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ABSTRACT Zero-shot Learning (ZSL) classification categorizes or predicts classes (labels) that are not
included in the training set (unseen classes). Recent works proposed different semantic autoencoder (SAE)
models where the encoder embeds a visual feature vector space into the semantic space and the decoder
reconstructs the original visual feature space. The objective is to learn the embedding by leveraging a source
data distribution, which can be applied effectively to a different but related target data distribution. Such
embedding-based methods are prone to domain shift problems and are vulnerable to biases. We propose an
integral projection-based semantic autoencoder (IP-SAE) where an encoder projects a visual feature space
concatenated with the semantic space into a latent representation space. We force the decoder to reconstruct
the visual-semantic data space. Due to this constraint, the visual-semantic projection function preserves the
discriminatory data included inside the original visual feature space. The enriched projection forces a more
precise reconstitution of the visual feature space invariant to the domain manifold. Consequently, the learned
projection function is less domain-specific and alleviates the domain shift problem. Our proposed IP-SAE
model consolidates a symmetric transformation function for embedding and projection, and thus, it provides
transparency for interpreting generative applications in ZSL. Therefore, in addition to outperforming state-
of-the-art methods considering four benchmark datasets, our analytical approach allows us to investigate
distinct characteristics of generative-based methods in the unique context of zero-shot inference.

INDEX TERMS Autoencoder, generative modelling, generative regularisation, latent space, linear transfor-

mation, semantic embedding, visual projection, zero-shot learning.

I. INTRODUCTION

In a variety of studies, deep learning-based models have
gained human-level abilities. However, these gains are con-
ditional on the availability of high-quality and large-scale
data. With the exponential growth of new classes in our real
world, gathering enormous amounts of data is prohibitively
costly and often infeasible. Additionally, annotating a suf-
ficient amount of the data for training purposes for each
class is resource intensive. As a consequence, several learning
paradigms based on sparsely labelled data have been pro-
posed, including semi-supervised learning, life-long learning,
and active learning. These paradigms, however, are limited in
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their capacity to investigate changes in a small collection of
labelled data.

To address these problems, researchers developed
embedding-based zero-shot learning (ZSL) models [1], [2],
[3], [4]. They considered pre-trained models to evaluate test
data of classes that have not been seen during the training
stage. These models typically learn a projection function from
a feature space to a semantic embedding space (e.g. attribute
space). However, such a projection function is only concerned
with predicting the training (seen) class semantic repre-
sentation (e.g. attribute prediction) or classification. When
applied to test data, which in the context of zero-shot contains
different classes (unseen), these models typically suffer from
the domain shift problem. In addition, the embedding-based
model’s final classification is subordinate to the nearest
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neighbour (NN) algorithm in the transformed space. The
hubness problem is an inherent property of high dimensional
data affecting the distribution of occurrences in this projected
embedding space [47].

As a solution to these challenges, generative-based
approaches [8], [42], [61], [62] were proposed. By generating
class samples from available semantic representations, the
NN search is reconditioned into supervised classification.
Generative-based models alleviate the domain shift bias by
generating authentic prototypes of the disjoint domain [63].
In [5], [71, [8], and [9], the researchers are using Generative
Adversarial Networks (GANs) and Variational Autoencoders
(VAEs), respectively to acquire prototypes of the unseen
distribution. GANs are known to easily diverge due to their
adversarial nature [12] and VAEs to create blurry output
as a result of the Kullback-Leibler divergence between the
data and the distribution [13]. This impacts the generative
capacity of prototype creation in a separate domain. In gen-
eral, they are also not invertible, making them less suitable
for downstream inference and reconstruction of unknown
distributions [75].

Based on the well-known semantic autoencoder model [10]
(SAE), we propose the IP-SAE model to project both the
visual feature space and the semantic feature space into the
latent representation manifold. In addition, we use this model
to demonstrate the adaptability of generative-based models
for zero-shot inference. Building on autoencoder architec-
ture, the encoder and decoder in our proposed model are
multi-modular and share parameters. The encoder maps data
into the integrated visual-semantic manifold. The decoder
performs reconstruction of the original visual-semantic fea-
tures. This projection alleviates the domain shift prob-
lem since the reconstructed samples of unseen domains
are generated from the domain-invariant manifold. Further-
more, by adopting suitable regularisation parameters for the
transformation function, we mitigate the hubness problem.
We show that the generative abilities for zero-shot are a trade-
off between stable transferability interpolating domains and
performance in specific disjoint spaces. Our overall contribu-
tions can be summarised as follows:

o The proposed IP-SAE model uses an analytical solution
to tackle the problem of ZSL. It has only one hyperpa-
rameter that should be tuned to increase the overall per-
formance. Consequently, our results are reproducible,
and the code will be published on GitHub.!

o Our IP-SAE model distinguishes from the prior SAE
model [10] by reconstructing the latent semantic man-
ifold by enriching the input space and actively using this
low-dimension semantic manifold as a regularisation for
inference of samples.

o Average per-class accuracy is frequently reported in
zero-shot learning state-of-the-art [57], and the obtained
results using the IP-SAE model show very high perfor-
mance. In contrast to the state-of-the-art, we additionally

1 https://github.com/william-heyden/IP-SAE/
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use precision and recall to evaluate the model’s end-to-
end performance regarding the generalization to unseen
classes and distinguish positive instances in unseen
domains.

« We propose a methodology to improve the performance
of generative ZSL by first, augmenting the input space
to encompass multi-modal features; second, engaging
regularisation to establish a complete latent manifold
and third, leveraging the multi-model embedding of the
disjoint data distribution to produce higher quality sam-
ples of the unseen classes.

Il. RELATED WORKS
We classify the literature of zero-shot learning into two cate-
gories: embedding space-based and feature generation-based.

A. EMBEDDING SPACE-BASED METHODS

Embedding space-based methods exploit a transfer function
between semantic, visual, and latent feature space to close the
gap between seen and unseen domains. Akata et al. [1] culti-
vated the relationships between features, attributes, and class
embeddings. They were amongst the first to rank the com-
patibility of the visual image feature and the semantic feature
embedding for correct classification, in contrast to prior work
by researchers in [23] and [68] who used prediction of the
class based on a learned mapping function. Xian et al. [25]
extended this work by introducing a collection of mapping
functions ranked by a compatibility function between image
and class embeddings. Their objective was to construct a
piece-wise linear factorization of a non-linear compatibil-
ity function that learns the latent selection of components
of the visual feature space. References [2], [26], and [29]
further explored different manifold structures to increase
classification accuracy. The methods [14], [15], [16], [17],
and [19] advanced the embedding function of the visual
features and the semantic descriptors to a latent space. They
proposed techniques to assist the transfer and the designs
of appropriate embedding manifolds. Their novelty was to
compose a discriminatory representation space that aligns
the semantic space with the structure of the visual mani-
fold. These models do not provide a natural mechanism for
multiple modalities to be fused and optimized jointly in an
end-to-end structure. In more recent work, [18] integrated a
contrastive embedding model by learning a projection map
from the embedding space and a comparative network to
align the semantic and visual descriptors. While [70] used
the shared label-space actively in training, to reconstruct the
semantic representations.

B. GENERATIVE-BASED METHODS

Generative-based methods work by generating pseudo data
of the unseen domain to train a classifier impartial to both
domain spaces. Reed et al. [69] predeveloped a GAN archi-
tecture effectively allowing for text or descriptive annotations
to be translated into visual concepts. They briefly mention the
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zero-shot capabilities this implies. Mishra et al. [9] employed
a similar approach, but expanded to the zero-shot setting
exclusively. Using a VAE and conditioning on the seman-
tic feature space, as opposed to the visual space, resulted
in improved zero-shot inference. Li et al. [8] took advan-
tage of the assumption that class representation originates
from a prototypical space, encoding the relationship. This
manifold structure is then learned from the data and used
to generate synthetic observations. In Fadi et al. [80] the
authors integrated two conditional autoencoders, of both
modalities. The hybrid model generates pseudo training data
from both decoders, which are then mapped to a final clas-
sifier. In a similar fashion, the researchers of the meth-
ods [9], [33], [34], [35] learned to consolidate the visual
features for unseen classes using semantic information. These
methods first learn a generative model considering variational
autoencoder (VAE) and Generative adversarial networks
(GAN) and then train a classifier using the complete space.
With recent advancement made in generative algorithms,
the performance of zero-shot architectures structured around
generative-based methods has naturally also increased.

Li et al. [37] presented the Boomerang-GAN technique to
find bilateral connections in zero-shot learning. They used a
multimodal cycle-consistent loss to translate back the engen-
dered features to semantic embeddings. Chou et al. [38] dis-
covered the semantic-to-visual embeddings via a seamless
fusion of adaptive and generative learning to investigate the
correlation between image features and the corresponding
semantic features. They stretched the semantic features of
each class by supplementing image-adaptive attention so that
the learned embedding could account for inter-class and intra-
class variations.

Xian et al. [44] combined VAE and GANs by assem-
bling them into a conditional feature-generating model, called
f-VAEGAN-D?2, that synthesizes features from class embed-
dings. The authors [45] proposed the transformation and
feedback-VAEGAN model (TF-VAEGAN). In addition to
VAEs and GANs, they provided a semantic embedding
decoder to reconstruct the embedding space. The decoder
is used as a feedback module to improve the output of the
Generator of the GAN. Both the f~-VAEGAN-D2 model [44]
and the TF-VAEGAN model [45] shows competitive perfor-
mance. However, GANs and their derivatives show training
instability, while VAE is more stable [46].

lil. THE PROPOSED APPROACH

A. PROBLEM DEFINITION

The fundamental concept of ZSL is to construct a model that
learns visual- and/or semantic cues translatable to unseen
classes. In other words, generative zero-shot learning is
required when all classes under observation lack labelled
training instances. As a result, the accessible dataset is
divided into two groups: a training subset and a test subset.
The training subset represented by seen classes Ygeen =

0 oons Yooens - - > Yoo} and the test subset represented by
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unseen classes Yunseen = (Vinseens Yonseens - - - » Yinseen)- The
assumption Ygeen N Yynseen = ¢ should hold. In such
a situation, the task is to build a model R — Y unseen
using only examples of training subsets to classify unseen
classes. Afterwards, the trained classifier should be applied
to test data of unseen classes under the zero-shot settings
Yseen N Yunseen = ¢. As a result, zero-shot learning offers
a novel approach to overcome difficulties such as lack of
training examples, with the goal of boosting a learning sys-
tem’s capacity to cope with unexpected situations in the same
manner that individuals do.

To retain this similarity, most cutting-edge embedding-
based solutions handle the ZSL issue by embedding the
training data feature space and the semantic representation
of class labels in some shared vector space. Unseen classes
are then categorized according to a nearest-neighbour search.
In the generalized zero-shot case, we seek to design a more
generic model RY = Ygen U Yunseen, that can catego-
rize/classify the seen and unseen classes appropriately. This
implies that the test set contains data samples from both the
seen and unseen classes [58].

B. MODEL

We present a novel method to ZSL based on learning a
Semantic AutoEncoder (SAE) inspired by [10]. The SAE
method encodes the visual feature space of the training data
into a semantic space. Their work is based on the assumption
that a normal autoencoder is unsupervised leading to the
fact that the latent space created by the learning process
has no meaningful semantic representation. Therefore, they
considered that each data point has a semantic representation
and they forced the latent space to represent this semantic
feature space. Taking advantage of the generative abilities
of the autoencoder, the aim is then to learn visual feature
prediction of the unseen classes. Classification of synthesised
visual features is very challenging. Hence, the objective of the
autoencoder generative space is to be close to the visual data
space from unseen classes. The latent representation space
is very limiting in its expressive power, given the complex
distribution of image spaces. Our proposal implements an
improved data space in a concatenation of visual- and seman-
tic data space (fig. 1). This novelty helps to better extract
class-discriminative components by increasing the expressive
power of the latent representation space. We use a symmetric
decoder of the encode-decode architecture to reconstruct an
enriched visual-semantic sample space. This provides higher
separability for unseen classes, accounting for the hubness
problem effectively. We formulate the learning aim of the
ZSL method as an optimization problem that minimizes the
loss formulated as,

minimize]|X ~ WIWx||% st WX =S (1

It represents the loss between the image visual space X
and the semantic space S. F is the Frobenius norm and W is
the weight. Solving equation (1) with such a hard constraint
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FIGURE 1. The architecture of our proposed model. By enriching the input data space
of the encoder, we are able to ensure surjectivity of the latent representational
semantic space. As a result, we achieve enhanced quality and coverage of the
reconstructed visual-feature space, leading to improved performance in nearest

neighbor classification.

WX = S is not trivial. Therefore, the constraint can be relaxed
into a softer one and the objective can be written as,

minimize| X — WTS|2 +A|WX — S|[% 2

where X is a weighting coefficient that controls the impor-
tance of the first and second terms. The symmetric terms
correspond to the losses of the decoder and encoder, respec-
tively. Equation (2) has a quadratic form that can have a
globally optimal solution. Therefore, taking the derivative of
equation (2) and setting it to zero, can lead to the analytical
solution of this optimization problem [10]. The final solution
can be formulated into the well-known Sylvester equation as,

AW + WB = C; (3)

where A = SST,B = AXX7, and C = (1 + A)SXT such
that A and B are positive semi-defined. Equation (3) has an
analytical solution that may be solved with efficiency using
the Bartels-Stewart method [48].

We propose that the visual representation space X can be
replaced by a concatenated version consisting of both the
semantic representation space S and the visual representation
space X. It can be formulated as,

X' =X®S; “

To take into account the concatenation modelling, we refor-
mulate equation (3), where A = SST,B = AX'X'T, and
C = (1 + 1)SXT. The importance of the concatenation is
evident when we model the projection function (the decoder)
as a linear ridge regression resulting in the formulation,

minimizel X' — WS|[} + 21| WI[} ©)

The L2 norm calculates the distance of the vector coor-
dinates from the origin of the vector space. It is well
known that ridge regression has a closed-form solution
W = X'ST(SST + AI)~!. Thus, following the matrix norm
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properties:
IWSIl2 = 1IX'ST(SST +A1)~1S|)
< 1IX'11211ST(SST +AD)7'S |1 (©6)

Using singular value decomposition (SVD), we can write,
2

IIST(SST +a1)71S|)2 = <1 )

a4+ a T
where « is the largest singular value of S. So we have
[I[WS|l2 < [|X’||2. Consequently, the mapped source data
||WS||2 is anticipated to be nearer to the origin of the space
in relation to the target data ||X’||, for the decoder, and
vice versa for the encoder [27]. Therefore, this would con-
solidate the grouping of the data around the semantic space
of a class and facilitate a clear separation between the classes.

It is important to note that as the attributes of the semantic
space (e.g., hand-annotated descriptive features) are sparse,
matrix S will be rank-deficient. The enhanced representation
space will therefore, by the rank-nullity theorem of inequality
dim(kerXS) < dim(kerX) + dim(kerS), result in the same
being true for the visual space matrix X’. Therefore, apply-
ing Bartels-Stewart algorithm [48] to equation (3) can no
longer guarantee a unique solution, as at least d — rank(S)
with d representing semantic dimensions, of the similarity
matrices will be zero eigenvalues. The enriched space results
in a higher-conditioned system sensitive to our choice of A.
This behaviour is evident in figure (5).

1) STANDARD ZERO-SHOT LEARNING

In the standard zero-shot setting our aim is to detect the
classes of unseen data. The algorithm’s output is the image’s
class label which is always an unseen class. The first step
is to find W which is the result of solving equation (3).
Then, we use W to project prototypes of unseen enriched
visual-semantic space from the latent representations. The
final step for classification is then to calculate the cosine
similarity between the projected visual space and the true
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visual space and label according to the most similar (top
one) index label. Our approach handles the challenge of
disjoint domain raised in the standard setting by enriching the
input data space. The projection matrix obtained is therefore
consistent with the semantic space provided, irrespective of
the domain. Overfitting the data space is challenging for
generative models in the convectional ZSL setting. Our pro-
posed model solves this by estimating the lambda attaining
optimal orthogonality in the encoded latent representation
space. By trading off generative capabilities with information
caption our model, and by extension generative models, are
able to increase performance in this setting.

2) GENERALIZED ZERO-SHOT LEARNING

In the more realistic generalized zero-shot setting (GZSL) we
are presenting samples from both the seen and the unseen
domain at testing Yseen N Yunseen 7= ¢. We extract 20%
of data samples from the seen classes and mix them with
the data samples from the unseen classes. In the general-
ized setting there is an inherent challenge of seen bias [52],
where the classes from the seen domain are significantly
more represented in the final classification. Our approach
alleviates this challenge also through a regularising lambda.
The surjective properties of our proposed encoder ensure
that the latent representation space is entirely mapped by
every element of the visual feature space. Correcting for
desired behaviour through lambda will align the informa-
tion structure embedded in visual- and semantic- feature
space. This structural alignment is directly transferable to the
unseen domain, ensuring the quality and completeness of the
synthetic visual-feature manifold. In generalized zero-shot
learning the alignment of seen and unseen domain corrects
for the domain shift issue in the projection space [6]. In our
proposed enriched visual-semantic data space the structured
projection space is further discriminated through increased
class-wise distances. As theoretically proven in equation (7),
this is shown in figure (2) with the reduced intra-class space
for each cluster (omitting class label 6 and 7).

Enriched sgace Oriiinal siace

Cluster label

Silhouette coefficient

FIGURE 2. Silhouette plotting the discriminative properties of enriched
space of AWA2. “Enhanced space” reference our proposed
visual-semantic space whereas “original space” corresponds to the visual
feature space.

IV. EXPERIMENTS ANALYSIS
A. DATASETS
To evaluate the performance of our proposed IP-SAE

method, we consider four benchmark datasets. SUN Attribute
(SUN) [53] dataset, the CUB-200-2011 Bird (CUB) [55]
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dataset, and the AwA-1 and AwA-2 [54] datasets. The SUN
dataset consists of 14340 images where 645 classes are
seen and 72 are unseen. The AwA-1 dataset consists of
30475 images where 40 classes are seen and 10 are unseen.
The AwA-2 dataset consists of 37322 images with 40 seen
and 10 unseen classes. The CUB-200-2011 dataset consists
of 11788 images where 150 classes are seen and 50 are
unseen bird species. Each image additionally has 312 lower-
level binary variables indicating visual properties (colour,
pattern, form) of specific regions (beak, wings, tail, etc.). But
attribute annotations are noisy. To denoise attributes, we used
the concept bottleneck models [56]. We only counted the
attributes as present if they were in at least 50% of the images
of the same class. Therefore, 200 lower-level features were
chosen.

In accordance with the norm of published research in zero-
shot learning, we report the average per class top-1 accuracy
to calculate the overall accuracy.

1 Y| class;
e = (—Nl’) ®)
i=0 Total

In the conventional setting only the accuracy of unseen

class; Yi € Yynseen While in the generative setting, we cal-

culate the harmonic mean H = % between seen and

unseen class; Vi € Yseen [35]. In addition, we postulate for

generative-based models in zero-shot classification the recall

and precision are indispensable performance metrics, verify-

ing a more nuanced evaluation of generative capabilities in
the unseen domain.

TP TP

———, precision = ——— O]
TP + FN TP + FP

recall =

B. RESULTS
For the visual space, we explored Resnet101 as the backbone
architecture for the extracted features [57]. Concerning the
semantic space, we rely on the semantic space vectors given
by the authors of respective datasets. Regarding the GZSL,
we looked at the empirical situation [58]. To eliminate the
performance bias of the mapping, the nearest neighbour is
selected using the cosine similarity. We apply equal regular-
isation value for the parameter A across all datasets to retain
comparative behaviour. It can empirically be shown that
by tuning the regulator to specific data manifolds a mutual
orthogonal transformation matrix can be derived for the
coarse dataset which will achieve near-perfect classification.
Table 1 illustrates the results under the conventional zero-
shot setting, where the test data is disjoint from training. The
results are reported with the suggested splits from [57]. Our
proposed IP-SAE method outperformed the state-of-the-art
methods by a high margin considering all four benchmark
datasets. In Table 2, we partition the results of our pro-
posed method to consider the generalized zero-shot settings.
Among existing methods, [57], the classification accuracy
of seen classes only is comparable with state-of-the-art
methods across datasets. Considering unseen classes only,
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Enriched space

Original space

SNE2

tSNEL
e killer+whale
® beaver

dalmatian

persian-+cat
german+shepherd
siamese+cat

+SNE1

skunk hippopotamus elephant
mole leopard gorilla
tiger spider+monkey ox

FIGURE 3. Dataset visualization with a selection of labels. We present the visualization of the AwA2
dataset using T-SNE projection of features. The feature-semantic projection is shown on the left side
and the semantic projection is shown on the right side. “Enhanced space” reference our proposed
visual-semantic space, whereas “original space” corresponds to the visual feature space.

TABLE 1. The results of the disjoint assumption zero-shot setting in
conjunction with the per-class accuracy measure.

Model CUB AWA1 AWA2 SUN
DAP(PAMI’13) [17] 40.0 44.1 46.1 39.9
IAP(PAMI’13) [17] 24.0 35.9 35.9 19.4

ConSE(arXiv’13) [22] 343 45.6 44.5 38.8
CMT(NeurIPS’13) [23] 34.6 39.5 37.9 39.9
SSE(arXiv’17) [65] 43.9 60.1 61.0 51.5
DeViSE(NeurIPS’13) [24] 52.0 54.2 59.7 56.5
SJE(CVPR’15) [2] 53.9 65.6 61.9 53.7
LATEM(CVPR’16) [25] 49.3 55.1 55.8 55.3
ESZSL(ICML’15) [26] 53.9 58.2 58.6 54.5
ALE(PAMI’15) [1] 54.9 59.9 62.5 58.1
SYNC(CVPR’16) [3] 55.6 54.0 46.6 56.3
SAE(CVPR’17) [10] 333 53.0 54.1 40.3

Relation Net(CVPR’18) [31] 55.6 68.2 64.2 -
DEM(CVPR’17) [27] 51.7 68.4 67.1 61.9
f-VAEGAN-D2(CVPR’19) [44] | 61.0 — 71.1 64.7
TF-VAEGAN(ECCV’20) [45] 64.9 — 72.2 66.0
CVAE(CVPR’18) [9] 52.1 71.4 65.8 61.7
GEM-ZSL(CVPR’21) [66] 77.8 — 67.3 62.8
AFRNet(AAAT’20) [67] 50.3 76.4 75.1 64.0
TransZero(AAAI’22) [77] 76.8 — 70.1 65.6
JG-ZSL(MDPI’23) [78] 72.5 70.6 69.4 60.3
HRT(ECCV’23) [79] 71.7 — 67.3 63.9
(Ours) 80.1 92.9 82.0 94.4

TABLE 2. Results of Generalized Zero-Shot setting (GZSL) that are

calculated based on the accuracy of seen cl unseen cl
and harmonic mean.

Dataset | %SeenClasses Seen Unseen Harmonic Mean
AWA1 20% 91.6 12.0 21.3
AWA2 20% 89.4 29.2 44.0

SUN 20% 83.7 84.5 84.1
CUB 20% 81.6 67.3 73.7

there is a significant improvement compared to similar
methods for the fine-grained dataset CUB and SUN. The
lower-level binary attributes depicting the visual character-
istics of the data space are captured of higher quality in
our proposed enriched visual-feature space. For the coarser
annotated dataset AwA 1 and AwA?2, the performance is com-
parable to related embedding-based methods.

Furthermore, to highlight the impact of our proposed mod-
elling, we present the data visualization in figure (3). We use
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the t-SNE [59] approach to visually analyse the image feature
vectors generated by our model for each class and compare
them to the original image feature vectors for the AwA?2
dataset. As can be seen, the original space (right) shows a
separable feature space but high overlapping. In contrast to
that, projecting the semantic space to the visual—semantic
feature representation shows a clear separation between the
classes (left). At the same time, the data will be grouped
around the semantic space of a class which would overcome
the problem of forming hubs. Consequently, data samples that
belong to same class are well separable.

The confusion matrix in figure (4) reports a summary of the
prediction of unseen classes in a matrix form [74]. We see
a distinct main diagonal for our enriched visual-feature
space (left) compared to the original space (right). This sug-
gests that our proposed method is able to correctly identify
and classify the true label from the projected latent represen-
tation space. Given the confusion matrix, we can extract the
recall and precision measurements, as displayed in table 3.
Here, we show that our proposed model has better preci-
sion and excels in classifying the true classes and correctly
identifying false classes. This is universal for all bench-
mark datasets. This demonstrates that our IP-SAE method’s
capacity to generate a sample of high quality and the latent
manifold is indeed expressive enough to cover the unseen
distribution.

V. DISCUSSION

A. GENERATIVE PROPERTIES

The generative aptness of autoencoders decreases when the
latent representation space is overcomplete (e.g., higher
dimension than the data space itself) [71]. Consequently, the
composite function of the transformation matrix of eq. 2,
(WT o W) the identity map of the visual space itself cannot
be bijective. Implying we will never be able to recover the
true visual feature space. It follows from functional analysis
W is a surjective transformation function in the encoder [49].
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FIGURE 4. confusion matrix of AWA?2 dataset. Prediction of labels according to top-1 nearest
neighbour. “Enhanced space” reference our proposed visual-semantic space, whereas “original

space” corresponds to the visual feature space.

TABLE 3. Accuracy measurement for respective datasets in conventional
zero-shot learning setting.

Enriched Original
AWAl1 CUB SUN AWA1 CUB SUN
Precision | 0.6229  0.8032 09166 | 0.6044  0.3135 0.4805
Recall 0.7359  0.8587 0.9444 | 04571 0.2150 0.3479
Fl1 0.6568  0.8197 0.9259 | 0.3902 0.1924  0.3557

Suppose f : V — S such that f is the transformation function
that maps from the visual feature space V to the semantic
representation space S. In our enriched visual feature space,
we can show that {f ~!(s)|s € S} is none empty. This implies
that the columns of the transformation matrix W are precisely
the set of linear combinations to form a spanning set of the
complete semantic representation space. This implication is
not true for the original visual feature space, as the trans-
formation matrix need not be full row rank. The encoder’s
surjective premise ensures that the enriched visual space
image captures all available semantic information [49]. The
effect of this is that we can always construct a transformation
function g : S — V satisfying g(s) veVVsels,
meaning that g of is indeed an identity map. Hence, it is self-
evident from the fact that an identity function is bijective [72]
the decoder can obtain injective properties. Therefore, the
encoding ensures that enough information is preserved to
recover the visual space, e.g., unique visual properties can
be mapped distinctively from the semantic representation
space and vice versa [50]. The analytical solution offered by
the Sylvester equation (3) finds the optimal transformation
matrix between the visual and the semantic space. By enrich-
ing the visual space of the seen domain, we are condensing
the distance to the subjective image of the unseen domain,
hence improving the embedding quality of semantic space for
the unseen domain. This is a trade-off between information
preservation of the encoding and the generative capabilities
of the decoding. The oscillating behaviour seen in figure (5)
occurs due to the reconstructed visual space having unique
representations in the semantic representation space and mul-
tiple reconstructed depictions. However, by the properties of
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“Enriched space” reference our proposed visual-semantic space, whereas
“original space” corresponds to the visual feature space.

ridge regularisation and the elegant symmetry in the model,
we can alleviate this challenge of high variance by design-
ing the coefficients of the transformation matrix through a
lambda. The objective is the optimal trade-off between the
encoding and decoding of the available information in the
seen domain. For generative models, a low-dimension latent
space achieves regulatory properties [73]. Since the seen-
and unseen domain share semantic feature representation, the
design of an elaborate mapping function or embedding space
is critical for transferring knowledge between classes [6]. Our
results show that the visual-semantic latent space span should
be expressive by the mapping function, e.g., the mapping of
available knowledge grants surjectivity. The limitation in our
proposed model is that we force the same mapping also to be
inversely injective, which is contradictory to autoencoders.

B. REGULARISATION OF ) FOR ZLS

The regularisation term of the loss function (2) characterises
with ridge regression. It reduces the condition number of the
near singular similarity matrix XX T of equation (3) by adding
a non-negative element to the diagonalizable matrix. Increas-
ing the singular values in the Schur decomposition (of the
Bartels-Stewart algorithm) for the visual space reduces noise
in the decoding due to the inverse proportional properties in
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the reversed operation [51]. The ridge behaviour of lambda
ensures discriminating visual and semantic structures are pre-
served in the transformation matrix. Redundant projections
of the high variance found in visual space are replaced with
the compact semantic space allowing the projection matrix to
learn the direction with the lowest variance by increasing the
regularisation. Since we are only concerned with the relative
position in the visual semantic feature space, an ambiguous
loss of information is adequate in the recovery of the manifold
by the decoder. We hypothesize that by optimising for A, the
projection matrix favours shared principle components of the
visual and semantic space, a result of minimizing W in the
loss function (2).

C. ABLATION STUDY
Table 2 evaluates the transferability of our elevated semantic
representation space. The encoded representation space is
the source of shared information for the seen and unseen
domain. The efficiency of the transformation matrix W intro-
duces a compromise between /) A smooth embedding of the
semantic manifold to leverage available domain (seen and
unseen) information. /1) A stable projection into the visual
manifold for discriminative, high-quality sample distribution.
This (dis)entanglement of the transformation matrix is due
to the symmetric in our model (objective function 2). For
the encoder, we see that for the finer-grained datasets SUN
and CUB, the discrepancies in the accuracy of seen and
unseen classes are less. For coarser datasets (AwA1l and
AwA?2), the model efficiently captures relevant information
but struggles to exploit it. The lower harmonic mean shows
this. In terms of generative abilities in a disjoint domain, this
trivially implies that the reduced semantic information stim-
ulated by increased regularisation of the surjective mapping
prompts an advantage to injective properties of the projection.
Table 3 shows the influence of an embedding function
with a spanning set over the semantic representation space.
For our enriched space recall > precision while the orig-
inal space results in recall < precision. This suggests a
complete visual feature reproduction space. The generative
transformation is not guaranteed to be expressive enough to
replicate all unseen classes in the high-dimensional visual
feature space. However, capturing transferable information
between the disjoint domains shows to assist progressively
in terms of its position in reproduced space and coverage of
the manifold by the generator. Note that overall recall and
precision in our enriched space are still greater than in the
original space.

D. PERFORMANCE METRICS

In accordance with the progress made within zero-shot learn-
ing, there has been extensive research on comparing state-
of-the-art algorithms [57], [63]. To evaluate performance
and demonstrate abilities of proposed models, the average
class accuracy, eq. (8), have exclusively been included in
publications. We argue that the classic definition of accuracy
to report generative-based zero-shot learning effectiveness
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is insufficient. This only discloses the average of per class true
positive predictions, which is biased towards sample size and
favours less exact spatial arrangement of the representational
manifold [76]. To comprehensively capture the impact of
generative zero-shot learning, it is recommended to consider
two crucial aspects: a) whether the manifold of knowledge
transfer adequately covers the real distribution and b) if the
quality of generated class prototypes reflects reality. Conse-
quently, we advocate for adopting the definitions of recall and
precision. By examining recall and precision, we can gain
insights into the generative process and accurately interpret
the model’s performance.

Vi. BROADER IMPACT

In the assessment of an analytically solvable algorithm
designed for generative zero-shot learning this research
show how enriching and regularising multi-modal spaces
affects the generative capabilities of the disjoint domains.
For zero-shot learning researchers, the conceptual insights
derived can be applied to improve performance across various
generative-based methodologies. In addition, this work can
be a contrivance for improving any larger-scale recognition
systems by reducing the dependency on the label of the data.
At last, this work enables high-quality samples to be synthe-
sised of unseen distribution, thereby essentially implicating a
new aspect of creativity for generative models.

VII. CONCLUSION

In this study, we proposed IP-SAE zero-shot learning model.
The proposed work included extensive testing and cover-
age of generative qualities for zero-shot projections. In the
IP-SAE model on four benchmark datasets, our method out-
performed the state-of-the-art methods using the precision,
the recall, the f-score and the per-class accuracy evaluation
metrics. In addition, it showed high performance in both,
the conventional ZSL and the generalized zero-shot setting.
We selected the analytical solution to show how genera-
tive approaches for zero-shot learning can be enhanced by;
expanding the data manifold to ensure completeness of the
disjoint domains; and by regularising the latent representation
to augment the sample manifold.

In future work, we aim to improve the generalized
zero-shot learning model by using a generative model on
a project matrix of the visual and semantic features. This
will improve the transformation function’s orthogonality and
generate samples into a new embedding space with more
distinct classifications.
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