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ABSTRACT Complex fuzzy (CF) sets (CFSs) play an important role in modeling two-dimensional
information challenges. Researchers exploring decision-making systems have recently become interested in
CFS extensions. The complex T-spherical fuzzy (CT-SF) set (CT-SFS) is a recent extension of the CFSs.
The present study aims to devise the Frank operational laws for the CT-SF environment and to verify
their required properties. Subsequently, some CT-SF Frank aggregation operators are explored, such as
CT-SF Frank weighted averaging (CT-SFFWA) operator, CT-SF Frank weighted geometric (CT-SFFWG)
operator, CT-SF Frank ordered weighted averaging (CT-SFFOWA) operator, and CT-SF Frank ordered
weighted geometric (CT-SFFOWG) operator, CT-SF Frank hybrid averaging (CT-SFFHA) operator, CT-SF
Frank hybrid geometric (CT-SFFHG) operator, and their peculiar cases are examined. Based on the devised
operators, a novel multi-criteria group decision-making (MCGDM) methodology is investigated to tackle
MCGDM problems under the CT-SF environment. Lastly, the practicality and effectiveness of the presented
methodology are conducted by parameter analysis and comparative exploration.

INDEX TERMS Frank T-norms, complex T-spherical fuzzy set, aggregation operators, MCGDM.

I. INTRODUCTION
Multi-criteria group decision making (MCGDM) is a way to
choose the best option or rank the options based on more than
one factor, assessed by decision experts (DEs). This method
has a wide variety of applications in many disciplines [1],
[2], [3], [4], [5], [6], [7], [8]. Owing to the complexity and
ambiguity of objective things and human cognition, the topic
ofMCGDMproblems in uncertain contexts has received con-
siderable interest. To handle problems in uncertain situations
and find better solutions, Zadeh [9] developed fuzzy sets
(FSs), which are defined by their membership grade µ. Since
FS only gives a membership grade subject to a value within
[0, 1] to support a fuzzy expression issue, but lacks a non-
membership grade. In view of true and false membership
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grades, Atanassov [10] suggested intuitionistic fuzzy sets
(IFSs) based on the FS theory, which consider both the mem-
bership grade µ(0 ≤ µ ≤ 1) and non-membership grade
ν(0 ≤ ν ≤ 1), with the restriction that the sum of the two
membership grades cannot exceed one, i.e., µ + ν ≤ 1.
Motivated by the idea of IFSs, to widen the space of the DEs’s
judgment regarding membership grade and non-membership
grade, Yager [11], [12] originated two modified FSs called
Pythagorean fuzzy sets (PyFSs) and q-rung orthopair fuzzy
sets (q-ROFSs) one after another, which meet the require-
ments µ2

+ ν2 ≤ 1 and µq
+ νq ≤ 1(q ≥ 1), respec-

tively. IFSs, PyFSs, and q-ROFSs are useful for tackling real
MCGDM problems, and significant academic progress has
been made [13], [14], [15], [16], [17].

However, there are a few scenarios in the real world where
human opinions require more answers of types: yes, no,
abstain, and rejection. Voting is an appropriate example of
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such a circumstance, as human voters can be divided into
four categories: vote for, abstain, vote against, and refuse
to vote [18]. To address this type of situation, Cuong and
Kreinovich [19] introduced the Picture FSs (PFSs), which
are described by membership grade µ(0 ≤ µ ≤ 1), non-
membership grade ν(0 ≤ ν ≤ 1), and neutral grade ς (0 ≤

ς ≤ 1), with the constraint that the total of the three grades
cannot cross one, i.e., µ + ν + ς ≤ 1. Soon after, moti-
vated by the PyFSs and q-ROFSs, to widen the space of the
DEs’ judgment about membership grade, non-membership
grade, and neutral grade, Mahmood et al. [20] presented the
extended PFSs known as T-spherical fuzzy sets (T-SFSs),
whichmeet the restrictionµt

+νt+ς t ≤ 1(t ≥ 1). Since their
introduction, T-SFSs have gained increased interest from
scholars. Ullah et al. [21] offered correlation coefficients for
T-SFSs and put forward clustering and decision making
methods based on the formulated correlation coefficients.
The authors in [22] described several measures of similar-
ity for T-SFSs, including the cosine similarity measure, the
grey similarity measure, and the set-theoretic similarity mea-
sure. To aggregate T-spherical fuzzy information, numerous
operators are investigated, such as T-spherical fuzzy power
operators [23], T-spherical fuzzy Hamacher operators [24],
T-spherical fuzzy Frank operators [25], and T-spherical fuzzy
generalized Maclaurin symmetric mean operators [26], etc.

According to the prevalent studies cited above, such
methodologies are constrained and unable to depict the partial
ignorance of data and its variations over a specific period of
time. To address this, Ramot et al. [27] developed complex
FS (CFS). In addition, Alkouri and Salleh [28] introduced
the doctrine of complex IFS (CIFS), which increased the
range of the membership grade and the non-membership
grade from real numbers to complex numbers with a unit disc,
and which can express two-dimensional information. A CIFS
is characterized by membership function (µ̈ = µei2π(ðµ))
and non-membership function (ν̈ = νei2π(ðν )) such that
0 ≤ µ + ν ≤ 1, 0 ≤ ðµ + ðν ≤ 1. In addition,
Ullah et al. [29] reformed CIFS in order to investigate the
complex PyFS (CPyFS) under the restriction that the sum
of the squares of the real parts (including imaginary parts)
of the membership grade and non-membership grade cannot
exceed a unit interval. After the introduction of CPyFS, the
complex q-ROFS (Cq-ROFS) [30], satisfying the conditions
0 ≤ µq

+ νq ≤ 1, 0 ≤ ðqµ + ðqν ≤ 1(q ≥ 1), was discov-
ered to be an efficient tool for solving MCGDM problems.
The theory of Cq-ROFSs has been implemented in various
facets of daily life. However, these paradigms do not consider
the issue when four aspects are used to describe an item,
particularly when human opinion is involved. For example,
with 0.51e2iπ0.56, 0.56e2iπ0.53, 0.51e2iπ0.51, Cq-ROFSs fail
to tackle such situations because of the extra information,
i.e., neutral part. To cope with such problems, Ali et al. [31]
introduced the doctrine of complex T-spherical fuzzy sets
(CT-SFSs) with more flexible conditions, i.e., 0 ≤ µt

+

ς t + νt ≤ 1, 0 ≤ ðtµ + ðtς + ðtν ≤ 1(t ≥ 1). Karaaslan
and Dawood [32] studied some Dombi aggregation operators

under complex-T spherical fuzzy (CT-SF) environment and
developed an MCGDMmethod. Nasir and his coauthors [33]
studied the concept of CTSF relations and their desired
properties in depth. A study by Zedam et al. [34] gave some
CT-SF aggregation operators based on Hamacher operations
and their application cleaner production evaluation in gold
mines. Meanwhile, Ullah et al. [35] also familiarized some
CT-SF Hamacher aggregation operators and employed them
to decision making.

The Frank t-norm and t-conorm [36] are generalizations
of the probabilistic, Lukasiewicz, algebraic, Einstein, and
Hamacher t-conorm and t-conorm. These are more adaptable
and appropriate for dealing with real-world decision making
because they include a parameter that controls the power to
which the argument values are raised. The Frank operators
have attracted considerable attention from the scientific com-
munity in recent years, and it has produced numerous study
outcomes on various FSs. Some operations and their relevant
operators on numerous FSs have been propounded based
on the Frank t-norm and t-conorm, such as single-valued
neutrosophic Frank operations [37], probabilistic hesitant
fuzzy Frank operations [38], Frank prioritized Bonferroni
mean operations [39], fermatean fuzzy Frank operators [40],
interval-valued probabilistic hesitant fuzzy aggregation oper-
ators [41], T-spherical fuzzy Frank operators [25], complex
q-rung orthopair fuzzy Frank operators [42]. Several authors
have also examined the mathematical properties of the Frank
t-norms [43], [44], [45], [46]. To the best of our knowledge,
the authors have conducted no research regarding Ct-SF
Frank’s operations. As previously noted, the CT-SFS covers
the massive loss of information while we collect informa-
tion from any real-life phenomenon to make decisions. It is
especially effective to extract as much information as pos-
sible when human opinion is involved. Hence, utilization of
CT-SFS in Frank operators has a high potential for improving
MCGDM performance.

The following are the key motives and contributions of this
article:

1). CFS and its generalizations play a crucial role in
real-world decision making challenges using two-
dimensional information. As a generalization of SFSs,
a T-SFS comprehends voluminous amounts of informa-
tion. However, it is insufficient for modeling a problem
requiring two-dimensional data. In this regard, CT-SFS
is of fundamental value. CT-SFS is the generalization
of CFS, CIFS, CPFS, CPyFS, andCSFS theories. Frank
operational rules are an important tool for modeling
MCGDM problems, yet, no study on Frank opera-
tions of CT-SFS has been published in the literature.
We define the Frank operations of CT-SFSs to fill this
void in the literature.

2). Until now, the literature pertaining to aggregation oper-
ators of CT-SFS contains few references [32], [33],
[34]. In light of the benefits of the Frank opera-
tors, we develop some novel aggregation operators
CT-SFFWA, CT-SFFOWA, CT-SFFHA, CT-SFFWG,
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CT-SFFOWG, and CT-SFFHG based on the Frank
t-norm and t-conorm to be employed in addressing a
two-dimensional real-world problem.

3). To explore various aspects such as monotonicity, idem-
potency, boundedness, and some limiting instances of
the formulated operators.

4). To build innovative MCGDM approach based on the
designed operators.

5). To give the application of the outlined approach
that validates the practicability and reliability of the
suggested technique. In addition, by comparing the
proposed technique to preexisting methods, we will
confirm that the new method is superior to previous
methods and demonstrate that the Frank t-conorm and
t-norm aggregation operators enable the aggregation
procedure more flexible.

The subsequent portions of this paper are structured as
follows to meet the goals of our research: Section II offers
a brief review of the important background material for this
subject. Section III defines Frank operations of CT-SFNs
and proves their essential properties. Section IV develops the
theory of CT-SFFHWA and CT-SFFHWG operators and out-
lines their influential properties with numerous strong results.
In Section V, we exploits the initiated operators to frame
a decision-making algorithm for coping MCGDM problems
utilizing CT-SFNs as characteristic values. In Section VI, the
selection of water supply strategy problem is addressed to
illustrate application, and a contrastive parameter analysis is
conducted to highlight the stability of the propound method.
Section VII comprises a discussion regarding the results
achieved from the application of the presented method. Some
concluding remarks and future outlooks are documented at
the end.

II. SOME BASIC CONCEPTS
In the following, we present a concise overview of T-SFSs,
CT-SFSs, Frank t-norm and Frank t-conorm to help readers
comprehend the study.

T-SFS is proposed by Mahmood et al. [20] as a synthesis
of SFS to provide a greater range of preferences for DEs
and allow them to communicate their hesitation about an
alternative. The following are some fundamental definitions
of T-SFS and terms related to intended work.
Definition 1 [20]: Let X be a universal set. A T-spherical

fuzzy set (T-SFS) J on X is characterized by

J = {⟨h̄, µ(h̄), ς(h̄), ν(h̄)⟩ |h̄ ∈ X} , (1)

where µ(h̄), ς (h̄), ν(h̄) ∈ [0, 1] represent the mem-
bership, neutral and non-membership grades of h̄ ∈ X
to the set J , respectively, with the condition that 0 ≤

µt (h̄) + ς t (h̄) + νt (h̄) ≤ 1. The degree of refusal
is π (h̄) =

t
√
1 − µt (h̄) − ς t (h̄) − νt (h̄). For convince,

⟨µ(h̄), ς(h̄), ν(h̄)⟩ is named a T-spherical fuzzy number
(T-SFN), labeled by J = ⟨µ, ς, ν⟩.
Remark 1:
1) The Definition 1 deduced to SFS if we put t = 2.

2) The Definition 1 deduced to PFS if we put t = 1.
3) The Definition 1 deduced to q-OFS if we put ς = 0.
4) The Definition 1 deduced to PyFS if we put t = 2 and

ς = 0.
5) The Definition 1 deduced to IFS if we put t = 1 and

ς = 0.
Definition 2 [47]: Let J1 = ⟨µ1, ς1, ν1⟩ and J2 =

⟨µ2, ς2, ν2⟩ be two T-SFNs and † > 0, then

1) J1 ⊕ J2 =

〈
t
√

µt
1 + µt

2 − µt
1µ

t
2, ς1ς2, ν1ν2

〉
;

2) J1 ⊗ J2 =

〈
µ1µ2,

t
√

ς t1 + ς t2 − ς t1ς
t
2,

t
√

νt1 + νt2 − νt1ν
t
2

〉
;

3) J †
1 =

〈
µ
†
1,

t
√
1 − (1 − ς t1)

†, t
√
1 − (1 − νt1)

†
〉
;

4) †J1 =

〈
t
√
1 − (1 − µt

1)
†, ς†1 , ν

†
1

〉
;

5) J c
1 = ⟨ν1, ς1, µ1⟩.

Definition 3 [20], [48]: J1 = ⟨µ1, ς1, ν1⟩ and J2 =

⟨µ2, ς2, ν2⟩ be two T-SFNs, let S (J1) = µt
1 − ς t1 − νt1 +(

expµt1−ς t1−νt1

expµt1−ς t1−νt1 +1
−

1
2

)
π t and S (J2) = µt

2 − ς t2 − νt2 +(
expµt2−ς t2−νt2

expµt2−ς t2−νt2 +1
−

1
2

)
π t be the score values of J1 and J2,

respectively, and let A (J1) = µt
1 + ς t1 + νt1 and A (J2) =

µt
2+ς t2+νt2 be the accuracy values ofJ1 andJ2, respectively.

Then,
1) If S (J1) < S (J1), then J1 < J2;
2) If S (J1) = S (J1), then

a. If A (J1) < A (J1), then J1 < J2;
b. If S (J1) = S (J1), then J1 = J2.

Definition 4 [31]: ACT-SFSℑ on a fixed set X is given by

ℑ = {(h̄, µ̈(h̄), ς̈ (h̄), ν̈(h̄)) |h̄ ∈ X} , t ≥ 1, (2)

where µ̈(h̄) = µ(h̄)ei2π(ðµ), ς̈ (h̄) = ς (h̄)ei2π(ðς),

ν̈(h̄) = ν(h̄)ei2π(ðν ) ∈ [0, 1] symbolizes the complex-
valued membership, complex-valued neutral and complex-
valued non-membership grades of h̄ ∈ X , respectively,
accorded that 0 ≤ (µ(h̄))t + (ς (h̄))t + (ν(h̄))t ≤ 1,
0 ≤

(
ðµ

)t
+
(
ðς

)t
+ (ðν)

t
≤ 1, where µ,ς ν, ðµ,

ðς , ðν ∈ [0, 1]. The degree of hesitation is π (h̄)t =(
1 −

(
(µ(h̄))t + (ς (h̄))t + (ν(h̄))t

)) (
1 −

((
ðµ

)t
+
(
ðς

)t
+

(ðν)
t)). For convince, we termedℑ =

(
µei2π(ðµ), ςei2π(ðς),

νei2π(ðν )
)
a complex T-spherical fuzzy number (CT-SFN).

Definition 5 [32]: Let ℑ be a CT-SFN; then the score
function is characterized by:

S (ℑ) =
1
4

·
(
2 +

(
µt

− ς t − νt
)
+
(
ðtµ − ðtς − ðtν

))
, (3)

where t ∈ [1, ∞), S (ℑ) ∈ [0, 1]. The larger the value of
S (ℑ), the larger the CT-SFN Q.
Definition 6 [32]: Let ℑ be a CT-SFN, then the degree of

accuracy is given in the following manner:

A (ℑ) =
1
4

·
(
2 +

(
µt

+ ς t + νt
)
+
(
ðtµ + ðtς + ðtν

))
, (4)
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where A (ℑ) ∈ [0, 1] . When the computed score values are
same, the larger the degree of accuracy A (ℑ), the larger the
CT-SFN.
Definition 7 [31]: Let ℑ1 and ℑ2 be two CT-SFNs and

† > 0, then the basic rules of operation on them are listed as
shown at the bottom of the page.

The T-spherical fuzzy aggregation operator has garnered
a lot of attention as a useful tool in information fusion.
Mahmood et al. [49] devised the T-spherical fuzzy weighted
averaging (T-SFWA) operator and the T-spherical fuzzy
weighted geometric (T-SFWG) operator as:
Definition 8 [49]: Given a set of T-SFNs Jṙ (ṙ = 1(1)n),

then the T-spherical fuzzy weighted averaging (T-SFWA)
operator is a mapping J n

−→ J such that

T − SFWA (J1,J2, . . . ,Jn)
= ♮1J1 ⊕ ♮2J2 ⊕ . . . ⊕ ♮nJn

=

〈(
1 −

n∏
ṙ=1

(
1 − σ tṙ

)♮ṙ)1/t

,

n∏
ṙ=1

(ςṙ )
♮ṙ ,

n∏
ṙ=1

(ϱṙ )
♮ṙ

〉
, (5)

where ♮ = {♮1, ♮2, . . . , ♮n}
T is the weight vector of

(J1,J2, . . . ,Jn) satisfying 0 ≤ ♮ṙ ≤ 1 and
n∑̇

r=1
♮ṙ = 1.

Definition 9 [49]: Given a set of T-SFNs Jṙ (ṙ = 1(1)n),
then the T-spherical fuzzy weighted geometric (T-SFWG)
operator is a mapping J n

−→ J such that

T − SFWG (J1,J2, . . . ,Jn)
= ♮1J1 ⊗ ♮2J2 ⊗ . . . ⊗ ♮nJn

=

〈
n∏

ṙ=1

(σṙ )
♮ṙ ,

(
1−

n∏
ṙ=1

(
1−ς tṙ

)♮ṙ)1/t

,

×

(
1−

n∏
ṙ=1

(
1−ϱtṙ

)♮ṙ)1/t〉
, (6)

where ♮ = (♮1, ♮2, . . . , ♮n)
T is the weight vector of

(J1,J2, . . . ,Jn) satisfying 0 ≤ ♮ṙ ≤ 1 and
n∑̇

r=1
♮ṙ = 1.

Triangle norms have been extensively studied, beginning
with Zadeh’s presentation of the max and min operation as
a pair of triangular norm (t-norm) and triangular conorm
(t-conorm). Several t-norms and t-conorms, such as the prod-
uct t-norm and probabilistic sum [50], can be mentioned.
Einstein t-norm and t-conorm [51], Lukasiewicz t-norm and
t-conorm [52], Hamacher t-norm and t-conorm [53], etc.,
are vehicles for FS operations. Frank’s operations include
Frank’s product and Frank’s sum, both of which are examples
of triangular norms and conorms.
The Frank t-norm TF and Frank t-conorm SF are described

as follows:

TF (h̄1, h̄2) = log£

(
1 +

(
£h̄1 − 1

) (
£h̄2 − 1

)
£ − 1

)
× ∀ (h̄1, h̄2) ∈ [0, 1]2 , (7)

SF (h̄1, h̄2) = 1 − log£

(
1 +

(
£1−h̄1 − 1

) (
£1−h̄2 − 1

)
£ − 1

)
× ∀ (h̄1, h̄2) ∈ [0, 1]2 . (8)

The following properties of the Frank t-norm and Frank
t-conorm are mentioned [54].

TF (h̄1, h̄2) + SF (h̄1, h̄2) = h̄1 + h̄2, (9)
∂TF (h̄1, h̄2)

∂ h̄1
+

∂SF (h̄1, h̄2)
∂ h̄1

= 1. (10)

The following desirable outcomes are easily verifiable
using limit theory [54].

1). If £ −→ 1, then TF (h̄1, h̄2) −→ h̄1 + h̄2 − h̄1h̄2,
SF (h̄1, h̄2) −→ h̄1h̄2, the Frank t-norm, and Frank t-conorm
are reduced to probabilistic product and probabilistic sum.

2). If £ −→ ∞, then TF (h̄1, h̄2) −→ min (h̄1 + h̄2, 1),
SF (h̄1, h̄2) −→ max (0, h̄1 + h̄2 − 1), the Frank t-norm and
Frank t-conorm are deduced to the Lukasiewicz product and
Lukasiewicz sum, respectively.

III. CT-SF FRANK OPERATIONAL LAWS
This section will present Frank’s CT-SFN operations and
investigate some of its noteworthy features.

1) ℑ1 ⊕ ℑ2 =

((
µt
1 + µt

2 − µt
1µ

t
2

)1/t ei2π(ðtµ1
+ðtµ2

−ðtµ1
ðtµ2

)1/t
, ς1ς2ei2π(ðς 1ðς 2), ν1ν2ei2π(ðν1ðν2)

)
;

2) ℑ1 ⊗ ℑ2 =

(
µ1µ2ei2π(ðµ1ðµ2),

(
ς t1 + ς t2 − ς t1ς

t
2

)1/t ei2π(ðtς 1+ðtς 2−ðtς 1ð
t
ς 2

)1/t
,

(
νt1 + νt2 − νt1ν

t
2

)1/t ei2π(ðtν1+ðtν2−ðtν1ðtν2)
1/t

)
;

3) ℑ
†
1 =

µ
†
1e
i2π

(
ð†

µ1

)
,
(
1 −

(
1 − ς t1

)†)1/t ei2π
(
1−
(
1−ðtς 1

)†)1/t

,
(
1 −

(
1 − νt1

)†)1/t ei2π(1−(1−ðtν1)
†
)1/t ;

4) †ℑ1 =

(1 −
(
1 − µt

1

)†)1/t ei2π
(
1−
(
1−ðtµ1

)†)1/t

, ς
†
1 e

i2π
(
ð†

ς 1

)
, ν

†
1e

i2π
(
ð†

ν 1

) ;

5) ℑ
c
1 =

(
ν1ei2πðν1 , ς1ei2πðς 1 , µQ1e

i2πðµ1
)
.
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Definition 10: Letℑ1 =
(
σ1e2iπðσ 1 , ς1e2iπðς 1 , ϱ1e2iπðϱ1

)
and ℑ2 =

(
σ2e2iπðσ 2 , ς2e2iπðς 2 , ϱ2e2iπðϱ2

)
be two CT-SFNs

and † > 0, then, as 1)–3) and 4) are shown at the bottom of
the page and the next page, respectively.
Remark 2:
1) The operational rules described in Definition 10

deduced to CSFNs if we put t = 2.
2) The operational rules described in Definition 10

deduced to CPFNS if we put t = 1.

3) The operational rules described in Definition 10
deduced to Cq-OFNS if we put ς = 0.

4) The operational rules described in Definition 10
deduced to CPyFS if we put t = 2 and
ς = 0.

5) The operational rules described in Definition 10
deduced to CIFS if we put t = 1 and ς = 0.

We investigate the following outcomes using the operating
rules defined in Definition 10.

1) ℑ1 ⊕ ℑ2 =



t

√√√√1 − log£

(
1 +

(
£1−σ t1−1

)(
£1−σ t2−1

)
£−1

)
e

2iπ t

√√√√√√√1−log£

1+

(
£
1−ðtσ1 −1

)(
£
1−ðtσ2 −1

)
£−1


,

t

√√√√log£

(
1 +

(
£ς t1−1

)(
£ς t2−1

)
£−1

)
e

2iπ t

√√√√√√√log£

1+

(
£
ðtς1 −1

)(
£
ðtς2 −1

)
£−1


,

t

√√√√log£

(
1 +

(
£ϱt1−1

)(
£ϱt2−1

)
£−1

)
e

2iπ t

√√√√√√√log£

1+

(
£
ðtϱ1 −1

)(
£
ðtϱ2 −1

)
£−1





;

2) ℑ1 ⊗ ℑ2 =



t

√√√√log£

(
1 +

(
£σ t1−1

)(
£σ t2−1

)
£−1

)
e

2iπ t

√√√√√√√log£

1+

(
£
ðtσ1 −1

)(
£
ðtσ2 −1

)
£−1


,

t

√√√√1 − log£

(
1 +

(
£1−ς t1−1

)(
£1−ς t2−1

)
£−1

)
e

2iπ t

√√√√√√√1−log£

1+

(
£
1−ðtς1 −1

)(
£
1−ðtς2 −1

)
£−1


,

t

√√√√1 − log£

(
1 +

(
£1−ϱt1−1

)(
£1−ϱt2−1

)
£−1

)
e

2iπ t

√√√√√√√1−log£

1+

(
£
1−ðtϱ1 −1

)(
£
1−ðtϱ2 −1

)
£−1





;

3) ℑ
†
1 =



t

√√√√√log£

1 +

(
£σ t1−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtσ1 −1

)†
(£−1)†−1


,

t

√√√√√1 − log£

1 +

(
£1−ς t1−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√1−log£

1+

(
£
1−ðtς1 −1

)†
(£−1)†−1


,

t

√√√√√1 − log£

1 +

(
£1−ϱt1−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√1−log£

1+

(
£
1−ðtϱ1 −1

)†
(£−1)†−1





;
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Theorem 1: Let ℑℓ = (σℓe2iπðσ ℓ , ςℓe2iπðς ℓ , ϱℓe2iπðϱℓ )
(ℓ = 1, 2) and ℑ = (σe2iπðσ , ςe2iπðς , ϱe2iπðς ) be three
CT-SFNs, and †, †1, †2 > 0, then
1) ℑ1 ⊕ ℑ2 = ℑ2 ⊕ ℑ1;
2) ℑ1 ⊗ ℑ2 = ℑ2 ⊗ ℑ1;
3) † (ℑ1 ⊕ ℑ2) = †ℑ1 ⊕ †ℑ2;
4) (ℑ1 ⊗ ℑ2)

†
= ℑ

†
1 ⊗ ℑ

†
2;

5) †1ℑ ⊕ †2ℑ =
(
†1 + †2

)
ℑ;

6) ℑ
†1 ⊗ ℑ

†2 = ℑ
†1+†2 ;

7)
(
†1†2

)
ℑ = †1

(
†2ℑ

)
.

Proof: Weverify only parts 1, 3, 5 and 7 and analogously
for others.

1. It is obvious.
3. As shown at the bottom of the page, by the Frank

operational rule (4) in Definition 6, it results, as (11), shown
at the bottom of the next page.

Now, (12), as shown at the bottom of page 8.
From Eqs. (11) and (12), we get † (ℑ1 ⊕ ℑ2) = †ℑ1⊕†ℑ2.
5. Equations (13) and (14), as shown at the bottom of

pages 10 and 12, respectively.
Thus, from Eqs. (13) and (14), we get the desired result.
7. As shown in the equation at the bottom of page 12.

From this, we can further write the equation, as shown at
the bottom of page 13.
Theorem 2: Let ℑ1 =

(
σ1e2iπðσ 1 , ς1e2iπðς 1 , ϱ1e2iπðϱ1

)
and ℑ2 =

(
σ2e2iπðσ 2 , ς2e2iπðς 2 , ϱ2e2iπðϱ2

)
be two CT-

SFNs, then

1) (ℑ1 ⊕ ℑ2)
c
= ℑ

c
1 ⊗ ℑ

c
2;

2) (ℑ1 ⊗ ℑ2)
c
= ℑ

c
1 ⊕ ℑ

c
2.

Proof: The proof is trivial; therefore, it is omitted
here.

IV. CT-SF FRANK AGGREGATION OPERATORS AND
THEOREMS
In the following section, we suggest a set of weighted aggre-
gation operators for CT-SFNs on the basis of the devised
Frank operation rules.

A. CT-SF FRANK AVERAGING AGGREGATION OPERATORS
Definition 11: Letℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the Com-
plex T-spherical fuzzy Frank weighted averaging operator

4) †ℑ1 =



t

√√√√√1 − log£

1 +

(
£1−σ t1−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√1−log£

1+

(
£
1−ðtσ1 −1

)†
(£−1)†−1


,

t

√√√√√log£

1 +

(
£ς t1−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtς1 −1

)†
(£−1)†−1


,

t

√√√√√log£

1 +

(
£ϱt1−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtϱ1 −1

)†
(£−1)†−1





;

3. ℑ1 ⊕ ℑ2 =



t

√√√√1 − log£

(
1 +

(
£1−σ t1−1

)(
£1−σ t2−1

)
£−1

)
e

2iπ t

√√√√√√√1−log£

1+

(
£
1−ðtσ1 −1

)(
£
1−ðtσ2 −1

)
£−1


,

t

√√√√log£

(
1 +

(
£ς t1−1

)(
£ς t2−1

)
£−1

)
e

2iπ t

√√√√√√√log£

1+

(
£
ðtς1 −1

)(
£
ðtς2 −1

)
£−1


,

t

√√√√log£

(
1 +

(
£ϱt1−1

)(
£ϱt2−1

)
£−1

)
e

2iπ t

√√√√√√√log£

1+

(
£
ðtϱ1 −1

)(
£
ðtϱ2 −1

)
£−1





,
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(CT-SFFWA) is:

CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn) = ⊕
n
ṙ=1 (⊥ṙℑṙ ) , z (15)

where ⊥ = (⊥1, ⊥2, . . . ,⊥n)
T is the weight vector of

ℑṙ (ṙ = 1(1)n) satisfying that ⊥ṙ > 0 and
n∑̇

r=1
⊥ṙ = 1.

† (ℑ1 ⊕ ℑ2) =



t

√√√√√√√√√√√√√√√√√√
1 − log£


1 +

£

log£

1+

(
£
1−σ t1−1

)(
£
1−σ t2−1

)
£−1


−1



†

(£−1)†−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1−log£



1+


£

log£

1+

(
£
1−ðtσ1 −1

)(
£
1−ðtσ2 −1

)
£−1


−1



†

(£−1)†−1


,

t

√√√√√√√√√√√√√√√√√√
log£


1 +

£

log£

1+

(
£
ς t1−1

)(
£
ς t2−1

)
£−1


−1



†

(£−1)†−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1+


£

log£

1+

(
£
ðtς1 −1

)(
£
ðtς2 −1

)
£−1


−1



†

(£−1)†−1


,

t

√√√√√√√√√√√√√√√√√√
log£


1 +

£

log£

1+

(
£
ϱt1−1

)(
£
ϱt2−1

)
£−1


−1



†

(£−1)†−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1+


£

log£

1+

(
£
ðtϱ1 −1

)(
£
ðtϱ2 −1

)
£−1


−1



†

(£−1)†−1
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=



t

√√√√√1 − log£

1 +

(
£1−σ t1−1

)†(
£1−σ t2−1

)†
(£−1)2†−1

e
2iπ t

√√√√√√√√1−log£

1+

(
£
1−ðtσ1 −1

)†(
£
1−ðtσ2 −1

)†
(£−1)2†−1


,

t

√√√√√log£

1 +

(
£ς t1−1

)†(
£ς t2−1

)†
(£−1)2†−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtς1 −1

)†(
£
ðtς2 −1

)†
(£−1)2†−1


,

t

√√√√√log£

1 +

(
£ϱt1−1

)†(
£ϱt2−1

)†
(£−1)2†−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtϱ1 −1

)†(
£
ðtϱ2 −1

)†
(£−1)2†−1





. (11)

†ℑ1 ⊕ †ℑ2 =



t

√√√√√1 − log£

1 +

(
£1−σ t1−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√1−log£

1+

(
£
1−ðtσ1 −1

)†
(£−1)†−1


,

t

√√√√√log£

1 +

(
£ς t1−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtς1 −1

)†
(£−1)†−1


,

t

√√√√√log£

1 +

(
£ϱt1−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtϱ1 −1

)†
(£−1)†−1





⊕



t

√√√√√1 − log£

1 +

(
£1−σ t2−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√1−log£

1+

(
£
1−ðtσ2 −1

)†
(£−1)†−1


,

t

√√√√√log£

1 +

(
£ς t2−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtς2 −1

)†
(£−1)†−1


,

t

√√√√√log£

1 +

(
£ϱt2−1

)†
(£−1)†−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtϱ2 −1

)†
(£−1)†−1
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=



t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1 − log£



1 +


£

log£

1+

(
£
1−σ t1−1

)†
(£−1)†−1


−1




£

log£

1+

(
£
1−σ t2−1

)†
(£−1)†−1


−1


£−1



e

2iπ t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1−log£



1+


£

log£

1+

(
£
1−ðtσ1 −1

)†
(£−1)†−1


−1




£

log£

1+

(
£
1−ðtσ2 −1

)†
(£−1)†−1


−1


£−1


,

t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1 +


£

log£

1+

(
£
ς t1−1

)†
(£−1)†−1


−1




£

log£

1+

(
£
ς t2−1

)†
(£−1)†−1


−1


£−1



e

2iπ t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1+


£

log£

1+

(
£
ðtς1 −1

)†
(£−1)†−1


−1




£

log£

1+

(
£
ðtς2 −1

)†
(£−1)†−1


−1


£−1


,

t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1 +


£

log£

1+

(
£
ϱt1−1

)†
(£−1)†−1


−1




£

log£

1+

(
£
ϱt2−1

)†
(£−1)†−1


−1


£−1



e

2iπ t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1+


£

log£

1+

(
£
ðtϱ1 −1

)†
(£−1)†−1


−1




£

log£

1+

(
£
ðtϱ2 −1

)†
(£−1)†−1


−1


£−1
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=



t

√√√√√1 − log£

1 +

(
£1−σ t1−1

)†(
£1−σ t2−1

)†
(£−1)2†−1

e
2iπ t

√√√√√√√√1−log£

1+

(
£
1−ðtσ1 −1

)†(
£
1−ðtσ2 −1

)†
(£−1)2†−1


,

t

√√√√√log£

1 +

(
£ς t1−1

)†(
£ς t2−1

)†
(£−1)2†−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtς1 −1

)†(
£
ðtς2 −1

)†
(£−1)2†−1


,

t

√√√√√log£

1 +

(
£ϱt1−1

)†(
£ϱt2−1

)†
(£−1)2†−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtϱ1 −1

)†(
£
ðtϱ2 −1

)†
(£−1)2†−1





. (12)

Especially if ⊥ =

(
1
n ,

1
n , . . . ,

1
n

)T
, then the CT-SFFWA

operator reduces to the Complex T-spherical fuzzy Frank
averaging (CT-SFFA) operator of dimension n, which is
described as below:

CT − SFFA (ℑ1, ℑ2, . . . ,ℑn) =
1
n

⊕
n
ṙ=1 (ℑṙ ) . (16)

Theorem 3: Let ℑṙ =
(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the result
acquired by utilizing the CT-SFFWA operator is still
a CT-SFN, and (17), as shown at the bottom of
page 14.

Proof: We verify it using mathematical induction
on n.

5.

†1ℑ ⊕ †2ℑ =



t

√√√√1 − log£

(
1 +

(
£1−σ t

−1
)†1

(£−1)†1−1

)
e

2iπ t

√√√√√√1−log£

1+

(
£1−ðtσ −1

)†1
(£−1)†1−1


,

t

√√√√log£

(
1 +

(
£ς t

−1
)†1

(£−1)†1−1

)
e

2iπ t

√√√√√√log£

1+

(
£ðtς −1

)†1
(£−1)†1−1


,

t

√√√√log£

(
1 +

(
£ϱt

−1
)†1

(£−1)†1−1

)
e

2iπ t

√√√√√√log£

1+

(
£
ðtϱ −1

)†1
(£−1)†1−1





⊕



t

√√√√1 − log£

(
1 +

(
£1−σ t

−1
)†2

(£−1)†2−1

)
e

2iπ t

√√√√√√1−log£

1+

(
£1−ðtσ −1

)†2
(£−1)†2−1


,

t

√√√√log£

(
1 +

(
£ς t

−1
)†2

(£−1)†2−1

)
e

2iπ t

√√√√√√log£

1+

(
£ðtς −1

)†2
(£−1)†2−1


,

t

√√√√log£

(
1 +

(
£ϱt

−1
)†2

(£−1)†2−1

)
e

2iπ t

√√√√√√log£

1+

(
£
ðtϱ −1

)†2
(£−1)†2−1
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=



t

√√√√√√√√√√√√√√√√√√√√√√√√√

1 − log£



1 +


£

log£

1+

(
£1−σ t −1

)†1
(£−1)†1−1


−1




£

log£

1+

(
£1−σ t −1

)†2
(£−1)†2−1


−1


£−1



e

2iπ t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1−log£



1+


£

log£

1+

(
£1−ðtσ −1

)†1
(£−1)†1−1


−1




£

log£

1+

(
£1−ðtσ −1

)†2
(£−1)†2−1


−1


£−1


,

t

√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1 +


£

log£

1+

(
£ς
t
−1
)†1

(£−1)†1−1


−1




£

log£

1+

(
£ς
t
−1
)†2

(£−1)†2−1


−1


£−1



e

2iπ
t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1+


£

log£

1+

(
£ðtς −1

)†1
(£−1)†1−1


−1




£

log£

1+

(
£ðtς −1

)†2
(£−1)†2−1


−1


£−1


,

t

√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1 +


£

log£

1+

(
£ϱ
t
−1
)†1

(£−1)†1−1


−1




£

log£

1+

(
£ϱ
t
−1
)†2

(£−1)†2−1


−1


£−1



e

2iπ
t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1+


£

log£

1+

(
£
ðtϱ −1

)†1
(£−1)†1−1


−1




£

log£

1+

(
£
ðtϱ −1

)†2
(£−1)†2−1


−1


£−1





=



t

√√√√1 − log£

(
1 +

(
£1−σ t

−1
)†1+†2

(£−1)†1+†2−1

)
e

2iπ t

√√√√√√1−log£

1+

(
£1−ðtσ −1

)†1+†2

(£−1)†1+†2−1


,

t

√√√√log£

(
1 +

(
£ς t

−1
)†1+†2

(£−1)†1+†2−1

)
e

2iπ t

√√√√√√log£

1+

(
£ðtς −1

)†1+†2

(£−1)†1+†2−1


,

t

√√√√log£

(
1 +

(
£ϱt

−1
)†1+†2

(£−1)†1+†2−1

)
e

2iπ t

√√√√√√log£

1+

(
£
ðtϱ −1

)†1+†2

(£−1)†1+†2−1




. (13)
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For n = 2, we get the equation, as shown at the bottom of
pages 14 and 15.

Thus, the result holds for n = 2.
If Eq. (17) holds for n = k , then for n = k + 1,

we get the equation, as shown at the bottom of
pages 16–18.

Thus, the result holds for n = k + 1, and
hence, by the principle of mathematical induction, the
result disclosed in Eq. (17) holds for all positive
integer n.
Example 1: Let ℑ1 = (0.4e2iπ0.3, 0.3e2iπ0.4, 0.5e2iπ0.5),

ℑ2 = (0.7e2iπ0.6, 0.3e2iπ0.4, 0.4e2iπ0.4), ℑ3 = (0.6e2iπ0.5,
0.7e2iπ0.8, 0.8e2iπ0.8) be three CT-SFNs,
and ⊥ = (0.4, 0.3, 0.3)T be the weight vector of ℑṙ (ṙ =

1, 2, 3). Suppose £ = 2, then according to Definition 11 and
Theorem 3, we can obtain (t=4), as shown in the equation at
the bottom of page 18.
Theorem 4: Let ℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, and £ > 1.
As £ −→ 1, the CT-SFFWA operator approaches the

following limit

lim
£−→1

CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn)

=



t

√
1 −

n∏
ṙ=1

(
1 − σ tṙ

)⊥ṙ e
2iπ t

√
1−

n∏
ṙ=1

(
1−ðtσṙ

)⊥ṙ

,

t

√
n∏

ṙ=1

(
ς tṙ

)⊥ṙ e
2iπ t

√
n∏

ṙ=1

(
ðtςṙ

)⊥ṙ

,

t

√
n∏

ṙ=1

(
ϱtṙ

)⊥ṙ e
2iπ t

√
n∏

ṙ=1

(
ðtϱṙ

)⊥ṙ


. (18)

Proof: As £ −→ 1, then
(

n∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ
,

n∏
ṙ=1

(
£ς tṙ − 1

)⊥ṙ
,

n∏
ṙ=1

(
£ϱtṙ − 1

)⊥ṙ
)

−→ ⟨0, 0, 0⟩ by log

property and the rule of infinitesimal changes, we obtain

log£

(
1 +

n∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ

)

=

ln
(
1 +

n∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ
)

ln £
−→

n∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ

ln £

log£

(
1 +

n∏
ṙ=1

(
£ς tṙ − 1

)⊥ṙ

)

(
†1 + †2

)
ℑ =



t

√√√√1 − log£

(
1 +

(
£1−σ t

−1
)†1+†2

(£−1)†1+†2−1

)
e

2iπ t

√√√√√√1−log£

1+

(
£1−ðtσ −1

)†1+†2

(£−1)†1+†2−1


,

t

√√√√log£

(
1 +

(
£ς t

−1
)†1+†2

(£−1)†1+†2−1

)
e

2iπ t

√√√√√√log£

1+

(
£ðtς −1

)†1+†2

(£−1)†1+†2−1


,

t

√√√√log£

(
1 +

(
£ϱt

−1
)†1+†2

(£−1)†1+†2−1

)
e

2iπ t

√√√√√√log£

1+

(
£
ðtϱ −1

)†1+†2

(£−1)†1+†2−1





. (14)

†2ℑ =



t

√√√√1 − log£

(
1 +

(
£1−σ t

−1
)†2

(£−1)†2−1

)
e

2iπ t

√√√√√√1−log£

1+

(
£1−ðtσ −1

)†2
(£−1)†2−1


,

t

√√√√log£

(
1 +

(
£ς t

−1
)†2

(£−1)†2−1

)
e

2iπ t

√√√√√√log£

1+

(
£ðtς −1

)†2
(£−1)†2−1


,

t

√√√√log£

(
1 +

(
£ϱt

−1
)†2

(£−1)†2−1

)
e

2iπ t

√√√√√√log£

1+

(
£
ðtϱ −1

)†2
(£−1)†2−1





.
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†1
(
†2ℑ

)
=



t

√√√√√√√√√√√√√√√
1 − log£


1 +

£

log£

1+

(
£1−σ t −1

)†2
(£−1)†2−1


−1


†1

(£−1)†1−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√√√√√√√

1−log£



1+


£

log£

1+

(
£1−ðtσ −1

)†2
(£−1)†2−1


−1



†1

(£−1)†1−1


,

t

√√√√√√√√√√√√√√√
log£


1 +

£

log£

1+

(
£ς
t
−1
)†2

(£−1)†2−1


−1


†1

(£−1)†1−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1+


£

log£

1+

(
£ðtς −1

)†2
(£−1)†2−1


−1



†1

(£−1)†1−1


,

t

√√√√√√√√√√√√√√√
log£


1 +

£

log£

1+

(
£ϱ
t
−1
)†2

(£−1)†2−1


−1


†1

(£−1)†1−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1+


£

log£

1+

(
£
ðtϱ −1

)†2
(£−1)†2−1


−1



†1

(£−1)†1−1





=



t

√√√√1 − log£

(
1 +

(
£1−σ t

−1
)†1†2

(£−1)†1†2−1

)
e

2iπ t

√√√√√√1−log£

1+

(
£1−ðtσ −1

)†1†2
(£−1)†1†2−1


,

t

√√√√log£

(
1 +

(
£ς t

−1
)†1†2

(£−1)†1†2−1

)
e

2iπ t

√√√√√√log£

1+

(
£ðtς −1

)†1†2
(£−1)†1†2−1


,

t

√√√√log£

(
1 +

(
£ϱt

−1
)†1†2

(£−1)†1†2−1

)
e

2iπ t

√√√√√√log£

1+

(
£
ðtϱ −1

)†1†2
(£−1)†1†2−1




=
(
†1†2

)
ℑ.
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=

ln
(
1 +

n∏
ṙ=1

(
£ς tṙ − 1

)⊥ṙ
)

ln £
−→

n∏
ṙ=1

(
£ς tṙ − 1

)⊥ṙ

ln £

log£

(
1 +

n∏
ṙ=1

(
£ϱtṙ − 1

)⊥ṙ

)

=

ln
(
1 +

n∏
ṙ=1

(
£ϱtṙ − 1

)⊥ṙ
)

ln £
−→

n∏
ṙ=1

(
£ϱtṙ − 1

)⊥ṙ

ln £

Based upon Taylor’s expansion rules, we get

£1−σ tṙ = 1 +
(
1 − σ tṙ

)
ln £ +

(
(1 − σ tṙ ) ln £

)2
2!

+ . . .

£ς tṙ = 1 +
(
ς tṙ
)
ln £ +

(
(ς tṙ ) ln £

)2
2!

+ . . .

£ϱtṙ = 1 +
(
ϱtṙ
)
ln £ +

(
(ϱtṙ ) ln £

)2
2!

+ . . .

CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn) =



t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtσṙ −1

)⊥ṙ
)
,

t

√
log£

(
1 +

n∏
ṙ=1

(
£ς tṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£ðtςṙ −1

)⊥ṙ
)
,

t

√
log£

(
1 +

n∏
ṙ=1

(
£ϱtṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£ðtϱṙ −1

)⊥ṙ
)


. (17)

CT − SFFWA (ℑ1, ℑ2)

= ⊥1ℑ1 ⊕ ⊥2ℑ2

=



t

√√√√√√√√√√√√√√√√√√√
1−log£


1 +


£

1−

1−log£

1+

(
£
1−σ t1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
1−σ t2 −1

)⊥2

(£−1)⊥2−1




−1


£−1


e

2iπ
t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1−log£



1+


£

1−

1−log£

1+

(
£
1−ðtσ1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
1−ðtσ2 −1

)⊥2

(£−1)⊥2−1




−1


£−1


,

t

√√√√√√√√√√√√√√√√√√√
log£


1 +


£

1−

1−log£

1+

(
£
ς t1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
ς t2 −1

)⊥2

(£−1)⊥2−1




−1


£−1


e

2iπ
t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1+


£

1−

1−log£

1+

(
£
ðtς1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
ðtς2 −1

)⊥2

(£−1)⊥2−1




−1


£−1


,

t

√√√√√√√√√√√√√√√√√√√
log£


1 +


£

1−

1−log£

1+

(
£
ϱt1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
ϱt2 −1

)⊥2

(£−1)⊥2−1




−1


£−1


e

2iπ
t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1+


£

1−

1−log£

1+

(
£
ðtϱ1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
ðtϱ2 −1

)⊥2

(£−1)⊥2−1




−1


£−1
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=



t

√√√√√√√√√√√√√√√√√
1 − log£


1 +

1+

(
£
1−σ t1−1

)⊥1

(£−1)⊥1−1 −1


1+

(
£
1−σ t2−1

)⊥2

(£−1)⊥2−1 −1


£−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√

1−log£


1+

1+

(
£
1−ðtσ1 −1

)⊥1

(£−1)⊥1−1 −1



1+

(
£
1−ðtσ2 −1

)⊥2

(£−1)⊥2−1 −1


£−1


,

t

√√√√√√√√√√√√√√√√√
log£


1 +

1+

(
£
ς t1−1

)⊥1

(£−1)⊥1−1 −1


1+

(
£
ς t2−1

)⊥2

(£−1)⊥2−1 −1


£−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√

log£


1+

1+

(
£
ðtς1 −1

)⊥1

(£−1)⊥1−1 −1



1+

(
£
ðtς2 −1

)⊥2

(£−1)⊥2−1 −1


£−1


,

t

√√√√√√√√√√√√√√√√√
log£


1 +

1+

(
£
ϱt1−1

)⊥1

(£−1)⊥1−1 −1


1+

(
£
ϱt2−1

)⊥2

(£−1)⊥2−1 −1


£−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√

log£


1+

1+

(
£
ðtϱ1 −1

)⊥1

(£−1)⊥1−1 −1



1+

(
£
ðtϱ2 −1

)⊥2

(£−1)⊥2−1 −1


£−1





=



t

√√√√√√√√√√√√√√√√√
1 − log£


1 +

1+

(
£
1−σ t1−1

)⊥1

(£−1)⊥1−1 −1


1+

(
£
1−σ t2−1

)⊥2

(£−1)⊥2−1 −1


£−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√

1−log£


1+

1+

(
£
1−ðtσ1 −1

)⊥1

(£−1)⊥1−1 −1



1+

(
£
1−ðtσ2 −1

)⊥2

(£−1)⊥2−1 −1


£−1


,

t

√√√√√√√√√√√√√√√√√
log£


1 +

1+

(
£
ς t1−1

)⊥1

(£−1)⊥1−1 −1


1+

(
£
ς t2−1

)⊥2

(£−1)⊥2−1 −1


£−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√

log£


1+

1+

(
£
ðtς1 −1

)⊥1

(£−1)⊥1−1 −1



1+

(
£
ðtς2 −1

)⊥2

(£−1)⊥2−1 −1


£−1


,

t

√√√√√√√√√√√√√√√√√
log£


1 +

1+

(
£
ϱt1−1

)⊥1

(£−1)⊥1−1 −1


1+

(
£
ϱt2−1

)⊥2

(£−1)⊥2−1 −1


£−1


e

2iπ t

√√√√√√√√√√√√√√√√√√√√√

log£


1+

1+

(
£
ðtϱ1 −1

)⊥1

(£−1)⊥1−1 −1



1+

(
£
ðtϱ2 −1

)⊥2

(£−1)⊥2−1 −1


£−1
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=



t

√
1 − log£

(
1 +

((
£1−σ t1 − 1

)⊥1
)((

£1−σ t2 − 1
)⊥2

))
e
2iπ t

√√√√1−log£

(
1+

((
£1−ðtσ1 −1

)⊥1
)((

£1−ðtσ2 −1
)⊥2

))
,

t

√
log£

(
1 +

((
£ς t1 − 1

)⊥1
)((

£ς t2 − 1
)⊥2

))
e
2iπ t

√√√√log£

(
1+

((
£ðtς1 −1

)⊥1
)((

£ðtς2 −1
)⊥2

))
,

t

√
log£

(
1 +

((
£ϱt1 − 1

)⊥1
)((

£ϱt2 − 1
)⊥2

))
e
2iπ t

√√√√log£

(
1+

((
£ðtϱ1 −1

)⊥1
)((

£ðtϱ2 −1
)⊥2

))


.

Also, since £ > 1, then ln £ > 0, £1−σ tṙ = 1 +(
1 − σ tṙ

)
ln £ + O (ln £) , £ς tṙ = 1 +

(
ς tṙ

)
ln £ + O (ln £) ,

£ϱtṙ = 1 +
(
ϱtṙ

)
ln £ + O (ln £).

It follows that

(
£1−σ tṙ − 1

)⊥ṙ
−→

((
1 − σ tṙ

)
ln £

)⊥ṙ

n∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ
−→

n∏
ṙ=1

(
1 − σ tṙ

)⊥ṙ
n∏

ṙ=1

(ln £)⊥ṙ

n∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ
−→

n∏
ṙ=1

(
1 − σ tṙ

)⊥ṙ ln (£)

n∑
ṙ=1

⊥ṙ

n∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ

ln £
−→

n∏
ṙ=1

(
1 − σ tṙ

)
.

CT − SFFWA (ℑ1, ℑ2, . . . ,ℑk+1)

= CT − SFFWA (ℑ1, ℑ2, . . . ,ℑk) ⊕ ⊥k+1ℑk+1

=



t

√
1 − log£

(
1 +

k∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√1−log£

(
1+

k∏
ṙ=1

(
£1−ðtσṙ −1

)⊥ṙ
)
,

t

√
log£

(
1 +

k∏
ṙ=1

(
£ς tṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√log£

(
1+

k∏
ṙ=1

(
£ðtςṙ −1

)⊥ṙ
)
,

t

√
log£

(
1 +

k∏
ṙ=1

(
£ϱtṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√log£

(
1+

k∏
ṙ=1

(
£ðtϱṙ −1

)⊥ṙ
)



⊕



t

√√√√√√1 − log£

1 +

(
£
1−σ t(k+1)−1

)⊥(k+1)

(£−1)⊥(k+1)−1

e
2iπ t

√√√√√√√√1−log£

1+

(
£
1−ðtσ(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1


,

t

√√√√√√log£

1 +

(
£
ς t(k+1)−1

)⊥(k+1)

(£−1)⊥(k+1)−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtς(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1


,

t

√√√√√√log£

1 +

(
£
ϱt(k+1)−1

)⊥(k+1)

(£−1)⊥(k+1)−1

e
2iπ t

√√√√√√√√log£

1+

(
£
ðtϱ(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1
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=



t

√√√√√√√√√1 − log£

1 +

k∏
ṙ=1

(
£1−σ tṙ −1

)⊥ṙ

(
£
1−σ t(k+1)−1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1

e
2iπ t

√√√√√√√√√√√√
1−log£


1+

k∏
ṙ=1

(
£
1−ðtσṙ −1

)⊥ṙ

(
£
1−ðtσ(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1


,

t

√√√√√√√√√log£

1 +

k∏
ṙ=1

(
£ς tṙ−1

)⊥ṙ

(
£
ς t(k+1)−1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1

e
2iπ t

√√√√√√√√√√√√
log£


1+

k∏
ṙ=1

(
£
ðtςṙ −1

)⊥ṙ

(
£
ðtς(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1


,

t

√√√√√√√√√log£

1 +

k∏
ṙ=1

(
£ϱtṙ−1

)⊥ṙ

(
£
ϱt(k+1)−1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1

e
2iπ t

√√√√√√√√√√√√
log£


1+

k∏
ṙ=1

(
£
ðtϱṙ −1

)⊥ṙ

(
£
ðtϱ(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1





=



t

√√√√√√1 − log£

1 +

k∏
ṙ=1

(
£1−σ tṙ −1

)⊥ṙ
(
£
1−σ t(k+1)−1

)⊥(k+1)

(£−1)

k∑
ṙ=1

⊥(ṙ)−1
(£−1)(£−1)⊥(k+1)−1

e
2iπ t

√√√√√√√√1−log£

1+

k∏
ṙ=1

(
£
1−ðtσṙ −1

)⊥ṙ
(
£
1−ðtσ(k+1) −1

)⊥(k+1)

(£−1)

k∑
ṙ=1

⊥(ṙ)−1
(£−1)(£−1)

⊥(k+1)−1


,

t

√√√√√√log£

1 +

k∏
ṙ=1

(
£ς tṙ−1

)⊥ṙ
(
£
ς t(k+1)−1

)⊥(k+1)

(£−1)

k∑
ṙ=1

⊥(ṙ)−1
(£−1)(£−1)⊥(k+1)−1

e
2iπ t

√√√√√√√√log£

1+

k∏
ṙ=1

(
£
ðtςṙ −1

)⊥ṙ
(
£
ðtς(k+1) −1

)⊥(k+1)

(£−1)

k∑
ṙ=1

⊥(ṙ)−1
(£−1)(£−1)

⊥(k+1)−1


,

t

√√√√√√log£

1 +

k∏
ṙ=1

(
£ϱtṙ−1

)⊥ṙ
(
£
ϱt(k+1)−1

)⊥(k+1)

k∑
ṙ=1

(£−1)⊥(ṙ)−1
(£−1)(£−1)⊥(k+1)−1

e
2iπ t

√√√√√√√√log£

1+

k∏
ṙ=1

(
£
ðtϱṙ −1

)⊥ṙ
(
£
ðtϱ(k+1) −1

)⊥(k+1)

k∑
ṙ=1

(£−1)
⊥(ṙ)−1

(£−1)(£−1)
⊥(k+1)−1





=



t

√√√√√√√√1 − log£

1 +

k∏
ṙ=1

(
£
1−σ tṙ −1

)⊥ṙ
(
£
1−σ t(k+1)−1

)⊥(k+1)

(£−1)

k+1∑
ṙ=1

⊥(ṙ)−1

e
2iπ t

√√√√√√√√√√1−log£

1+

k∏
ṙ=1

(
£
1−ðtσṙ −1

)⊥ṙ
(
£
1−ðtσ(k+1) −1

)⊥(k+1)

(£−1)

k+1∑
ṙ=1

⊥(ṙ)−1


,

t

√√√√√√√√log£

1 +

k∏
ṙ=1

(
£
ς tṙ −1

)⊥ṙ
(
£
ς t(k+1)−1

)⊥(k+1)

(£−1)

k+1∑
ṙ=1

⊥(ṙ)−1

e
2iπ t

√√√√√√√√√√log£

1+

k∏
ṙ=1

(
£
ðtςṙ −1

)⊥ṙ
(
£
ðtς(k+1) −1

)⊥(k+1)

(£−1)

k+1∑
ṙ=1

⊥(ṙ)−1


,

t

√√√√√√√√log£

1 +

k∏
ṙ=1

(
£
ϱtṙ −1

)⊥ṙ
(
£
ϱt(k+1)−1

)⊥(k+1)

k+1∑
ṙ=1

(£−1)
⊥(ṙ)−1

e
2iπ t

√√√√√√√√√√log£

1+

k∏
ṙ=1

(
£
ðtϱṙ −1

)⊥ṙ
(
£
ðtϱ(k+1) −1

)⊥(k+1)

k+1∑
ṙ=1

(£−1)
⊥(ṙ)−1
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=



t

√
1 − log£

(
1 +

k∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ
(
£1−σ t(k+1) − 1

)⊥(k+1)
)

e
2iπ t

√√√√1−log£

(
1+

k∏
ṙ=1

(
£1−ðtσṙ −1

)⊥ṙ
(
£
1−ðtσ(k+1) −1

)⊥(k+1)
)
,

t

√
log£

(
1 +

k∏
ṙ=1

(
£ς tṙ − 1

)⊥ṙ
(
£ς t(k+1) − 1

)⊥(k+1)
)

e
2iπ t

√√√√log£

(
1+

k∏
ṙ=1

(
£ðtςṙ −1

)⊥ṙ
(
£

ðtς(k+1) −1
)⊥(k+1)

)
,

t

√
log£

(
1 +

k∏
ṙ=1

(
£ϱtṙ − 1

)⊥ṙ
(
£ϱt(k+1) − 1

)⊥(k+1)
)

e
2iπ t

√√√√log£

(
1+

k∏
ṙ=1

(
£ðtϱṙ −1

)⊥ṙ
(
£

ðtϱ(k+1) −1
)⊥(k+1)

)



.

Analogously, we can get
n∏

ṙ=1

(
£ς tṙ − 1

)⊥ṙ

ln £
−→

n∏
ṙ=1

(
ς tṙ
)⊥ṙ ,

n∏
ṙ=1

(
£ϱtṙ − 1

)⊥ṙ

ln £
−→

n∏
ṙ=1

(
ϱtṙ
)⊥ṙ ,

e2iπ

n∏
ṙ=1

(
£
1−ðtσṙ −1

)⊥ṙ

ln £ −→ e
2iπ

n∏
ṙ=1

(
1−ðtσṙ

)⊥ṙ

,

e2iπ

n∏
ṙ=1

(
£
ðtςṙ −1

)⊥ṙ

ln £ −→ e
2iπ

n∏
ṙ=1

(
ðtςṙ

)⊥ṙ

,

and e2iπ

n∏
ṙ=1

(
£
ðtϱṙ −1

)⊥ṙ

ln £ −→ e
2iπ

n∏
ṙ=1

(
ðtϱṙ

)⊥ṙ

.

CT − SFFWA (ℑ1, ℑ2, ℑ3)

=



4

√
1 − log2

(
1 +

∏3
ṙ=1

(
21−σ 4

ṙ − 1
)⊥ṙ

)
e
2iπ 4

√√√√1−log2

(
1+
∏3
ṙ=1

(
21−ð4σṙ −1

)⊥ṙ
)
,

4

√
log2

(
1 +

∏3
ṙ=1

(
2ς4

ṙ − 1
)⊥ṙ

)
e
2iπ 4

√√√√log2

(
1+
∏3
ṙ=1

(
2ð4ςṙ −1

)⊥ṙ
)
,

4

√
log2

(
1 +

∏3
ṙ=1

(
2ϱ4ṙ − 1

)⊥ṙ
)
e
2iπ 4

√√√√log2

(
1+
∏3
ṙ=1

(
2ð4ϱṙ −1

)⊥ṙ
)



=



4

√
1 − log2

(
1 +

(
21−0.44 − 1

)0.4 (
21−0.74 − 1

)0.3 (
21−0.64 − 1

)0.3)

e
2iπ 4

√
1−log2

(
1+
(
21−0.34−1

)0.4(
21−0.64−1

)0.3(
21−0.54−1

)0.3)
,

4

√
log2

(
1 +

(
20.34 − 1

)0.4 (
20.34 − 1

)0.3 (
20.74 − 1

)0.3)

e
2iπ 4

√
log2

(
1+
(
20.44−1

)0.4(
20.44−1

)0.3(
20.84−1

)0.3)
,

4

√
log2

(
1 +

(
20.54 − 1

)0.4 (
20.44 − 1

)0.3 (
20.84 − 1

)0.3)

e
2iπ 4

√
log2

(
1+
(
20.54−1

)0.4(
20.44−1

)0.3(
20.84−1

)0.3)


=

(
0.5940e2iπ0.4988, 0.3887e2iπ0.4964, 0.5428e2iπ0.5428

)
.

88988 VOLUME 11, 2023



J. Ali et al.: CT-SF Frank Aggregation Operators and Their Application to Decision Making

Then, we have, as shown in the equation at page 20.
which completes the proof.
Theorem 5: Let ℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ −→ ∞,
the CT-SFFWA operator approaches the following limit

lim
£−→∞

CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn)

=



t

√(
n∑̇

r=1
⊥ṙ
(
σ tṙ

))
e
2iπ t

√( n∑
ṙ=1

⊥ṙ

(
ðtσṙ

))
,

t

√
1 −

(
n∑̇

r=1
⊥ṙ
(
ς tṙ

))
e
2iπ t

√
1−
( n∑
ṙ=1

⊥ṙ

(
ðtςṙ

))
,

t

√
1 −

(
n∑̇

r=1
⊥ṙ
(
ϱtṙ

))
e
2iπ t

√
1−
( n∑
ṙ=1

⊥ṙ

(
ðtϱṙ

))


. (19)

Proof: According to Theorem 3, we have, as shown in
the equation at the bottom of page 20.

Using limit rules, logarithmic transform, and L’Hospital’s
rule, it follows the equation, as shown at the bottom of pages
21–23, which completes the proof of Theorem 5.
Theorem 6 (Idempotency): Let ℑṙ = (σṙe2iπðσ ṙ ,

ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ )(ṙ = 1(1)n) be a class of CT-SFNs,
if ℑṙ = ℑ0 ∀ ṙ , then

CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn) = ℑ0. (20)

Proof: Since for all ṙ ℑṙ = ℑ0 = (σ0e2iπðσ0 , ς0e2iπðς0 ,

ϱ0e2iπðϱ0 ), and
n∑̇

r=1
⊥ṙ = 1 so according to Theorem 3,

we get the equation, as shown at the bottom of
page 23.

Thus, the proof is completed.
Theorem 7 (Monotonicity): Let ℑṙ = (σṙe2iπðσ ṙ ,

ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ )(ṙ = 1(1)n) and ℑ̇ṙ = (σ̇ṙe2iπðσ̇ ṙ ,

ς̇ṙe2iπðς̇ 1 , ϱ̇ṙe2iπðϱ̇ ṙ )(ṙ = 1(1)n) be two classes of CT-SFNs
such that σṙ ≥ σ̇ṙ , ςṙ ≤ ς̇ṙ , ϱṙ ≤ ϱ̇ṙ , ðσṙ ≥ ðσ̇ṙ ,
ðςṙ ≤ ðς̇ṙ ,and ϱṙ ≤ ðϱ̇ṙ ∀ ṙ , then

CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn)

≥ CT − SFFWA
(
ℑ̇1, ℑ̇2, . . . , ℑ̇n

)
. (21)

Proof: Based on Definition 11, when σṙ ≥ σ̇ṙ , ςṙ ≤ ς̇ṙ ,
ϱṙ ≤ ϱ̇ṙ , ðσṙ ≥ ðσ̇ṙ , ðςṙ ≤ ðς̇ṙ , and ϱṙ ≤ ðϱ̇ṙ ∀ ṙ , then

t

√√√√1 − log£

(
1 +

n∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ

)

≥
t

√√√√1 − log£

(
1 +

n∏
ṙ=1

(
£1−σ̇ tṙ − 1

)⊥ṙ

)

t

√√√√log£

(
1 +

n∏
ṙ=1

(
£ς tṙ − 1

)⊥ṙ

)

≤
t

√√√√log£

(
1 +

n∏
ṙ=1

(
£ς̇ tṙ − 1

)⊥ṙ

)

t

√√√√log£

(
1 +

n∏
ṙ=1

(
£ϱtṙ − 1

)⊥ṙ

)

≤
t

√√√√log£

(
1 +

n∏
ṙ=1

(
£ϱ̇tṙ − 1

)⊥ṙ

)

e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtσṙ −1

)⊥ṙ
)

≥ e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£
1−ðt

σ̇ṙ −1
)⊥ṙ

)

e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£ðtςṙ −1

)⊥ṙ
)

≤ e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£

ðt
ς̇ṙ −1

)⊥ṙ
)

e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£ðtϱṙ −1

)⊥ṙ
)

≤ e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£

ðt
ϱ̇ṙ −1

)⊥ṙ
)

Thus, S (CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn)) ≥ S(CT −

SFFWA(ℑ̇1, ℑ̇2, . . . , ℑ̇n)).
Hence, CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn) ≥ CT −

SFFWA
(
ℑ̇1, ℑ̇2, . . . , ℑ̇n

)
.

Theorem 8 (Boundedness): Let ℑṙ = (σṙe2iπðσ ṙ ,

ςṙe2iπðς 1 , ϱṙe2iπðϱ ṙ )(ṙ = 1(1)n) be a class of CT-SFNs,
and let

ℑ
−

=

(
min
1≤ṙ≤n

σṙe
2iπ min

1≤ṙ≤n
ðσṙ

, max
1≤ṙ≤n

ςṙe
2iπ max

1≤ṙ≤n
ðςṙ

,

max
1≤ṙ≤n

ϱṙe
2iπ max

1≤ṙ≤n
ðϱṙ

)
,

ℑ
+

=

(
max
1≤ṙ≤n

σṙe
2iπ max

1≤ṙ≤n
ðσṙ

, min
1≤ṙ≤n

ςṙe
2iπ min

1≤ṙ≤n
ðςṙ

,

min
1≤ṙ≤n

ϱṙe
2iπ min

1≤ṙ≤n
ðϱṙ

)
,

then

ℑ
−

≤ CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn) ≤ ℑ
+. (22)

Proof: Since for all ṙ ,

min
1≤ṙ≤n

σṙe
2iπ min

1≤ṙ≤n
ðσṙ

≤ σṙe2iπðσṙ ≤ max
1≤ṙ≤n

σṙe
2iπ max

1≤ṙ≤n
σṙ

,

min
1≤ṙ≤n

ςṙe
2iπ min

1≤ṙ≤n
ςṙ

≤ ςṙe2iπðςṙ ≤ max
1≤ṙ≤n

ςṙe
2iπ max

1≤ṙ≤n
ðςṙ

and

min
1≤ṙ≤n

ϱṙe
2iπ min

1≤ṙ≤n
ðϱṙ

≤ ϱṙe2iπðϱṙ ≤ max
1≤ṙ≤n

ϱṙe
2iπ max

1≤ṙ≤n
ðϱṙ

,

thusly on the basis of idempotency and monotonicity,
we have ℑ

−
≤ CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn) ≤ ℑ

+.
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lim
£−→1

CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn)

= lim
£−→1



t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−σ tṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtσṙ −1

)⊥ṙ
)
,

t

√
log£

(
1 +

n∏
ṙ=1

(
£ς tṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£ðtςṙ −1

)⊥ṙ
)
,

t

√
log£

(
1 +

n∏
ṙ=1

(
£ϱtṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£ðtϱṙ −1

)⊥ṙ
)



= lim
£−→1



t

√
1 −

ln
(
1+

n∏
ṙ=1

(
£1−σ tṙ −1

)⊥ṙ
)

ln £ e
2iπ

t

√√√√√
1−

ln

1+
n∏

ṙ=1

(
£
1−ðtσṙ −1

)⊥ṙ


ln £ ,

t

√
ln
(
1+

n∏
ṙ=1

(
£ς tṙ−1

)⊥ṙ
)

ln £ e
2iπ

t

√√√√√ ln

1+
n∏

ṙ=1

(
£
ðtςṙ −1

)⊥ṙ


ln £ ,

t

√
ln
(
1+

n∏
ṙ=1

(
£ϱtṙ−1

)⊥ṙ
)

ln £ e
2iπ

t

√√√√√ ln

1+
n∏

ṙ=1

(
£
ðtϱṙ −1

)⊥ṙ


ln £



= lim
£−→1



t

√
1 −

n∏
ṙ=1

(
£1−σ tṙ −1
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ṙ=1

(
1 − σ tṙ
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)⊥ṙ e
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Theorem 9 (Shift-Invariance): Let ℑṙ = (σṙe2iπðσ ṙ ,

ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ )(ṙ = 1(1)n) be a class of CT-SFNs and
ℑ̇ = (σ̇e2iπðσ̇ , ς̇e2iπðς̇ 1 , ϱ̇e2iπðϱ̇ ṙ ) be any other CT-SFNs,
then

CT − SFFWA
(
ℑ1 ⊕ ℑ̇, ℑ2 ⊕ ℑ̇, . . . ,ℑn ⊕ ℑ̇

)
= CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn) ⊕ ℑ̇. (23)

Theorem 10 (Homogeneity): Let ℑṙ = (σṙe2iπðσ ṙ ,

ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ )(ṙ = 1(1)n) be a class of CT-SFNs and
† > 0 be any real number, then

CT − SFFWA (†ℑ1, †ℑ2, . . . , †ℑn)
= †CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn) . (24)

To save space, the proof of the aforesaid two theorems
can be simply deduced from the suggested Frank operational
rules of CT-SFNs; consequently, it is skipped here.
Definition 12: Letℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the Com-
plex T-spherical fuzzy Frank ordered weighted averaging
(T-SFFOWA) operator is:

T − SFFOWA (ℑ1, ℑ2, . . . ,ℑn) = ⊕
n
ṙ=1

(
♮ṙℑδ(ṙ)

)
, (25)

where ♮ = (♮1, ♮2, . . . , ♮n)
T is the position weights of

ℑṙ (ṙ = 1(1)n) such that ♮ṙ > 0 and
n∑̇

r=1
♮ṙ = 1.

(δ(1), δ(2), . . . , δ(n)) is a permutation of (1, 2, 3, . . . , n) so
that ℑδ(ṙ−1) ≥ ℑδ(ṙ) for ṙ = 2(1)n.
Theorem 11: Let ℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱje2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the result acquired
by utilizing the T-SFFOWA operator is still a CT-SFN, and
(26), as shown at the top of page 24.

Proof: Here we omit the proof of this result because it
is same to that of Theorem 3.
Example 2: Let ℑ1 = (0.3e2iπ0.2, 0.3e2iπ0.4, 0.5e2iπ0.5),

ℑ2 = (0.7e2iπ0.6, 0.4e2iπ0.5, 0.5e2iπ0.5), ℑ3 = (0.6e2iπ0.5,
0.7e2iπ0.8, 0.8e2iπ0.8) be three CT-SFNs, then according to
Definition 3 we can get (t=4):

S (ℑ1) = 0.4628, S (ℑ2) = 0.5392, S (ℑ3) = 0.1808.

Since S (ℑ2) > S (ℑ1) > S (ℑ3), we have
ℑδ(1) =

(
0.7e2iπ0.6, 0.4e2iπ0.5, 0.5e2iπ0.5

)
, ℑδ(2) =(

0.3e2iπ0.2, 0.3e2iπ0.4, 0.5e2iπ0.5
)
, ℑδ(3) = (0.6e2iπ0.5,

0.7e2iπ0.8, 0.8e2iπ0.8) and ♮ = (0.3, 0.4, 0.3)T is the
weight vector associated with the T-SFFOWA operator.
Suppose £ = 2, then according to Definition 12 and
Theorem 11, we have the equation, as shown at the middle of
page 24.

Theorem 12: Let ℑṙ =
(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ −→ 1,
the T-SFFOWA operator approaches the limit (27), as shown
at the bottom of page 24.
Theorem 13: Let ℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ −→ ∞,
the T-SFFOWA operator approaches the limit (28), as shown
at the top of page 25.

Likewise CT-SFFWA operator, the T-SFFOWA operator
also adheres the boundedness, idempotency and monotonic-
ity, shift-invariance, and homogeneity properties. Besides the
aforesaid characteristics, the T-SFFOWA operator has the
following noteworthy results.

Theorem 14: Let ℑṙ = (σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ )
(ṙ = 1(1)n) be a class of CT-SFNs, then we have the
following:

i). If ♮ = (1, 0, . . . , 0)T then T − SFFOWA(ℑ1, ℑ2, . . . ,

ℑn) = max{ℑ1, ℑ2, . . . ,ℑn}.
ii). If ♮ = (0, 0, . . . , 1)T then T − SFFOWA(ℑ1, ℑ2, . . . ,

ℑn) = min{ℑ1, ℑ2, . . . ,ℑn}.
iii). If ♮ṙ = 1 and ⊥i = 0(i ̸= ṙ) then T −

SFFOWA(ℑ1, ℑ2, . . . ,ℑn) = ℑδ(ṙ) where ℑδ(ṙ) is the ṙ th
largest of ℑṙ , (ṙ = 1(1)n).

According to definition of CT-SFFWA and T-SFFOWA
operators, we can notice that the CT-SFFWA operator can
weights only the SFNs while T-SFFOWA operator weights
only the ordered position of SFNs. In real-world practical sit-
uations, We should concentrate about both factors at the same
time. Therefore, to circumvent this issue, we state the hybrid
averaging operator based on Frank t-norm and t-conorm,
which weight both the given CT-SFNs and their ordered
positions.
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)⊥ṙ
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£
1−σ tṙ −1
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ṙ=1

(
£
ðtςṙ −1
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ðtϱṙ −1

)⊥ṙ

 n∑
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ṙ=1

(
£ς tṙ−1
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ṙ=1
⊥ṙ
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ðtϱṙ −1

)⊥ṙ
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ðtϱṙ −1

)



88992 VOLUME 11, 2023



J. Ali et al.: CT-SF Frank Aggregation Operators and Their Application to Decision Making

=



t

√
1 −

(
n∑̇

r=1
⊥ṙ
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Definition 13: Letℑṙ =
(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the Complex
T-spherical fuzzy Frank hybrid averaging (CT-SFFHA) oper-
ator is:
CT − SFFHA (ℑ1, ℑ2, . . . ,ℑn) = ⊕

n
ṙ=1

(
♮ṙ ℑ̂δ(ṙ)

)
, (29)

where ♮ = (♮1, ♮2, . . . , ♮n)
T is the weight vector associated

with CT-SFFHA such that ♮ṙ > 0 and
n∑̇

r=1
♮ṙ = 1, ⊥ =

(⊥1, ⊥2, . . . ,⊥n)
T is the weight vector of ℑṙ (ṙ = 1(1)n)

such that ⊥ṙ > 0 and
n∑̇

r=1
⊥ṙ = 1. ℑ̂δ(ṙ) is the ṙ th largest of

the weighted CT-SFNs ℑ̂ṙ

(
ℑ̂ṙ = (n⊥ṙ ) ℑṙ , ṙ = 1(1)n

)
and

n is the balancing coefficient.

Theorem 15: Let ℑṙ =
(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the result

acquired by using the CT-SFFHA operator is still
a CT-SFN, and (30), as shown at the bottom of
page 25.

Proof: We skip the proof of this result since it is analo-
gous to Theorem 3.
Example 3: Let ℑ1 = (0.4e2iπ0.3, 0.5e2iπ0.6, 0.2e2iπ0.2),

ℑ2 = (0.6e2iπ0.5, 0.7e2iπ0.8, 0.8e2iπ0.8) ℑ3 = (0.3e2iπ0.2,
0.6e2iπ0.7, 0.5e2iπ0.5), be three CT-SFNs (t=4), and ⊥ =

(0.4, 0.4, 0.2)T is the weight vector of ℑṙ (ṙ = 1, 2, 3). Sup-
pose £ = 2, then according toDefinition 10, we can obtain the
weighted CT-SFNs, as shown in the equation at the bottom of
pages 26 and 27.

Based on Definition 5, we can determine the score of
ℑ̂ṙ (ṙ = 1, 2, 3) :

S
(
ℑ̂1

)
= 0.4807, S

(
ℑ̂2

)
= 0.2609, S

(
ℑ̂3

)
= 0.3196.

CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn)
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ṙ=1

(
£ðtς0 −1

)⊥ṙ
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Since S
(
ℑ̂1

)
> S

(
ℑ̂3

)
> S

(
ℑ̂2

)
, we have ℑ̂δ(1) =

(0.4185e2iπ0.3114, 0.4289e2iπ0.5363, 0.1423e2iπ0.1423),

ℑ̂δ(2) = (0.2641e2iπ0.2166, 0.7478e2iπ0.6468, 0.6743e2iπ0.4301),
ℑ̂δ(3) = (0.6264e2iπ0.5230, 0.6464e2iπ0.7619, 0.7617e2iπ0.7619).

T − SFFOWA (ℑ1, ℑ2, . . . ,ℑn)

=
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£ϱtδ(ṙ) − 1

)♮ṙ
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. (26)

T − SFFOWA
(
ℑδ(1), ℑδ(2), ℑδ(3)

)

=
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)
e
2iπ 4

√√√√1−log2

(
1+
∏3
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4

√
log2

(
1 +

∏3
ṙ=1

(
2ς4

δ(ṙ) − 1
)♮ṙ
)
e
2iπ 4

√√√√log2

(
1+
∏3
ṙ=1

(
2

ð4ςδ(j) −1
)♮j
)
,

4

√
log2

(
1 +

∏3
ṙ=1

(
2ϱ4δ(ṙ) − 1

)♮ṙ
)
e
2iπ 4

√√√√log2

(
1+
∏3
ṙ=1

(
2

ð4ϱδ(j) −1
)♮j
)



=



4

√
1 − log2

(
1 +

(
21−0.74 − 1

)0.3 (
21−0.34 − 1

)0.4 (
21−0.64 − 1

)0.3)

e
2iπ 4

√
1−log2

(
1+
(
21−0.64−1

)0.3(
21−0.24−1

)0.4(
21−0.54−1

)0.3)
,

4

√
log2

(
1 +

(
20.44 − 1

)0.3 (
20.34 − 1

)0.4 (
20.74 − 1

)0.3)

e
2iπ 4

√
log2

(
1+
(
20.54−1

)0.3(
20.44−1

)0.4(
20.84−1

)0.3)
,

4

√
log2

(
1 +

(
20.54 − 1

)0.3 (
20.54 − 1

)0.4 (
20.84 − 1

)0.3)

e
2iπ 4

√
log2

(
1+
(
20.54−1

)0.3(
20.54−1

)0.4(
20.84−1

)0.3)


=

(
0.5861e2iπ0.4941, 0.4236e2iπ0.5295, 0.5790e2iπ0.5790

)
.

lim
£−→1

T − SFFOWA (ℑ1, ℑ2, . . . ,ℑn) =



t

√
1 −

n∏
ṙ=1

(
1 − σ tδ(ṙ)

)♮ṙ
e
2iπ t

√
1−

n∏
ṙ=1

(
1−ðtσδ(ṙ)

)♮ṙ

,

t

√
n∏

ṙ=1

(
ðtςδ(ṙ)

)♮ṙ
e
2iπ t

√
n∏

ṙ=1

(
ς tδ(ṙ)

)♮ṙ

,

t

√
n∏

ṙ=1

(
ϱtδ(ṙ)

)♮ṙ
e
2iπ t

√
n∏

ṙ=1

(
ðtϱδ(ṙ)

)♮ṙ


. (27)
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Suppose ♮ = (0.3, 0.4, 0.3)T is the weight vector associated
with the CT-SFFHA operator. Then by Definition 13 and
Theorem 15, we can obtain the equation, as shown at the
bottom of pages 26 and 27.
Theorem 16: Let ℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ −→ 1,
the CT-SFFHA operator approaches the limit (31), as shown
at the bottom of page 27.
Theorem 17: Let ℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ −→ ∞,
the CT-SFFHA operator approaches the limit (32), as shown
at the bottom of page 27.

Likewise CT-SFFWA operator, the CT-SFFHA operator
also adheres the boundedness, monotonicity and idempo-
tency, shift-invariance, and homogeneity properties. Besides
the aforesaid characteristics, the CT-SFFHA operator has the
following particular cases.
Corollary 1: CT-SFFWA operator is a particular case of

the CT-SFFHA operator.

Proof: Let ♮ =

(
1
n ,

1
n , . . . ,

1
n

)T
, then

CT − SFFHA (ℑ1, ℑ2, . . . ,ℑn)

= ♮1ℑ̂δ(1) ⊕ ♮2ℑ̂δ(2) ⊕ . . . ⊕ ♮nℑ̂δ(n)

=
1
n

(
ℑ̂δ(1) ⊕ ℑ̂δ(2) ⊕ . . . ⊕ ℑ̂δ(n)

)
= ⊥1ℑ1 ⊕ ⊥2ℑ2 ⊕ . . . ⊕ ⊥nℑn

= CT − SFFWA (ℑ1, ℑ2, . . . ,ℑn) .

Corollary 2: T-SFFOWA operator is a particular case of
the CT-SFFHA operator.

Proof: Let ⊥ =

(
1
n ,

1
n , . . . ,

1
n

)T
, then

CT − SFFHA (ℑ1, ℑ2, . . . ,ℑn)

= ♮1ℑ̂δ(1) ⊕ ♮2ℑ̂δ(2) ⊕ . . . ⊕ ♮nℑ̂δ(n)

= ♮1ℑδ(1) ⊕ ♮2ℑδ(2) ⊕ . . . ⊕ ♮nℑδ(n)

= T − SFFOWA (ℑ1, ℑ2, . . . ,ℑn) .

B. CT-SF FRANK GEOMETRIC AGGREGATION OPERATORS
Based on devised Frank operations, this section provides a
set of Complex T-spherical fuzzy Frank geometric aggre-
gation operators. We will go through the CT-SFFWG,
CT-SFFOWG, and T-SFFHWG, as well as the basic defi-
nitions, remarks, and results, corollary for these operators,
which are formed on the Frank t-norm and t-conorm.
Definition 14: Let ℑṙ =

(
σṙe2iπðσ ṙ , ςje2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the Com-
plex T-spherical fuzzy Frank weighted geometric operator
(CT-SFFWG) is:

CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn) = ⊗
n
ṙ=1 (ℑṙ )

⊥ṙ , (33)

where ⊥ = (⊥1, ⊥2, . . . ,⊥n)
T is the weight vector of

ℑṙ (ṙ = 1(1)n) such that ⊥ṙ > 0 and
∑n

ṙ=1 ⊥ṙ = 1. Espe-

cially if ⊥ =

(
1
n ,

1
n , . . . ,

1
n

)T
, then the CT-SFFWG operator

reduces to the Complex T-spherical fuzzy Frank geometric
(CT-SFFG) operator of dimension n, which is defined as
given below:

CT − SFFA (ℑ1, ℑ2, . . . ,ℑn) = ⊗
n
ṙ=1 (ℑṙ )

1
n . (34)

lim
£−→∞

T − SFFOWA (ℑ1, ℑ2, . . . ,ℑn) =



t

√(
n∑̇

r=1
wṙ
(
σ tδ(ṙ)

))
e
2iπ t

√( n∑
ṙ=1

wṙ

(
ð

σ t
δ(ṙ)

))
,

t

√
1 −

(
n∑̇

r=1
wṙ
(
ϑ t

δ(ṙ)

))
e
2iπ t

√
1−
( n∑
ṙ=1

wṙ

(
ð

ϑ t
δ(ṙ)

))
,

t

√
1 −

(
n∑̇

r=1
wṙ
(
ϱtδ(ṙ)

))
e
2iπ t

√
1−
( n∑
ṙ=1

wṙ
(
ðtϱδ(ṙ)

))


. (28)

CT − SFFHA (ℑ1, ℑ2, . . . ,ℑn) =



t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−σ̂ tδ(ṙ) − 1

)♮ṙ
)
e

2iπ t

√√√√√1−log£

1+
n∏

ṙ=1

(
£
1−ðt

σ̂δ(ṙ) −1

)♮ṙ

,

t

√
log£

(
1 +

n∏
ṙ=1

(
£ς̂ tδ(ṙ) − 1

)♮ṙ
)
e

2iπ t

√√√√√log£

1+
n∏

ṙ=1

(
£

ðt
ς̂δ(ṙ) −1

)♮ṙ

,

t

√
log£

(
1 +

n∏
ṙ=1

(
£ϱ̂tδ(ṙ) − 1

)♮ṙ
)
e

2iπ t

√√√√√log£

1+
n∏

ṙ=1

(
£

ðt
ϱ̂δ(ṙ) −1

)♮ṙ




, (30)
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Theorem 18: Let ℑṙ =
(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the result
acquired by using the CT-SFFWG operator is still
a CT-SFN, and (35), as shown at the bottom of
page 28.

Proof: We verify it using mathematical induction
on n.

For n = 2, we get the equation, as shown at the bottom of
pages 28 and 29. Thus, the result holds for n = 2.

If Eq. (35) holds for n = k , then for n = k + 1, we get the
equation, as shown at the bottom of pages 30–32.

Thus, result holds for n = k+1, and hence, by the principle
of mathematical induction, the result disclosed in Eq. (35)
holds for all positive integer n.

ℑ̂1 = 3 × 0.4 × ℑ1 =



4

√√√√1 − log2

(
1 +

(
21−0.44−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√1−log2

1+

(
21−0.34−1

)3×0.4

(2−1)3×0.4−1


,

4

√√√√log2

(
1 +

(
20.54−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√log2

1+

(
20.6

4
−1
)3×0.4

(2−1)3×0.4−1


,

4

√√√√log2

(
1 +

(
20.24−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√log2

1+

(
20.2

4
−1
)3×0.4

(2−1)3×0.4−1




=

(
0.4185e2iπ0.3114, 0.4289e2iπ0.5363, 0.1423e2iπ0.1423

)
;

ℑ̂2 = 3 × 0.4 × ℑ2 =



4

√√√√1 − log2

(
1 +

(
21−0.64−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√1−log2

1+

(
21−0.54−1

)3×0.4

(2−1)3×0.4−1


,

4

√√√√log2

(
1 +

(
20.74−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√log2

1+

(
20.8

4
−1
)3×0.4

(2−1)3×0.4−1


,

4

√√√√log2

(
1 +

(
20.84−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√log2

1+

(
20.8

4
−1
)3×0.4

(2−1)3×0.4−1




=

(
0.6264e2iπ0.5230, 0.6464e2iπ0.7619, 0.7617e2iπ0.7619

)
;

ℑ̂3 = 3 × 0.2 × ℑ3 =



4

√√√√1 − log2

(
1 +

(
21−0.34−1

)3×0.2

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√1−log2

1+

(
21−0.24−1

)3×0.2

(2−1)3×0.4−1


,

4

√√√√log2

(
1 +

(
20.64−1

)3×0.2

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√log2

1+

(
20.7

4
−1
)3×0.2

(2−1)3×0.4−1


,

4

√√√√log2

(
1 +

(
20.54−1

)3×0.2

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√log2

1+

(
20.5

4
−1
)3×0.2

(2−1)3×0.4−1




=

(
0.2641e2iπ0.2166, 0.7478e2iπ0.6468, 0.6743e2iπ0.4301

)
.
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CT − SFFHA
(
ℑ̂δ(1), ℑ̂δ(2), ℑ̂δ(3)

)
=



4

√
1 − log2

(
1 +

∏3
ṙ=1

(
21−σ̂ 4

δ(j) − 1
)♮j
)
e

2iπ 4

√√√√√1−log2

1+
∏3
ṙ=1

(
2
1−ð4

σ̂δ(j) −1

)♮j

,

4

√
log2

(
1 +

∏3
ṙ=1

(
2ς̂4

δ(j) − 1
)♮j
)
e

2iπ 4

√√√√√log2

1+
∏3
ṙ=1

(
2

ð4
ς̂δ(ṙ) −1

)♮j

,

4

√
log2

(
1 +

∏3
ṙ=1

(
2ϱ̂4δ(j) − 1

)♮j
)
e

2iπ 4

√√√√√log2

1+
∏3
ṙ=1

(
2

ð4
ϱ̂δ(ṙ) −1

)♮j




=



4

√
1 − log2

(
1 +

(
21−0.41854 − 1

)0.3 (
21−0.26414 − 1

)0.4 (
21−0.62644 − 1

)0.3)

e
2iπ 4

√
1−log2

(
1+
(
21−0.31144−1

)0.3(
21−0.21664−1

)0.4(
21−0.52304−1

)0.3)
,

4

√
log2

(
1 +

(
20.42894 − 1

)0.3 (
20.74784 − 1

)0.4 (
20.64644 − 1

)0.3)

e
2iπ 4

√
log2

(
1+
(
20.53634−1

)0.3(
20.64684−1

)0.4(
20.76194−1

)0.3)
,

4

√
log2

(
1 +

(
20.14234 − 1

)0.3 (
20.67434 − 1

)0.4 (
20.76174 − 1

)0.3)

e
2iπ 4

√
log2

(
1+
(
20.14234−1

)0.3(
20.43014−1

)0.4(
20.76194−1

)0.3)


=

(
0.4926e2iπ0.4023, 0.6089e2iπ0.6432, 0.4428e2iπ0.3694

)
.

Example 4 (Continued from Example 1): According to
Definition 14 and Theorem 18, we have the equation, as
shown at the middle of page 33.

Theorem 19: Let ℑṙ =
(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ −→

1, the CT-SFFWG operator approaches the following

lim
£−→1

CT − SFFHA (ℑ1, ℑ2, . . . ,ℑn) =



t

√
1 −

n∏
ṙ=1

(
1 − σ̂ tδ(ṙ)

)♮ṙ
e
2iπ t

√
1−

n∏
ṙ=1

(
1−ðt

σ̂δ(ṙ)

)♮ṙ

,

t

√
n∏

ṙ=1

(
ς̂ tδ(ṙ)

)♮ṙ
e
2iπ t

√
n∏

ṙ=1

(
ðt

ς̂δ(ṙ)

)♮ṙ

,

t

√
n∏

ṙ=1

(
ϱ̂tδ(ṙ)

)♮ṙ
e
2iπ t

√
n∏

ṙ=1

(
ðt

ϱ̂δ(ṙ)

)♮ṙ


. (31)

lim
£−→∞

CT − SFFHA (ℑ1, ℑ2, . . . ,ℑn) =



t

√(
n∑̇

r=1
♮ṙ

(
σ̂ tδ(ṙ)

))
e
2iπ t

√( n∑
ṙ=1

♮ṙ

(
ðt

σ̂δ(ṙ)

))
,

t

√
1 −

(
n∑̇

r=1
♮ṙ

(
ς̂ tδ(ṙ)

))
e
2iπ t

√
1−
( n∑
ṙ=1

♮ṙ

(
ðt

ς̂δ(ṙ)

))
,

t

√
1 −

(
n∑̇

r=1
♮ṙ

(
ϱ̂tδ(ṙ)

))
e
2iπ t

√
1−
( n∑
ṙ=1

♮ṙ

(
ðt

ϱ̂δ(ṙ)

))


. (32)
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limit

lim
£−→1

CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn)

=



t

√
n∏

ṙ=1

(
σ tṙ

)⊥ṙ e
2iπ t

√
n∏

ṙ=1

(
ðtσṙ

)⊥ṙ

,

t

√
1 −

n∏
ṙ=1

(
1 − ς tṙ

)⊥ṙ e
2iπ t

√
1−

n∏
ṙ=1

(
1−ðtςṙ

)⊥ṙ

,

t

√
1 −

n∏
ṙ=1

(
1 − ϱtṙ

)⊥ṙ e
2iπ t

√
1−

n∏
ṙ=1

(
1−ðtϱṙ

)⊥ṙ


. (36)

Proof: As £ −→ 1, then
(

n∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ
,

n∏
ṙ=1

(
£1−ς tṙ − 1

)⊥ṙ
,

n∏
ṙ=1

(
£1−ϱtṙ − 1

)⊥ṙ
)

−→ ⟨0, 0, 0⟩ by

log property and the rule of infinitesimal
changes, we get the equation, as shown at the bottom of
page 33.

According to Taylor’s expansion formula, we get

£ς tṙ = 1 +
(
σ tṙ
)
ln £ +

(
(σ tṙ ) ln £

)2
2!

+ . . .

£1−σ tṙ = 1 +
(
1 − ς tṙ

)
ln £ +

(
(1 − ς tṙ ) ln £

)2
2!

+ . . .

CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn) =



t

√
log£

(
1 +

n∏
ṙ=1

(£σṙ − 1)⊥ṙ

)
e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£ðtσṙ −1

)⊥ṙ
)
,

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ς tṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtςṙ −1

)⊥ṙ
)
,

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ϱtṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtϱṙ −1

)⊥ṙ
)


. (35)

CT − SFFWG (ℑ1, ℑ2) = ℑ
⊥1
1 ⊗ ℑ

⊥2
2

=



t

√√√√√√√√√√√√√√√√√√√
log£


1 +


£

1−

1−log£

1+

(
£
σ t1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
σ t2 −1

)⊥2

(£−1)⊥2−1




−1


£−1


e

2iπ
t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

log£



1+


£

1−

1−log£

1+

(
£
ðtσ1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
ðtσ2 −1

)⊥2

(£−1)⊥2−1




−1


£−1


,

t

√√√√√√√√√√√√√√√√√√√
1 − log£


1 +


£

1−

1−log£

1+

(
£
1−ς t1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
1−ς t2 −1

)⊥2

(£−1)⊥2−1




−1


£−1


e

2iπ
t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1−log£



1+


£

1−

1−log£

1+

(
£
1−ðtς1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
1−ðtς2 −1

)⊥2

(£−1)⊥2−1




−1


£−1


,

t

√√√√√√√√√√√√√√√√√√√
1 − log£


1 +


£

1−

1−log£

1+

(
£
1−ϱt1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
1−ϱt2 −1

)⊥2

(£−1)⊥2−1




−1


£−1


e

2iπ
t

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

1−log£



1+


£

1−

1−log£

1+

(
£
1−ðtϱ1 −1

)⊥1

(£−1)⊥1−1




−1




£

1−

1−log£

1+

(
£
1−ðtϱ2 −1

)⊥2

(£−1)⊥2−1




−1


£−1
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=



t

√√√√√√√√√√log£

1 +

1+

(
£
σ t1−1

)⊥1

(£−1)⊥1−1 −1


1+

(
£
σ t2−1

)⊥2

(£−1)⊥2−1 −1


£−1

e
2iπ t

√√√√√√√√√√√√√√√√
log£


1+

1+

(
£
ðtσ1 −1

)⊥1

(£−1)⊥1−1 −1



1+

(
£
ðtσ2 −1

)⊥2

(£−1)⊥2−1 −1


£−1


,

t

√√√√√√√√√√1 − log£

1 +

1+

(
£
1−ς t1−1

)⊥1

(£−1)⊥1−1 −1


1+

(
£
1−ς t2−1

)⊥2

(£−1)⊥2−1 −1


£−1

e
2iπ t

√√√√√√√√√√√√√√√√
1−log£


1+

1+

(
£
1−ðtς1 −1

)⊥1

(£−1)⊥1−1 −1



1+

(
£
1−ðtς2 −1

)⊥2

(£−1)⊥2−1 −1


£−1


,

t

√√√√√√√√√√1 − log£

1 +

1+

(
£
1−ϱt1−1

)⊥1

(£−1)⊥1−1 −1


1+

(
£
1−ϱt2−1

)⊥2

(£−1)⊥2−1 −1


£−1

e
2iπ t

√√√√√√√√√√√√√√√√
1−log£


1+

1+

(
£
1−ðtϱ1 −1

)⊥1

(£−1)⊥1−1 −1



1+

(
£
1−ðtϱ2 −1

)⊥2

(£−1)⊥2−1 −1


£−1





=



t

√
log£

(
1 +

((
£σ t1 − 1

)⊥1
)((

£σ t2 − 1
)⊥2

))
e
2iπ t

√√√√log£

(
1+

((
£ðtσ1 −1

)⊥1
)((

£ðtσ2 −1
)⊥2

))
,

t

√
1 − log£

(
1 +

((
£1−ς t1 − 1

)⊥1
)((

£1−ς t2 − 1
)⊥2

))
e
2iπ t

√√√√1−log£

(
1+

((
£1−ðtς1 −1

)⊥1
)((

£1−ðtς2 −1
)⊥2

))
,

t

√
1 − log£

(
1 +

((
£1−ϱt1 − 1

)⊥1
)((

£1−ϱt2 − 1
)⊥2

))
e
2iπ t

√√√√1−log£

(
1+

((
£1−ðtϱ1 −1

)⊥1
)((

£1−ðtϱ2 −1
)⊥2

))


.

£1−σ tṙ = 1 +
(
1 − ϱtṙ

)
ln £ +

(
(1 − ϱtṙ ) ln £

)2
2!

+ . . .

Also, since £ > 1, then ln £ > 0, £σ tṙ = 1 +
(
σ tṙ

)
ln £ +

O (ln £) , £1−ς tṙ = 1+
(
1 − ς tṙ

)
ln £+O (ln £) , £1−ϱtṙ = 1+(

1 − ϱtṙ

)
ln £ + O (ln £).

As a result(
£σ tṙ − 1

)⊥ṙ
−→

((
σ tṙ
)
ln £

)⊥ṙ

n∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ
−→

n∏
ṙ=1

(
σ tṙ
)⊥ṙ

n∏
ṙ=1

(ln £)⊥ṙ

n∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ
−→

n∏
ṙ=1

(
σ tṙ
)⊥ṙ ln (£)

n∑
ṙ=1

⊥ṙ

n∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ

ln £
−→

n∏
ṙ=1

(
σ tṙ
)⊥ṙ .

Analogously, we can get

n∏
ṙ=1

(
£1−ς tṙ − 1

)⊥ṙ

ln £
−→

n∏
ṙ=1

(
1 − ς tṙ

)⊥ṙ ,

n∏
ṙ=1

(
£1−ϱtṙ − 1

)⊥ṙ

ln £
−→

n∏
ṙ=1

(
1 − ϱtṙ

)⊥ṙ ,
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e2iπ

n∏
ṙ=1

(
£
ðtσṙ −1

)⊥ṙ

ln £ −→e
2iπ

n∏
ṙ=1

(
ðtσṙ

)⊥ṙ
,

e2iπ

n∏
ṙ=1

(
£
1−ðtςṙ −1

)⊥ṙ

ln £ −→e
2iπ

n∏
ṙ=1

(
1−ðtςṙ

)⊥ṙ
,

e2iπ

n∏
ṙ=1

(
£
1−ðtϱṙ −1

)⊥ṙ

ln £ −→e
2iπ

n∏
ṙ=1

(
1−ðtϱṙ

)⊥ṙ
.

Then, we have the equation, as shown at the bottom of
page 34, which completes the proof.
Theorem 20: Let ℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ −→ ∞,

the CT-SFFWG operator approaches the following limit

lim
£−→∞

CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn)

=



t

√
1 −

(
n∑̇

r=1
⊥ṙ
(
σ tṙ

))
e
2iπ t

√
1−
( n∑
ṙ=1

⊥ṙ

(
ðtσṙ

))
,

t

√(
n∑̇

r=1
⊥ṙ
(
ς tṙ

))
e
2iπ t

√( n∑
ṙ=1

⊥ṙ

(
ðtςṙ

))
,

t

√(
n∑̇

r=1
⊥ṙ
(
ϱtṙ

))
e
2iπ t

√( n∑
ṙ=1

⊥ṙ

(
ðtϱṙ

))


. (37)

CT − SFFWG (ℑ1, ℑ2, . . . ,ℑk+1) = CT − SFFWG (ℑ1, ℑ2, . . . ,ℑk) ⊗ ℑ
⊥k+1
k+1

=



t

√
log£

(
1 +

k∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ
)

e
2iπ t

√√√√log£

(
1+

k∏
ṙ=1

(
£ðtσṙ −1

)⊥ṙ
)
,

t

√
1 − log£

(
1 +

k∏
ṙ=1

(
£1−ς tṙ − 1

)⊥ṙ
)

e
2iπ t

√√√√1−log£

(
1+

k∏
ṙ=1

(
£1−ðtςṙ −1

)⊥ṙ
)
,

t

√
1 − log£

(
1 +

k∏
ṙ=1

(
£1−ϱtṙ − 1

)⊥ṙ
)

e
2iπ t

√√√√1−log£

(
1+

k∏
ṙ=1

(
£1−ðtϱṙ −1

)⊥ṙ
)



⊗



t

√√√√√√log£

1 +

(
£
σ t(k+1)−1

)⊥(k+1)

(£−1)⊥(k+1)−1



e

2iπ t

√√√√√√√√log£

1+

(
£
ðtσ(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1


,

t

√√√√√√1 − log£

1 +

(
£
1−ς t(k+1)−1

)⊥(k+1)

(£−1)⊥(k+1)−1



e

2iπ t

√√√√√√√√1−log£

1+

(
£
1−ðtς(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1


,

t

√√√√√√1 − log£

1 +

(
£
1−ϱt(k+1)−1

)⊥(k+1)

(£−1)⊥(k+1)−1



e

2iπ t

√√√√√√√√1−log£

1+

(
£
1−ðtϱ(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1
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=



t

√√√√√√√√√log£

1 +

k∏
ṙ=1

(
£σ tṙ −1

)⊥ṙ

(
£
σ t(k+1)−1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1



e

2iπ t

√√√√√√√√√√√√
log£


1+

k∏
ṙ=1

(
£
ðtσṙ −1

)⊥ṙ

(
£
ðtσ(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1


,

t

√√√√√√√√√1 − log£

1 +

k∏
ṙ=1

(
£1−ς tṙ−1

)⊥ṙ

(
£
1−ς t(k+1)−1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1



e

2iπ t

√√√√√√√√√√√√
1−log£


1+

k∏
ṙ=1

(
£
1−ðtςṙ −1

)⊥ṙ

(
£
1−ðtς(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1


,

t

√√√√√√√√√1 − log£

1 +

k∏
ṙ=1

(
£1−ϱtṙ−1

)⊥ṙ

(
£
1−ϱt(k+1)−1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1



e

2iπ t

√√√√√√√√√√√√
1−log£


1+

k∏
ṙ=1

(
£
1−ðtϱṙ −1

)⊥ṙ

(
£
1−ðtϱ(k+1) −1

)⊥(k+1)

(£−1)
⊥(k+1)−1

£−1





=



t

√√√√√√log£

1 +

k∏
ṙ=1

(
£σ tṙ −1

)⊥ṙ
(
£
σ t(k+1)−1

)⊥(k+1)

(£−1)

k∑
ṙ=1

⊥(ṙ)−1
(£−1)(£−1)⊥(k+1)−1

e
2iπ t

√√√√√√√√log£

1+

k∏
ṙ=1

(
£
ðtσṙ −1

)⊥ṙ
(
£
ðtσ(k+1) −1

)⊥(k+1)

(£−1)

k∑
ṙ=1

⊥(ṙ)−1
(£−1)(£−1)

⊥(k+1)−1


,

t

√√√√√√1 − log£

1 +

k∏
ṙ=1

(
£1−ς tṙ−1

)⊥ṙ
(
£
1−ς t(k+1)−1

)⊥(k+1)

(£−1)

k∑
ṙ=1

⊥(ṙ)−1
(£−1)(£−1)⊥(k+1)−1

e
2iπ t

√√√√√√√√1−log£

1+

k∏
ṙ=1

(
£
1−ðtςṙ −1

)⊥ṙ
(
£
1−ðtς(k+1) −1

)⊥(k+1)

(£−1)

k∑
ṙ=1

⊥(ṙ)−1
(£−1)(£−1)

⊥(k+1)−1


,

t

√√√√√√1 − log£

1 +

k∏
ṙ=1

(
£1−ϱtṙ−1

)⊥ṙ
(
£
1−ϱt(k+1)−1

)⊥(k+1)

(£−1)

k∑
ṙ=1

⊥(ṙ)−1
(£−1)(£−1)⊥(k+1)−1

e
2iπ t

√√√√√√√√1−log£

1+

k∏
ṙ=1

(
£
1−ðtϱṙ −1

)⊥ṙ
(
£
1−ðtϱ(k+1) −1

)⊥(k+1)

(£−1)

k∑
ṙ=1

⊥(ṙ)−1
(£−1)(£−1)

⊥(k+1)−1
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=



t

√√√√√√log£

1 +

k∏
ṙ=1

(
£σ tṙ −1

)⊥ṙ
(
£
σ t(k+1)−1

)⊥(k+1)

(£−1)

k+1∑
ṙ=1

⊥(ṙ)−1

e
2iπ t

√√√√√√√√log£

1+

k∏
ṙ=1

(
£
ðtσṙ −1

)⊥ṙ
(
£
ðtσ(k+1) −1

)⊥(k+1)

(£−1)

k+1∑
ṙ=1

⊥(ṙ)−1


,

t

√√√√√√1 − log£

1 +

k∏
ṙ=1

(
£1−ς tṙ−1

)⊥ṙ
(
£
1−ς t(k+1)−1

)⊥(k+1)

(£−1)

k+1∑
ṙ=1

⊥(ṙ)−1

e
2iπ t

√√√√√√√√1−log£

1+

k∏
ṙ=1

(
£
1−ðtςṙ −1

)⊥ṙ
(
£
1−ðtς(k+1) −1

)⊥(k+1)

(£−1)

k+1∑
ṙ=1

⊥(ṙ)−1


,

t

√√√√√√1 − log£

1 +

k∏
ṙ=1

(
£1−ϱtṙ−1

)⊥ṙ
(
£
1−ϱt(k+1)−1

)⊥(k+1)

(£−1)

k+1∑
ṙ=1

⊥(ṙ)−1

e
2iπ t

√√√√√√√√1−log£

1+

k∏
ṙ=1

(
£
1−ðtϱṙ −1

)⊥ṙ
(
£
1−ðtϱ(k+1) −1

)⊥(k+1)

(£−1)

k+1∑
ṙ=1

⊥(ṙ)−1





=



t

√
log£

(
1 +

k∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ
(
£σ t(k+1) − 1

)⊥(k+1)
)

e
2iπ t

√√√√log£

(
1+

k∏
ṙ=1

(
£ðtσṙ −1

)⊥ṙ
(
£

ðtσ(k+1) −1
)⊥(k+1)

)
,

t

√
1 − log£

(
1 +

k∏
ṙ=1

(
£1−ς tṙ − 1

)⊥ṙ
(
£1−ς t(k+1) − 1

)⊥(k+1)
)

e
2iπ t

√√√√1−log£

(
1+

k∏
ṙ=1

(
£1−ðtςṙ −1

)⊥ṙ
(
£
1−ðtς(k+1) −1

)⊥(k+1)
)
,

t

√
1 − log£

(
1 +

k∏
ṙ=1

(
£1−ϱtṙ − 1

)⊥ṙ
(
£1−ϱt(k+1) − 1

)⊥(k+1)
)

e
2iπ t

√√√√1−log£

(
1+

k∏
ṙ=1

(
£1−ðtϱṙ −1

)⊥ṙ
(
£
1−ðtϱ(k+1) −1

)⊥(k+1)
)



.

Proof: Based on Theorem 18, we get the equation, as
shown at the bottom of page 35.

Using limit rules, logarithmic transform, and
L’Hospital’s rule, it results, as shown in the equation
at pages 36 and 37, which completes the proof of
Theorem 20.
Theorem 21 (Idempotency): Let ℑṙ = (σṙe2iπðσ ṙ ,

ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ )(ṙ = 1(1)n) be a class of CT-SFNs,
if ℑṙ = ℑ0 ∀ ṙ , then

CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn) = ℑ0. (38)

Proof: Since for all ṙ ℑṙ = ℑ0 = (σ0e2iπðσ0 ,

ς0e2iπðς0 , ϱ0e2iπðϱ0 ), and
n∑̇

r=1
⊥ṙ = 1 so by Theorem 18,

we get the equation, as shown at the bottom of page 38.
Thus, the proof is completed.

Theorem 22 (Monotonicity): Let ℑṙ = (σṙe2iπðσ ṙ ,

ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ )(ṙ = 1(1)n) and ℑ̇ṙ = (σ̇ṙe2iπðσ̇ 1 ,

ς̇ṙe2iπðς̇ ṙ , ϱ̇ṙe2iπðϱ̇ ṙ )(ṙ = 1(1)n) be two families of CT-SFNs
such that σṙ ≥ σ̇ṙ , ςṙ ≤ ς̇ṙ , ϱṙ ≤ ϱ̇ṙ , ðσṙ ≥ ðσ̇ṙ , ðςṙ ≤

ðς̇ṙ ,and ϱṙ ≤ ðϱ̇ṙ ∀ ṙ , then

CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn)

≥ CT − SFFWG
(
ℑ̇1, ℑ̇2, . . . , ℑ̇n

)
. (39)

Proof: Based on Definition 14, when σṙ ≥ σ̇ṙ , ςṙ ≤ ς̇ṙ ,
ϱṙ ≤ ϱ̇ṙ , ðσṙ ≥ ðσ̇ṙ , ðςṙ ≤ ðς̇ṙ , and ϱṙ ≤ ðϱ̇ṙ ∀ ṙ , then

t

√√√√log£

(
1 +

n∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ

)

≤
t

√√√√log£

(
1 +

n∏
ṙ=1

(
£σ̇ tṙ − 1

)⊥ṙ

)
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t

√√√√1 − log£

(
1 +

n∏
ṙ=1

(
£1−ς tṙ − 1

)⊥ṙ

)

≥
t

√√√√1 − log£

(
1 +

n∏
ṙ=1

(
£1−ς̇ tṙ − 1

)⊥ṙ

)

t

√√√√1 − log£

(
1 +

n∏
ṙ=1

(
£1−ϱtṙ − 1

)⊥ṙ

)

≥
t

√√√√1 − log£

(
1 +

n∏
ṙ=1

(
£1−ϱ̇tṙ − 1

)⊥ṙ

)

e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£ðtσṙ −1

)⊥j
)

≤ e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£

ðt
σ̇ṙ −1

)⊥j
)

e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtςṙ −1

)⊥ṙ
)

CT − SFFWG (ℑ1, ℑ2, ℑ3)

=



4

√
log2

(
1 +

∏3
ṙ=1

(
2σ 4

ṙ − 1
)⊥j

)
e
2iπ 4

√√√√log2

(
1+
∏3
j=1

(
2ð4σṙ −1

)⊥ṙ
)
,

4

√
1 − log2

(
1 +

∏3
ṙ=1

(
21−ς4

j − 1
)⊥j

)
e
2iπ 4

√√√√1−log2

(
1+
∏3
ṙ=1

(
2
1−ð4ςj−1

)⊥j
)
,

4

√
1 − log2

(
1 +

∏3
ṙ=1

(
21−ϱ4j − 1

)⊥j
)
e
2iπ 4

√√√√1−log2

(
1+
∏3
ṙ=1

(
21−ð4ϱṙ −1

)⊥j
)



=



4

√
log2

(
1 +

(
20.44 − 1

)0.4 (
20.74 − 1

)0.3 (
20.64 − 1

)0.3)

e
2iπ 4

√
log2

(
1+
(
20.34−1

)0.4(
20.64−1

)0.3(
20.54−1

)0.3)
,

4

√
1 − log2

(
1 +

(
21−0.34 − 1

)0.4 (
21−0.34 − 1

)0.3 (
21−0.74 − 1

)0.3)

e
2iπ 4

√
1−log2

(
1+
(
21−0.44−1

)0.4(
21−0.44−1

)0.3(
21−0.84−1

)0.3)
,

4

√
1 − log2

(
1 +

(
21−0.54 − 1

)0.4 (
21−0.44 − 1

)0.3 (
21−0.84 − 1

)0.3)

e
2iπ 4

√
1−log2

(
1+
(
21−0.54−1

)0.4(
21−0.44−1

)0.3(
21−0.84−1

)0.3)


=

(
0.5363e2iπ0.4301, 0.5358e2iπ0.6285, 0.6418e2iπ0.6418

)
.

log£

(
1 +

n∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ

)
=

ln
(
1 +

n∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ
)

ln £
−→

n∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ

ln £

log£

(
1 +

n∏
ṙ=1

(
£1−ς tṙ − 1

)⊥ṙ

)
=

ln
(
1 +

n∏
ṙ=1

(
£1−ς tṙ − 1

)⊥ṙ
)

ln £
−→

n∏
ṙ=1

(
£1−ς tṙ − 1

)⊥ṙ

ln £

log£

(
1 +

n∏
ṙ=1

(
£1−ϱtṙ − 1

)⊥ṙ

)
=

ln
(
1 +

n∏
ṙ=1

(
£1−ϱtṙ − 1

)⊥ṙ
)

ln £
−→

n∏
ṙ=1

(
£1−ϱtṙ − 1

)⊥ṙ

ln £
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≥ e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£
1−ðt

ς̇ṙ −1
)⊥ṙ

)

e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtϱṙ −1

)⊥ṙ
)

≥ e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£
1−ðt

ϱ̇ṙ −1
)⊥ṙ

)

Thus, S(CT − SFFWG(ℑ1, ℑ2, . . . ,ℑn)) ≥ S(CT −

SFFWG(ℑ̇1, ℑ̇2, . . . , ℑ̇n)).

Hence, CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn) ≥ CT −

SFFWG
(
ℑ̇1, ℑ̇2, . . . , ℑ̇n

)
.

Theorem 23 (Boundedness): Let ℑṙ = (σṙe2iπðσ ṙ ,

ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ )(ṙ = 1(1)n) be a class of CT-SFNs, and
let

ℑ
−

=

(
min
1≤ṙ≤n

σṙe
min

1≤ṙ≤n
σṙ

, max
1≤ṙ≤n

ςṙe
max
1≤ṙ≤n

ςṙ
, max
1≤ṙ≤n

ϱṙe
max
1≤ṙ≤n

ϱṙ
)

,

ℑ
+

=

(
max
1≤ṙ≤n

σṙe
max
1≤ṙ≤n

σṙ
, min
1≤ṙ≤n

ςṙe
min

1≤ṙ≤n
ςṙ

, min
1≤ṙ≤n

ϱṙe
min

1≤ṙ≤n
ϱṙ
)

,

then
ℑ

−
≤ CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn) ≤ ℑ

+. (40)

lim
£−→1

CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn)

= lim
£−→1



t

√
log£

(
1 +

n∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ
)

, e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£ðtσṙ −1

)⊥j
)

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ς tṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtςṙ −1

)⊥ṙ
)
,

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ϱtṙ − 1

)⊥ṙ
)
e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtϱṙ −1

)⊥ṙ
)



= lim
£−→1



t

√
ln
(
1+

n∏
ṙ=1

(
£σ tṙ −1

)⊥ṙ
)

ln £ e
2iπ

t

√√√√√ ln

1+
n∏

ṙ=1

(
£
ðtσṙ −1

)⊥ṙ


ln £ ,

t

√
1 −

ln
(
1+

n∏
ṙ=1

(
£1−ς tṙ−1

)⊥ṙ
)

ln £ e
2iπ

t

√√√√√
1−

ln

1+
n∏

ṙ=1

(
£
1−ðtςṙ −1

)⊥ṙ


ln £ ,

t

√
1 −

ln
(
1+

n∏
ṙ=1

(
£1−ϱtṙ−1

)⊥j
)

ln £ e
2iπ

t

√√√√√
1−

ln

1+
n∏

ṙ=1

(
£
1−ðtϱṙ −1

)⊥ṙ


ln £



= lim
£−→1



t

√
n∏

ṙ=1

(
£σ tṙ −1

)⊥ṙ

ln £ e2iπ
t

√√√√ n∏
ṙ=1

(
£
ðtσṙ −1

)⊥ṙ

ln £ ,

t

√
1 −

n∏
ṙ=1

(
£1−ς tṙ−1

)⊥ṙ

ln £ e2iπ
t

√√√√
1−

n∏
ṙ=1

(
£
1−ðtςṙ −1

)⊥ṙ

ln £ ,

t

√
1 −

n∏
ṙ=1

(
£1−ϱtṙ−1

)⊥ṙ

ln £ e2iπ
t

√√√√
1−

n∏
ṙ=1

(
£
1−ðtϱṙ −1

)⊥ṙ

ln £



=



t

√
n∏

ṙ=1

(
σ tṙ

)⊥ṙ e
2iπ t

√
n∏

ṙ=1

(
ðtσṙ

)⊥ṙ

,

t

√
1 −

n∏
ṙ=1

(
1 − ς tṙ

)⊥ṙ e
2iπ t

√
1−

n∏
ṙ=1

(
1−ðtςṙ

)⊥ṙ

,

t

√
1 −

n∏
ṙ=1

(
1 − ϱtṙ

)⊥ṙ e
2iπ t

√
1−

n∏
ṙ=1

(
1−ðtϱṙ

)⊥ṙ


,
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Proof: Since for all ṙ, min
1≤ṙ≤n

σṙe
min

1≤ṙ≤n
ðσṙ

≤ σṙeðσṙ ≤

max
1≤ṙ≤n

σṙe
max
1≤ṙ≤n

ðσṙ , min
1≤ṙ≤n

ϑṙe
min

1≤ṙ≤n
ðϑṙ

≤ ϑṙeðϑṙ ≤

max
1≤ṙ≤n

ϑṙe
max
1≤ṙ≤n

ðϑṙ and min
1≤ṙ≤n

ϱṙe
min

1≤ṙ≤n
ðϱṙ

≤ ϱṙeðϱṙ ≤

max
1≤ṙ≤n

ϱṙe
max
1≤ṙ≤n

ðϱṙ , thereby on the basis of idempotency and

monotonicity, we get

ℑ
−

≤ CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn) ≤ ℑ
+.

Theorem 24 (Shift-Invariance): Let ℑṙ = (σṙe2iπðσ ṙ ,

ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ )(ṙ = 1(1)n) be a class of CT-SFNs and
ℑ̇ =

(
σ̇e2iπðσ̇ 1 , ς̇e2iπðς̇ ṙ , ϱ̇e2iπðϱ̇ ṙ

)
be any other CT-SFNs,

then

CT − SFFWG
(
ℑ1 ⊗ ℑ̇, ℑ2 ⊗ ℑ̇, . . . ,ℑn ⊗ ℑ̇

)
= CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn) ⊗ ℑ̇. (41)

Theorem 25 (Homogeneity): Let ℑṙ =
(
σṙe2iπðσ ṙ ,

ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ
)
(ṙ = 1(1)n) be a class of CT-SFNs and

† > 0 be any real number, then

CT − SFFWG (†ℑ1, †ℑ2, . . . , †ℑn)
= †CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn) . (42)

To save space, the proof of the aforesaid two theo-
rems can be simply deduced from the suggested Frank
operational rules of CT-SFNs; consequently, it is skipped
here.
Definition 15: Letℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the Com-
plex T-spherical fuzzy Frank ordered weighted geometric
(CT-SFFOWG) operator is:

CT − SFFOWG (ℑ1, ℑ2, . . . ,ℑn) = ⊗
n
ṙ=1

(
ℑ

♮ṙ
δ(ṙ)

)
, (43)

where ♮ = (♮1, ♮2, . . . , ♮n)
T is the position weights of

ℑṙ (ṙ = 1(1)n) such that ♮ṙ > 0 and
n∑̇

r=1
♮ṙ = 1.

(δ(1), δ(2), . . . , δ(n)) is a permutation of (1, 2, 3, . . . , n) such
that ℑδ(ṙ−1) ≥ ℑδ(j) for ṙ = 1(1)n.
Theorem 26: Let ℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the result
acquired by using the CT-SFFOWG operator is still
a CT-SFN, and (45), as shown at the bottom of
page 38.

Proof: We omit the evidence of this result since it is
identical to that of Theorem 18.
Example 5 (Continued From Example 2): Based on

Definition 15 and Theorem 26, we can determine, as shown
in the equation at the top of page 39.
Theorem 27: Let ℑṙ = (σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ )

(ṙ = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ −→ 1,
the CT-SFFOWG operator approaches the limit (46), as
shown at page 39.
Theorem 28: Let ℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, and £ > 1. As £ −→ ∞,
the CT-SFFOWG operator approaches the limit (47), as
shown at page 39.

Likewise CT-SFFWG operator, the CT-SFFOWG oper-
ator also adheres the boundedness, monotonicity and
idempotency, shift-invariance, and homogeneity properties.
Besides the aforesaid properties, the CT-SFFOWG operator
has the following noteworthy results.
Theorem 29: Let ℑṙ = (σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ )

(ṙ = 1(1)n) be a class of CT-SFNs, then we have the
following:

i). If ♮ = (1, 0, . . . , 0)T then CT − SFFOWG(ℑ1, ℑ2, . . . ,

ℑn) = max{ℑ1, ℑ2, . . . ,ℑn}.
ii). If ♮ = (0, 0, . . . , 1)T then CT −SFFOWG(ℑ1, ℑ2, . . . ,

ℑn) = min{ℑ1, ℑ2, . . . ,ℑn}.
iii). If ♮ṙ = 1 and ⊥i = 0(i ̸= ṙ) then CT −

SFFOWG(ℑ1, ℑ2, . . . ,ℑn) = ℑδ(ṙ) where ℑδ(ṙ) is the ṙ th
largest of ℑṙ , (ṙ = 1(1)n).

According to the definition of CT-SFFWG and
CT-SFFOWG operators, we can notice that the CT-SFFWG
operator can weights only the SFNs while CT-SFFOWG
operator weights only the ordered position of SFNs.

lim
£−→∞

CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn)

=



lim
£−→∞

t

√
log£

(
1 +

n∏
ṙ=1

(
£σ tṙ − 1

)⊥ṙ
)
e
2iπ lim

£−→∞

t

√√√√log£

(
1+

n∏
ṙ=1

(
£ðtσṙ −1

)⊥ṙ
)
,

lim
£−→∞

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ς tṙ − 1

)⊥ṙ
)
e
2iπ lim

£−→∞

t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtςṙ −1

)⊥ṙ
)
,

lim
£−→∞

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ϱtṙ − 1

)⊥ṙ
)
e
2iπ lim

£−→∞

t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtϱṙ −1

)⊥ṙ
)


.
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t

√√√√
lim

£−→∞

ln
(
1+

n∏
ṙ=1

(
£σ tṙ −1

)⊥ṙ
)

ln £ e
2iπ

t

√√√√√
lim

£−→∞

ln

1+
n∏

ṙ=1

(
£
ðtσṙ −1

)⊥ṙ


ln £
,

t

√√√√
1 − lim

£−→∞

ln
(
1+

n∏
ṙ=1

(
£1−ϑ tṙ−1

)⊥ṙ
)

ln £ e
2iπ

t

√√√√√
1− lim

£−→∞

ln

1+
n∏

ṙ=1

(
£
1−ðt

ϑṙ −1

)⊥ṙ


ln £
,

t

√√√√
1 − lim

£−→∞

ln
(
1+

n∏
ṙ=1

(
£1−ϱtṙ−1

)⊥ṙ
)

ln £ e
2iπ

t

√√√√√
1− lim

£−→∞

ln

1+
n∏

ṙ=1

(
£
1−ðtϱṙ −1

)⊥ṙ


ln £



=



t

√√√√√√√
1 − lim

£−→∞

n∏
ṙ=1

(
£
σ tṙ −1

)⊥ṙ

1+
n∏

ṙ=1

(
£
σ tṙ −1

)⊥ṙ

(
n∑

ṙ=1
⊥ṙ(ς tṙ)

£
σ tṙ−1

£
σ tṙ −1

)
1
£

e
2iπ

t

√√√√√√√√√√1− lim
£−→∞

n∏
ṙ=1

(
£
ðtσṙ −1

)⊥ṙ

1+
n∏

ṙ=1

(
£
ðtσṙ −1

)⊥ṙ

 n∑
ṙ=1

⊥ṙ(ς tṙ)
£
ðt
σṙ−1

£
ðtσṙ −1


1
£ ,

t

√√√√√√√
1 − lim

£−→∞

n∏
ṙ=1

(
£
1−ς tṙ −1

)⊥ṙ

1+
n∏

ṙ=1

(
£
1−ς tṙ −1

)⊥ṙ

(
n∑

ṙ=1
⊥ṙ(1−ς tṙ)

£
−ς tṙ

£
1−ς tṙ −1

)
1
£

e
2iπ

t

√√√√√√√√√√1− lim
£−→∞

n∏
ṙ=1

(
£
1−ðtςṙ −1

)⊥ṙ

1+
n∏

ṙ=1

(
£
1−ðtςṙ −1

)⊥ṙ

 n∑
ṙ=1

⊥ṙ
(
1−ðtςṙ

)
£
−ðtςṙ

£
1−ðtςṙ −1


1
£ ,

t

√√√√√√√
1 − lim

£−→∞

n∏
ṙ=1

(
£
1−ϱtṙ −1

)⊥ṙ

1+
n∏

ṙ=1

(
£
1−ϱtṙ −1

)⊥ṙ

(
n∑

ṙ=1
⊥ṙ(1−ϱtṙ)

£
−ϱtṙ

£
1−ϱtṙ −1

)
1
£

e
2iπ

t

√√√√√√√√√√1− lim
£−→∞

n∏
ṙ=1

(
£
1−ðtϱṙ −1

)⊥ṙ

1+
n∏

ṙ=1

(
£
1−ðtϱṙ −1

)⊥ṙ

 n∑
ṙ=1

⊥ṙ
(
1−ðtϱṙ

)
£
−ðtϱṙ

£
1−ðtϱṙ −1


1
£ ,



=



t

√√√√√1 − lim
£−→∞

n∏
ṙ=1

(
£σ tṙ −1

)⊥ṙ

1+
n∏

ṙ=1

(
£σ tṙ −1

)⊥ṙ

(
n∑̇

r=1
⊥ṙ
(
σ tṙ

) £σ tṙ

£σ tṙ −1

)

e

2iπ t

√√√√√√√√1− lim
£−→∞

n∏
ṙ=1

(
£
ðtσṙ −1

)⊥ṙ

1+
n∏

ṙ=1

(
£
ðtσṙ −1

)⊥ṙ

(
n∑

ṙ=1
⊥ṙ

(
ðtσṙ

)
£
σ tṙ

£
ðtσṙ −1

)
,

t

√√√√√1 − lim
£−→∞

n∏
ṙ=1

(
£1−ϑ tṙ−1

)⊥ṙ

1+
n∏

ṙ=1

(
£1−ϑ tṙ−1

)⊥ṙ

(
n∑̇

r=1
⊥ṙ
(
1 − ϑ t

ṙ

) £1−ϑ tṙ

£1−ϑ tṙ−1

)

e

2iπ t

√√√√√√√√1− lim
£−→∞

n∏
ṙ=1

(
£
1−ðt

ϑṙ −1

)⊥ṙ

1+
n∏

ṙ=1

(
£
1−ðt

ϑṙ −1

)⊥ṙ

(
n∑

ṙ=1
⊥ṙ

(
1−ðtϑṙ

)
£
1−ðt

ϑṙ

£
1−ðt

ϑṙ −1

)
,

t

√√√√√1 − lim
£−→∞

n∏
ṙ=1

(
£1−ϱtṙ−1

)⊥ṙ

1+
n∏

ṙ=1

(
£1−ϱtṙ−1

)⊥ṙ

(
n∑̇

r=1
⊥ṙ
(
1 − ϱtṙ

) £1−ϱtṙ

£1−ϱtṙ−1

)

e

2iπ t

√√√√√√√√1− lim
£−→∞

n∏
ṙ=1

(
£
1−ðtϱṙ −1

)⊥ṙ

1+
n∏

ṙ=1

(
£
1−ðtϱṙ −1
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(
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ṙ=1
⊥ṙ
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1−ðtϱṙ
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£
1−ðtϱṙ

£
1−ðtϱṙ −1
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=



t

√
1 −

(
n∑̇

r=1
⊥ṙ
(
σ tṙ

))
e
2iπ t

√
1−
( n∑
ṙ=1

⊥ṙ

(
ðtσṙ

))
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t

√
1 −

(
n∑̇

r=1
⊥ṙ
(
1 − ς tṙ
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e
2iπ t

√
1−
( n∑
ṙ=1

⊥ṙ

(
1−ðtςṙ
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t

√
1 −

(
n∑̇

r=1
⊥ṙ
(
1 − ϱtṙ

))
e
2iπ t

√
1−
( n∑
ṙ=1

⊥ṙ

(
1−ðtϱṙ

))



=



t

√
1 −

(
n∑̇

r=1
⊥ṙ
(
σ tṙ

))
e
2iπ t

√
1−
( n∑
ṙ=1

⊥ṙ

(
ðtσṙ

))
,

t

√(
n∑̇

r=1
⊥ṙ
(
ς tṙ

))
e
2iπ t

√( n∑
ṙ=1

⊥ṙ

(
ðtςṙ

))
,

t

√(
n∑̇

r=1
⊥ṙ
(
ϱtṙ

))
e
2iπ t

√( n∑
ṙ=1

⊥ṙ

(
ðtϱṙ

))


,

In real-world practical situations, we should analyse both
factors simultaneously. Thereby, to address this issue, we sate
the hybrid geometric operator based on Frank t-norm and
t-conorm, which weight both the given CT-SFNs and their
ordered positions.
Definition 16: Letℑṙ =

(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the Complex
T-spherical fuzzy Frank hybrid geometric (CT-SFFHG)
operator is:

CT − SFFHG (ℑ1, ℑ2, . . . ,ℑn) = ⊗
n
ṙ=1

(
ℑ̂δ(ṙ)

)♮ṙ
, (44)

where ♮ = (♮1, ♮2, . . . , ♮n)
T is the weight vector asso-

ciated with CT-SFFHG so that ♮ṙ > 0 and
n∑̇

r=1
♮ṙ =

1, ⊥ = (⊥1, ⊥2, . . . ,⊥n)
T is the weight vector of

ℑṙ (ṙ = 1(1)n) so that ⊥ṙ > 0 and
n∑̇

r=1
⊥ṙ = 1.

ℑ̂δ(ṙ) is the ṙ th greatest of the weighted CT-SFNs
ℑ̂ṙ

(
ℑ̂ṙ = (ℑṙ )

n⊥ṙ , ṙ = 1(1)n
)

and n is the balancing
coefficient.

Theorem 30: Let ℑṙ =
(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, then the result acquired
by utilizing the CT-SFFHG operator is still a CT-SFN, and
(48), as shown at the bottom of page 40.

Proof: We omit the verification of this result since it is
identical to that of Theorem 18.

Example 6 (Continued From Example 3): Based on
Definition 10, we can determine the weighted CT-SFNs, as
shown in the equation at the bottom of page 40.

According to Definition 5, we can get the score of
ℑ̂ṙ (ṙ = 1, 2, 3) :

S
(
ℑ̂1

)
= 0.4455, S

(
ℑ̂2

)
= 0.1038, S

(
ℑ̂3

)
= 0.3972.

Since S
(
ℑ̂1

)
> S

(
ℑ̂3

)
> S

(
ℑ̂2

)
, we have ℑ̂δ(1) =

(0.3275e2iπ0.2317, 0.5227e2iπ0.6260, 0.2093e2iπ0.2166),
ℑ̂δ(2) = (0.5012e2iπ0.1423, 0.5307e2iπ0.7292, 0.4410e2iπ0.5230),
ℑ̂δ(3) = (0.5353e2iπ0.4301, 0.7290e2iπ0.8293, 0.8292e2iπ0.8293).
Suppose ♮ = (0.3, 0.4, 0.3)T is the weight vector associated
with the CT-SFFHG operator. Then according to Definition
16 and Theorem 30, we can determine, as shown in the
equation at page 41.

Theorem 31: Let ℑṙ =
(
σṙe2iπðσ ṙ , ςṙe2iπðς ṙ , ϱṙe2iπðϱ ṙ

)
(ṙ = 1(1)n) be a class of CT-SFNs, and £ > 1.
As £ −→ 1, the CT-SFFHG operator approaches the limit
(49), as shown at the bottom of page 41.

Theorem 32: Let ℑṙ = (σṙe2iπðσ ṙ , ςṙe2iπðς ṙ e2iπ ,
ϱṙe2iπðϱ ṙ ) (ṙ = 1(1)n) be a class of CT-SFNs, and
£ > 1. As £ −→ ∞, the CT-SFFHG operator
approaches the limit (50), as shown at the bottom of
page 42.

Similar to the CT-SFFWG operator, the CT-SFFHG
operator also adheres the boundedness, idempotency and
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monotonicity, shift-invariance, and homogeneity properties.
Besides the aforementioned properties, the CT-SFFHG oper-
ator has the following particular cases.
Corollary 3: CT-SFFWG operator is a particular case of

the CT-SFFHG operator.

Proof: Let ♮ =

(
1
n ,

1
n , . . . ,

1
n

)T
, then

CT − SFFHG (ℑ1, ℑ2, . . . ,ℑn)

= ℑ̂
♮1
δ(1) ⊗ ℑ̂

♮2
δ(2) ⊗ . . . ⊗ ℑ̂

♮n
δ(n)

=

(
ℑ̂δ(1) ⊗ ℑ̂δ(2) ⊗ . . . ⊗ ℑ̂δ(n)

) 1
n

= ℑ
⊥1
1 ⊗ ℑ

⊥2
2 ⊗ . . . ⊗ ℑ

⊥n
n

= CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn) .

Corollary 4: CT-SFFOWG operator is a particular case of
the CT-SFFHG operator.

Proof: Let ⊥ =

(
1
n ,

1
n , . . . ,

1
n

)T
, then

CT − SFFHG (ℑ1, ℑ2, . . . ,ℑn)

= ℑ̂
♮1
δ(1) ⊗ ℑ̂

♮2
δ(2) ⊗ . . . ⊗ ℑ̂

♮n
δ(n)

= ℑ
♮1
δ(1) ⊗ ℑ

♮2
δ(2) ⊗ . . . ⊗ ℑ

♮n
δ(n)

= CT − SFFOWG (ℑ1, ℑ2, . . . ,ℑn) .

V. MCGDM APPROACH
A. ENUMERATE
Let O = {Ol1,Ol2, . . . ,Olm} be a collection of m alterna-
tives, C = {Cr1, Cr2, . . . , Crn} be a collection of n criteria,
and D = {D1, D2, . . . ,Dl} be the panel of l DEs which
are authorized to evaluate the requirements of MCGDM
problems, including the determination of the criteria and
their weight, and the evaluation of the performance of the
alternatives. Each DE Dx is assigned a weight κx(x =

1(1)l) satisfying
l∑

x=1
κx = 1 to reflect his/her importance

in the decision process. Our goal is to opt the optimal
alternative from the set of m feasible alternatives regarding
n criteria.

B. ALGORITHM
The step-wise mechanism of the framed approach is detailed
as follows:

CT − SFFWG (ℑ1, ℑ2, . . . ,ℑn)

=



t

√
log£

(
1 +

n∏
ṙ=1

(
£σ t0 − 1

)⊥ṙ
)
e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£ðtσ0 −1

)⊥ṙ
)
,

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ς t0 − 1

)⊥ṙ
)
e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtς0 −1

)⊥ṙ
)
,

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ϱt0 − 1

)⊥ṙ
)
e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£1−ðtϱ0 −1

)⊥ṙ
)


=

(
t
√
log£ £

σ t0e2iπ
t
√
log£ £

ðtσ0
,

t
√
1 − log£ £

1−ς t0e2iπ
t
√
1−log£ £

1−ðtς0
,

t
√
1 − log£ £

1−ϱt0e2iπ
t
√
1−log£ £

1−ðtϱ0
)

=

(
σ0e2iπðσ0 , ς0e2iπðς0 , ϱ0e2iπðϱ0

)
= ℑ0.

CT − SFFOWG (ℑ1, ℑ2, . . . ,ℑn)

=



t

√
log£

(
1 +

n∏
ṙ=1

(
£σ tδ(ṙ) − 1

)♮ṙ
)
e
2iπ t

√√√√log£

(
1+

n∏
ṙ=1

(
£

ðtσδ(ṙ) −1
)♮ṙ

)
,

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ς tδ(ṙ) − 1

)♮ṙ
)
e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£
1−ðtςδ(ṙ) −1

)♮ṙ
)
,

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ϱtδ(j) − 1

)♮j
)
e
2iπ t

√√√√1−log£

(
1+

n∏
ṙ=1

(
£
1−ðtϱδ(ṙ) −1

)♮ṙ
)


. (45)

89008 VOLUME 11, 2023



J. Ali et al.: CT-SF Frank Aggregation Operators and Their Application to Decision Making

Step 1: Creation of individual evaluation matrices:
Each DE on the panel thoroughly examines the
MCGDM problem and specifies the evaluation

criteria for each alternative. Each DE evaluates
the proficiencies and capabilities of alternatives in
relation to particular criteria and assigns them lin-

CT − SFFOWG
(
ℑδ(1), ℑδ(2), ℑδ(3)

)

=



4

√
log2

(
1 +

∏3
ṙ=1

(
2σ 4

δ(ṙ) − 1
)♮ṙ
)
e
2iπ 4

√√√√log2

(
1+
∏3
ṙ=1

(
2

ð4σδ(ṙ) −1
)♮ṙ

)
,

4

√
1 − log2

(
1 +

∏3
ṙ=1

(
21−ς4

δ(ṙ) − 1
)♮ṙ
)
e
2iπ 4

√√√√1−log2

(
1+
∏3
ṙ=1

(
2
1−ð4ςδ(ṙ) −1

)♮ṙ
)
,

4

√
1 − log2

(
1 +

∏3
ṙ=1

(
21−ϱ4δ(ṙ) − 1

)♮ṙ
)
e
2iπ 4

√√√√1−log2

(
1+
∏3
ṙ=1

(
2
1−ð4ϱδ(ṙ) −1

)♮ṙ
)



=



4

√
log2

(
1 +

(
20.74 − 1

)0.3 (
20.34 − 1

)0.4 (
20.64 − 1

)0.3)

e
2iπ 4

√
log2

(
1+
(
20.64−1

)0.3(
20.24−1

)0.4(
20.54−1

)0.3)
,

4

√
1 − log2

(
1 +

(
21−0.44 − 1

)0.3 (
21−0.34 − 1

)0.4 (
21−0.74 − 1

)0.3)

e
2iπ 4

√
1−log2

(
1+
(
21−0.54−1

)0.3(
21−0.44−1

)0.4(
21−0.84−1

)0.3)
,

4

√
1 − log2

(
1 +

(
21−0.54 − 1

)0.3 (
21−0.54 − 1

)0.4 (
21−0.84 − 1

)0.3)

e
2iπ 4

√
1−log2

(
1+
(
21−0.54−1

)0.3(
21−0.54−1

)0.4(
21−0.84−1

)0.3)


=

(
0.4785e2iπ0.3694, 0.5442e2iπ0.6388, 0.6509e2iπ0.6509

)
.

lim
£−→1

CT − SFFOWG (ℑ1, ℑ2, . . . ,ℑn) =



t

√
n∏

ṙ=1

(
σ tδ(ṙ)

)♮ṙ
e
2iπ t

√
n∏

ṙ=1

(
ðtσδ(ṙ)

)♮ṙ

,

t

√
1 −

n∏
ṙ=1

(
1 − ς tδ(ṙ)

)♮ṙ
e
2iπ t

√
1−

n∏
ṙ=1

(
1−ðtςδ(ṙ)

)♮ṙ

,

t

√
1 −

n∏
ṙ=1

(
1 − ϱtδ(ṙ)

)♮ṙ
e
2iπ t

√
1−

n∏
ṙ=1

(
1−ðtϱδ(ṙ)

)♮ṙ


. (46)

lim
£−→∞

CT − SFFOWG (ℑ1, ℑ2, . . . ,ℑn) =



t

√
1 −

(
n∑̇

r=1
wṙ
(
σ tδ(ṙ)

))
e
2iπ t

√
1−
( n∑
ṙ=1

wṙ
(
ðtσδ(ṙ)

))
,

t

√(
n∑̇

r=1
wṙ
(
ϑ t

δ(ṙ)

))
e
2iπ t

√( n∑
ṙ=1

wṙ
(
ðtϑδ(ṙ)

))
,

t

√(
n∑̇

r=1
wṙ
(
ϱtδ(ṙ)

))
e
2iπ t

√( n∑
ṙ=1

wṙ
(
ðtϱδ(ṙ)

))


. (47)
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CT − SFFHG (ℑ1, ℑ2, . . . ,ℑn) =



t

√
log£

(
1 +

n∏
ṙ=1

(
£σ̂ tδ(ṙ) − 1

)♮ṙ
)
e

2iπ t

√√√√√log£

1+
n∏

ṙ=1

(
£

ðt
σ̂δ(ṙ) −1

)♮ṙ

,

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ς̂ tδ(ṙ) − 1

)♮ṙ
)
e

2iπ t

√√√√√1−log£

1+
n∏

ṙ=1

(
£
1−ðt

ς̂δ(ṙ) −1

)♮ṙ

,

t

√
1 − log£

(
1 +

n∏
ṙ=1

(
£1−ϱ̂tδ(ṙ) − 1

)♮ṙ
)
e

2iπ t

√√√√√1−log£

1+
n∏

ṙ=1

(
£
1−ðt

ϱ̂δ(ṙ) −1

)♮ṙ



. (48)

ℑ̂1 = ℑ
3×0.4
1 =



4

√√√√log2

(
1 +

(
20.44−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√log2

1+

(
20.3

4
−1
)3×0.4

(2−1)3×0.4−1


,

4

√√√√1 − log2

(
1 +

(
21−0.54−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√1−log2

1+

(
21−0.64−1

)3×0.4

(2−1)3×0.4−1


,

4

√√√√1 − log2

(
1 +

(
21−0.24−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√1−log2

1+

(
21−0.24−1

)3×0.4

(2−1)3×0.4−1




=

(
0.3275e2iπ0.2317, 0.5227e2iπ0.6260, 0.2093e2iπ0.2166

)
;

ℑ̂2 = ℑ
3×0.4
2 =



4

√√√√log2

(
1 +

(
20.64−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√log2

1+

(
20.5

4
−1
)3×0.4

(2−1)3×0.4−1


,

4

√√√√1 − log2

(
1 +

(
21−0.74−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√1−log2

1+

(
21−0.84−1

)3×0.4

(2−1)3×0.4−1


,

4

√√√√1 − log2

(
1 +

(
21−0.84−1

)3×0.4

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√1−log2

1+

(
21−0.84−1

)3×0.4

(2−1)3×0.4−1




=

(
0.5353e2iπ0.4301, 0.7290e2iπ0.8293, 0.8292e2iπ0.8293

)
;

ℑ̂3 = ℑ
3×0.2
3 =



4

√√√√log2

(
1 +

(
20.34−1

)3×0.2

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√log2

1+

(
20.2

4
−1
)3×0.2

(2−1)3×0.4−1


,

4

√√√√1 − log2

(
1 +

(
21−0.64−1

)3×0.2

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√1−log2

1+

(
21−0.74−1

)3×0.2

(2−1)3×0.4−1


,

4

√√√√1 − log2

(
1 +

(
21−0.54−1

)3×0.2

(2−1)3×0.4−1

)
e

2iπ 4

√√√√√√1−log2

1+

(
21−0.54−1

)3×0.2

(2−1)3×0.4−1




=

(
0.5012e2iπ0.1423, 0.5307e2iπ0.7292, 0.4410e2iπ0.5230

)
.
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guistic terms based on his judgment. The CT-SFNs
that correspond to linguistic terms assigned by the
xth DE Dx are placed in a complex T-spherical
fuzzy decision matrix (CT-SFDM) M (x)

m×n =

(ℑ(x)
iṙ )m×n. In a similar manner, l DEs form l

individual CT-SFDM M1
m×n,M

2
m×n, . . . ,M

l
m×n, as

shown in the equation at page 42, where x =

1(1)l. Each entry ℑ
(x)
iṙ of CT-SFDM of DE Dx

has the form ℑ
(x)
iṙ =

(
µ̈
(x)
iṙ , ς̈

(x)
iṙ , ν̈

(x)
iṙ

)
=(

µ
(x)
iṙ e

i2πðµ
(x)
iṙ , ς

(x)
iṙ e

i2πðς
(x)
iṙ , ν

(x)
iṙ e

i2πðν
(x)
iṙ

)
.

Step 2: Normalization:
In this step, the individual CT-SFDMsmust be trans-
formed pursuant to certain benefit and cost criteria.

The reaction of these two criteria is opposite;
the bigger the value, the better the performance
of the benefit criteria and the poorer the perfor-
mance of the cost criteria. To verify that all criteria
are compatible, we build the normalized CT-SFDM
M̃ (x)
m×n = (̃ℑ(x)

iṙ )m×n according to Formula (51) to
convert cost criteria to benefit criteria, where �b is
a collection of benefit criteria and �c is a series of
cost criteria.

ℑ̃
(x)
iṙ =


ℑ
(x)
iṙ , for Crṙ ∈ �b(
ℑ
(x)
iṙ

)c
, for Crṙ ∈ �c,

(51)

where
(
ℑ
(x)
iṙ

)c
represents the complement of ℑ

(x)
iṙ .

CT − SFFHG
(
ℑ̂δ(1), ℑ̂δ(2), ℑ̂δ(3)

)

=



4

√
log2

(
1 +

∏3
ṙ=1

(
2σ̂ 4

δ(ṙ) − 1
)♮ṙ
)
e
2iπ 4

√√√√log2

(
1+
∏3
ṙ=1

(
2
σ̂4
δ(ṙ)−1

)♮ṙ
)
,

4

√
1 − log2

(
1 +

∏3
ṙ=1

(
21−ς̂4

δ(ṙ) − 1
)♮ṙ
)
e
2iπ 4

√√√√1−log2

(
1+
∏3
ṙ=1

(
2
1−ς̂4

δ(ṙ)−1
)♮ṙ

)
,

4

√
1 − log2

(
1 +

∏3
ṙ=1

(
21−ϱ̂4δ(ṙ) − 1

)♮ṙ
)
e
2iπ 4

√√√√1−log2

(
1+
∏3
ṙ=1

(
2
1−ϱ̂4

δ(ṙ)−1
)♮ṙ

)



=



4

√
log2

(
1 +

(
20.32754 − 1

)0.3 (
20.50124 − 1

)0.4 (
20.53534 − 1

)0.3)

e
2iπ 4

√
log2

(
1+
(
20.23174−1

)0.3(
20.14234−1

)0.4(
20.43014−1

)0.3)
,

4

√
1 − log2

(
1 +

(
21−0.52274 − 1

)0.3 (
21−0.53074 − 1

)0.4 (
21−0.72904 − 1

)0.3)

e
2iπ 4

√
1−log2

(
1+
(
21−0.62604−1

)0.3(
21−0.72924−1

)0.4(
21−0.82934−1

)0.3)
,

4

√
1 − log2

(
1 +

(
21−0.20934 − 1

)0.3 (
21−0.44104 − 1

)0.4 (
21−0.82924 − 1

)0.3)

e
2iπ 4

√
1−log2

(
1+
(
21−0.21664−1

)0.3(
21−0.52304−1

)0.4(
21−0.82934−1

)0.3)


=

(
0.4506e2iπ0.2317, 0.6152e2iπ0.7464, 0.6516e2iπ0.6632

)
.

lim
£−→1

CT − SFFHG (ℑ1, ℑ2, . . . ,ℑn) =



t

√
n∏

ṙ=1

(
σ̂ tδ(ṙ)

)♮ṙ
e
2iπ t

√
n∏

ṙ=1

(
σ̂ tδ(ṙ)

)♮ṙ

,

t

√
1 −

n∏
ṙ=1

(
1 − ς̂ tδ(ṙ)

)♮ṙ
e
2iπ t

√
1−

n∏
ṙ=1

(
1−ς̂ tδ(ṙ)

)♮ṙ

,

t

√
1 −

n∏
ṙ=1

(
1 − ϱ̂tδ(ṙ)

)♮ṙ
e
2iπ t

√
1−

n∏
ṙ=1

(
1−ϱ̂tδ(ṙ)

)♮ṙ


. (49)
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Step 3: Determination of t:
Determine the smallest t for which each ℑ̃

(x)
iṙ satis-

fies the condition 0 ≤

(
µ̃
(x)
iṙ

)t
+

(
ς̃
(x)
iṙ

)t
+

(̃
ν
(x)
iṙ

)t
≤

1, 0 ≤

(
ð

µ̃
(x)
iṙ

)t
+

(
ð

ς̃
(x)
iṙ

)t
+

(
ð

ν̃
(x)
iṙ

)t
≤ 1.

Step 4: Creation of aggregated evaluation matrix:
Aggregate the normalized CT-SFDM M̃ (x)

m×n(x =

1(1)l) into collective decision matrix M̃m×n =

(̃ℑiṙ )m×n using CT-SFFWA operator (52), as shown
at the bottom of the page.

lim
£−→∞

CT − SFFHG (ℑ1, ℑ2, . . . ,ℑn) =



t

√
1 −

(
n∑̇

r=1
wṙ
(
σ̂ tδ(ṙ)

))
e
2iπ t

√
1−
( n∑
ṙ=1

wṙ
(
σ̂ tδ(ṙ)

))
,

t

√(
n∑̇

r=1
wṙ
(
ϑ̂ t

δ(ṙ)

))
e
2iπ t

√( n∑
ṙ=1

wṙ
(
ϑ̂ tδ(ṙ)

))
,

t

√(
n∑̇

r=1
wṙ
(
ϱ̂tδ(ṙ)

))
e
2iπ t

√( n∑
ṙ=1

wṙ
(
ϱ̂tδ(ṙ)

))


. (50)

M (x)
m×n =

Cr1 · · · Crṙ · · · Crn



Ol1
(
µ̈
(x)
11 , ς̈

(x)
11 , ν̈

(x)
11

)
· · ·

(
µ̈
(x)
1ṙ , ς̈

(x)
1ṙ , ν̈

(x)
1ṙ

)
· · ·

(
µ̈
(x)
1n , ς̈

(x)
1n , ν̈

(x)
1n

)
...

...
. . .

...
. . .

...

Oli
(
µ̈
(x)
i1 , σ

(x)
i1 , ν̈

(x)
i1

)
· · ·

(
µ̈
(x)
iṙ , ς̈

(x)
iṙ , ν̈

(x)
iṙ

)
· · ·

(
µ̈
(x)
in , ς̈

(x)
in , ν̈

(x)
in

)
...

...
. . .

...
. . .

...

Olm
(
µ̈
(x)
m1, ς̈

(x)
m1 , ν̈

(x)
m1

)
· · ·

(
µ̈
(x)
mṙ , ς̈

(x)
mṙ , ν̈

(x)
mṙ

)
· · ·

(
µ̈
(x)
mn, ς̈

(x)
mn , ν̈

(x)
mn

)
,

ℑ̃iṙ = CT − SFFWA
(
ℑ̃
(1)
iṙ ), ℑ̃

(2)
iṙ ), . . . , ℑ̃

(l)
iṙ )
)

=



t

√
1 − log£

(
1 +

l∏
x=1

(
£1−σ̃

(x)t
iṙ − 1

)κx
)
e
2iπ t

√√√√1−log£

(
1+

l∏
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(
£1−ðt

σ̃
(x)
iṙ −1

)κx
)
,

t

√
log£

(
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l∏
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(
£ς̃

(x)t
iṙ − 1

)κx
)
e
2iπ t

√√√√log£

(
1+

l∏
x=1

(
£

ðt
ς̃
(x)
iṙ −1

)κx)
,

t

√
log£

(
1 +

l∏
x=1

(
£ϱ̃

(x)t
iṙ − 1

)κx
)
e
2iπ t

√√√√log£

(
1+

l∏
x=1

(
£

ðt
ϱ̃
(x)
iṙ −1

)κx)


. (52)

⊥ṙ = CT − SFFWA
(
⊥

(1)
ṙ , ⊥

(2)
ṙ , . . . ,⊥

(l)
ṙ

)

=
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√
1 − log£

(
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l∏
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(
£1−σ̃

(x)t
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)κx
)
e
2iπ t
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(
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(
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ṙ −1
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)
,

t

√
log£

(
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l∏
x=1

(
£ς̃

(x)t
ṙ − 1

)κx
)
e
2iπ t

√√√√log£

(
1+

l∏
x=1

(
£

ðt
ς̃
(x)
ṙ −1

)κx)
,

t

√
log£

(
1 +

l∏
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(
£ϱ̃
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ṙ − 1
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e
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, (53)
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Step 5: Assigning criteria weights:
In an MCGDM problem, the criteria chosen by
DEs may not be of equal value and impor-
tance. The panel of DEs evaluates the weight
of criteria by giving linguistic terms to the cri-
teria in accordance with their importance in the
MCGDM problem. Let ℑ

(x)
ṙ =

(
µ̈
(x)
ṙ , ς̈

(x)
ṙ , ν̈

(x)
ṙ

)
=(

µ
(x)
ṙ ei2πðµ

(x)
ṙ , ς

(x)
ṙ ei2πðς

(x)
ṙ , ν

(x)
ṙ ei2πðν

(x)
ṙ

)
be the

CT-SFN assigned to the criteria Crṙ by the expert
Dx . The CT-SFNs assigned to linguistic terms by
DEs are gathered to yield the CT-SF weight vector
weight vector ⊥ = (⊥1, ⊥2, . . . ,⊥n)

T of criteria
(53), as shown at the bottom of previous page, where
ṙ = 1, 2, . . . , n.

Step 6: Determination of weighted decision matrix:
Determine the weighted CT-SFDM (WCT-SFDM)
by making usage of aggregated decision matrix
M̃m×n = (̃ℑiṙ )m×n and the weight vector ⊥ =

(⊥1, ⊥2, . . . ,⊥n)
T of criteria. The entries of WCT-

SFDM M̆m×n = (ℑ̆iṙ )m×n can be ascertained by
(54), as shown at the bottom of the next page.

Step 7: Determination of aggregated values:
a). According to the WCT-SFDM, the aggregated val-

ues ℑ̇i(i = 1(1)m) are computed using CT-SFFA
operator (55), as shown at the bottom of the next
page.

b). According to the WCT-SFDM, the aggregated val-
ues ℑ̇i =

(
σ̇ie2iπðσ̇ i , ς̇1e2iπðς̇ i , ϱ̇ie2iπðϱ̇ i

)
(i =

1(1)m) are computed using CT-SFFG operator (56),
as shown at the bottom of the next page.

Step 8: Evaluation of score values:
Find the score value of the aggregated CT-SFNs
ℑ̇i =

(
σ̇ie2iπðσ̇ i , ς̇1e2iπðς̇ i , ϱ̇ie2iπðϱ̇ i

)
(i = 1(1)m) based on the following equation:

S
(
ℑ̇i
)
=

1
4

·

(
2+

(
µ̇t

− ς̇ t−ν̇t
)
+

(
ðtµ̇ − ðtς̇ − ðtν̇

))
.

(57)

Step 9: Ranking of alternatives:
After calculating the score values, the alternatives
are ranked in descending score value order. The
option with the greatest score represents the optimal
solution for the MCGDM problem.

The graphical representation of the established MCGDM
approach is depicted in Fig. 1.

VI. AN ILLUSTRATIVE EXAMPLE
In this section, we outline anMCGDMproblem, namely ‘‘the
selection of best strategy for water supply to Nohoor village
in Iran’’ (taken from [55]), and solve it by employing the
established approach in order to demonstrate the practical
application of the proposed method.

A. BACKGROUND DESCRIPTION
Nohoor village is located in north-eastern Iran, in Khaf
county, on the border between Khaf city and Qaen city,
and shares a border with Afghanistan. The villagers of
Nohoor make their living through animal rearing and con-
tribute significantly to the province of Khorasan Razavi’s
dairy and meat requirements. Due to a shortage of water
and a scorching climate, the fertile grounds of the town
of Nohoor are unable to support animal husbandry. In the
spring, the peasants migrate to higher ground for grazing,
when plants and grass flourish thanks to the rain. His-
torically, Nohoor spring, located to the south of Nohoor
village, was the only supply of water for the community.
Currently, the Nohoor spring is drying because of the hot
weather, lack of precipitation, and high rate of evaporation.
The villagers of Nohoor village require water for drinking,
agriculture, and livestock rearing. Due to the climate of the
area, digging wells and constructing dams are ineffective
solutions. This study aims to determine the optimal tech-
nique for supplying Nohoor hamlet with water from neigh-
boring villages via subterranean pipelines. The following
strategies are considered as alternatives for addressing this
MCGDM issue:

Ol1: In this strategy, water is transferred from subterranean
supplies near the village of Chahpayab using pipes
rather than water tankers. The primary characteristics
of this technique are the slope of the terrain toward
the settlement of Nohoor, the low pumping cost, the
water pressure, and the relatively low likelihood of pipe
damage. In contrast, the transmission distance for this
technique is quite extensive, and any pipe failure may
increase the risk of flooding.

Ol2: This technique employs an expansion of a previously
built system to feed Nohoor village with water from
subterranean water resources near Mazhnabad village
via pipelines from the distribution network of Chah-
zool village. Both Chahzool and Nooor villages may
see a reduction in water pressure as a result of the
addition of the pipeline to the prior system. The most
significant restriction of this technique is the slope and
steepness of the terrain, which may result in supply
interruptions and pipeline damage. The primary benefit
of this technique is its short transmission distance and
straightforward deployment.

Ol3: In this technique, water from the transmission line of
Chahzool village to the primary source of Mazhnabad
is kept in reservoirs and transported to Nohoor village
via tanker before being stored in pools. The primary
characteristic of this technique is its low cost relative
to other strategies. The disadvantages of this technique
include a lack of water security, a low capacity of water
to meet villages’ demands, and a shortage of water
during unfavorable weather.
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TABLE 1. Linguistic terms and their corresponding CT-SFNs.

Ol4: Pipelines are used in this technique to transport
water from subsurface water resources found in
the vicinity of Mazhnabad village via a well. The

slope of the ground, excellent water security, and
high water pressure are all advantages of this
method.

ℑ̆iṙ = ℑ̃iṙ ⊗ ⊥ṙ =
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ℑ̇i = CT − SFFA
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) 1
n
)
e

2iπ t

√√√√√log£

1+
n∏
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ϱ̆iṙ −1

) 1
n



. (55)

ℑ̇i = CT − SFFG
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ṙ=1

(
£σ̆ tiṙ − 1
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FIGURE 1. Graphical representation of the proposed method.

A panel comprising three DEsD1,D2, andD3 is formed to
thoroughly investigate the critical demands and performance
of various water supply options for this MCGDM problem.
All of the experts agree on the following parameters as the
decision criteria for this MCGDM problem:

Cr1: Initial cost: This involves the costs associated with
establishing the project, such as the cost of tankers,
energy, pipes, pumping, and wages for labourers. The
technique with the lowest starting expense is preferred.

Cr2: Maintenance cost: This criterion includes the cost of
repairing any potential water supply system damage or
failure. The technique with the lowest cost of mainte-
nance is preferable.

Cr3: Water quality: The quality of drinking water is a crucial
consideration. The technique that provides water of
superior quality is desirable.

Cr4: Environmental destruction: The degradation of pas-
turage and other natural water supplies has an impact
on the villagers’ cattle production. The distance
between grazing lands and drinking water for cat-
tle should be kept to a minimum. The plan with
the fewest negative environmental consequences is
preferred.

Cr5: Water security and satisfaction of inhabitants: Nohoor
village contributes significantly to the Iranian economy
by producing meat and dairy products. As a result,
water security and resident contentment are impor-
tant factors in preventing village migration. The tech-
nique that results in greater villagers’ contentment is
desirable.

B. THE DECISION-MAKING PROCESS
The step-by-step solution to the aforesaid MCGDM problem
using the framed technique is as follows:
Step 1: Table 1 is composed of the linguistic terms and their

accompanying CT-SFNs to represent the level of satisfaction
of DEs about potential strategies. Further, the assessments
of the DEs for each strategy with respect to all criteria are
represented in Table 2.
The individual CT-SFDMs of the DE D1, D2, and D3 are

listed in Table 3.
Step 2: Since the criteria Cr1, Cr2 and Cr4 are cost type.

Thus by employing Eq. (51), the original CT-SFDM 3 are
transformed into normalized CT-SFDM, which are shown in
Table 4.
Step 3: As 0.28 + 0.30 + 0.92 = 1.50 /∈ [0, 1], 0.282 +

0.302+0.922 = 1.0148 /∈ [0, 1] and 0.283+0.303+0.923 =
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TABLE 2. DEs’ assessment information corresponding to each criteria.

0.8276 ∈ [0, 1]. In a similar way, we found that all values in
Table 4 belong to [0, 1] for t = 3.

Step 4: The normalized CT-SFDM 4 originally provided
by DEs having the weight vector κ = (0.3, 0.4, 0.3)T , are
aggregated by employing the CT-SFFWA operator Eq. (52),
and the outcomes are depicted in Table 5.

Step 5: The DEs assign linguistic terms to each criteria
that represent the significance of that criteria in the MCGDM
problem, as stated in Table 6. Further, the individual CT-
SF weight of criteria is tabulated in Table 7. Deploying
CT-SFWA operator Eq. (53), on Table 7 CT-SF weight of
criteria is ascertained as follows:

⊥=


(
0.8396e2iπ0.6901, 0.2970e2iπ0.4730, 0.2832e2iπ0.4294

)
,(

0.5313e2iπ0.5339, 0.5298e2iπ0.5326, 0.4493e2iπ0.4210
)
,(

0.5786e2iπ0.8571, 0.3737e2iπ0.3047, 0.3737e2iπ0.4003
)
,(

0.6555e2iπ0.6605, 0.4812e2iπ0.4701, 0.4451e2iπ0.4451
)
,(

0.7048e2iπ0.6987, 0.4451e2iπ0.4418, 0.4148e2iπ0.4148
)


Step 6: According to Eq. (54), the WCT-SFDM is obtained

as shown in Table 8.
Step 7: Based on Eq. (55), the aggregated values ℑ̇i(i =

1(1)m) are obtained as given below.

ℑ̇1 =
(
0.2900e2iπ0.3857, 0.5038e2iπ0.5038, 0.6681e2iπ0.6848

)
,

ℑ̇2 =
(
0.4152e2iπ0.4213, 0.4941e2iπ0.4983, 0.5914e2iπ0.6087

)
,

ℑ̇3 =
(
0.4348e2iπ0.5199, 0.4820e2iπ0.4949, 0.5554e2iπ0.5845

)
,

ℑ̇4 =
(
0.3214e2iπ0.3490, 0.5093e2iπ0.5093, 0.5903e2iπ0.6674

)
.

Based on Eq. (56), the aggregated values ℑ̇i(i = 1(1)m) are
obtained as given below.

ℑ̇1 =

(
0.2711e2iπ0.2970, 0.5148e2iπ0.5164, 0.7003e2iπ0.7221

)
,

ℑ̇2 =

(
0.3340e2iπ0.3704, 0.5030e2iπ0.5108, 0.6281e2iπ0.6551

)
,

ℑ̇3 =

(
0.3477e2iπ0.3904, 0.5019e2iπ0.5061, 0.6122e2iπ0.6354

)
,

ℑ̇4 =

(
0.2861e2iπ0.3189, 0.5161e2iπ0.5210, 0.6203e2iπ0.7008

)
.

Step 8: The score value of each aggregated value obtained
by Eq. (55) is computed by employing Eq. (57) as follows:

S
(
ℑ̇1
)

= 0.7392, S
(
ℑ̇2
)

= 0.7058,

S
(
ℑ̇3
)

= 0.7067, S
(
ℑ̇4
)

= 0.7107.

The score value of each aggregated value obtained by
Eq. (56) is computed by employing Eq. (57) as follows:

S
(
ℑ̇1
)

= 0.7601, S
(
ℑ̇2
)

= 0.7194,

S
(
ℑ̇3
)

= 0.7109, S
(
ℑ̇4
)

= 0.7294.

Step 9: We get the following ranking of water supply
strategies based on the derived score values.
For CT-SFFA operator:

ℑ̇1 > ℑ̇4 > ℑ̇3 > ℑ̇2.

For CT-SFFG operator:

ℑ̇1 > ℑ̇4 > ℑ̇2 > ℑ̇3.

C. IMPACT OF PARAMETER t ON DECISION-MAKING
RESULTS
This section addresses the influence of parameter t on the
alternative ranking results. We varied the value of the param-
eter t using Eqs. (55) and (56) in order to examine the
effect of different parametric values on the final ranking
results. To accomplish this, we assign various values of
t = 3, 5, 7, 9, 11, 13, and 15 and repeat the analytical cal-
culations as tabulated in Tables 9 and 10.

In Tables 9 and 10, the parameters have an effect on the
score values since the score values decrease gradually as
parameter t increases. However, the overall results of the
ranking remain constant.
Figures 2 and 3 depict a geometrical depiction of the

intended work delineated in Tables 9 and 10.
According to Figures 2 and 3, the DE has the option

of selecting different aggregation operators by altering the
adjustment parameter t . However, it should be emphasized
that the ranking results remain unaltered. Thereby, it demon-
strates that the CT-SF Frank operators initiated in this
research are feasible and highly stable.

D. IMPACT OF PARAMETER £ ON DECISION-MAKING
RESULTS
Theorems 3 and 18 reveal that the CT-SFFWA operator
and CT-SFFWG operator provide a large class of CT-SF
aggregation operators via parameters £. To thoroughly com-
prehend the execution of aggregation, we experiment with
parameter values ranging from 3 to 150 for the afore-
mentioned strategies selection problem. The score values
acquired by the CT-SFFA operator and CT-SFFG operator are
represented graphically in Figures 4 and 5 and summarized
in Tables 11 and 12, respectively. From Table 11, we may
deduce that the score values generated by the CT-SFFA oper-
ator increase gradually as the parameter £ increases, whereas
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TABLE 3. CT-SF information corresponding to each criteria.

TABLE 4. Normalized CT-SF information corresponding to each criteria.

TABLE 5. Aggregated CT-SF information matrix.

TABLE 6. Importance of criteria relative to the panel of DEs.

the score function of the CT-SFFG aggregation operator
drops gradually as the parameter £ increases. This implies
that DEs can utilize their preferences to choose the most pre-
ferred values depending on realistic decision circumstances.

By virtue of score values, we are able to obtain the alter-
natives’ absolute ranking results. The preferred ranking in
Table 11 is always Ol1 > Ol4 > Ol3 > Ol2. The preferred
ranking in Table 12 is always Ol1 > Ol4 > Ol2 > Ol3.
Thus, the CT-SFFA operator and CT-SFFG operator provide
only optimal results. In addition, based on Figure 4, we
understand that the ranking outcomes of alternatives are the
samewhen the parameter values differ in the example, and the
consistency of the suggested CT-SFFA operators is indicated
by the uniform ranking outcomes. Figure 5 also demonstrates
that the ranking outcomes of the alternatives remain the same
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TABLE 7. Importance information of criteria in terms of CT-SFNs.

TABLE 8. WCT-SF information matrix.

TABLE 9. Ranking results for different values of t using CT-SFFA operator.

TABLE 10. Ranking results for different values of t using CT-SFFG operator.

regardless of the values of £ in the example, which reflects
the consistency of the suggested CT-SFFG operators.

VII. COMPARATIVE ANALYSIS
In this section, a comparison is made between the proposed
technique and existing approaches to demonstrate the sug-
gested technique’s validity and precision. In addition, this part
has a comprehensive discussion highlighting the supremacy
of the framed approach.

For the purpose of this comparison, the following dif-
ferent types of aggregation operators have been chosen:
CT-SF averaging (CT-SFA) operator [31], CT-SF geometric
(CT-SFG) operator [31], T-spherical fuzzy Frank averag-
ing (T-SFFA) operator [25], T-spherical fuzzy Frank geo-
metric (T-SFFG) operator [25], complex q-rung orthopair
fuzzy Frank averaging operator (Cq-OFFA) [42], complex q-
rung orthopair fuzzy Frank geometric operator (Cq-OFFG)
[42], CT-SF Dombi averaging (CT-FDA) operator [32], CT-
SF Dombi geometric (CT-SFDG) operator [32], complex
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TABLE 11. Ranking results by CT-SFFA with various £.

TABLE 12. Ranking results by CT-SFFG with various £.

FIGURE 2. Ranking of alternatives by CT-SFFA operator for different
values of t .

spherical fuzzy prioritized averaging (CSFPA) operator [56],
complex spherical fuzzy prioritized geometric (CSFPG)
operator [56] and T-spherical fuzzy fairly weighted averag-
ing operator(T-SFFFWA) operator [58]. As most of these
existing approaches are unable for group decision issues
with CT-SF criteria weight information. We implement these
operators on Table 8 to make comparisons possible and more
effective. The score values and ranking order of alternatives
deploying preexisting and devised operators are displayed
in Table 13.
On the basis of Table 13 ’s ranking, a Spearman correlation

analysis is performed to produce Figure 6.
From Table 13, it can be seen that the ranking results

provided by CT-SFA and CT-SFG operators [31] are identical

FIGURE 3. Ranking of alternatives by CT-SFFG operator for different
values of t .

to those produced by our developed CT-SFFG operator.
According to Theorems 4 and 19, if £ −→ 1, the operators
CT-SFFA and CT-SFFG are reduced to CT-SFA and CT-SFG
operators, respectively. Consequently, CT-SFA and CT-SFG
operators are the special cases of the described Frank oper-
ators. Ali et al. [31] approach is based on a score function
that has multiple flaws, as pointed out by [32], rendering this
approach ineffective. Secondly, we can notice from Table 13
that Mahnaz et al. [25] and Du et al. [42] operators yield the
Ranking Ol3 > Ol2 > Ol4 > Ol1, which is quite different
from the propound approach and rest of the existing operators
ranking. According to Mahnaz et al. [25], Du et al. [42] and
Farid et al. [58] operators Ol1 is the worst alternative but the
other existing operators, and our presented operators have
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TABLE 13. Ranking results derived by different aggregation operators.

FIGURE 4. Ranking of alternatives by CT-SFFA operator for different
values of £.

FIGURE 5. Ranking of alternatives by CT-SFFG operator for different
values of £.

ranked Ol1 as the best alternative. This discrepancy results
from the fact that the previous operators [25], [58] can only
handle one dimension. During their execution, we eliminated
the complex portion of the data. Although the Du et al. [42]
operators process complex data, but they disregard the neutral
portion. The operators’ disregard for the neutral portion in
the case of Du et al. and their failure to deal with complex
data in the case of Mahnaz et al. lead to a significant loss of
information and erroneous decision outcomes.

The preexistent operators CT-SFDA and CT-SFDG [32]
demonstrate (from Table 13) that the best alternative is Ol1,
which is the same as avowed by the devised operators.
Further, we can notice from the comparison Table 13 that
according to CT-SFDA operator [32], Ol3 is the second best
alternative, whereas it is the worst alternative if we deploy
CT-SFDA operator [32]. Therefore, the Ranking results of the
two Dombi operators do not coincide. The primary cause of
this mismatch may be the use of the identical formulation of
the neutral component in both the addition and multiplication
operational rules (see Section III of Ref. [32]). Though, there
is also a small bit of dispute in the ranking of our initiated
operators,i.e., as per the ranking order of CT-SFFA operator
Ol2 is the worst alternative but in line with CT-SFFG oper-
ator, it is the second worst alternative. This occurs due to
the less difference between the score values of alternatives
Ol2 and Ol3. Despite Dombi operators, if we consider the
complex spherical fuzzy operators [56], then it is evident
from the comparison Table 13 that these operators failed to
classify the objects. Albeit CSFPA and CSFPG operators [56]
are quite efficient in dealing with data having a prioritization
relationship but due to their restricted condition, i.e., 0 ≤

(µ(h̄))2 + (ς (h̄))2 + (ν(h̄))2 ≤ 1, 0 ≤
(
ðµ

)2
+
(
ðς

)2
+

(ðν)
2

≤ 1, these operators are unable to satisfy the CT-SFS
requirement for the considered data.

Based on the above analysis, some key merits of
the formulated CT-SF frank operators are enlisted as
follows:
1). The initiated operators are based on CT-SFS, which

generalize the existing operators [25], [31], [42], [57]:
i). If £ −→ 1 these operators reduced to [31],
ii). If we consider the complex portion zero, the pro-
posed operators are reduced to [25], iii). If we set the
neutral portion to zero, the devised operators reduced
to [42], iv). If we fix the neutral portion zero and
£ = 2, the formulated operators reduced to [57].
Consequently, the introduced CT-SF Frank aggregation
operators can be used to cope with more uncertain and
complex data in real-world decision making issues.
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FIGURE 6. Spearman correlation plot.

2). The designed method is capable of deriving the criteria
weight from the CT-SF information provided by the
DEs, which is then used to determine the final ranking
of decision alternatives. In contrast, previous methods,
except [25], only execute with a known weight vector.

3). The most notable feature of the suggested method is
the involvement of parameters t and £. DEs can mod-
ify their values according to their own preferences.
Since Frank t-norm and t-conorm are a generalization
of algorithms such as Algebraic (£ −→ 1), Einstein
(£ = 2), and Hamacher’s (£ = 3) t-norm and t-conorm,
it is more general in coping with MCGDM problems.

4). None of the existing approaches consider the DEs’
weights, whereas the framed approach has the capa-
bility of discriminating among DEs by using their
importance values.

VIII. CONCLUSION AND FUTURE WORK PLAN
In this study, we extended Frank operations to the CT-SF
environment based on the definitions of CT-SFS and Frank
t-norm and t-conorm. To begin with, several Frank oper-
ational rules of CT-SFS were designed. Meanwhile, we
introduced a series of CT-SF Frank operators, such
as CT-SFFWA, CT-SFFOWA, CT-SFFHA, CT-SFFWG,
CT-SFFOWG, and CT-SFFHG operators. Furthermore,
we developed certain features for the aforementioned opera-
tors and supplied empirical evidence to support the principles
and ideas underlying the operators we have created. Aside
from that, we implemented the formulated operators to

build an approach to the MCGDM problems with CT-SF
data, and thus we added a new direction for addressing
MCGDM problems. With the use of a practical decision-
making problem involving the selection of the best strategy
for water supply, we were able to illustrate both potency
and practicability. We analyzed the impact of the involved
parameters on decision-making results and found the method
quite stable. Finally, we compared the newly devised opera-
tors to the previous operators to demonstrate their utility and
suitability.

Despite having some advantages over modern method-
ologies, the created model is not without limitations. Con-
sequently, its structure is incapable of handling problems
with completely unknown weight information. In addition,
our approach for resolving the MCGDM problem may be
computationally intensive because they need laborious and
complex calculations. Future research will concentrate on the
creation of more complex MCGDM strategies, such as the
CT-SF-PROMETHE method, the CT-SF-VIKOR method,
the CT-SF-AHP method, and the CT-SF -ELECTRE method.
Our intention is to investigate the potential application scope
of the CT-SF model in other domains.

ACRONYMS
CF: complex fuzzy. CFS: complex fuzzy set. CT-SF: complex
T-spherical fuzzy. CT-SFS: complex T-spherical fuzzy set.
CT-SFFWA: CT-SF Frank weighted averaging. CT-SFFWG:
CT-SF Frank weighted geometric. CT-SFFOWA: CT-SF
Frank ordered weighted averaging. CT-SFFOWG: CT-SF

VOLUME 11, 2023 89021



J. Ali et al.: CT-SF Frank Aggregation Operators and Their Application to Decision Making

Frank orderedweighted geometric. CT-SFFHA: CT-SF Frank
hybrid averaging. CT-SFFHG: CT-SF Frank hybrid geo-
metric. MCGDM: multi-criteria group decision making.
DEs: decision experts. FSs: fuzzy sets. IFSs: intuitionis-
tic fuzzy sets. PyFSs: Pythagorean fuzzy sets. q-ROFSs:
q-rung orthopair fuzzy sets. PFSs: Picture FSs. T-SFSs:
T-spherical fuzzy sets. CFS: complex FS. CIFS: complex
IFS. CPyFS: complex PyFS. Cq-ROFS: complex q-ROFS.
CT-SFSs: complex T-spherical fuzzy sets. CT-SF: complex-T
spherical fuzzy. CT-SFDM: CT-SF decision matrix. WCT-
SFDM: weighted CT-SFDM. CT-SFA: CT-SF averaging.
CT-SFG: CT-SF geometric. T-SFFA: T-spherical fuzzy Frank
averaging. T-SFFG: T-spherical fuzzy Frank geometric.
Cq-OFFA: complex q-rung orthopair fuzzy Frank averaging.
Cq-OFFG: complex q-rung orthopair fuzzy Frank geomet-
ric. CT-FDA: CT-SF Dombi averaging. CT-FDG: CT-SF
Dombi geometric. CSFPA: complex spherical fuzzy priori-
tized averaging. CSFPG: complex spherical fuzzy prioritized
geometric.
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