross one, i.e., & + v + ¢ < 1. Soon after, moti-
vated by the PyFSs and q-ROFSs, to widen the space of the
DEs’ judgment about membership grade, non-membership
grade, and neutral grade, Mahmood et al. [20] presented the
extended PFSs known as T-spherical fuzzy sets (T-SFSs),
which meet the restriction u’ +v!+¢? < 1(¢+ > 1). Since their
introduction, T-SFSs have gained increased interest from
scholars. Ullah et al. [21] offered correlation coefficients for
T-SFSs and put forward clustering and decision making
methods based on the formulated correlation coefficients.
The authors in [22] described several measures of similar-
ity for T-SFSs, including the cosine similarity measure, the
grey similarity measure, and the set-theoretic similarity mea-
sure. To aggregate T-spherical fuzzy information, numerous
operators are investigated, such as T-spherical fuzzy power
operators [23], T-spherical fuzzy Hamacher operators [24],
T-spherical fuzzy Frank operators [25], and T-spherical fuzzy
generalized Maclaurin symmetric mean operators [26], etc.
According to the prevalent studies cited above, such
methodologies are constrained and unable to depict the partial
ignorance of data and its variations over a specific period of
time. To address this, Ramot et al. [27] developed complex
FS (CFS). In addition, Alkouri and Salleh [28] introduced
the doctrine of complex IFS (CIFS), which increased the
range of the membership grade and the non-membership
grade from real numbers to complex numbers with a unit disc,
and which can express two-dimensional information. A CIFS
is characterized by membership function (ji = ,ue"z’f(ﬁﬂ))
and non-membership function (¥ = ve'>" ®)) such that
0 < pup+v < 1,0 < d,+ 9, < 1. In addition,
Ullah et al. [29] reformed CIFS in order to investigate the
complex PyFS (CPyFS) under the restriction that the sum
of the squares of the real parts (including imaginary parts)
of the membership grade and non-membership grade cannot
exceed a unit interval. After the introduction of CPyFS, the
complex q-ROFS (Cq-ROFS) [30], satisfying the conditions
0<pu?+v?i<1,0< Eﬁi + 0% < 1(g = 1), was discov-
ered to be an efficient tool for solving MCGDM problems.
The theory of Cq-ROFSs has been implemented in various
facets of daily life. However, these paradigms do not consider
the issue when four aspects are used to describe an item,
particularly when human opinion is involved. For example,
with 0.51€%7036 (.56¢%70-3 (.51¢%70-51  Cq-ROFSs fail
to tackle such situations because of the extra information,
i.e., neutral part. To cope with such problems, Ali et al. [31]
introduced the doctrine of complex T-spherical fuzzy sets
(CT-SFSs) with more flexible conditions, ie., 0 < u' +
¢+ < 1,0 < 5; +5’§ + 0! < I(tr > 1). Karaaslan
and Dawood [32] studied some Dombi aggregation operators
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under complex-T spherical fuzzy (CT-SF) environment and
developed an MCGDM method. Nasir and his coauthors [33]
studied the concept of CTSF relations and their desired
properties in depth. A study by Zedam et al. [34] gave some
CT-SF aggregation operators based on Hamacher operations
and their application cleaner production evaluation in gold
mines. Meanwhile, Ullah et al. [35] also familiarized some
CT-SF Hamacher aggregation operators and employed them
to decision making.

The Frank t-norm and t-conorm [36] are generalizations
of the probabilistic, Lukasiewicz, algebraic, Einstein, and
Hamacher t-conorm and t-conorm. These are more adaptable
and appropriate for dealing with real-world decision making
because they include a parameter that controls the power to
which the argument values are raised. The Frank operators
have attracted considerable attention from the scientific com-
munity in recent years, and it has produced numerous study
outcomes on various FSs. Some operations and their relevant
operators on numerous FSs have been propounded based
on the Frank t-norm and t-conorm, such as single-valued
neutrosophic Frank operations [37], probabilistic hesitant
fuzzy Frank operations [38], Frank prioritized Bonferroni
mean operations [39], fermatean fuzzy Frank operators [40],
interval-valued probabilistic hesitant fuzzy aggregation oper-
ators [41], T-spherical fuzzy Frank operators [25], complex
g-rung orthopair fuzzy Frank operators [42]. Several authors
have also examined the mathematical properties of the Frank
t-norms [43], [44], [45], [46]. To the best of our knowledge,
the authors have conducted no research regarding Ct-SF
Frank’s operations. As previously noted, the CT-SFS covers
the massive loss of information while we collect informa-
tion from any real-life phenomenon to make decisions. It is
especially effective to extract as much information as pos-
sible when human opinion is involved. Hence, utilization of
CT-SFS in Frank operators has a high potential for improving
MCGDM performance.

The following are the key motives and contributions of this
article:

1). CFS and its generalizations play a crucial role in
real-world decision making challenges using two-
dimensional information. As a generalization of SFSs,
aT-SFS comprehends voluminous amounts of informa-
tion. However, it is insufficient for modeling a problem
requiring two-dimensional data. In this regard, CT-SFS
is of fundamental value. CT-SFS is the generalization
of CFS, CIFS, CPFS, CPyFS, and CSFS theories. Frank
operational rules are an important tool for modeling
MCGDM problems, yet, no study on Frank opera-
tions of CT-SFS has been published in the literature.
We define the Frank operations of CT-SFSs to fill this
void in the literature.

2). Until now, the literature pertaining to aggregation oper-
ators of CT-SFS contains few references [32], [33],
[34]. In light of the benefits of the Frank opera-
tors, we develop some novel aggregation operators
CT-SFFWA, CT-SFFOWA, CT-SFFHA, CT-SFFWG,
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CT-SFFOWG, and CT-SFFHG based on the Frank
t-norm and t-conorm to be employed in addressing a
two-dimensional real-world problem.

3). To explore various aspects such as monotonicity, idem-
potency, boundedness, and some limiting instances of
the formulated operators.

4). To build innovative MCGDM approach based on the
designed operators.

5). To give the application of the outlined approach
that validates the practicability and reliability of the
suggested technique. In addition, by comparing the
proposed technique to preexisting methods, we will
confirm that the new method is superior to previous
methods and demonstrate that the Frank t-conorm and
t-norm aggregation operators enable the aggregation
procedure more flexible.

The subsequent portions of this paper are structured as
follows to meet the goals of our research: Section II offers
a brief review of the important background material for this
subject. Section III defines Frank operations of CT-SFNs
and proves their essential properties. Section IV develops the
theory of CT-SFFHWA and CT-SFFHWG operators and out-
lines their influential properties with numerous strong results.
In Section V, we exploits the initiated operators to frame
a decision-making algorithm for coping MCGDM problems
utilizing CT-SFNs as characteristic values. In Section VI, the
selection of water supply strategy problem is addressed to
illustrate application, and a contrastive parameter analysis is
conducted to highlight the stability of the propound method.
Section VII comprises a discussion regarding the results
achieved from the application of the presented method. Some
concluding remarks and future outlooks are documented at
the end.

Il. SOME BASIC CONCEPTS

In the following, we present a concise overview of T-SFSs,
CT-SFSs, Frank t-norm and Frank t-conorm to help readers
comprehend the study.

T-SFS is proposed by Mahmood et al. [20] as a synthesis
of SFS to provide a greater range of preferences for DEs
and allow them to communicate their hesitation about an
alternative. The following are some fundamental definitions
of T-SFS and terms related to intended work.

Definition 1 [20]: Let X be a universal set. A T-spherical
fuzzy set (T-SFS) J on X is characterized by

J = {(n, wh), c(h), v(h)) | € X}, ey

where w(h), ¢(h), v(i) € [0, 1] represent the mem-
bership, neutral and non-membership grades of i € X
to the set J, respectively, with the condition that 0 <
w'(h) + ¢'(B) + vi(h) < 1. The degree of refusal
is m(h) = \71 — ut(h) — ¢'(h) — v'(h). For convince,
(u(h), c(h), v(h)) is named a T-spherical fuzzy number
(T-SFN), labeled by J = (u, ¢, v).

Remark 1:

1) The Definition 1 deduced to SFS if we put t = 2.
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2) The Definition 1 deduced to PFS if we putr = 1.
3) The Definition 1 deduced to g-OFS if we put ¢ = 0.
4) The Definition 1 deduced to PyFS if we put ¢t = 2 and

¢=0.
5) The Definition 1 deduced to IFS if we put + = 1 and
¢=0.

Definition 2 [47]: Let J1 = (u1,¢1,v1) and Jp =
(2, 2, v2) be two T-SFNs and | > 0, then

D Ji®dh= <,’//L’1 + 1 — pwiph, s162, v1 vz);

DT ® PN = <u1uz,,’/§{+§5—§{§5,
3 71 =l 1= =t 1 - a -t}

4 17 = (1= =t o of):

5) Jf = (v, 61, p1)-

Definition 3 [20], [48]: Ji = (u1,61,v1) and Jo =
(12, 2, v2) be two T-SFNs, let S (1) = p} — ¢f — i +

s

exp 1 t t t t
— 4 — 5 )7’ and S (h) = — — i+
exp™T 51 41 2) (J2) My =6 =W

t t t
#2272
=2 2 ° _ 1) 2! be the score values of 7; and J»,
[ —Gn—V; 2
exp'2 °2 2 41

respectively, and let A (71) = u} + ¢f + v and A () =
,u’2 + gé—i— vé be the accuracy values of 71 and 7>, respectively.
Then,
D IfS () < S (J1), then J1 < Ja;
2) If S (J1) =S (J1), then
a. IfA(J1) <A(J), then J1 < J2;
b. If § (J1) = S (J1), then Jy = J>.
Definition 4 [31]: A CT-SFS J on a fixed set X is given by

S ={(, i(h), S(), V(W) |h € X}, t =1, @

where ji(h) = pe O, &) = (e ),
b(h) = v(h)e?™ @) ¢ [0,1] symbolizes the complex-
valued membership, complex-valued neutral and complex-
valued non-membership grades of # € X, respectively,
accorded that 0 < (u(®) + (c(B)' + (wH)' < 1,
0 < (5u)t + (5§)t + @,)" < 1, where p,g v, dy,
Oc, Oy € [0,1]. The degree of hesitation is 7 (h)! =

(1= () + ) + ) (1= (@) + @) +

(5v)’)). For convince, we termed 3 = (ueﬂ” (Bw) , ge[Z” (95) ,

pel?? (5")) a complex T-spherical fuzzy number (CT-SFN).
Definition 5 [32]: Let ¥ be a CT-SFN; then the score
function is characterized by:

1
S@ =2 (4 = =)+ (@, -0 - ). B

where t € [1,00), S(J) € [0, 1]. The larger the value of
S (), the larger the CT-SFN Q.

Definition 6 [32]: Let I be a CT-SFN, then the degree of
accuracy is given in the following manner:

AR =2+ W+ +v)+ (0, +3:+3))), @

Bl —
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where A (J) € [0, 1]. When the computed score values are
same, the larger the degree of accuracy A (3), the larger the
CT-SEN.

Definition 7 [31]: Let 31 and I, be two CT-SFNs and
T > 0, then the basic rules of operation on them are listed as
shown at the bottom of the page.

The T-spherical fuzzy aggregation operator has garnered
a lot of attention as a useful tool in information fusion.
Mahmood et al. [49] devised the T-spherical fuzzy weighted
averaging (T-SFWA) operator and the T-spherical fuzzy
weighted geometric (T-SFWG) operator as:

Definition 8 [49]: Given a set of T-SENs J; (+ = 1(1)n),
then the T-spherical fuzzy weighted averaging (T-SFWA)
operator is a mapping J" —> J such that

T —SFWA (T, T2y ... Tn)
=TI ®0Nn®...00hIh

n | - n

- <(1 ~-TT0- a;)”"") JT o7 1] (m)”f>, )
=1 =1 =1

{81, 12, - ..

where § =
(T, Tay ooy Ty) satistying 0 < g < land > b = L.
=1

Definition 9 [49]: Given a set of T-SENs J; (+ = 1(1)n),
then the T-spherical fuzzy weighted geometric (T-SFWGQG)
operator is a mapping J" —> J such that

T —SFWG (J1, T2, - Tn)
=T RN ®...0 I

n n 1/t
= <H(ai)uf,(l—H(l—§;)m) )
=1

F=I

n 1/t
x(l—H (1_Q;)“f) > (6)
r=1

(u17u25"'
., Jn) satisfying 0 < b < land > = 1.

r=1

,ba}! s the wequht vector of

where 1 =

(S, P, -

,un)T is the weight vector of
n

Triangle norms have been extensively studied, beginning
with Zadeh’s presentation of the max and min operation as
a pair of triangular norm (t-norm) and triangular conorm
(t-conorm). Several t-norms and t-conorms, such as the prod-
uct t-norm and probabilistic sum [50], can be mentioned.
Einstein t-norm and t-conorm [51], Lukasiewicz t-norm and
t-conorm [52], Hamacher t-norm and t-conorm [53], etc.,
are vehicles for FS operations. Frank’s operations include
Frank’s product and Frank’s sum, both of which are examples
of triangular norms and conorms.

The Frank t-norm 7 and Frank t-conorm S are described

as follows:
@M—n@%—n)

Tr (hy, hp) = log£(1 +

£-1
x Y (hy, B) € [0, 177, (7
(e - 1) (e - 1)
Sr(hi, ) =1—loge| 1+
£—1
x Y (h, k) €0, 1]>. (8)

The following properties of the Frank t-norm and Frank
t-conorm are mentioned [54].

Tr (hy, ho) + SF (ki1 ho) = hy + By, ©)]
0Tr (hy, h oSy (A1, h
F (I 2)+ F (I 2):1' (10)
d0h dhy

The following desirable outcomes are easily verifiable
using limit theory [54].

. If £ — 1, then T (hy, fip) —> kA + hiy — h1ho,
Sr (h1, hp) —> hhy, the Frank t-norm, and Frank t-conorm
are reduced to probabilistic product and probabilistic sum.

2). If £ — oo, then TF (fiy, i) —> min (A + 7z, 1),
Sr (h1, hp) — max (0, iy + Ay — 1), the Frank t-norm and
Frank t-conorm are deduced to the Lukasiewicz product and
Lukasiewicz sum, respectively.

Ill. CT-SF FRANK OPERATIONAL LAWS
This section will present Frank’s CT-SFN operations and
investigate some of its noteworthy features.

D 3183 = ((le + uh — i ph)

2) @I = (muze"z”(s”l%)a (si+55—¢is

(4§ = o) Vo0 0050,0
AV
' ; 1/t 2 (— -0 ) 1/t - o 1
3) SJ{ = M'{ngﬂ(&th (1 _ (1 _ 5_][)1‘) /t el 7|1 (1 ;1) ’ (1 _ (1 . vi)T) /t 61271(1 (1-3',) )

3 ’ + 1/t ‘
4) 13 = (1 - _MII)T)I/I eth(l—(l—S;u) ) gfelzn(ﬁzl)

5) Scl — (UleiZnBU] , §lei2n6§] , MgleiZnﬁw).
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1 o (8%, +8,-},, 3,

/t
) , glgzeiZJT(anggz)’ v1v26i2n(8v16,)2));

nx(on 4o —at o)
)1/le’ ”( c179:,79¢, 52) ,

1
2.

3

’v;reiZn(anl) ’
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Definition 10: LetJI| = (0162"”5“1, gleziﬂsgl , Qlezmﬁgl)
and 3 = (ozezi”afz, gzeziﬂagz, Qzezmagz) be two CT-SFNs
and > 0, then, as 1)-3) and 4) are shown at the bottom of
the page and the next page, respectively.

Remark 2:

1) The operational rules described in Definition 10

deduced to CSFNGs if we put t = 2.
2) The operational rules described in Definition 10
deduced to CPFNS if we put t = 1.

3) The operational rules described in Definition 10
deduced to Cq-OFNS if we put ¢ = 0.

4) The operational rules described in Definition 10
deduced to CPyFS if we put ¢ 2
¢c=0.

5) The operational rules described in Definition 10
deduced to CIFS if we putt = 1 and ¢ = 0.

We investigate the following outcomes using the operating

rules defined in Definition 10.

and

2im | 1

1-o! 1-o}
t1—10g£(1+(£ : l)_(f : 1>)e

—loge | 1+

i r
(y—% _1)(£1—a(,2 _1)

£-1

D 313 = £§1—1 £§2 1
"I loge 1+

g
2imr | logg | 1+

)

£Q1 ;‘.g2 1
loge( 1+

S
)
)y

(ﬁa"l - 1)(:33”2 - 1)

2imr | loge | 1+ g
£ 2 1
Iloge( 1+ ,
(1 ok, l)(l o, _ 1)
2in ' 1-loge | 1+ =
2) 31®J = (£1 ST—1) (g 52— 1 ;
11 —logel 1+ ,
(£1—62,1 _1)(;51’6272 _])
- - 2imr | 1-loge | 1+ £
e
11—logel 1+ yom e
¥
(?3171
t
t : 2im | logg | 1+ @il
e 14 6
loge [ 1+ rT |€ )
T
o= -9%, _ .
2im | 1-logg 1+7
~T €-nT-T :
3) ")] - , £1*§i_1)f >
1— 10g£ 1 + W e s
. i
£1—6’9171
g )
: 2im '| 1-loge | 1+ @i
l—gr
1 £'7-1)
1— 10g£ 1 =+ W e
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Theorem 1: Let 3y = (0pe?™00¢, cpe¥™0ct 0?7 00r)

(¢ = 1,2) and I = (0279 c2m0c e2m0c) be three
CT-SENs, and t, t1, o > 0, then

) 3@ =30 3;

2) 1 ®J = Q31;

) 1O =T 132;
9 et =3l ek
5 TIS@HhI = (h +12)3;
6) 3Tt @ 3f2 = gtz

7 (f112) 3 =t (129).
Proof: We verify only parts 1, 3,5 and 7 and analogously

for others.

1. It is obvious.

3. As shown at the bottom of the page, by the Frank
operational rule (4) in Definition 6, it results, as (11), shown
at the bottom of the next page.

Now, (12), as shown at the bottom of page 8.

From Egs. (11) and (12), we get T (31 D J2) = 131 B 132.

5. Equations (13) and (14), as shown at the bottom of
pages 10 and 12, respectively.

Thus, from Egs. (13) and (14), we get the desired result.

7. As shown in the equation at the bottom of page 12.

From this, we can further write the equation, as shown at

the bottom of page 13. [ ]

Theorem 2: Let I = (01 201 Gl 270y Q162in5g1)
and 3y = (02637002 01?052 0,0%7%2) be two CT-
SFENSs, then

D (3193 =¥ @5

2) (1 @) =@,

Proof: The proof is trivial; therefore, it is omitted

here. |

IV. CT-SF FRANK AGGREGATION OPERATORS AND
THEOREMS

In the following section, we suggest a set of weighted aggre-
gation operators for CT-SFNs on the basis of the devised
Frank operation rules.

A. CT-SF FRANK AVERAGING AGGREGATION OPERATORS
Definition 11: Let3; = (07€*797 ;2705 ;27 0er)

(7 = 1(I)n) be a class of CT-SFNs, then the Com-

plex T-spherical fuzzy Frank weighted averaging operator

T

£1,3;,171
A AN
; 2imr | 1-loge | 1+ T T
j—
: (£1-1)
1 —loge | 1+ el )
T
Fa
2im | logg | 1+~———4—
€nt-t .
DRRIES (esi-1)’ ’
loge | 1+ i e R
P
o1 _y
ES—
[ - 2imr | logg 1+7(£71)T*1
: ()
loge | 1+ T |¢
(fl—af,l _1)(£1—632 —1)
2im | 1-loge | 1+ =i
(£l—nf7])(£l—a£71>
11 —logel 1+ yo] e ,
(o))
331803 = (£§i_1)(£§§_1) ,
loge( 1+ = (4 ,
o))
E)E)
! 10g£ l + £+] e
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(CT-SFFWA) is: where L = (L, J_z,...,J_,,)T is the weight vector of
n
CT — SFFWA (31,32, ..., 30) = @7, (L), z (15) 3 (7 = I(1)n) satisfying that 1; > O and > 1; = 1.
=1
T
o))
logg | 1+ Fom
£ -1
2ir ! 1—-loge | 1+ ot
el ) (£ f
|0g£(l+( 27(1 )
£ -1
t
I —loge | 1+ €1 e )
\
(9’;171) E”sz,l) '
logg l+ﬁ
£ -1
2in ! loge | 1+ o
T
S1-1) (521
TR18eX) = lug£(1+( 2_(| ))
£ -1
t
loge | 1+ E—1)i T ¢ ,
o) |
loge | 1+ Fom
£ -1
2ir | logg | 1+ o
t t T
£21 1) (£9%2 -1
log£(1+( £)_(1 ))
£ -1
t
10g£ 1 —+ (£71)T*1 e
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Especially if L = e

T
) . then the CT-SFFWA

operator reduces to the Complex T-spherical fuzzy Frank

Theorem 3: Let 3; (0€%m007 | ;€705 ;e 00s)
(7 =1(1)n) be a class of CT-SFNs, then the result

averaging (CT-SFFA) operator of dimension n, which is
described as below:

acquired by utilizing the CT-SFFWA operator is still

1
CT — SFFA (31,32, ..., 3n) = — @, (37).
n

a CT-SFN, and (17), as shown at the bottom of
page 14.
Proof: ~We verify it using mathematical induction
16)  onn.
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For n = 2, we get the equation, as shown at the bottom of
pages 14 and 15.

Thus, the result holds for n = 2.

If Eq. (17) holds for n k, then for n

= :k—'—l’

we get the equation, as shown at the bottom of
pages 16-18.

Thus, the result holds for n =k + 1, and
hence, by the principle of mathematical induction, the
result disclosed in Eq. (17) holds for all positive
integer n. ]

Example 1: Let 31 = (0.4¢%703 0.3¢%704 .5¢2703)
Iy = (0. 76217106 0. 3e2zn04 0. 4e2lﬂ0 4) I3 = (0. 66217105
0.7¢%70-8 () 82im0-8) be three CT-SFENs,
and L = (0.4,0.3,0.3)7 be the weight vector of J;(F =
1,2, 3). Suppose £ = 2, then according to Definition 11 and
Theorem 3, we can obtain (t=4), as shown in the equation at
the bottom of page 18.

Theorem 4: Let §; = (U;@zmaaf, cje2mOs; o;ie
(7 = 1(1)n) be a class of CT-SFNs, and £ > 1.

As £ —> 1, the CT-SFFWA operator approaches the
following limit
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Then, we have, as shown in the equation at page 20.
which completes the proof. ]

Theorem 5: Let J; = (U;e2i”6°f, g;ezmﬁﬂ, Q;e2i”69i)
(f = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ —> o0,
the CT-SFFWA operator approaches the following limit

lim CT — SFFWA (31,32, ...,30)

£—>00
n 2im || (r”1 1; (5£,r))

L - ,

r 1

- \/1 éJ_r )me’ o)
% - (2 (@))zm

Proof: According to Theorem 3, we have, as shown in
the equation at the bottom of page 20.

Using limit rules, logarithmic transform, and L"Hospital’s
rule, it follows the equation, as shown at the bottom of pages
21-23, which completes the proof of Theorem 5. ]

Theorem 6 (Idempotency): Let = (0427007
cje2mOc; Q;ezmagf)(i = 1(1)n) be a class of CT-SFNs,
if 3 =39 V F, then

CT — SFFWA (31, 39, ...

» Jn) = Jo. (20)

Proof Since for all 7 Jj = Jg = (00e>™ %%, cpe?™ 950,
n

Qoezi” 6@0), and > 1; = 1 so according to Theorem 3,
we get the e(r]ﬁe]ltion, as shown at the bottom of
page 23. [ ]
Thus, the proof is completed.
Theorem 7 (Monotonicity): Let S = (U;ezma’f,
Gie¥™0si 0;e?™0er)(7 = 1()n) and §; = (67€¥7 067,

&m0t 56?70 )(7 = 1(1)n) be two classes of CT-SENs
such that o7 > 64, ¢; < &i, 0f < 0i> O5; = Og;,
6;; < 6;, aand (%3 < 6Qr A4 i, then

CT — SFFWA (31,32, ..., 3p)
> CT — SFFWA (31,32, ..., 3) . (21)

Proof: Based on Definition 11, when o} > 67, ¢ < ¢7,
07 < 0, O5; > 0g;, 0, < Og;, and g7 < Op; V 7, then
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2ir 1| 1-loge 1+1‘[(£ 0%—1)
e =1
n 1—at L
2irr | 1-logg 1+H(£ "r'—l)
> e =1
n Li
2imr !| logg 1+]_[ £ i — )
n . Li
2ir | loge[ 1+ T] (£ ﬁ—l)
r=1
<e
21nj10g£(1+]_[ Qr—l )
Li
2im ! logi(l+]_[ (£ @rfl) )
<e r=1

e

Thus, S (CT — SFFWA (31,32,...,3,) = S(CT —

SFFWA(S1, S, ..., 30).
Hence, CT — SFFWA (31,32,...,3,) > CT -
SFFWA(TH,%Q,...,S,,). [ |
2[%30,"

Theorem 8 (Bpundedness).' Let 3; = (oje
cie?™0c1 | 0:6?0:) (7 = 1(1)n) be a class of CT-SFNs,
and let

_ . 2ir min I, 2ir max 9,
37 =( min o;e == | max ¢je ==
1<i<n 1<izn
2ir max Gy,
max gje I'st=r ,
1<i<n
n 2ir max g, 2ir min g
IT = max oje =" | min ¢ije == 7
1<i<n 1<i<n
2ir min Gy,
min g;e == ,
1<i<n

then

I” < CT — SFFWA (31,32, ..., 3,) < 3™T. (22)

Proof: Since for all 7,

2ir min Bor 2iT max o

min oje == < 5.e%"0% < max oe  1=r=n
1<i<n - T 1<i<n
2ir min g; . 2imr max O,
mln s-re 1<i<n S g’.‘e2lﬂ3§i S max §r€ I<i<n |4
1<r<n 1<i<n
and
2imr min Oy, . 2ir max Oy,
min oje 1<i<n °F < Qi’e2m39r < max oje 1<i<n r’
1<i<n 1<i<n

thusly on the basis of idempotency and monotonicity,
we have I~ < CT — SFFWA (31, 32, ..., 3,) < 3. ]
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lim CT — SFFWA (31, 32, ..., 35)
£—>1

n 1;
n . 1; ZiNj 1710g£(1+11 (£1*5ta; 71) )
71 — log£ (] + H (£17<7; _ 1) )e i=

=1

n t Ly
. R 2iﬂj log£(1+n(£3§i—1) )
nooo o\ )
N £h_r)n1 \/logi (1 + 1 (£§f — 1) )e :
=1

3

’

n t L
n L. 2mj log£(1+H (£5Qr' _1) )
\/Iog£ (1 + (£Qtf - 1) )e =
=1
n _at. L
n 1o} L ! ln(l+<]_[ (::] Urfl)
\/1 B 1n(1+i1;[1(£ ~1) ) s |\

Inf
g € ;
T t ﬁ( g, )Li
: n t ‘ In| 1+ £ 5 —1
= lim t 1n(1+]_[ (£§;,1) r) ' Ll
£—>1 =1 2im e
Inf € s
I t ﬁ( 3%; )L}
N 1 h Inf{ 1+ £ —1
‘ 1n(1+n (£9»'~—1) ') , i1
i=1 eZm R
In£

£—1

T e fi ) o 2 )
r .

lim CT — SFFWA (31, 32,

Sn)
Jim A

n L
1 ' 1\ " ££nooj 1*10g£(1+']:[l (£l_5tdf71) )
Jim 1 —logg (1 +11 (£l—0i _ 1) )e I
e

=1

n 1] L
n LN\ 2im £lim j 10g£(1+.H (£5§i —1) )
lim \/10g£ (1 +11 (£§£ _ 1) )e =1
£—o00 =1
) . P n Bl . L
n . 1; 2im £E)noo logf(l-l,-i]:[l (£ 0 _1) )
lim log, (1 + ] (£@f — 1) )e -
£—o00

F=1

’

’
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_ 2in g
9

Theorem9(Shift—lnvariance): Let 3J; (oje
Gie?™0si, g™ %ei)(7 = 1(1)n) be a class of CT-SFNs and
S = (%70 2O 5?7001 be any other CT-SFNS,
then

CT —SFFWA (31 3.5 85,....3,89)
= CT — SFFWA (31,32, ..., 3,) ® 3. (23)
2i7l6”;,

Theorem 10 (Homogeneity): Let 3 (o7e
;€% ™05t 0,.e*™ i) (j = 1(1)n) be a class of CT-SFNs and
1 > 0 be any real number, then

CT — SFFWA (131, 132, ..., 135)
= +CT — SFFWA (31, 32, . ..

2 3n) - (24)
To save space, the proof of the aforesaid two theorems
can be simply deduced from the suggested Frank operational
rules of CT-SFNs; consequently, it is skipped here.
Definition 12: Let3; = (afeziné"f, g;ezmaﬁ, Q,’«€2i7T80"‘)
(7 =1(I)n) be a class of CT-SFNs, then the Com-
plex T-spherical fuzzy Frank ordered weighted averaging

(T-SFFOWA) operator is:

T — SFFOWA (31,32, ..., 3p) = @F_y (3:%5)) »  (25)

where

(81, 2. ..., )T is the position weights of
n
i (F = 1(1)n) such that i > O and > f; 1.

(5(1),8(2), ..., 8(n)) is a permutation of (1,r2_,13, ...,n) so
that Sg(;_l) > Sg(}) for 7 = 2(1)n.

Theorem 11: Let (crfezmaﬂ, gfez"”aﬁ, oje
(r = 1(1)n) be a class of CT-SFNs, then the result acquired
by utilizing the T-SFFOWA operator is still a CT-SFN, and
(26), as shown at the top of page 24.

Proof: Here we omit the proof of this result because it

is same to that of Theorem 3. ]

Example 2: Let | = (0.3¢%70.2 ().32im04 () 502im0.5y
{32 — (0.7€2iﬂ0'6, 0.4€2iﬂ0'5, 0.5€2iﬂ0'5), 3\3 — (0.6€2iﬂ0'5,
0.7¢%70-8 ().8¢2170-8) pe three CT-SENs, then according to
Definition 3 we can get (t=4):

_ 2in5gi)

S (J1) =0.4628, S (J2) =0.5392, S (J3) =0.1808.

Since S(J¥2) > S&1) >  S(I3), we have
35(1) (0‘7621‘710.6’ 0.4€2iﬂ0'5 , 0.56‘2”[0‘5) , 38(2)
(0_3621'110.2’ 0-3821'1'[0.4’ 0.5€2iﬂ0'5) , 35(3) (0'6621'7{0.5’
0.7¢2708 ().8¢2708) and g (0.3,0.4,0.3)7 is the
weight vector associated with the T-SFFOWA operator.
Suppose £ 2, then according to Definition 12 and
Theorem 11, we have the equation, as shown at the middle of
page 24.

Theorem 12: Let j = (a;eziﬂsf’*, cje2mOs; | Q;eZi”sgf)
(7 = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ — 1,
the T-SFFOWA operator approaches the limit (27), as shown
at the bottom of page 24.

Theorem 13: Let J; = (afez"”éa", cje2mOc; | Q;«€2in6@f)
(7 = 1(1)n) be a class of CT-SFNs, and £ > 1. As£ —> o0,
the T-SFFOWA operator approaches the limit (28), as shown
at the top of page 25.

Likewise CT-SFFWA operator, the T-SFFOWA operator
also adheres the boundedness, idempotency and monotonic-
ity, shift-invariance, and homogeneity properties. Besides the
aforesaid characteristics, the T-SFFOWA operator has the
following noteworthy results.

Theorem 14: Let 3 = (o3¢ 007 g;ezi”65f, Q;eZi”sgf)
(v 1(1)n) be a class of CT-SFNs, then we have the
following:

i).If g = (1,0,...,0)7 then T — SFFOWA(31, 32, ...,
J,) = max{3Jy, Jo, ..., I}

ii). If § = (0,0,..., DT then T — SFFOWA(31, 32, ...,
In) = min{JIy, Iz, ..., I}

iii). If g7 land 1; = 0G # 7) then T —
SFFOWA(S1, 32, ...,3,) = 3'35(,:) where 3'35(,:) is the rth
largest of J;, (7 = 1(1)n).

According to definition of CT-SFFWA and T-SFFOWA
operators, we can notice that the CT-SFFWA operator can
weights only the SFNs while T-SFFOWA operator weights
only the ordered position of SFNSs. In real-world practical sit-
uations, We should concentrate about both factors at the same
time. Therefore, to circumvent this issue, we state the hybrid
averaging operator based on Frank t-norm and t-conorm,
which weight both the given CT-SFNs and their ordered
positions.

VOLUME 11, 2023

t L
n 1 t In 1+ﬁ ¢ %0 '
In( 1 e ) P=1
; o mUIE 2 | 1 lim S
1 — lim BTy , € fo0
£—>00 n
n . L
n o 1; t In 1+A]'[ £ 5 —1
. ln(l+'l_[ (e-1) ) pir | tim =N /)
lim =l e Nt—o "
£—00 Ing ’
n Bt . L
n Qt- L t In H—'H £ 0r -1
t ln(1+,H (£ r_l) ) 2im lim = T
lim =l e Nt "
£— 00 In€
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2ir | 1— lim
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n _at r
I1 (£l 8o —1)
i=1 z”
.
=1

T
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F=1 £57
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1+ 11 (£§i—l) =l £F—
1— lim —= :
£—>00 T
J_.
ﬁ (582‘%71) " at. —1
= S
t = :l " I; <Z Lr(atg‘;)ija[}j )
1+ I1 (£5§f 71) = £757 -1
2in | 1— lim —*=! :
e £—>00 )
9
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1’_1[ (£Q' 71) ' n
4 r=:l 7 T Z J-r( f £ ;
1 (gh,) =1 £07
1 — lim = T
£—>00 T
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Definition 13: Let3; = (U;ezinéaf, gfezinsgf, Q;ezméé’i)
(r = 1(1)n) be a class of CT-SFNs, then the Complex
T-spherical fuzzy Frank hybrid averaging (CT-SFFHA) oper-
ator is:

CT — SFFHA (31, %, ... 3) = @ (5:850) . 29)

where 1 = (41, b2, ..., 0,)7 is the weight vector associated
n

with CT-SFFHA such that j; > Oand > 0y = 1, L =

=1

(L1, Loy oo, LT s t;lle weight vector of J; (7 = 1(1)n)

suchthat 1; > Oand > 1; = 1. f‘s,g(;) is the rth largest of

r=1
the weighted CT-SFNs &; (%, = (nl;) S, F = l(l)n) and
n is the balancing coefficient.

Theorem 15: Let 5 = (a;eQiﬂaah i e? s, Q;e2i”59i)
(Ff =1(1)n) be a class of CT-SFNs, then the result

acquired by using the CT-SFFHA operator is still

a CT-SFN, and (30), as shown at the bottom of
page 25.

Proof: We skip the proof of this result since it is analo-
gous to Theorem 3. [ ]

Example 3: Let J; = (0.4€%70-3(.5¢270-6 ().2¢270-2)
Iy = (O.6€2in0'5, 0'7621'710.87 0'8621'710.8) Iy = (0.3621‘710.2’
0.6¢2707 (.5¢2705)  pe three CT-SFNs (t=4), and 1 =
0.4,04, 0.2)T is the weight vector of J;(+ = 1, 2, 3). Sup-
pose £ = 2, then according to Definition 10, we can obtain the
weighted CT-SFNs, as shown in the equation at the bottom of
pages 26 and 27.

Based on Definition 5, we can determine the score of
S (F=1,2,3):

s (sl) —0.4807, S (st) — 02609, § (33) —0.3196.

CT — SFFWA (31, 32, ...

\/1—10g£(1+
i.

N\

=

1

7

n ' Li
, 1; 2inj 1710g£(1+l:[1 (£I—6ao 71) )
(£1—UO _ 1) )e =
n ' Li
_ " ; I 2 ! log£(1+'l:[l(£650—l) )
Nog, (1 +I1 (£50 - 1) )e = ,
=1
n 3t Ly
P TN 2in! logg(l—t-.]_[ (£ 90—1) )
\/log£ (1 + 1 (£96 - 1) )e =
=1

k]

1 1-9} 1 al 1 aL
- (Vt 1 — log, g0 2imV 1-logg £ “ Vloge £50%mVloge £750 V/loge £00 2 Vloge £ QO)

— (0062171500 , gerlnEigo , 9062171590) = .
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Since S g\&n > S %3 > S gﬁz), we have %5(1) — \96(2) = (0. 2641¢2im0-2166 0. 7478207 0.6468 0. 6743270 4301)
(0_4185621'71 3114 O.4289€2iﬂ0'53 3 0.1423821'710.1423) \95(3) = (0. 626462171'0 5230 ,0. 646462”{0 7619 ,0. 761762”10 7619).

T — SFFOWA (31, 32, ..., )

n -3t . b
n . " 2im ! 17]0g£(1+‘1_[ (£ T5(7) 71) )
\/1 — 10g£ (1 =+ H (£1—0'5(,'~) _ 1) )e r=1

=1

n 3t . b
N 2im Y logef 1+ (£ 759 —1 )
= n i J £( 11
\/10&5 (1 + 11 (£§5<f> - 1) ])e ’*1( ) . (26)

=1

b
e ))
[loge (1+ I1 (€% —1) )e =

=1

k]

T — SEFOWA (35(1), 352), 35(3)

u.
. i 2inﬂ 1_10g2(1+]_[§:1 (21—(’5@5(/-) _1) J)
C/l — 10g2 (1 —+ H’%:l (217(75(0 — 1) )e ,
] B
_ . " 2mﬂ 1og2(1+1‘[§:l (252‘-5(/) _1) /)
B C/ logy (1 +113-, (2% - 1) )e ,
P
. N\ 2T ﬂ l()g2(1_|-1‘[§=l (2535(/) _1) /)
\‘/IOgZ (1 + ngl (ZQ‘S(“ - 1) )e

4 0.3 4 0.4 4 0.3
/1 —log, (1 + (21—0‘7 - 1) (21—0-3 - 1) (21—0.6 _ 1) )
2im {4/1—]0gz (1+(21—0.64_1)0'3 (21—0,24_1)0‘4 (2170,54_1)0'3)

)

0.3 0.4 0.3
e e e P
2irm ?/log2 (14,_(20‘54_ 1)0'3 (20,44_ 1)0'4 (20,84_1)0-3)

’

0.3 0.4 03
o () 1) 1))
2im C/log2(1+(2054_1)0-3 (20‘54_1>o,4 (20‘84_1)0.3)
e

— (058616217'[04941 042366217105295 0.5790@21.7[0'5790) i

e

e

. by
1 —of )meZm / 1_;1;[ (1 065 ))
8(r) s

$
|
==
~—

2im ﬁ g
lim T — SFFOWA (31, 32, ..., 3,) = S e \/T _ -
G (1.2 ) 1 (9,,) e @7
r=
n b 21:1\/7
11 (eh) e V"
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Suppose § = (0.3, 0.4, 0.3)7 is the weight vector associated
with the CT-SFFHA operator. Then by Definition 13 and
Theorem 15, we can obtain the equation, as shown at the
bottom of pages 26 and 27.

Theorem 16: Let J; (aeri’Ts”*, cie , 0i€
(7 = 1(1)n) be a class of CT-SENs, and £ > 1. As £ — 1,
the CT-SFFHA operator approaches the limit (31), as shown
at the bottom of page 27.

Theorem 17: Let 3; = (U;e2i”5<’*, g;ezmagi, Q;e2i”8@f)
(r = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ — o0,
the CT-SFFHA operator approaches the limit (32), as shown
at the bottom of page 27.

Likewise CT-SFFWA operator, the CT-SFFHA operator
also adheres the boundedness, monotonicity and idempo-
tency, shift-invariance, and homogeneity properties. Besides
the aforesaid characteristics, the CT-SFFHA operator has the
following particular cases.

Corollary 1: CT-SFFWA operator is a particular case of
the CT-SFFHA operator.

2ms; | g;6%7 e

1 1\?
Proof: Letu_(n n,...,z) , then
CT — SFFHA (31, 32, ..., 30)

= u1§98(1) @ Ez‘fm(z) D...0H Enffsm)

1 /4 A N
= - (55(1) DJs2)® ... D 35(,,))
1151 @ L3 @... 8 1,3,
= CT — SFFWA (31,32, ...,3,) .

|
Corollary 2: T-SFFOWA operator is a particular case of

11 1\?
Proof: Let L= (4. 4,.... ) . then
CT — SFFHA (31, S, . ..
= ﬂl‘f‘su) @ ﬂzgsa) D...0 En§3(;z)
= 11381 B 12352 @ - - - B UuSs(m)
=T —SFFOWA (31,32, ...,3,) .

» )

B. CT-SF FRANK GEOMETRIC AGGREGATION OPERATORS
Based on devised Frank operations, this section provides a
set of Complex T-spherical fuzzy Frank geometric aggre-
gation operators. We will go through the CT-SFFWG,
CT-SFFOWG, and T-SFFHWG, as well as the basic defi-
nitions, remarks, and results, corollary for these operators,
which are formed on the Frank t-norm and t-conorm.

Definition 14: Let J; = (0;62"”5“?, gjeZinagf, oie
(F = 1(I)n) be a class of CT-SFNs, then the Com-
plex T-spherical fuzzy Frank weighted geometric operator
(CT-SFFWQG) is:

CT — SFFWG (31, 32, ...

Zinﬁgi)

®f_ (3. (33)

’Sn):

where L = (Lg, J_z,...,J_,,)T is the weight vector of
3 (7 = 1(1)n) such that J_;T> O0and >7_, L; = 1. Espe-
cially if L = ; :l, e, % , then the CT-SFFWG operator

reduces to the Complex T-spherical fuzzy Frank geometric
(CT-SFFG) operator of dimension n, which is defined as
given below:

1
the CT-SFFHA operator. CT — SFFA (31,32, ..., 30) = QF_; (Ji)n . (34)
¢ 2 (Z e (6”& >))
1 (z Wi (O‘(S(r)))e F=1 F ,
=1
li A (3, S 3,) = ! gl ‘7(2 Wi(ﬁl’é )) 28
££}an —SFFOWA (31,32, .-, 3n) = | 41 _ (Zl i (ﬂﬁ(r)))e =1 Q) ’ (28)
=
n 2im 1—(%: ””’(5950)))
11— (Z wi (QS(r)))e =
=1
n 1-at T
2im '| 1-logg 1+H(£ ”B(i)—l)
n 1—6L . B =1
1~ log, 1+H(£ am—l) e :
=1
n o, b
2imr | logg | 1 £ 980 —1
CT — SFFHA (31, 32, ..., 3) = o N "g*( *E( ) ) . (30)
Moge {1+ 1 (£ 3G — ) e ,
=1
n A 5
- . 2im | logg <1+]_[(£ 95(”—1) )
At 7 =1
\/log£ (1 + 11 (£95(i-) - 1) )e

=1
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Theorem 18: Let J;

_ (GieZinéa,:’ L

(7 =1(I)n) be a class of CT-SFNs, then the result
still
bottom of

acquired by using the
a CT-SFN, and (35),
page 28.

CT-SFFWG operator is
as shown at the

Proof: We verify it using mathematical induction

on n.

2in59;)

For n = 2, we get the equation, as shown at the bottom of
pages 28 and 29. Thus, the result holds for n = 2.

If Eq. (35) holds for n = k, then for n = k + 1, we get the
equation, as shown at the bottom of pages 30-32.

Thus, result holds for n = k+1, and hence, by the principle
of mathematical induction, the result disclosed in Eq. (35)
holds for all positive integer 7. [ ]

3x0.4
21-0.34 _;

¢ 1—10g2(1+(

(2_1)3><0.4—I

3x0.4 ST

21-0.4% _4

|

)

2im 4 1-log, (1+
)e

3x0.4
20.64 —1

31=3X0.4X;~91

“og, (1 + (

3%0.4 “aR0AT

)

20.54 _ 1)

(2_1>3 x0.4—1

2ir 4 log, (1+
)e

3x0.4
2024

¢ log2(1 + (

(0 418562,[]10.3114 0 428962[710.5363 0 142362,[710.1423) .

304 4= oa—1

20241

|

3x0.4

(271)3x0,4—]

2ir 4 log, (
)

21-0.54 _;

(2_1)3><0.4—I

¢ 1—10g2(1+(

3%0.4 T nI0AT

|

21—()‘64_1)

)

2ir Y 1-log, (1+
)e

3x0.4
20.84 —1

‘| log, (1 + (

3x0.4 4= a=0a-T

20.74 -1

)

(2_1)3 x0.4—1

2ir 4 logz(
)

3x0.4
2084

¢ 10g2(1 + (

(0 6264@2”[0'5230 0 6464eziﬂ0.7619 0 761762iﬂ0.7619) .

304 4= =oaT

|

3x0.2

2084 g

2ir 4 log, (
)

(2_1)3x0.4—]

21-0.24 _;

¢ 1—10g2(1+(

Tam)eaT

3x02 30T

21-03% _3

2ir Y 1-log, (1+ )
)e ’

3x0.2
2074y

J3=3x02x3J3

‘| log, (1 + (

302 4= a=0a-1

20.64 -1

)

(2—1x0a-T

2ir 4 logz(
)

3x0.2
2054y

*log, (1 +

T (=1)3x04-T

|

(20_54_1)%0‘2

(2_1)3x0.4—]

2ir 4 log, (1+
)g

= (0.264162702166, 0.7478¢HTOS 674302704301 )
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CT——SFFHA(%aU,ﬁam,

‘33(3)) =

1-4 %
2im 4 1-log, 1+ﬂ§=1(2 05@,1)
4 3 164 b
1 —log, {1+ T2 (2 50)—1) e ,
))

)

54

2im 4 log, 1+H2=1(2 55(i)7]
4 3 &b b
logy 1 +1T;-, (2 0 — 1) e
ot 5
2irr 4| log, 1+n§=1(2 Qa(n,l)
4 3 03 b
togy (1413, (2% — 1) )e

0.3 0.4 0.3
41~ log, (1 4 (21—0.41854 _ 1) (21—0.26414 _ 1) (21—0.62644 _ 1) )
03 0.4 03
2iﬂ€/1—10g2(1+ 21-031144 _ 21-0.21664 _| 21-0.52304 _| )
e (ot rometor) (uasant)

)

4 0.3 4 0.4 4 0.3
Ylog, (1 i (20.4289 _ 1) (20.7478 _ 1) (2046464 _ 1) )
2in C/logz (1_‘_(20‘53634_1)0‘3 (2064684_1)0'4 (2076194_1)0'3)

)

0.3 0.4 0.3
Ylog, (1 4 (20.14234 _ 1) (20.67434 _ 1) (20.76174 _ 1) )
Qi C/10g2(1+(2m4234_1)0‘3 (2043014_1)0‘4 (2()‘76194_1)0‘3)

e

e

— (04926@2"[04023 060896217106432 04428@2”{03694) k

Example 4 (Continued from Example 1): According
Definition 14 and Theorem 18, we have the equation, as

shown at the middle of page 33.

to Theorem 19: Let J; = (o;eZi”aaf', e s, Q;eZi”agi)
(7 = 1(1)n) be a class of CT-SENs, and £ > 1. As£ —

1, the CT-SFFWG operator approaches the following

i
n by 20t /1— (1’5% )
1= (1=di) e V2t 0
=1
n 07
2ir ]| oL
lim CT — SFFHA (31,32, ...,3,) = B\ ;=(%m) 31
Jim (31,32, -, Sn) n (&) e Vi , (31)
r=
o
R 2irr | 11 (6’%(,))
1 H (Qﬁ(r)) e =1
=1
G )
1] (z 3 (6‘8(r)))€ i=1 () i
=1
lim CT — SFFHA (31, 3 3,) = 2 ”“k(wﬁmﬁ) 32)
£inoo I3, ™) =| 1= (z] 0 B(r)))e =1 7
r=
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limit

£lim1 CT — SFFWG (31, 32, ..

> )
n 2171‘]_[ 55,
H Vizty 7

r=1

" B 2mt171ﬂ1(1761§i)“
) Jl fa-spe Vot

2i r1-1‘[ -,
I_in)l-;e . = 1( )

:]:

7 —

r=1

n

t Li
Proof: As £ — 1, then (] (£"% —1) ,
n 1 ‘ 1; n 1—o! 1;
H(f.‘?f—l) ,H(£‘9f—l) ) — {0,0,0) by
=1 =1
lrog property a1r1d the rule of infinitesimal

changes, we get the equation, as shown at the bottom of
page 33.

According to Taylor’s expansion formula, we get

r=1

(36)

'3

2
est _ ((6))In£) N

1+ (of)In€+ 5

el—o! _ ((1 -G )1n£) n

1+ (1 2T

— gﬁ) Inf£ +

CT — SFFWG (31,32, ...,30) =

n
\/10g£ (1 + ] &7 —
=1

Sy leae))

n
\/1 — log, (1 + I1
=1

(35)

n > Li
_ 2mj 1—10g£(1+ Il (£"3'§; _1) )
(£1—§5 — 1) r)e = ,

n
\/1 — log; (1 + [
=1

n " 1;
In ZiHj l—log£(l+H (£1‘%_1) )
(e 1) r)e =

88998

CT — SFFWG (31, 32) = 31" ® 332

R o
\
|
T =
) |
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I
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€
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)

1+ -1

1 1
. t_) 1 (ﬁ‘—é’ﬁ_]) 2
A — .} P G
= + 2T

l)

@ nli-T @21
2im ' loge | 1+ =
e K
3 11 3 12
(ﬁlf%sgli1 (£1—6§271
i1 i1
.t
2im *| 1-loge | 1+ pom
e
t 11 t L2
(£1—6QI _] (£1—692 »
1
E—nIi-T i1
P
2im *| 1-loge | 1+ Fom
e

\/log£ (1 + ((£”1' - 1)L1) ((ﬁffﬁ - 1)“))62%log£(l+((ﬁ1 _l)l])((ﬁ%_l)q))’

\/1 — logg (1 + ((£‘—§f - 1)L1) ((£1—§£ - 1)“))2% 1_10g£(1+((£'—5’g. _1)“)((5—6@2_1)”))’

\/1 — log; (1 + ((£‘—9’| - 1)L‘) ((£‘—9’z - 1)L2))ezmj 1_10g£(1+((£'-521 _l)ll)«ﬁ_%z_l)g))

t

2
g% — 1 4+ w

2!

Also, since £ > 1, thenIn£ > 0, £ =1 + (a;) Inf +
O(ng),£°% =1+ (1 —¢))In£+0(Ing), £°% =14
(1 -—0!)Inf£+ O (n¥).

As a result

(1—0})Inf+

n

(£<r,f - 1)” — ((of) ln£)li
NG 1)” — ﬁ (o)™ f[ (In€)*
=1 =1

- =1
[T 1)

=1

n S J_r
— [ ()" =
=1
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In£
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n . r n 1.
£9F —1 ; t 7

fl;ll( ) e ;1;11 (50;)

eZzﬂT—w ,
L.
n 1-ot r n 1.
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2im = —e =l
e Inf s
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n( 15l r n 1
11 (£ 0 — 1) 2in [] (1—8’%) 4
621'717’=] E —e =1

Then, we have the equation, as shown at the bottom of
page 34, which completes the proof. ]

Theorem 20: Let J; = (a;ezinaah cje2mOc; Q;eZinaé’f)
(7 = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ — o0,

the CT-SFFWG operator approaches the following limit
lim CT — SFFWG (31,32, ..., 3,)

£—00
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<
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=
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Proof: Based on Theorem 18, we get the equation, as
shown at the bottom of page 35.

Using limit rules, logarithmic transform, and
L’Hospital’s rule, it results, as shown in the equation
at pages 36 and 37, which completes the proof of
Theorem 20. |

Theorem 21 (Idempotency): Let 3 (o;ezi” ot
cie¥m0si 0,.e?™ %) = 1(1)n) be a class of CT-SFNGs,
if 3 =39 V 7, then

CT — SFFWG (31,32, - .. (38)

s Sn) = S0~

Proof:  Since for all 7 3; S0 = (0pe ™0

. . n
goe2’”5§0,goezmaé’0), and > L1; = 1 so by Theorem 18,

=1
we get the equation, as shown at the bottom of page 38.

Thus, the proof is completed. [ |

89002

Theorem 22 (Monotonicity): Let (0% 007,
;€2 0si 0.e? %) = 1(1)n) and $j (67€27 051,
&m0 91?7001 ) (i = 1(1)n) be two families of CT-SFN's
such that o7 > 6}, ¢ < &7, 0r = Qrs 80; = 657;’657 =

O¢,and g < 0y, V 7, then

xX.
3

CT — SFFWG (31,32, ..., 3n)
> CT — SFFWG (31, %2, . ..

&
s «311) .

Proof: Based on Definition 14, when o} > 6}, ¢ < ¢,
0i < 07, 0g; > 0g;,0¢; < 0g, and g7 < 0p; V F, then

, log£(1 +1;[1 (e - 1)”)
< 10g£(1+H( I 1)”)

r=1

(39)
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Thus, S(CT — SFFWG(31, 32, ...

SFFWG(S1, Sa, ..., S0).

) = S(CT

Hence, CT — SFFWG (31,%2,...,3,) = CT —
SFFWG (31,32, ..., Sn) - |
Theorem 23 (Boundedness): Let J; =  (ojeX™ 007,

cje2mOc; Q;ezma@i)(i = 1(1)n) be a class of CT-SFNs, and

let
_ . min oj max Gj max Qj
ST = min oje'="=" | max c¢je'='=" | max gje'='=" |,
1<r<n 1<r<n 1<r<n
oF max oj min ¢; min o;
3 max oje's"=" | min ¢pe'="=" | min pgje!="=" |,
1<i<n 1<r<n 1<r<n
then
X~ < CT — SFFWG (31,32, ...,3,) <3+, (40)
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£—1

s Sn)

n
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1
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=1
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min Oy,
Proof: Since for all 7, min oje!si=n T < el <
1<r<n

max O, . min 51;; 5
max oje!si=n min ¥;e'=i=" < e <
1<i<n 1<r<n

max Oy ;. min Oy, 5
max Oje!si=n and min pje'="=" < pje e <
1<i<n 1<i<n

X Op;
max oj e1<’<" “, thereby on the basis of idempotency and

1<r<n
monotonicity, we get

3™ < CT — SFFWG (31,32, ..., 3,) < 3T, ]

Theorem 24 (Shift-Invariance): Let 3; = (07e2™ S
S ez”’ﬁgr 07¢*7%;i)(7 = 1(1)n) be a class of CT-SFNs and

= (G051, 20 peim Sé’r) be any other CT-SFN,

\S =

then

CT — SFFWG (3193, 385, ...
= CT — SFFWG (31, 32, ...

3 ®9)

) ® 3. (41)
Theorem 25 (Homogeneity): Let I = (oeri” ot
61?7057 ;€702 (7 = 1(1)n) be a class of CT-SFNs and
1 > 0 be any real number, then

CT — SFFWG (131, 132, ..., 13n)
= {CT — SFFWG (31, 32, ..., 3p) . (42)

To save space, the proof of the aforesaid two theo-
rems can be simply deduced from the suggested Frank
operational rules of CT-SFNs; consequently, it is skipped
here.

Definition 15: Let3; = (U;ezma(”', cje2mOc; Q;ezma@%)
(7 =1(1)n) be a class of CT-SFNs, then the Com-
plex T-spherical fuzzy Frank ordered weighted geometric
(CT-SFFOWG) operator is:

CT = SFFOWG (31,32, ... ) = &, (35;5)) . (43)

is the position weights of
n
> 0 and > 0y = L

=1

(1, 2y e )T
37 (7 = 1(1)n) such that f;

where | =

6(1),68(2),...,d8(n))isapermutationof (1,2, 3, ..., n)such
that J5—1) > NS(;(/) for 7 = 1(1)n. -
Theorem 26: Let 3y = (07¢*7%7, ¢; e2im0¢; Q;,ezznagr')

(r =1(1)n) be a class of CT-SFNs, then the result
acquired by using the CT-SFFOWG operator is still

a CT-SFN, and (45), as shown at the bottom of
page 38.

Proof: We omit the evidence of this result since it is
identical to that of Theorem 18. [ ]

Example 5 (Continued From Example 2): Based on
Definition 15 and Theorem 26, we can determine, as shown
in the equation at the top of page 39.

Theorem 27: Let 3; = (o7€27007 g;ezmagi, Q;€2m89i)
(7 = 1(1)n) be a class of CT-SFNs, and £ > 1. As£ — 1,
the CT-SFFOWG operator approaches the limit (46), as
shown at page 39.

Theorem 28: Let 8; = (07€*7904, ¢;e270s; | ;%7 00;)
(f = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ —> o0,
the CT-SFFOWG operator approaches the limit (47), as
shown at page 39.

Likewise CT-SFFWG operator, the CT-SFFOWG oper-
ator also adheres the boundedness, monotonicity and
idempotency, shift-invariance, and homogeneity properties.
Besides the aforesaid properties, the CT-SFFOWG operator
has the following noteworthy results.

Theorem 29: Let Jj = (077007 c;?m0s; Q;«€2in6@f)

(7 = 1(1)n) be a class of CT-SENs, then we have the
following:

i).Ifh = (1,0,...,0)7 then CT — SFFOWG(31, a2, ...,
J) = max{3Jy, Jo, ..., I}

ii). If § = (0,0, ..., DT then CT — SFFOWG(31, s, . . .,
J) = min{3q, Jo, ..., I}

ii). If g = 1l and L; = O0( # 7) then CT —
SFFOWG(31, 32, ...,3,) = 35(,) where %3(,:) is the rth

largest of J;, (7 = 1(1)n).

According to the definition of CT-SFFWG and
CT-SFFOWG operators, we can notice that the CT-SFFWG
operator can weights only the SFNs while CT-SFFOWG
operator weights only the ordered position of SFNs.

lim CT — SFFWG (31,32, ..., 3,)

£—>00

n Li
" . 2in£lim jlog£(1+n (£afri—1) )
lim \/log£ (l + I (£"% - l) )e = ,
£—o00 =1

£— 00 =1

n t 1;
,, TN 27 lim jl—logg(l_;,_n (£1_6g;_1) )
= lim \/1 — loge (l + I1 (£1—§,~{ _ 1) r)e £500 =1 ’
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n Li
1 ; 2in£lim jl logt(l—Q—H( 0 — 1) )
lim \/1—10g£( 1‘[(£1 o ) )e =
£— 00 =1
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In real-world practical situations, we should analyse both
factors simultaneously. Thereby, to address this issue, we sate
the hybrid geometric operator based on Frank t-norm and
t-conorm, which weight both the given CT-SFNs and their
ordered positions.

Definition 16: LetJ; = (Ufezinaaf, cje2mOc; Qfe2i”89i~)
(r = 1(1)n) be a class of CT-SFNs, then the Complex
T-spherical fuzzy Frank hybrid geometric (CT-SFFHG)
operator is:

~ 53
CT — SFFHG (31, %, ..., 3n) = ®!_, (35(;)) . (44)

where § =
ciated with CT-SFFHG so that f;

(81, uz,...,n,,)T is the weight vector asso-
n
> 0and > f; =
=1
,J_n)T is the weight vector of
n
0 and > 1; = 1.
=1
Ssy is the ith greatest of the weighted CT-SFNs
§; gﬁr = &), = l(l)n) and n is the balancing
coefficient.

Theorem 30: Let J; = (ofezmm", cje2mOc; | Qfezmégf)
(r = 1(1)n) be a class of CT-SFNs, then the result acquired
by utilizing the CT-SFFHG operator is still a CT-SFN, and
(48), as shown at the bottom of page 40.

Proof: We omit the verification of this result since it is
identical to that of Theorem 18. ]

L, L = (L, do,...
S: (F=1(n) so that L; >

VOLUME 11, 2023

Example 6 (Continued From Example 3): Based on
Definition 10, we can determine the weighted CT-SFNs, as
shown in the equation at the bottom of page 40.

According to Definition 5, we can get the score of
$G=1,2,3):

s (“sl) —0.4455, S (st) —0.1038, S (%3) —0.3972.

Since S (31) > § (333) > § gfvz) we have §€5(1) =
(0.3275€2iﬂ0'2317, 0.522762#[0.62 0’ 0'2093621'71042166),
%5(2) — (0.5012€2iﬂ0'1423,0.5307€2in0'7292,0.441062iﬂ0'5230),
§8(3) — (0'5353621'710.4301 , O.7290€2iﬂ0'8293, 0.8292€2in0‘8293).
Suppose § = (0.3, 0.4, 0.3)7 is the weight vector associated
with the CT-SFFHG operator. Then according to Definition
16 and Theorem 30, we can determine, as shown in the
equation at page 41.

Theorem 31: Let 8; = (07€*7904, ¢;e270s; | ;%7 00;)
(F =1(1)n) be a class of CT-SFNs, and £ > 1.
As £ —> 1, the CT-SFFHG operator approaches the limit
(49), as shown at the bottom of page 41.

Theorem 32: Let I = (o7e™00i, g;ezméﬁe
Q;eZi”Ej@f) (r =1(1)n) be a class of CT-SFNs, and
£ > 1. As £ — o0, the CT-SFFHG operator
approaches the limit (50), as shown at the bottom of
page 42.

Similar to the CT-SFFWG operator, the CT-SFFHG
operator also adheres the boundedness, idempotency and

2im
s

89007
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monotonicity, shift-invariance, and homogeneity properties.
Besides the aforementioned properties, the CT-SFFHG oper-
ator has the following particular cases.

Corollary 3: CT-SFFWG operator is a particular case of
the CT-SFFHG operator.

1 i\’
Proof: Lets = (%, %..... )", then
CT — SFFHG (Esl, I, .., Nsn)
= ~‘5(1) ® 50 ® - .- ® Iy

= (35(1) ® ‘33(2) ®...0 Ts(s(n)) "

~l €L €
_«511®322® ®c\n

= CT — SFFWG (31,32, ..., 3n) -

|
Corollary 4: CT-SFFOWG operator is a particular case of
the CT-SFFHG operator.

1 1 1 T
Proof Let L= (1, 1,..., 1) then
CT — SFFHG (31, %, ..., 3»)

&b &b

_ NEZ
= Ss1) @ Vs @ -+ @ S5

. ol
= J51) ® V5 ® - By
= CT — SFFOWG (31,32, ..., 3n) .

V. MCGDM APPROACH

A. ENUMERATE

Let © = {Ol;, Ol, ..., Ol,} be a collection of m alterna-
tives, C = {Cry,Cra, ..., Cr,} be a collection of n criteria,
and 2 = (%1, D, ..., 2} be the panel of | DEs which
are authorized to evaluate the requirements of MCGDM
problems, including the determination of the criteria and
their weight, and the evaluation of the performance of the

alternatives. Each DE %, is assigned a weight kx(x =
1

1(1)]) satisfying D" ky = 1 to reflect his/her importance
=1

in the decision f)rocess. Our goal is to opt the optimal

alternative from the set of m feasible alternatives regarding
n criteria.

B. ALGORITHM
The step-wise mechanism of the framed approach is detailed
as follows:

CT — SFFWG (31, 32, ..., 3n)

=1

n L. 2iﬂj10g£(
\/10&E (1 + 11 (£<’o - 1) )e

n 5l Li
1+ 1 (£ 0 —1)
=1

. n i 2mj 1 logi(lJr ﬁ
| J1- 1og£ 1‘[ £‘ % — 1 )
=1

n 1, Zznjl log£ 1+H T _ 1 )
1 - 1og£ 1+H(£1 % 1) )
r=1

\/ ! 1-oat,
:( log, £ ‘7062”7 10g£ —logg £ £l= §062mm —log, £ £l= 9062171 1—logg £ QO)

_ (Go 20y | 020 o0 e2m6@0) = Y.

CT — SFFOWG (31,32, ..., )

n r 3
, " 0 0 2inj 10g£(1-+-i];[l (£5oa(i~) —1) )
o (1 (£ 1))

)

n 1 0y
~ 2in! l—log£(1+ I (£1*555(i-) _1) )
= n b7 1l
= \/1 — logg (1 + 11 (£1—§£(f) — 1) )e F=1 e (45)
r=1

89008

n _ ﬂi
, , N 2! 1_1og£(1+n (£1 s’gm)_]) )
\/1 — loge (1 + 11 (£1—9w) - 1) ’)e =
=1
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Step 1: Creation of individual evaluation matrices:

Each DE on the panel thoroughly examines the
MCGDM problem and specifies the evaluation

criteria for each alternative. Each DE evaluates
the proficiencies and capabilities of alternatives in
relation to particular criteria and assigns them lin-

CT — SFFOWG (351, S52)» Ss(3))

by
4 b 2"”ﬂ 10g2(1+H3=1(2335<r'>71) )
C/Ing (1 + 13, (2"6(?) _ 1) )e
I
3 1_ct 0 2inﬂ 1710g2(1+]—[g=1(21—325(;)71) )
1 —log, (1 + [ (2 —Ss(i) — 1) )e |

’

I
&

%
1—o% B 2inﬂ 1_1°g2(1+]_[2:1(21_5‘55(*)—1) )
41 —log, (1 + H?:l (2 —Os6) — 1) )e

03 04 03
\‘/logz (1 + (20474 _ 1) (20.34 _ 1) (20.64 _ 1) )
2im C/log2 (1+ (20.64_1)0'3 (2()‘24_ 1)0‘4 (2()‘54_ 1)0'3)
e

3

4 0.3 4 0.4 4 0.3
e )
2im \A/l—log2 (14_(2170,54_1)0'3 (2170,44_ 1)0-4 (217084_ 1)0.3)
e

3

4 0.3 4 0.4 4 0.3
1 —log, (1 + (21—0.5 — 1) (21—0.5 —_ 1) (21—0‘8 _ 1) )
2im \‘/1—10g2(1-{-(21—0.54_1)0’3 (2170454_1)0‘4 (21—0.84_1)0‘3)
e

= (047856203654, 0.54422MOSI 650920659

s

r=1
i ~ ~ N n B 2im | 1*‘ﬁ (1732‘5(;))” 46
£1_n)11 CT — SFFOWG (31,32, ...,3,) = \/1 _ .1:[1 (1 _gg(i)) e =1 NE 46)

£—>00

lim CT — SFFOWG (31, 32, ..., 3,) = ,(" ( (47)

VOLUME 11, 2023
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\
Il
-

P " 2inj
\/logﬁ (1 + 11 (£”§<i> - 1) r)e

n A 5
loge [ 1+ 1‘[(£ 85(7) _1)
=1

’

-1 )3 x0.4—1

e
,8 r
~ 2imr '] 1-logg 1+H $8(7) 1
CT — SFFHG (3.3, ... ) = \/] tog (1+ f (-5 l)uf J (48)
- £ - 9
=1
o
" tl' 2im | 1— log£(1+H 950)_1) )
11 _ =05 _ 1)
1 —loge {1+ J] (£ % —1
=1
2024 1)zxo4
2044 3X04 2ir 4 log, 1+ SaoR0AT
4
log, | 1+ (2 1)3x04| )
» (21 ot )04
1-1 I+
S =9 = 4 (2105 3”’4 oe2| I (2—1>3x0-4—1
1 —log, (2 1)3><04 T ,
3x0.4
1-0.24 _
Teoa~ 2ir ¥ 1-log, 1+(221%
4 (2I—0.247]) @2-1
1 - 10g2 1 + (271)3><0.471 e
— (0.3275€2iﬂ0'23]7, 0.5227€2iﬂ0'6260, 0'2093621'710.2166) :
(20_54_1)3x04
4
4
logo | 1+ Q- 0AT e ,
3%0.4
217034,1)
, (
§p = 3704 = (ror )\ 1‘1°g2(1+ ST )
41— 10g2(1 + o)A )e )
3%04
1-0.84 _
3x0a~ 2im | 1-log, 1+(22137><(12—1
. (21—0.84_1) @-1
1 —log,| 1 + 2—nPoT e
— (0.5353@2iﬂ0'4301 , 0.7290621.”0'8293 , 0.8292@2”{0'8293
2024 l)zxoz
2034 3><02 2im 4| log, H‘ “aopR0AT
4
log, 1+ = 1)3x041 )
(21 074 )’%XOAZ
41-10 I+
\93 _ r\ngOZ — \ 21 _o6t 3><02 g2 2=13x04-T
I —log,{ 1+ (2 1)3><04 T ,
3%02
1-0.54
oo < 2im Y 1-log, 1+%
2|—0.54,])‘ : ) (2—1)3%0.
e

¢ 1—10g2(1+(

(0.5012€2in0'1423 0.53O7€2iﬂ0'7292 0'4410621'710.5230) )
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guistic terms based on his judgment. The CT-SFNs
that correspond to linguistic terms assigned by the
xth DE 2, are placed in a complex T—spherical
fuzzy decision matrix (CT-SFDM) M

3 lr )mxn In a similar manner, [ DEs form !
individual CT-SFDM M} M2 ,M!

mxn>mxn’ mxn?
shown in the equatlon at page 42, Where X

I(1)l. Each entry 3 of CT-SFDM of DE 2,

m><n

The reaction of these two criteria is opposite;
the bigger the value, the better the performance
of the benefit criteria and the poorer the perfor-
mance of the cost criteria. To verify that all criteria
are compatible, we build the normalized CT-SFDM
M,(,fin = (ggf))mxn according to Formula (51) to
convert cost criteria to benefit criteria, where 2, is

a collection of benefit criteria and 2. is a series of

has the form 3( 0 _ ( Mf;c)’ s_l(;r)’ l(;c)) _ cost criteria. . - .
0,279, @ x5 @) irs,Y : or&ri € 22
(Mx 27O , gi;f 27 9¢; , Ui: 27 O0vj; ) . Ns(x) zr (51)
Step 2: Normalization: " )
. oo (“s ) for Cr; € Q.
In this step, the individual CT-SFDMs must be trans- i) r ©
formed pursuant to certain benefit and cost criteria.
P where ( (f)) represents the complement of “(x).
CT — SFFHG (55(1), X502, ;%5(3))
R L
o 0 2im i10g2(1+ng=1(2‘7§m1) )
\‘/logz (1 +113., (2"50’) - 1) )e ,
.4 3 1—54. o
- . i 2i % 1-log, 1+]_[;:1(2 5“)71)
- 4 1 10g2 1 + Hle (2175‘6(;) — 1) )e )
R b
" " 2inﬂ 1—log2(1+1‘[§:1(2]‘9§<f>_1) )
C/l 1+H (1 Qa<f~>—1) )e
Yoe, [ 1 032754 _ 1\ (2050124 _ 1\ (053534 _ )"
e (1+ (2 1) (2 1) (2 1
2in C/logz (1+(20.23174,1)0‘3 (20,|4234,1)0'4 (20,43014,1)0'3)
e b
A 4 0.3 4 0.4 4 0.3
1—log, 1+ (21—0.5227 _ 1) (21—0.5307 _ 1) (21—0.7290 _ 1)
2in {4/1—10g2 (1+(21—O462604_1)0'3 (2170472924_1)0'4 (21—0482934_1)0'3)
e b
A 4 0.3 4 0.4 4 03
1—1log, (1+ (21—0.2093 _ 1) (21—0.4410 _ 1) (21—0.8292 _ 1)
2in C/l_logz(1_;'_(2170‘21664_1)0'3 (217052304_1)0'4 (217032934_1)0'3)
e
_ (O.4506e2i”0‘2317 0.61522i70.7464 0.6516621'710.6632).
noa O\ Zi”\/_li (‘A’g(r’))%
111 (GS(i)) e ' ’
=1
lim CT — SFFHG (31, %, ..., " 5 2111 (1) 49
P (15 52,05 3n) = \/1 - Hl (1 S‘a(r)) e = , (49)
n hr
n e 211 (100
\/1 “H(1-g) e VT
=1
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Step 3: Determination of z:
Determine the smallest ¢ for which each

t
fies the condition 0 < (ﬁff )) + (

102 (80) + (30) + (350) = 1.

~(x)
Sii-

5(.);) satis-

t 1
)+ (1) <

Step 4: Creation of aggregated evaluation matrix:
Aggregate the normalized CT-SFDM M,(;C in(x
1(1)]) into collective decision matrix men
(;\:si;)mxn using CT-SFFWA operator (52), as shown
at the bottom of the page.

. &, X ~ ~ 2im | (Z Wi (0l§(f)))
Jlim CT = SFFHG (31, %, .3 = | (Z wi (34,))e VA , (50)
=1
n o 2im | (;} Wi (@fs(;)))
T\ 2 wr (Qa(f)) € -
=1
Cr1 Crf Crn
(X)) (X)) (x) (X)) (X)) +(x) (X)) (X)) w(x)
oh (“11’§11’”11) (“u’glw”li) ('u’ln’gln’vln)
(x) ‘ .. (x) .(x) - (x) . (x) ...(x) . (x) . (x) ..(.x) «(x)
Mypsn = Ol (M,-l » 041 Vit ) (/’“ii » Sii > Vi ) ('““in » Sin > Vin ) ’
b, \(iz. &5 53 (it &5 557) (it &0, 553
Si = cr - sFEwA (S), 530, ... 5))
- Lfe-ot® ™
/ o e 2im | 1-loge{ 1+ [1 (£ G ii 71)
11 — loge (1 + 11 (£1*"zr' - 1) )e = ,
x=1
_ i = K im '| logg +‘ e S —
- \/]og£ (1 + 11 (£§i(i‘)l - 1) )e = , (52)
x=1
L ® O\
l o o\ 2T ! log£(1+H(£ Oif —l) )
log (1 + 1 (£gi" - 1) )e =
x=1
L; = CT — SFFWA (Lg“, 12 ﬂi’))
o Lofa—at® \<
/ o ke 2im ' 1-logel 1+ [] (£ oF —1)
11 — log, (1+ I1 (£1—“f- —1) )e = :
x=1
2im /| loge( 1 ﬁ £5t§(‘n 1 X
_ I ) P i *| logg +’7 ro—
\/log£ (l + I1 (£§f L 1) )e = , ’ (53)
x=1

L™

89012

!
I . K 2inj log£(1+ I1 (
\/10g£ (l + 1 (£Qf= " 1) )e =
x=1

£ Qi —1
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Step 5: Assigning criteria weights:
In an MCGDM problem, the criteria chosen by
DEs may not be of equal value and impor-
tance. The panel of DEs evaluates the weight
of criteria by giving linguistic terms to the cri-
teria in accordance with their importance in the

MCGDM problem. Let 3¢ = (it”, &, i)‘(x)) =

B
be the

CT-SEN assigned to the criteria Cr; by the expert
9y. The CT-SFNs assigned to linguistic terms by
DEs are gathered to yield the CT-SF weight vector
weight vector L. = (L, Lo,..., J_n)T of criteria
(53), as shown at the bottom of previous page, where
r=1,2,...,n.

Step 6: Determination of weighted decision matrix:
Determine the weighted CT-SFDM (WCT-SFDM)
by making usage of aggregated decision matrix
]l71mxn = (gif)mxn and the weight vector L =
(Lq, 1o, ..., J_,,)T of criteria. The entries of WCT-
SFDM men = (fsi;)mxn can be ascertained by
(54), as shown at the bottom of the next page.

Step 7: Determination of aggregated values:

a). According to the WCT-SFDM, the aggregated val-
ues :fsi(i = 1(1)m) are computed using CT-SFFA
operator (55), as shown at the bottom of the next

™) 273, ) 275 @ ors,®
(I’Li e 133 ’5"; e S ,vi e Vi

page.
b). According to the WCT-SFDM, the aggregated val-
ues Sz — O'.ie2i715(‘,,-, §1€2m6§"} Q,-ezma@i (l _

1(1)m) are computed using CT-SFFG operator (56),
as shown at the bottom of the next page.

Step 8: Evaluation of score values:
Find the score value of the aggregated CT-SFNs
gi — (d,l,EZirra',i’ §1€2in6§i, éieZinﬁéi

(i = 1(1)m) based on the following equation:

S () =% : (2+(;1’ — ¢l =) + (52 -0 - 6325)7')

Step 9: Ranking of alternatives:
After calculating the score values, the alternatives
are ranked in descending score value order. The
option with the greatest score represents the optimal
solution for the MCGDM problem.
The graphical representation of the established MCGDM
approach is depicted in Fig. 1.

VI. AN ILLUSTRATIVE EXAMPLE

In this section, we outline an MCGDM problem, namely ‘‘the
selection of best strategy for water supply to Nohoor village
in Iran” (taken from [55]), and solve it by employing the
established approach in order to demonstrate the practical
application of the proposed method.

VOLUME 11, 2023

A. BACKGROUND DESCRIPTION

Nohoor village is located in north-eastern Iran, in Khaf
county, on the border between Khaf city and Qaen city,
and shares a border with Afghanistan. The villagers of
Nohoor make their living through animal rearing and con-
tribute significantly to the province of Khorasan Razavi’s
dairy and meat requirements. Due to a shortage of water
and a scorching climate, the fertile grounds of the town
of Nohoor are unable to support animal husbandry. In the
spring, the peasants migrate to higher ground for grazing,
when plants and grass flourish thanks to the rain. His-
torically, Nohoor spring, located to the south of Nohoor
village, was the only supply of water for the community.
Currently, the Nohoor spring is drying because of the hot
weather, lack of precipitation, and high rate of evaporation.
The villagers of Nohoor village require water for drinking,
agriculture, and livestock rearing. Due to the climate of the
area, digging wells and constructing dams are ineffective
solutions. This study aims to determine the optimal tech-
nique for supplying Nohoor hamlet with water from neigh-
boring villages via subterranean pipelines. The following
strategies are considered as alternatives for addressing this
MCGDM issue:

Ol In this strategy, water is transferred from subterranean
supplies near the village of Chahpayab using pipes
rather than water tankers. The primary characteristics
of this technique are the slope of the terrain toward
the settlement of Nohoor, the low pumping cost, the
water pressure, and the relatively low likelihood of pipe
damage. In contrast, the transmission distance for this
technique is quite extensive, and any pipe failure may
increase the risk of flooding.

Ol,: This technique employs an expansion of a previously
built system to feed Nohoor village with water from
subterranean water resources near Mazhnabad village
via pipelines from the distribution network of Chah-
zool village. Both Chahzool and Nooor villages may
see a reduction in water pressure as a result of the
addition of the pipeline to the prior system. The most
significant restriction of this technique is the slope and
steepness of the terrain, which may result in supply
interruptions and pipeline damage. The primary benefit
of this technique is its short transmission distance and
straightforward deployment.

Ol3: In this technique, water from the transmission line of
Chahzool village to the primary source of Mazhnabad
is kept in reservoirs and transported to Nohoor village
via tanker before being stored in pools. The primary
characteristic of this technique is its low cost relative
to other strategies. The disadvantages of this technique
include a lack of water security, a low capacity of water
to meet villages’ demands, and a shortage of water
during unfavorable weather.

89013
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TABLE 1. Linguistic terms and their corresponding CT-SFNs.

CT-SFNs
0‘87e27/7\'0.927 0.25827‘7‘-0'30, 0.242%70.28
047862“’0'76, 0‘38e2i7r0A397 0.36e2%70.36
0.51621'#0.56’ 0_56e2i7r0A537 0_51821',770,51
0.3262i"0'28, 0.36927;7"0‘32, 0_79921'#0,83
0.22621ﬂ0'19, 0_2582i7r04177 0_84e2i7r0,91

Linguistic terms

Very high (VH)/ Very important (V1)
High (IH)/ Important (I)

Medium (IM)/ Medium (IM)

Low (LL)/ Unimportant (UT)

Very low (VIL)/ Very Unimportant (VUI)

slope of the ground, excellent water security, and
high water pressure are all advantages of this
method.

Oly: Pipelines are used in this technique to transport
water from subsurface water resources found in

the vicinity of Mazhnabad village via a well. The

)

£-1

- - 2imr | loge | 1+
(s €0

e ’

89014

1-ok 1-9!
£ S—1 )£ S—1
. _ 2im | 1-loge | 1+ £_(| )
Sip =i @ Ly = (e 1) (e 1) (54)
11T—logef 1+ rom e ,
1-9% ) 1-a},
£ 21 (£ —1
2im | 1-log, 1+(£(1)
, o)
I —loge({ 1+ yo e
Si=cr - sPEA (30, S, . Sin)
1
- — 2ir /| 1-log <1+f[ (£1_6<’3ii_1)n>
1 —loge (1 + 11 (£1*F’itr' - l)n)e = ,
=1
n . lll
2in /| loge [ 1 £ i —
- , oy e () (55)
loge (1 + [T (£5w - 1) e :
=1
1
. T 2im | 1-logg <1+ ]—n[ (£6§iil)n>
9 n =1
Noge (l + I1 (£91{f — 1) )e
=1
§i =T = SFFG (Si1. 8, ... Sin)
n at %
1 2im ! loge [ 1+ ] (£ aii_l)
=1
’log£(1+H( ,,_1)) :
1
T 2im | 1-log 1+ﬁ(£178tfﬁ—1)
i 1— F=1 (56)
1 — logg 1+1‘[(£ §zr—1) :
=1

. 1og£ 1+H(£1 er—l)

2im | 1-logg

n
1+ 11
=1

1-aL %
()
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FIGURE 1. Graphical representation of the proposed method.

A panel comprising three DEs 2, 2,, and 23 is formed to
thoroughly investigate the critical demands and performance
of various water supply options for this MCGDM problem.
All of the experts agree on the following parameters as the
decision criteria for this MCGDM problem:

Cry: Initial cost: This involves the costs associated with
establishing the project, such as the cost of tankers,
energy, pipes, pumping, and wages for labourers. The
technique with the lowest starting expense is preferred.

Cry: Maintenance cost: This criterion includes the cost of
repairing any potential water supply system damage or
failure. The technique with the lowest cost of mainte-
nance is preferable.

Crz: Water quality: The quality of drinking water is a crucial
consideration. The technique that provides water of
superior quality is desirable.

Crs: Environmental destruction: The degradation of pas-
turage and other natural water supplies has an impact
on the villagers’ cattle production. The distance
between grazing lands and drinking water for cat-
tle should be kept to a minimum. The plan with
the fewest negative environmental consequences is
preferred.

VOLUME 11, 2023

Crs: Water security and satisfaction of inhabitants: Nohoor
village contributes significantly to the Iranian economy
by producing meat and dairy products. As a result,
water security and resident contentment are impor-
tant factors in preventing village migration. The tech-
nique that results in greater villagers’ contentment is
desirable.

B. THE DECISION-MAKING PROCESS
The step-by-step solution to the aforesaid MCGDM problem
using the framed technique is as follows:

Step 1: Table 1 is composed of the linguistic terms and their
accompanying CT-SFNss to represent the level of satisfaction
of DEs about potential strategies. Further, the assessments
of the DEs for each strategy with respect to all criteria are
represented in Table 2.

The individual CT-SFDMs of the DE %, 2,, and 25 are
listed in Table 3.

Step 2: Since the criteria Cry, Cry and Cry4 are cost type.
Thus by employing Eq. (51), the original CT-SFDM 3 are
transformed into normalized CT-SFDM, which are shown in
Table 4.

Step 3: As 0.28 4+ 0.30 4+ 0.92 = 1.50 ¢ [0, 1], 0.28> +
0.302+0.922 = 1.0148 ¢ [0, 1]and 0.28° +0.30° +0.923 =
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TABLE 2. DEs’ assessment information corresponding to each criteria.

Criteria  Alternatives 91 Do D3
Cry Ol VH H ™M
Ola M L VH
Ols VH VL L
Oly VH ™M H
Cro Oly ™M L L
Ols L VIL H
Ols VH H ™M
Oly ™M VL L
Crs Ol VH ™M VIL
Ola IL VL M
Ols VH H VH
Oly ™M L VL
Cry Ol H H L
Ols VH ™M H
Ols ™M L VL
Oly VH ™M H
Crs Ol L VL ™M
Ols VH H VH
Ols VIL M L
Oly VH L ™M

0.8276 € [0, 1]. In a similar way, we found that all values in
Table 4 belong to [0, 1] for r = 3.

Step 4: The normalized CT-SFDM 4 originally provided
by DEs having the weight vector x = (0.3, 0.4, 0.3)7, are
aggregated by employing the CT-SFFWA operator Eq. (52),
and the outcomes are depicted in Table 5.

Step 5: The DEs assign linguistic terms to each criteria
that represent the significance of that criteria in the MCGDM
problem, as stated in Table 6. Further, the individual CT-
SF weight of criteria is tabulated in Table 7. Deploying
CT-SFWA operator Eq. (53), on Table 7 CT-SF weight of
criteria is ascertained as follows:

(0.839662iﬂ0'6901 , 0_2970621'7[0.4730’ O.2832€2in0'4294) )
(053 13621'770.5339 , 0.5298€2iﬂ0'5326 , 0'4493e2in0.4210) ,
L= (0.578662in0‘8571 , 0.373762iﬂ0‘3047, 0'3737621'710‘4003) ,
(0.65556‘2[”0'6605 , 0_4812621'7[0.4701 , 0.445162iﬂ0'4451) ,
(0.704862m0‘6987 ,0.4451 e2in0.441 8 , O.4148€2i”0‘4148)

Step 6: According to Eq. (54), the WCT-SFDM is obtained
as shown in Table 8.

Step 7: Based on Eq. (55), the aggregated values i =
1(1)m) are obtained as given below.

R&Y] — (0.2900621‘7[0‘3857’ 0.503862i”0‘5038, 0.6681e2i”0‘6848) ,
;32 — (0'4152621'71044213’ 0‘4941821'110.4983’ 0'5914621‘710.6087) ,
(33 — (0'4348621‘710.5]99’ O.4820€2in0'4949, 0.5554621'710.5845) ,
34 — (0.3214€2i”0'3490, 0.509362iﬂ0'5093, 0_5903621'710.6674) )

Based on Eq. (56), the aggregated values Si(i = 1(1)m) are
obtained as given below.

S1 = (02711637020, 05148705164, 0700364707221
$y = (O.3340e2i”0'3704 0.5030¢%™0-3108 O.6281e2i”°'655‘)

&y = (0'3477621'710.3904’ 0.5019270-5061 0'6122621'710.6354)’
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34 — (0.2861621'7[0.3189, 0'5161e2iﬂo.5210’ 0.6203€2iﬂ0'7008) .

Step 8: The score value of each aggregated value obtained
by Eq. (55) is computed by employing Eq. (57) as follows:

S (31) =0.7392, 5 (%) = 0.7058,
S (33) = 0.7067, S (34) = 0.7107.

The score value of each aggregated value obtained by
Eq. (56) is computed by employing Eq. (57) as follows:

S (31) =0.7601, S (32) = 0.7194,
S (33) = 0.7109, S (34) = 0.7294.

Step 9: We get the following ranking of water supply
strategies based on the derived score values.
For CT-SFFA operator:

S>> 33> .
For CT-SFFG operator:

I > g > Jp > 3.

C. IMPACT OF PARAMETER t ON DECISION-MAKING
RESULTS

This section addresses the influence of parameter ¢ on the
alternative ranking results. We varied the value of the param-
eter ¢ using Eqgs. (55) and (56) in order to examine the
effect of different parametric values on the final ranking
results. To accomplish this, we assign various values of
t = 3,5,7,9,11, 13, and 15 and repeat the analytical cal-
culations as tabulated in Tables 9 and 10.

In Tables 9 and 10, the parameters have an effect on the
score values since the score values decrease gradually as
parameter ¢ increases. However, the overall results of the
ranking remain constant.

Figures 2 and 3 depict a geometrical depiction of the
intended work delineated in Tables 9 and 10.

According to Figures 2 and 3, the DE has the option
of selecting different aggregation operators by altering the
adjustment parameter . However, it should be emphasized
that the ranking results remain unaltered. Thereby, it demon-
strates that the CT-SF Frank operators initiated in this
research are feasible and highly stable.

D. IMPACT OF PARAMETER £ ON DECISION-MAKING
RESULTS

Theorems 3 and 18 reveal that the CT-SFFWA operator
and CT-SFFWG operator provide a large class of CT-SF
aggregation operators via parameters £. To thoroughly com-
prehend the execution of aggregation, we experiment with
parameter values ranging from 3 to 150 for the afore-
mentioned strategies selection problem. The score values
acquired by the CT-SFFA operator and CT-SFFG operator are
represented graphically in Figures 4 and 5 and summarized
in Tables 11 and 12, respectively. From Table 11, we may
deduce that the score values generated by the CT-SFFA oper-
ator increase gradually as the parameter £ increases, whereas
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TABLE 3. CT-SF information corresponding to each criteria.

Criteria

Alternatives

3

Cry

Crs

C’I“{,

(251
Ola
Ol3
Oly
(@25
Ola
Ol3
Oly
Ol
Oly
Ol3
Oly
Oly
Oly
Ol3
Oly
Ol
Ola
Ol3
Oly

0.87627092, 0_25£zl1r0.30’ 0.2402770-28
0.5162i70-56_( 5662i70.53  51¢2im0.51
0.8762i70-92 () 9562i70.30_ () 94¢2iw0.28
0.8762i70-92 () 9562im0.30_ () 94¢2im0.28
0.5162i70-56 0 5662i70-53 ) 51¢2i70-51
0.3262i70-28 () 366207032 () 70¢2im0.83
0.8762i70-92 0 9562i70.30_ () 94¢2iw0.28
0.5162i70-56_( 5662im0-53 () 51¢2im0.51
0.8762i70-92 0 9562i70.30 () 94¢2iw0.28
0.322i70-28 () 362im0.32 () 79e2im0.83
0.8762i70-92 0 9562i70.30_ () 94¢2iw0.28
0.5162i70-56_( 56627053 () 51¢2im0.51
0.7862i70.76_( 386217030 () 36¢2im0.36
0.87€2i70-92 () 252im0.30 () 94¢2im0.28
0.5162i70-56_( 5662i70.53  51¢2im0.51
0.87€2i70-92 () 2527030 () 94¢2im0.28
0.3262i70-28 () 36¢2i70-32 () 70¢2iw0.83
0.8762i70-92 () 2527030 () 94¢2im0.28
0.2262i70-19_( 9562im0.17_ 84¢2im0.91
0.8762i70-92 () 2527030 () 94¢2im0.28

EO 78e2i70.76 ;0. 3832m0 39 ;0. 36e2¢70- 363
0 3292”(0 28 0 369217r0 32 0 79e217r0 83
0.22¢2i70- 19 ,0. 252i70. 17 ,0. 842i70.91
EO 51e211r0 56 0 569217r0 0'3 0 51e217r0 51;
0.32e2i70. 28 ,0. 36e2im0- 32 ,0. 79e2i70.83
EO 229211r0 19 0 259217r0 17 O 84e217r0 ‘31;
0.78e2i70. 70 ,0. 38¢e2im0. 39 ,0. 36e2i70.36
EO 22921770 19 O 25e217r0 17 0 84e217'rO 91;
(0 51e2¢70. 5() ,0. 56e2¢70. 55 ,0. 51e2i¢70.51
(0 22921770 19 O 25e217r0 17 0 84e21.7'r() 91;
(0 78e2¢70. 7() ,0. 38¢2¢70. 39 ,0. 362:70.36
(0 32921770 28 O 36e217r0 32 0 79e2110 8'5§
(0 789217r0 76 0 3892’”(0 39 ,0. SGeZLTrO 36
(0 51921770 56 O 56e217r0 53 0 51e21.7'rO 51
(0 328217r0 28 0 369217r0 32 ,0. 79e2L7r0 83
( 51927770 06 O 56e217r0 53 0 51921770 51
(0 229217r0 19 0 259217r0 17 0 849217r0 913
(0 78e2i70. 76 ,0. 382i70. 39 ,0. 36e2470.36
(0 5192L7r0 56 0 5692L7l'0 53 0 519217r0 513
(0 322i70. 28 ,0. 36e2i70- 32 ,0. 792i70. 83)

0.516270-50_( 566217053 () 512Zin0-51
0.8762i70. 92’ 0.2562i70. 307 0.2462i70.28
0.3262i70-28 () 3662i70-32 () 70¢2iw0.83
0.7862i70.76 () 386217030 () 36¢2im0.36
0.3262i70-28 () 3662i70-32 () 70¢2iw0.83
0.7862i70.76_( 386217030 () 36¢2im0.36
0.512i70-56 0 5662i70-53  51¢2i70.51
0.3262i70-28 () 366217032 () 70¢2im0.83
0.2262i70-19_ 0 9562im0.17  8462im0.91
0.5162i70-56_( 56627053 () 51¢2im0.51
0.8762i70-92 0 9562i70.30 () 94¢2iw0.28
0.2262i70-19 () 252im0.17 () 84¢2im0.91
0.3262i70-28 () 36¢2i70-32 () 70¢2iw0.83
0.7862i70-76 () 38¢2im0.39 () 3662im0.36
0.2262i70-19_ 0 9562im0.17  84¢2im0.91
0.7862i70-76 () 38¢2im0.39 () 3662im0.36
0.5162i70-56_( 5662i70-53  51¢2i70.51
0.8762i70-92_( 2527030 () 94¢2im0.28
0.3262i70-28 () 366207032 () 70¢2im0.83
0.5162i70-56_( 56627053 () 51¢2im0.51

TABLE 4. Normalized CT-SF information corresponding to each criteria.

Criteria

Alternatives

D

2

%)

Cry

Crs

Crs

ol
oly
Ol3
ol
oy
Oly
Ol
ol
oy
Ols
ol
ol
ol
Oly
Ol
ol
ol
Oly
Ol
ol

0.246%70-28_( 556217030 () g7gZin0-02
0.5162i70-51 ( 56e2im0-53 () 512im0.56
0.2462i70-28 () 2527030 () 8762im0.92
0.2462i70-28_( 956217030 () 87¢2im0.92
0.5162i70-51_( 56627053 () 5162im0.56
0.7962i70-83_( 36¢2im0.32 () 39¢2im0.28
0.24e2i70-28 () 9562i70.30 () 87¢2iw0.92
0.5162i70-51_( 56e2im0-53 () 512im0.56
0.8762i70-92 ( 9562i70.30_ () 94¢2i0.28
0.3262i70-28 () 36207032 () 70¢2im0.83
0.8762i70-92 0 9562im0.30 ) 94¢2iw0.28
0.5162i70-56_( 5662i70-53 () 51¢2im0.51
0.3662i70-36_( 38¢2i70-30 () 78¢2iw0.76
0.2462i70-28 () 252im0.30 () 87¢2im0.92
0.5162i70-51 ( 5662i70-53_ () 5127056
0.24€2i70-28 () 252im0.30 () g7¢2im0.92
0.3262i70-28 () 36¢2i70-32 () 70¢2iw0.83
0.8762i70-92 () 252im0.30 () 94¢2im0.28
0.2262i70-19_( 9562im0.17  84¢2im0.91
0.87€2i70-92 () 2527030 () 94¢2im0.28

50‘3692“70.36’ 0.3862770-39_ 0.78e2”’°'763
0.7962i70-83_( 36¢2im0.32 () 39¢2i70.28
50484e2"’”0-91 10.2562i70-17_( 9e2im0. 193
0.5162i70-51_ 56¢2im0-53 () 51¢2i70.56
50‘79827‘,#0.83, 0.366270-32_ 0.32e2mo.2sg
0.8462i70-91  9562im0.17 () 99¢2iw0.19
50‘36821“”0.36, 0.3862i70-39_ 0‘78e2117r0.763
0.8462i70-91_( 9562im0.17 () 99¢2i70.19
50'5182”0.56’ 0.5662i70-53 ().51¢2im0.51 g
0.2262i70-19_( 9562im0.17 () 84¢2i70.91
EOJSezmo.m’ 0.38¢2i70-39_ 0A36e2mo.363
0.3262i70-28 () 3662im0.32 () 79¢2i70.83
(0.3662i70-36 () 382im0-39 0,78¢2im0.76
(0.51€2im0:51 () 5Ge2im0-53, 0_51e2i7r0.563
(0.79e2i70-83 0 36e2im0-32 0, 32¢2im0-28
(0.51e2i70:51 0 5Ge2im0-53 0_51e2i70.563
(0.2262i70-19 () 252im0-17 0 842im0-91
(0.782im0-76 () 382im0-39, 0_36e2i70.36§
(0.51€2i70-56 0 562im0-33 0,51 2im0:51
(0.3262i70-28 () 36e2im0-32, (. 79e2im0-83

0.516270-51_( 5662770-53_() 51627056
0.2462i70-28 () 9562i70.30_ () 87¢2im0.92
0.7962i70-83 () 3662im0.32 () 39¢2im0.28
0.3662i70-36_( 386217030 () 78¢2im0.76
0.7962i70-83 () 362im0.32 () 3962im0.28
0.3662i70-36_( 38¢2i70-30 () 78¢2im0.76
0.512i70-51 ( 5662i70-53 () 51¢2i70.56
0.7962i70-83 () 3662im0.32 () 39¢2im0.28
0.2262i70-19_ 0 9562i70.17 ) 84¢2iw0.91
0.5162i70-56_( 5662im0.53  51¢2im0.51
0.8762i70-92 0 9562i70.30 () 94¢2iw0.28
0.2262i70-19_( 2562im0.17 () 84¢2im0.91
0.3262i70-28 () 36¢2i70-32 () 70¢2iw0.83
0.3662i70-36_( 38¢2im0.39 () 78¢2im0.76
0.8462i70-91 ( 9562i70.17 () 992iw0.19
0.3662i70-36_( 38¢2im0.39 () 78¢2im0.76
0.5162i70-56_( 5662i70-53  51¢2i70.51
0.8762i70-92 () 2527030 () 94¢2im0.28
0.3262i70-28 () 36¢2i70-32 () 70¢2iw0.83
0.5162i70-56_( 56627053 () 51¢2im0.51

TABLE 5. Aggregated CT-SF information matrix.

Oll 0.3985¢ 7m0.40. 5,0,378452'117“)" 961,0.720162”‘0'744 0.7351e 0. 3 )0441222512-”0.37‘ 7,0_3688e217r[)d4 0. 6637e2mr£] T20: 0 3477§ im0.3212 0 4873e217r[) 5256
Oly 0.6377e2im0-6719 () 3704e2i70-3671 () 5116e2i70-5131 0.7517e2im0-8151 () 3167021702646 () 3688¢2i70-3319 0.37962i70-3990 ,0.3568e2¢m0- 2017’ 10.7201e2i70-7596
013 0747332“70,8128’ 0.28O3e2”0‘2426, 0.386082”0'3603 0. 398592n\'0 4035 0 373492”0 3961 ,0. 7201e2”0 7448 (0 839692“(0 8756 0 29706217&).3340, 0.2832e2”r0‘3096
014 0.4160921"0'4202, 0,3947921“)'4[]97, 0.691762”‘0'7236) 0. 76296227{0 8234 0 30689217(() 2917 0 318962”‘0 2970 (0.384462”“]'4()23, 0'37049217(0.3[)96Y 0,37046217(0'7517
Oll 0.3490¢ z1r0.3400’ 04373755;20.\ 671 R 0.782962”‘0'7 09) 0.3796¢" z1r0.3990) 0,35682r17{0'2917, 0.7201621'"0‘7595
Oly 0.4160e21m0-1202 9, 39472im0-4097  6917¢2m0-7236) 0.8396e2im0-8756 () 2970e2i70-3340 () 2832¢2i70-3096
013 0.756582”70'8119, 0.3704e2‘”0‘309(§, 0.329862”0'3096) 0_40589217\'0,4320’ 0.387592m0‘3277, 0.685882”'0'7182
014 0.4160821"0'4202, 0,394762”“)'4097, 0.691762”‘0'7236) 0'6613e221r(].715[!) 043704e2ivr().3671 A 0.4991621'"[).534()

TABLE 6. Importance of criteria relative to the panel of DEs.

Cri1 Cra Crs Crg Crs
2 VI M Ul M I
Do I ™M VI I ™M
93 VI Ur VI M I

the score function of the CT-SFFG aggregation operator
drops gradually as the parameter £ increases. This implies
that DEs can utilize their preferences to choose the most pre-
ferred values depending on realistic decision circumstances.
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By virtue of score values, we are able to obtain the alter-
natives’ absolute ranking results. The preferred ranking in
Table 11 is always Ol > Oly > Ol3 > Ol,. The preferred
ranking in Table 12 is always Oy > Oly > ObL > Ol.
Thus, the CT-SFFA operator and CT-SFFG operator provide
only optimal results. In addition, based on Figure 4, we
understand that the ranking outcomes of alternatives are the
same when the parameter values differ in the example, and the
consistency of the suggested CT-SFFA operators is indicated
by the uniform ranking outcomes. Figure 5 also demonstrates
that the ranking outcomes of the alternatives remain the same
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TABLE 7. Importance information of criteria in terms of CT-SFNs.

Cra Crs

0.51821'#0.56, 0.56€2i7r0‘53, 0.51621'71'0.51
0.32621'#0.28’ 0.3692'2#0‘32, 0‘7962”‘-0'83

0.8792iﬂ0'92, 0~25€2iﬂ’0'307 0.24921'#0.28
0.87921'#0.92’ 0.25(322'71'04307 0.2492'L‘n0.28

-@1 %0.87e2177092’ 0.25e217r0430’ 0.2462”70‘28; %0.516217@‘56, 0.56@217r0‘53, 0‘51e217r0A51§ 50‘329217r0‘28’ 0.366227(0‘32, 0‘799217r0A83

Crs

0.51921'71'0.56 0.56€2i7r0'53 0.51921'71'0.51

Crq
92 0.7862iﬁ0‘76, 0.3892i7r0‘39, 0.36921'#036
@3 0.8762i7r0'92, 0.25')621’#()4307 0'24621'#0.28
Cry
91 0.5162”"0'56 0.5662”\—0‘53 0.5162”"0'51 0.7862”"0'76 0.3882“T0'39 0.3662”"0'36
92 0_7892'L'7r0.767 0.38€2i7r0'397 0_36921'7\'0.36 ’ '
-@3 0.51e2i7TOA56’ 0.56€2i7r0‘53, 0.51e2i7TOA51

0‘78e2i7r0A76’ 0.38@2i7r0‘39, 0‘36e2i7r0A36

TABLE 8. WCT-SF information matrix.

Cra

) 0.3420e2770-3655 () 5973207 0-5840 () 5174¢2770-1861 [(
0494992"‘0’4110.0.4243e2”°‘5345,O.5373e2“‘0'5930) 0351492”(0'3933‘0562692’”0‘5520,(].5174e2“'0'4789 (0,17919217(0'3120,0458762"70'3749,O.7449e2”r0‘7851

0.1714e2im0-1714_() 58352im0.5927 () 762(e2i70-7763
. s U ,0.
0.3586€2i70-3975_() 5755e2im0-5582 () 4956e2im0-4638

Crs
0.3298e%7™0-5829 "() 453427703931 () 54832770 5891

0.446162”‘70'7298‘ 0.426992“{()'4023 0_42066217r().4527
[).179192”"0'3143; 0%166892“70'3862. (].4()'()'892i"0'7780

Cr

Cry
Ol 0.3022e2770-2343 ") 43022770-5480 () 73132¢70- 7780
Oly )
Ol'; 0'5914e2z1r(l.5184 0.3632921W()'4924, 0_4302e2mr[),4988
Oly  (0.3143e%170-2466 () 44292im0-5547 704221707601
Cry
Ol 0.1929e2770-1863 " 54342770-5322 () 81382¢70-8123
Ol
Ol'; 0.4461922"0'4924 0,5422921W()'5[]92 0.496862”“)'4885

Oly  (0.2300e%170-2343 () 55332im0-5528 (737521707639

5

) 0.2254e%770-2386 () 5086e2770-479T (. 7536e2¢70- 787

0_230082“70,2343 0_5533‘32”@45528 0.737582”0'7639) 0.553592”0'5797‘0.4837e2”0‘4958 O.4534e2”'0'4642
’ ’ ) 0'2426e221r(].2577' 0,52399217{()'4932 0.724362”‘0‘7521

) (0.4135%i70-4483  5153e2i70-5111 () 57602i70-6016

TABLE 9. Ranking results for different values of t using CT-SFFA operator.

t S (%1) S (%2) S (%3) S (@4) Ranking
t=3 0.7392 0.7058 0.7067 0.7107 Ol1 > Oly > Ol3 > Olg
t=25 0.5908 0.5625 0.5632 0.5700 Ol1 > Oly > Ol3 > Olg
t= 0.5366 0.5195 0.5206 0.5250 Ol; > Oly > Ol3 > Olg
t=9 0.5155 0.5065 0.5073 0.5095 Ol > Oly > Ol3 > Ola
t=11 0.5067 0.5022 0.5030 0.5038 Ol; > Oly > Ol3 > Olg
t=13 0.5030 0.5007 0.5013 0.5016 Ol > Oly > Ol3 > Ola
t =15 0.5013 0.5003 0.5005 0.5006 Ol; > Oly > Ol3 > Olg

TABLE 10. Ranking results for different values of t using CT-SFFG operator.

t S <%1> S <%2> S <§3> S <§4) Ranking
t=3 0.7601 0.7194 0.7109 0.7294 Ol1 > Oly > Ola > Ol3
t= 0.6198 0.5837 0.5786 0.5927 Ol1 > Oly > Ola > Ols
t= 0.5637 0.5382 0.5358 0.5433 Ol; > Oly > Ola > Ols
t=9 0.5365 0.5195 0.5182 0.5222 Ol1 > Oly > Ola > Ols
t=11 0.5219 0.5106 0.5098 0.5119 Ol; > Oly > Ola > Ols
t=13 0.5134 0.5059 0.5056 0.5067 Ol1 > Oly > Ola > Ols
t=15 0.5083 0.5035 0.5032 0.5038 Ol; > Oly > Ola > Ol3

regardless of the values of £ in the example, which reflects
the consistency of the suggested CT-SFFG operators.

VIil. COMPARATIVE ANALYSIS

In this section, a comparison is made between the proposed
technique and existing approaches to demonstrate the sug-
gested technique’s validity and precision. In addition, this part
has a comprehensive discussion highlighting the supremacy
of the framed approach.

89018

For the purpose of this comparison, the following dif-
ferent types of aggregation operators have been chosen:
CT-SF averaging (CT-SFA) operator [31], CT-SF geometric
(CT-SFG) operator [31], T-spherical fuzzy Frank averag-
ing (T-SFFA) operator [25], T-spherical fuzzy Frank geo-
metric (T-SFFG) operator [25], complex q-rung orthopair
fuzzy Frank averaging operator (Cq-OFFA) [42], complex g-
rung orthopair fuzzy Frank geometric operator (Cq-OFFG)
[42], CT-SF Dombi averaging (CT-FDA) operator [32], CT-
SF Dombi geometric (CT-SFDG) operator [32], complex
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TABLE 11. Ranking results by CT-SFFA with various £.

£ S (%1) S (%2) S (%3) S (34) Ranking
£=3 0.7385 0.7052 0.7063 0.7101 Ol1 > Oly > Olz > Ola
£=5 0.7401 0.7063 0.7072 0.7113 Ol1 > Olg > Ol3 > Ols
£=7 0.7410 0.7070 0.7077 0.7119 Ol1 > Olg > Ol3 > Ols
£=9 0.7419 0.7076 0.7082 0.7125 Ol1 > Olg > Ol3 > Ola
£ =150 0.7465 0.7112 0.7118 0.7161 Ol1 > Oly > Olz > Ola
£ =175 0.7474 0.7120 0.7126 0.7169 Ol1 > Oly > Ol3 > Ola
£ =100 0.7482 0.7126 0.7132 0.7173 Ol1 > Oly > Olz > Ola
£ =150 0.7490 0.7134 0.7140 0.7180 Ol1 > Olg > Ol3 > Ols
TABLE 12. Ranking results by CT-SFFG with various £.
£ S (sl) S (%) S (sg) S (%4) Ranking
£=3 0.7607 0.7199 0.7113 0.7299 Ol1 > Olg > Ola > Ol3
£=5 0.7596 0.7192 0.7105 0.7291 Ol > Oly > Ola > Ol3
£=7 0.7589 0.7185 0.7101 0.7286 Ol > Oly > Ola > Ol3
£=9 0.7583 0.7181 0.7098 0.7283 Ol1 > Oly > Ola > Ols
£ =150 0.7561 0.7168 0.7090 0.7269 Ol1 > Oly > Ola > Ol3
£ =175 0.7558 0.7166 0.7091 0.7266 Ol > Oly > Ola > Ol3
£ =100 0.7556 0.7165 0.7091 0.7265 Ol1 > Olg > Ola > Ol3
£ =150 0.7553 0.7164 0.7092 0.7264 Ol > Oly > Ola > Ol3

0.8

0.7

0.6

0.5
0.4
0.3
0.2
0.1
t=5 =7 t=9 t=11 t=13 t=15

t=3

HS]1 EmS2 mS3 mS4

FIGURE 2. Ranking of alternatives by CT-SFFA operator for different
values of t.

spherical fuzzy prioritized averaging (CSFPA) operator [56],
complex spherical fuzzy prioritized geometric (CSFPG)
operator [56] and T-spherical fuzzy fairly weighted averag-
ing operator(T-SFFFWA) operator [58]. As most of these
existing approaches are unable for group decision issues
with CT-SF criteria weight information. We implement these
operators on Table § to make comparisons possible and more
effective. The score values and ranking order of alternatives
deploying preexisting and devised operators are displayed
in Table 13.

On the basis of Table 13 ’s ranking, a Spearman correlation
analysis is performed to produce Figure 6.

From Table 13, it can be seen that the ranking results
provided by CT-SFA and CT-SFG operators [31] are identical
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FIGURE 3. Ranking of alternatives by CT-SFFG operator for different
values of t.

to those produced by our developed CT-SFFG operator.
According to Theorems 4 and 19, if £ — 1, the operators
CT-SFFA and CT-SFFG are reduced to CT-SFA and CT-SFG
operators, respectively. Consequently, CT-SFA and CT-SFG
operators are the special cases of the described Frank oper-
ators. Ali et al. [31] approach is based on a score function
that has multiple flaws, as pointed out by [32], rendering this
approach ineffective. Secondly, we can notice from Table 13
that Mahnaz et al. [25] and Du et al. [42] operators yield the
Ranking Olz > Ol > Ols > Oly, which is quite different
from the propound approach and rest of the existing operators
ranking. According to Mahnaz et al. [25], Du et al. [42] and
Farid et al. [58] operators O!; is the worst alternative but the
other existing operators, and our presented operators have

89019
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TABLE 13. Ranking results derived by different aggregation operators.

Method S(0l1) S(0lz) S((0Ol3) S(0Ol) Ranking
CT-SFA [31] 0.3860 0.2570 0.1798 0.3381 Ol > Olg > Ola > Ol3
CT-SFG [31] 0.4824 0.3588 0.3311 0.4088 Ol > Oly > Ola > Ol3
T-SFFA [25] -0.4562 -0.2941 -0.2330 -0.3521 Ol3 > Ola > Oly > Ol
T-SFFG [25] -0.5164  -0.3869 -0.3608 -0.4051  Olz > Ol > Oly > Ol
Cq-OFFA [42] -0.2688  -0.09990 -0.07414  -0.2136  Ol3 > Olz > Olg > Ol
Cq-OFFG [42] -0.3369 -0.2204 -0.1922 -02635  Olz > Ola > Oly > Ol
CT-SFDA [32] 0.7503 0.6735 0.7049 0.6458 Ol1 > Ol3 > Ola > Oly
CT-SFDG [32] 0.7836 0.7420 0.7330 0.7426 Ol1 > Olg > Ola > Ol3
CSFPA [56] - - - Not applicable
CSFPG [56] - - - - Not applicable
T-SFFFWA [58] -0.1310 0.1151 0.1914 0.01823  Olz > Olz > Oly > Oly
CT-SFFA 0.7392 0.7058 0.7067 0.7107 Ol > Oly > Ol3 > Ol»
CT-SFFG 0.7601 0.7194 0.7109 0.7294 Ol > Oly > Ola > Ol3
The preexistent operators CT-SFDA and CT-SFDG [32]
08 demonstrate (from Table 13) that the best alternative is Ol,
o7 which is the same as avowed by the devised operators.
06 Further, we can notice from the comparison Table 13 that
05 according to CT-SFDA operator [32], OI3 is the second best
04, alternative, whereas it is the worst alternative if we deploy
03 CT-SFDA operator [32]. Therefore, the Ranking results of the
0.2 two Dombi operators do not coincide. The primary cause of
01 this mismatch may be the use of the identical formulation of
0 the neutral component in both the addition and multiplication
R=3 R=5 R=7 R=9 R=50 R=75 R=100 R=150

HS1 mS2 mS3 sS4

FIGURE 4. Ranking of alternatives by CT-SFFA operator for different
values of £.

R=3 R=5 R=7 R=9 R=50 R=75 R=100 R=150

HS1l mS2 mS3 ms4

FIGURE 5. Ranking of alternatives by CT-SFFG operator for different
values of £.

ranked OI; as the best alternative. This discrepancy results
from the fact that the previous operators [25], [58] can only
handle one dimension. During their execution, we eliminated
the complex portion of the data. Although the Du et al. [42]
operators process complex data, but they disregard the neutral
portion. The operators’ disregard for the neutral portion in
the case of Du et al. and their failure to deal with complex
data in the case of Mahnaz et al. lead to a significant loss of
information and erroneous decision outcomes.

89020

operational rules (see Section III of Ref. [32]). Though, there
is also a small bit of dispute in the ranking of our initiated
operators,i.e., as per the ranking order of CT-SFFA operator
Ol is the worst alternative but in line with CT-SFFG oper-
ator, it is the second worst alternative. This occurs due to
the less difference between the score values of alternatives
Ol and Ol3. Despite Dombi operators, if we consider the
complex spherical fuzzy operators [56], then it is evident
from the comparison Table 13 that these operators failed to
classify the objects. Albeit CSFPA and CSFPG operators [56]
are quite efficient in dealing with data having a prioritization

relationship but due to their restricted conditic2>n, ie., 02 <
(wM)* + (c(h)* + (wm)* < 1,0 < (3.)" + (95)” +

@,)% < 1, these operators are unable to satisfy the CT-SFS
requirement for the considered data.

Based on the above analysis, some key merits of
the formulated CT-SF frank operators are enlisted as
follows:

1). The initiated operators are based on CT-SFS, which
generalize the existing operators [25], [31], [42], [57]:
i). If £ — 1 these operators reduced to [31],
ii). If we consider the complex portion zero, the pro-
posed operators are reduced to [25], iii). If we set the
neutral portion to zero, the devised operators reduced
to [42], iv). If we fix the neutral portion zero and
£ = 2, the formulated operators reduced to [57].
Consequently, the introduced CT-SF Frank aggregation
operators can be used to cope with more uncertain and
complex data in real-world decision making issues.
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FIGURE 6. Spearman correlation plot.

2). The designed method is capable of deriving the criteria
weight from the CT-SF information provided by the
DEs, which is then used to determine the final ranking
of decision alternatives. In contrast, previous methods,
except [25], only execute with a known weight vector.

3). The most notable feature of the suggested method is
the involvement of parameters ¢ and £. DEs can mod-
ify their values according to their own preferences.
Since Frank t-norm and t-conorm are a generalization
of algorithms such as Algebraic (£ — 1), Einstein
(£ = 2), and Hamacher’s (£ = 3) t-norm and t-conorm,
it is more general in coping with MCGDM problems.

4). None of the existing approaches consider the DEs’
weights, whereas the framed approach has the capa-
bility of discriminating among DEs by using their
importance values.

VIIl. CONCLUSION AND FUTURE WORK PLAN

In this study, we extended Frank operations to the CT-SF
environment based on the definitions of CT-SFS and Frank
t-norm and t-conorm. To begin with, several Frank oper-
ational rules of CT-SFS were designed. Meanwhile, we
introduced a series of CT-SF Frank operators, such
as CT-SFFWA, CT-SFFOWA, CT-SFFHA, CT-SFFWG,
CT-SFFOWG, and CT-SFFHG operators. Furthermore,
we developed certain features for the aforementioned opera-
tors and supplied empirical evidence to support the principles
and ideas underlying the operators we have created. Aside
from that, we implemented the formulated operators to
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build an approach to the MCGDM problems with CT-SF
data, and thus we added a new direction for addressing
MCGDM problems. With the use of a practical decision-
making problem involving the selection of the best strategy
for water supply, we were able to illustrate both potency
and practicability. We analyzed the impact of the involved
parameters on decision-making results and found the method
quite stable. Finally, we compared the newly devised opera-
tors to the previous operators to demonstrate their utility and
suitability.

Despite having some advantages over modern method-
ologies, the created model is not without limitations. Con-
sequently, its structure is incapable of handling problems
with completely unknown weight information. In addition,
our approach for resolving the MCGDM problem may be
computationally intensive because they need laborious and
complex calculations. Future research will concentrate on the
creation of more complex MCGDM strategies, such as the
CT-SF-PROMETHE method, the CT-SF-VIKOR method,
the CT-SF-AHP method, and the CT-SF -ELECTRE method.
Our intention is to investigate the potential application scope
of the CT-SF model in other domains.

ACRONYMS

CF: complex fuzzy. CFS: complex fuzzy set. CT-SF: complex
T-spherical fuzzy. CT-SFS: complex T-spherical fuzzy set.
CT-SFFWA: CT-SF Frank weighted averaging. CT-SFFWG:
CT-SF Frank weighted geometric. CT-SFFOWA: CT-SF
Frank ordered weighted averaging. CT-SFFOWG: CT-SF
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Frank ordered weighted geometric. CT-SFFHA: CT-SF Frank
hybrid averaging. CT-SFFHG: CT-SF Frank hybrid geo-
metric. MCGDM: multi-criteria group decision making.
DEs: decision experts. FSs: fuzzy sets. IFSs: intuitionis-
tic fuzzy sets. PyFSs: Pythagorean fuzzy sets. q-ROFSs:
g-rung orthopair fuzzy sets. PFSs: Picture FSs. T-SFSs:
T-spherical fuzzy sets. CFS: complex FS. CIFS: complex
IFS. CPyFS: complex PyFS. Cq-ROFS: complex g-ROFS.
CT-SFSs: complex T-spherical fuzzy sets. CT-SF: complex-T
spherical fuzzy. CT-SFDM: CT-SF decision matrix. WCT-
SFDM: weighted CT-SFDM. CT-SFA: CT-SF averaging.
CT-SFG: CT-SF geometric. T-SFFA: T-spherical fuzzy Frank
averaging. T-SFFG: T-spherical fuzzy Frank geometric.
Cq-OFFA: complex g-rung orthopair fuzzy Frank averaging.
Cq-OFFG: complex g-rung orthopair fuzzy Frank geomet-
ric. CT-FDA: CT-SF Dombi averaging. CT-FDG: CT-SF
Dombi geometric. CSFPA: complex spherical fuzzy priori-
tized averaging. CSFPG: complex spherical fuzzy prioritized
geometric.
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