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ABSTRACT This article concentrates on the function perturbation impact on robust stability and robust
stabilization of Boolean networks with disturbance inputs (DBNs). First, using the semi-tensor product (STP)
of matrices, the algebraic representation of DBNs with function perturbation is given. Second, a state set is
determined to detect the robust stability of DBNs subject to function perturbation. The result shows that the
robust stability of DBNs remains unchanged if and only if the perturbed point is not in the constructed state
set. Third, DBNs with control inputs (DBCNs) are considered, and several criteria to verify whether DBCNs
with function perturbation can still maintain robust stabilization under a given state feedback stabilizer are
presented. Finally, two examples are provided to illustrate the validity of the theoretical results.

INDEX TERMS Boolean network, disturbance inputs, function perturbation, semi-tensor product of
matrices, robust stability.

I. INTRODUCTION
With the great interest of human genome engineering, gene
regulatory networks (GRNs) have become hot topic and
research front in systems biology [1], [2], [3]. In order to
study GRNs, many models have been constructed, such as
Boolean network models (BNs) [4], [5], linear models [6], [7]
and Markovian models [8], [9]. Among these models, BNs
are more suitable for GRNs because they are parameter-free
and can be applied to quantifying the large-scale GRNs.
In BNs, each node has two states: ON or OFF (1 or 0).
State evolution of each node is related to a pre-assigned
Boolean function consisting of its neighboring nodes, itself
and some basic logical operators. Although BNs are simple
models, it is quite difficult to characterize the dynamics
of BNs because of lacking effective mathematical tools to
handle logical dynamic systems. In the last decade, an alge-
braic state space representation (ASSR) method has been
provided for analysing BNs via the STP of matrices. The

The associate editor coordinating the review of this manuscript and

approving it for publication was Mou Chen .

ASSR method was introduced in [10], based on which BNs
can be expressed as discrete-time systems. Using the ASSR
method, numerous landmark results about BNs have been
achieved, such as observability and controllability [11], [12],
output tracking [13], [14], disturbance decoupling [15], opti-
mal control [16], [17], and other issues [18], [19], [20].

It is known that there exist some uncertain factors in the
process of modeling a GRN, such as environmental changes,
external interference, and experimental noises, which may
have an obstructive effect on the effectiveness of control
strategies. For instance, in [21], cancer was regarded as fail-
ures in the robustness against genetic uncertainties. Hence,
as an appropriate model of GRNs, modeling BNs with distur-
bances (DBNs) is necessary. The robust stability and robust
stabilization of DBNs are two basic concepts of the modern
control theory. And many typical results on robust stability
and robust stabilization of DBNs have been obtained by the
ASSR approach. Zhong et al. [22] presented the concept of
robust stability to a limit cycle for DBNs, and determined
the corresponding stability criteria. The robust stabilization
of DBNs was discussed in [23], and state feedback stabilizers
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were developed by constructing the robust reachable set.
In addition to robust stability and robust stabilization, many
other issues on DBNs have also been well studied [24], [25].

Gene mutation is a change in DNA sequence, which can
occur spontaneously or be induced by environmental fac-
tors such as ultraviolet rays or ionizing radiation. These
mutations can have a wide range of effects on organisms.
For example, gene mutation in hemoglobin is a key factor
leading to sickle cell anemia [26]. For BNs, authors in [27]
introduced function perturbation to depicted gene mutation,
and analyzed the changes of the topological structure in
BNs after function perturbation. The function perturbation
influence on the dynamical behaviours of BNs became a hot
topic of research in recent years, especially based on the
ASSR approach [28], [29], [30], [31]. Li et al. discussed the
stochastic function perturbation influence on the stability and
stabilization of BNs [32]. References [33] and [34] studied
asymptotical stability and output tracking issues of proba-
bilistic Boolean networks (PBNs) with function perturbation,
respectively. It is worth noting that the existing literature
on function perturbation mainly focused on BNs and PBNs.
However, BNs are often subject to disturbances, and the exist-
ing results are not directly applicable to DBNs. Therefore,
it is necessary to study the function perturbation influence
on the robust stability and robust stabilization for BNs under
arbitrary disturbance. To our best knowledge, there exist few
results on the robust stability and robust stabilization prob-
lems of DBNs with function perturbation at present.

In this article, utilizing the ASSR approach, we investigate
the robust stability and robust stabilization issues of DBNs
with function perturbation. The main contributions can be
concluded in following aspects: (1) The robust stability and
robust stabilization of DBNs with function perturbation are
studied for the first time. By constructing a state set, sev-
eral criteria are provided to guarantee the robust stability
and robust stabilization of DBNs after function perturbation.
(2) Our results can be regarded as a generalization of ref-
erences [28]. When there is no disturbance in system, our
results will degenerate to the results of global robust stability
in reference [28]. However, the conditions obtained in this
paper are easier to understand and verify than previous meth-
ods.

We organize the remainder of this article as follows.
Section II provides some necessary notations and results.
Section III describes the problem of function perturbation in
DBNs. In Section IV, we discuss the impact of function per-
turbation on robust stability and robust stabilization of DBNs.
Section V presents two illustrative examples to support the
theoretical results. Section VI is a brief conclusion.

II. PRELIMINARIES
In this section, some useful notations and definitions related
to the STP of matrices are given.

R and Z+ denote the set of real numbers and positive inte-
gers, respectively. Symbol [a, b] denotes the set of integers
λ with a ≤ λ ≤ b. Rn×s denotes the set of all n × s real

matrices. D := {0, 1}, Dn
:= D × · · · ×D︸ ︷︷ ︸

n

. Coli(L) is the

ith column of matrix L. The set of columns of L is denoted
by Col(L). 1n :=

{
δin | i ∈ [1, n]

}
, where δin = Coli(In).

For compactness, 1 := 12. A matrix L ∈ Rn×s is called
a logical matrix, if Col(L) ⊆ 1n. Denote by Ln×s the set
of all n× s logical matrices. If L ∈ Ln×s, denote L briefly
by L = δn[i1 i2 · · · is]. [P]i,j denotes the (i, j)-element of
matrix P.
Definition 1: ([10]) For matrixP ∈ Rm×n andmatrixQ ∈

Rs×t , let λ be the least common multiple of n and s. Then the
STP of P and Q is defined as

P ⋉Q = (P ⊗ I λ
n
)(Q⊗ I λ

s
), (1)

where ⊗ denotes the Kronecker product of matrices.
Remark 1: Note thatP⋉Q = PQ if n = s. It follows that

the STP can be regarded as a generalization of the ordinary
matrix product. Hence, the symbol ‘‘⋉’’ will be omitted for
convenience.
Lemma 1: ([10]) Let x ∈ 12n . Then x2 = M r

2nx, where
M r

2n = diag{δ12n , δ
2
2n , . . . , δ

2n
2n } is the power-reducing matrix.

Let 1 ∼ δ12, 0 ∼ δ22, then D ∼ 1, where ‘‘∼’’ stands for
the equivalence relation. For x ∈ D, we have the vector form
x = δ12 if x = 1, and the vector form x = δ22 if x = 0.
Lemma 2: ([10]) Given a logical function f : Dn

→ D.
Then, there exists a unique matrix F ∈ L2×2n such that

f (x1, x2, · · · , xn) = F ⋉ x1 ⋉ · · · ⋉ xn,

where xi ∈ 1, i ∈ [1, n], Colj(F) = f (δj2n ) and j ∈ [1, 2n].
Here, F is called the structure matrix of function f .

III. PROBLEM FORMULATION
Consider the following DBN:

Xi(t + 1) = fi(X (t), 4(t)), i ∈ [1, n] (2)

with the state X (t) = (X1(t), · · · ,Xn(t)) ∈ Dn and distur-
bance 4(t) =

(
41(t), · · · , 4q(t)

)
∈ Dq. fi : Dn

×Dq
→ D,

i ∈ [1, n] are Boolean functions.
Using the vector form of logical variables and ASSR

method, we obtain the algebraic representation of DBN (2)

x(t + 1) = Lξ (t)x(t), (3)

where x(t) = ⋉n
i=1xi(t) ∈ 12n and ξ (t) = ⋉q

i=1ξi(t) ∈ 12q .
The state transition matrix of DBN (2) is

L := [L1 L2 · · · L2q ] ∈ L2n×2q+n ,

where Lk := δ2n [αk,1 αk,2 · · · αk,j · · · αk,2n ] ∈ L2n×2n ,
k ∈ [1, 2q]. Given s ∈ Z+, the trajectory of DBN (3) from
x(0) ∈ 12n under the disturbance sequence {ξ (0), · · · , ξ (s−

1)} ⊆ 12q can be expressed by

x(s; x(0), ξ ) = Lξ (s− 1)x(s− 1)

= · · · = ⋉0
t=s−1(Lξ (t))x(0), (4)
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TABLE 1. Truth table of DBN (5).

where ⋉0
t=s−1(Lξ (t)) = Lξ (s − 1) ⋉ · · · ⋉ Lξ (0). Notice

that the trajectories of DBN (3) are not unique with various
disturbance sequences.

Based on the algebraic representation (3), we review the
definitions of robust reachability and robust stability of
DBNs [22].
Definition 2: For DBN (3), xe is robustly reachable from

initial state x(0) ∈ 12n , if there exists s ∈ Z+, such that
x (s; x(0), ξ) = xe, ∀{ξ (t) : t ∈ N} ⊆ 12q .
Definition 3: DBN (3) is robustly stable at xe, if for any

initial state x(0) ∈ 12n , there exists τ ∈ Z+, such that
x (t; x(0), ξ) = xe, ∀t ≥ τ and {ξ (t) : t ∈ N} ⊆ 12q .

Since gene mutation is a general phenomenon in GRNs,
function perturbation may be occurred in DBNs, that is, some
truth values of f are flipped in the truth table of DBN (2).
Correspondingly, some columns of L in (3) are changed.
Here, we give an example to illustrate this phenomenon.
Example 1:Consider a BN consisting of two nodes and one

disturbance as

Xi(t + 1) = fi(X (t), 4(t)), i ∈ [1, 2], (5)

where f1 = X1 ∧ ¬X2 ∧ 4 and f2 = X1. Table 1 shows the
truth table of DBN (5).
Using ASSR technique, the algebraic representation of

DBN (5) is x(t + 1) = Lξ (t)x(t), where L = [L1,L2] with
L1 = δ4[3, 1, 4, 4] and L2 = δ4[3, 3, 4, 4]. This article only
discusses an one-bit perturbation. For instance, f1(0, 1, 1) is
flipped from 0 to 1 (see the red text in Table 1). Then, the
value Col3(L1) is changed from δ44 to δ24 , and L is changed to
δ4[3, 1, 2, 4, 3, 3, 4, 4].

Before function perturbation, DBN (5) is robustly stable
at δ44 . Is DBN (5) still robustly stable at δ44 after function
perturbation? In order to solve this problem, we establish
some criteria to detect whether DBN (5) can be still robustly
stable at xe after function perturbation.

IV. MAIN RESULTS
Robust stability and robust stabilization of DBNs under func-
tion perturbation are investigated.

A. ROBUST STABILITY OF DBNs WITH FUNCTION
PERTURBATION
In the following, two assumptions about the function pertur-
bation of DBN (3) are given.

Assumption 1: Before function perturbation, DBN (3) is
robustly stable at xe = δ

γ

2n , γ ∈ [1, 2n].
Assumption 2: After function perturbation, the j∗-th col-

umn of Lk∗ is perturbed from δ
αk∗,j∗

2n to δ
α̂k∗,j∗

2n , where j∗ ̸= γ

and δ
αk∗,j∗

2n ̸= δ
α̂k∗,j∗

2n .
Remark 2: One-bit perturbation is only considered in

Assumption 1 for DBN (3), and the state δ
α̂k∗,j∗

2n is called the
perturbed point of DBN (3).

After function perturbation, matrix L changes to

L ′
= [L ′

1 L ′

2 · · · L ′

2q ],

where L ′
k = δ2n [βk,1 βk,2 · · · βk,j · · · βk,2n ], k ∈ [1, 2q]

with

βk,j =

{
α̂k∗,j∗ , if (k, j) = (k∗, j∗),

αk,j, otherwise.
(6)

Then, the algebraic representation of DBN (3) changes to

x(t + 1) = L ′ξ (t)x(t). (7)

Thus, for any x = δ
j
2n and any ξ = δk2q , if j ̸= j∗, we have

Lξx = δ
αk,j
2n = δ

βk,j
2n = L ′ξx. (8)

If j = j∗ and k = k∗, then

Lξx = δ
αk∗,j∗

2n ̸= δ
α̂k∗,j∗

2n = L ′ξx. (9)

Next, we analyze how function perturbation affect the
robust stability of DBN (3). Construct the state set:

0 = {δ
j
2n ∈ 12n : [P]j∗,j > 0} ∪ {δ

j∗

2n}, (10)

where P :=
∑2n

s=1Q
s and Q =

∑2q
k=1 Lk . Then, the set 0

contains all the states which can reach δ
j∗

2n under a sequence
of disturbance inputs, including δ

j∗

2n itself. If δ
j
2n ∈ 0 \ {δ

j∗

2n},
there must exist one path from δ

j
2n to δ

j∗

2n for DBN (3) before
function perturbation.

Utilizing the set 0, we present the following result for the
robust stability of DBN (3) with function perturbation.
Theorem 1: Under Assumption 1, DBN (3) with function

perturbation in Assumption 2 is still robustly stable at xe,

if and only if δ
α̂k∗,j∗

2n /∈ 0.
Proof. (Necessity)We prove it by contradiction. Assume

that DBN (3) is still robustly stable at xe after function per-

turbation, and δ
α̂k∗,j∗

2n ∈ 0. From Assumption 1, we know that

δ
α̂k∗,j∗

2n can robustly reach xe. Since δ
α̂k∗,j∗

2n ∈ 0, there exists at

least one path from δ
α̂k∗,j∗

2n to xe containing δ
j∗

2n . One of these
paths is assumed as

δ
α̂k∗,j∗

2n
ξ (0)
−−→ · · · → δ

j∗

2n → · · ·
ξ (τ−1)
−−−−→ xe, (11)

where the disturbance sequence is {ξ (0), · · · , ξ (τ − 1)} ⊆

12q , and τ is the number of steps from δ
α̂k∗,j∗

2n to xe.
Under Assumption 2, the j∗-th column of Lk∗ is perturbed

from δ
αk∗,j∗

2n to δ
α̂k∗,j∗

2n , that is, after function perturbation, δj
∗

2n
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can reach δ
α̂k∗,j∗

2n in one step under disturbance ξ = δk
∗

2q .
Combining with the path (11), we obtain that

δ
j∗

2n → δ
α̂k∗,j∗

2n → · · · → δ
j∗

2n . (12)

Thereby a cycle (12) is formed for DBN (3) with function
perturbation. This contradicts with the hypothesis that DBN
(3) is still robustly stable at xe after function perturbation.

Thus, δ
α̂k∗,j∗

2n /∈ 0.
(Sufficiency) Before function perturbation, DBN (3) is

robustly stable at xe. Therefore, for every state δ
η
2n ∈ 12n , the

paths from δ
η
2n to xe can be divided into two cases as follows.

• Case 1: δ
η
2n /∈ 0, that is, δ

η
2n can robustly reach xe,

meanwhile there is no path from δ
η
2n to xe containing δ

j∗

2n .
• Case 2: δ

η
2n ∈ 0, that is, δ

η
2n can robustly reach xe,

meanwhile there is at least one path from δ
η
2n to xe

containing δ
j∗

2n .
For Case 1, one path from δ

η
2n to xe is arbitrarily chosen and

assumed as

δ
η
2n → · · · → x(t) → · · · → xe, (13)

where the disturbance sequence is {ξ (0), · · · , ξ (τ − 1)} ⊆

12q , τ is the number of steps from δ
η
2n to xe, and

{x(1), · · · , x(τ −1)} denotes a series of states in the path from
δ
η
2n to xe. Obviously, x(t) ̸= δ

j∗

2n , t ∈ [1, τ − 1].
After function perturbation, we can know from (8) that

x(τ ; δ
η
2n , ξ ) = L ′ξ (τ − 1)x(τ − 1)

= L ′ξ (τ − 1)L ′ξ (τ − 2)x(τ − 2)

= · · ·

= ⋉0
t=τ−1(L

′ξ (t))δη
2n

= Lξ (τ − 1)x(τ − 1)

= Lξ (τ − 1)Lξ (τ − 2)x(τ − 2)

= · · ·

= ⋉0
t=τ−1(Lξ (t))δη

2n

= xe.

Hence, the path (13) is not affected by function perturbation,
which together with Assumption 1 shows that xe is still
robustly reachable from any state δ

η
2n ∈ 12n .

For Case 2, we take an arbitrary path from δ
η
2n to xe as

δ
η
2n → · · · → x(t1) → · · · → δ

j∗

2n → δα
2n →

· · · → x(t2) → · · · → xe, (14)

where the corresponding disturbance sequence is {ξ (t) =

δ
it
2q : t = 0, . . . , τ1 + τ2 − 1} ⊆ 12q , τ1 + τ2 is the number
of time steps from δ

η
2n to xe, and {x(t1) : t1 = 1, . . . , τ1 − 1}

denotes the states in the path from δ
η
2n to δα

2n , {x(t2) : t2 =

τ1 + 1, . . . , τ1 + τ2 − 1} represents the states in the path
from δα

2n to xe. Obviously, x(τ1 − 1) = δ
j∗

2n , x(τ1) = δα
2n and

x(t) ̸= δ
j∗

2n , t ∈ {1, . . . , τ1 + τ2 − 1}\{τ1 − 1}.
There are two cases for δα

2n in path (14), that is, α ̸= αk∗,j∗

or α = αk∗,j∗ . If α ̸= αk∗,j∗ , similar to the analysis of path

(13), path (14) is not affected by function perturbation, and
δ
η
2n can still robustly reach to xe. If α = αk∗,j∗ , after function
perturbation, we obtain that

x(τ1 − 1; δ
η
2n , ξ ) = ⋉0

t=τ1−2(L
′δ
it
2q )δ

η
2n

= ⋉0
t=τ1−2(Lδ

it
2q )δ

η
2n = δ

j∗

2n ,

x(1; δ
j∗

2n , ξ ) = L ′δk
∗

2q δ
j∗

2n = δ
α̂k∗,j∗

2n .

(15)

Considering δ
α̂k∗,j∗

2n /∈ 0, we have

x(τ3 − 1; δ
α̂k∗,j∗

2n , ξ ) = ⋉0
t=τ3−1(L

′δ
jt
2q )δ

α̂k∗,j∗

2n

= ⋉0
t=τ3−1(Lδ

jt
2q )δ

α̂k∗,j∗

2n

= xe, (16)

where τ3 is the number of time steps from δ
α̂k∗,j∗

2n to xe, and
the corresponding disturbance sequence is {ξ (t) = δ

jt
2q : t =

0, . . . , τ3 − 1} ⊆ 12q .
Combining (15) with (16), we have

x(τ1 + τ3; δ
η
2n , ξ )

= ⋉0
t=τ3−1(L

′δ
jt
2q )L

′δk
∗

2q ⋉0
t=τ1−2 (L

′δ
it
2q )δ

η
2n

= ⋉0
t=τ1+τ3−1(L

′ξ (t))δη
2n

= xe,

which implies that path (14) changes to

δ
η
2n → · · · → x(t1) → · · ·

→ δ
j∗

2n →\ δ
αk∗,j∗

2n → · · · → x(t2) → · · · → xe
↓

δ
α̂k∗,j∗

2n → · · · → x(t3) → · · · → xe, (17)

where the corresponding disturbance sequence is {ξ (t) =

δ
it
2q : t = 0, . . . , τ1 − 2}∪ {ξ (t) = δk

∗

2q : t = τ1 − 1}∪ {ξ (t) =

δ
jt−τ1
2q : t = τ1, . . . , τ1+τ3−1}, τ1+τ3 is the number of time
steps from δ

η
2n to xe, and {x(t3) : t3 = τ1+1, . . . , τ1+τ3−1}

denots a series of states in the path from δ
α̂k∗,j∗

2n to xe. Then,
δ
η
2n can still reach to xe when α = αk∗,j∗ . Therefore, based
on the above discussion, for case 2, one knows that xe is still
robustly reachable from any state δ

η
2n ∈ 12n after function

perturbation.
By Definition 3, DBN (3) is still robustly stable at xe after

function perturbation of Assumption 2. ■

B. ROBUST STABILIZATION OF DBCNs WITH
FUNCTION PERTURBATION
Now, consider the following DBCN:

xi(t + 1) = fi(X (t),U (t), 4(t)), i ∈ [1, n], (18)

with control input U (t) = (u1(t), u2(t), · · · , um(t)) ∈ Dm.
fi : Dm+n+q

→ D (i ∈ [1, n]) is Boolean function. Then,
the concept of robust stabilization of DBCNs is recalled as
follows [22].
Definition 4: DBCN (18) is robustly feedback stabilizable

to Xe, if for any initial state X (0) ∈ Dn, there exist the state
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feedback controller U (t) = g(X (t)) and τ ∈ Z+, such that
X (t;X (0),Ug, 4) = Xe, ∀t ≥ τ and {4(t) : t ∈ N} ⊆

Dq, where g : Dn
→ Dm, and Ug is the control sequence

generated by g.
Setting ui be the vector form of Ui and u(t) = ⋉m

i=1ui(t) ∈

12m , based on Lemma 2, the ASSR of DBCN (18) is
expressed as

x(t + 1) = Lξ (t)u(t)x(t), (19)

where L ∈ L2n×2m+n+q is the state transition matrix of
(18). Divide L ∈ L2n×2m+n+q into 2q equal blocks as L =

[L1 L2 · · · L2q ], where Lk ∈ L2n×2m+n , k ∈ [1, 2q].
Denote Lk := [Lk,1 Lk,2 · · · Lk,2m ], where Lk,l :=

δ2n [θ1k,l θ2k,l · · · θ2
n

k,l], l = 1, · · · , 2m.
Analogously, the controller U (t) = g(X (t)) is converted

into

u(t) = Gx(t), (20)

where G := δ2m [v1 v2 · · · v2n ] is the state feedback gain
matrix, which can be derived through the stabilizer design
method presented in [23].

Next, we discuss whether DBCNs can still maintain robust
stabilization under the given state feedback stabilizer after
function perturbation.

Two natural assumptions are given in the following.
Assumption 3: Before function perturbation, DBCN (19)

is robustly stabilizable at xe = δ
γ

2n under the state feedback
control (20).

Assumption 4: After function perturbation, δ
θ
j∗

k∗,l∗

2n changes

to δ
θ̂
j∗

k∗,l∗

2n , where k∗
∈ [1, 2q], l∗ ∈ [1, 2m], j∗ ∈ [1, 2n], j∗ ̸=

γ and δ
θ
j∗

k∗,l∗

2n ̸= δ
θ̂
j∗

k∗,l∗

2n .
Plugging (20) into (19), the closed-loop system can be

given as

x(t + 1) = Lξ (t)Gx(t)x(t)

= L(I2q ⊗ GM r
2n )ξ (t)x(t)

:= L̃ξ (t)x(t). (21)

Here L̃ = L(I2q ⊗ GM r
2n ). Divide L̃ into 2q equal blocks as

L̃ = [̃L1 L̃2 . . . L̃2q ],

with L̃k = Lk (I2q ⊗GM r
2n ), k ∈ [1, 2q]. A simple calculation

gives

L̃k = δ2n [θ1k,v1 θ2k,v2 · · · θ2
n

k,v2n ], k ∈ [1, 2q].

In the following, we discuss the changes in the structure
matrix L of DBCN (19) with function perturbation.
Under Assumption 4, only one column in some block of L

is changed. Assume that matrix L in DBCN (19) changes to

L ′
= [L ′

1 L ′

2 · · · L ′

2q ],

where L ′
k = [L ′

k,1 L
′

k,2 · · · L ′

k,2m ], k = 1, · · · , 2q. We know
that

L ′
k =

{
Lk , if k ̸= k∗

;

[L ′

k∗,1 L ′

k∗,2 · · · L ′

k∗,2m ], if k = k∗.
(22)

When l ̸= l∗, Lk∗,l is unchanged, that is L ′
k∗,l = Lk∗,l . When

l = l∗, we have

L ′
k∗,l∗ = δ2n [θ1k∗,l∗ · · · θ

j∗−1
k∗,l∗ θ̂

j∗

k∗,l∗ θ
j∗+1
k∗,l∗ · · · θ2

n

k∗,l∗ ].

According to the above description, we further study the
changes of matrix L̃ in closed-loop system (21).

When function perturbation of Assumption 4 occurs, if k ̸=

k∗, L̃k is unchanged, k ∈ {1, . . . , 2q}\{k∗
}; if k = k∗ and

vj∗ ̸= l∗, since θ
j∗

k∗,vj∗
does not change, there are still no

change in L̃k∗ ; if k = k∗ and vj∗ = l∗, since θ
j∗

k∗,vj∗
changes

to θ̂
j∗

k∗,vj∗
, one knows that L̃k∗ changes to L̃ ′

k∗ , where

L̃ ′
k∗ = δ2n [θ1k∗,v1 · · · θ

j∗−1
k∗,vj∗−1

θ̂
j∗

k∗,l∗ · · · θ2
n

k∗,v2n ]. (23)

Theorem 2: Under Assumption 3, if vj∗ ̸= l∗, then DBCN
(19) with function perturbation in Assumption 4 is still
robustly stabilizable at xe under the controller (20).

Proof. Since vj∗ ̸= l∗, L̃ will not change, which implies
that the function perturbation in Assumption 4 has no effect
on closed-loop system (21). Based on Assumption 3, the
conclusion holds. ■
For the case vj∗ = l∗, it is easy to see from (23) that system

(21) is affected by function perturbation. Denote the state set
as

0̃ = {δ
j
2n ∈ 12n : [̃P]j∗,j > 0} ∪ {δ

j∗

2n}, (24)

where P̃ :=
∑2n

j=1 Q̃
j and Q̃ =

∑2q
k=1 L̃k . Similar to the

analyses of DBNs with function perturbation, the following
result can be established.
Theorem 3: Under Assumption 3, if vj∗ = l∗, then DBCN

(19) with function perturbation in Assumption 4 is still
robustly stabilizable at xe under the controller (20), if and

only if δ
θ̂
j∗

k∗,l∗

2n /∈ 0̃.
Proof. This proof is similar to Theorem 1, so we omit-

ted it. ■

V. ILLUSTRATIVE EXAMPLES
In the following, we given two examples to verify the
obtained results.
Example 2: Recall DBN (5) in Example 1. A direct calcu-

lation shows that DBN (5) is robustly stable at xe = δ44 before
function perturbation. After function perturbation, the value
Col3(L1) is changed from δ44 to δ24 . Then, under Assumption
2, we have xe = δ44 , j

∗
= 3, k∗

= 1, α1,3 = 4 and α̂1,3 = 2.
By calculations, the following matrices are obtained:

Q = L1 + L2 =


0 1 0 0
0 0 0 0
2 1 0 0
0 0 2 2


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and

P = Q1
+ Q2

+ Q3
+ Q4

=


0 1 0 0
0 0 0 0
2 3 0 0
28 26 30 30

 .

We know from [P]3,1 > 0 and [P]3,2 > 0 that 0 =

{δ14, δ
2
4, δ

3
4}. Since the perturbed point δ24 ∈ 0, by Theorem

1, we obtain that DBN (5) cannot robustly stable at xe =

δ44 after function perturbation. We can explain it by Figure 1.
Figure 1(a) shows that DBN (5) is robustly stable to δ44 before
function perturbation. After function perturbation, a cycle
(see Figure 1(b)) of length 2 is formed as

δ24
ξ (0)=δ22
−−−−→ δ34

ξ (1)=δ12
−−−−→ δ24, (25)

which means that DBN (5) cannot converge to δ44 under
arbitrary disturbance.

FIGURE 1. State transfer diagrams of DBN (5): (a) before function
perturbation; (b) after function perturbation.

In Figure 1, the blue and green arrows represent the state
transfer under ξ = δ12 and ξ = δ22 , respectively. The black
arrows represent the state transfer under arbitrary disturbance
input (δ12 and δ22), and the red arrow represents the state
transfer of perturbed point.
Example 3: Consider a reduced E. coli lactose operon

network with disturbance [35]:
x1(t + 1) = ¬u1(t) ∧ (x2(t) ∨ x3(t)) ,

x2(t + 1) = ¬u1(t) ∧ u2(t) ∧ x1(t) ∧ ξ (t),
x3(t + 1) = ¬u1(t) ∧ (u2(t) ∨ (u3(t) ∧ x1(t))) .

(26)

where state variables x1, x2 and x3, respectively, denote the
lac mRNA, the high-concentration lactose, and medium-
concentration lactose; input variables u1, u2 and u3 stand
for the extracellular glucose, the high exolactose, and the
medium exolactose, respectively; ξ indicates an artificial dis-
turbance.

Using the ASSR method, the algebraic representation for
DBCN (26) can be denoted by

x(t + 1) = Lξ (t)u(t)x(t), (27)

where L = [L1,L2] with

L1 = δ8[ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

1 1 1 5 3 3 3 7 1 1 1 5 3 3 3 7

3 3 3 7 4 4 4 8 4 4 4 8 4 4 4 8 ],

and

L2 = δ8[ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

3 3 3 7 3 3 3 7 3 3 3 7 3 3 3 7

3 3 3 7 4 4 4 8 4 4 4 8 4 4 4 8 ].

According to the control design approach in [23], 48 state
feedback stabilizers can be obtained to robustly stabilize
DBCN (27) to xe = δ38 , and one of state feedback stabilizers
is proposed below

u(t) = δ8[7 7 7 5 5 5 5 5]x(t). (28)

Plugging control (28) into DBCN (27), the closed-loop
system can be obtained as

x(t + 1) = L̃ξ (t)x(t), (29)

where L̃ = [̃L1, L̃2] with L̃1 = δ8[3 3 3 5 3 3 3 7], and L̃2 =

δ8[3 3 3 7 3 3 3 7]. The state transfer diagram of DBCN (27)
under control (28) is shown in Figure 2.

FIGURE 2. State transfer diagram of DBCN (27) under control (28). The
blue and green arrows represent the state transfer under ξ = δ1

2 and
ξ = δ2

2 , respectively. The black arrows represent the state transfer under
arbitrary disturbance input (δ1

2 and δ2
2 ).

Now, we study whether the given control (28) can make
DBCN (27) maintain robust stabilization after the following
three types of function perturbations.

1) After function perturbation, the value Col9(L2) is
changed from δ88 to δ38 , that is, k

∗
= 2, l∗ = 2 and j∗ = 1. It is

easy to see from (28) that vj∗ = v1 = 7. Then, we obtain vj∗ ̸=

l∗. By Theorem 2, DBCN (26) is still robustly stabilizable to
xe under control (28).

2) After function perturbation, the value Col37(L2) is
changed from δ38 to δ18 , that is, k

∗
= 2, l∗ = 5 and j∗ = 5,

thus, vj∗ = v5 = 5 and L̃ ′1 = δ8[3 3 3 5 3 3 3 7], L̃ ′2 =

δ8[3 3 3 7 1 3 3 7]. We know from (24) that 0̃ = {δ48, δ
5
8}.

Then, vj∗ = l∗ and δ18 /∈ 0̃. According to Theorem 3, DBCN

VOLUME 11, 2023 84519
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FIGURE 3. State transfer diagrams of DBCN (27) under control (28) after
function perturbation: (a) k∗ = 2, l∗ = 5, j∗ = 5; (b)k∗ = 1, l∗ = 5, j∗ = 7.
The red arrow represents the state transfer of perturbed point.

(26) is still robustly stabilizable to xe under control (28) (see
Figure 3(a)).
3) After function perturbation, the value Col39(L1) is

changed from δ38 to δ48 , that is, k
∗

= 1, l∗ = 5 and j∗ = 7,
thus, vj∗ = v7 = 5 and L̃ ′1 = δ8[3 3 3 5 3 3 4 7],
L̃ ′2 = δ8[3 3 3 7 3 3 3 7]. By a simple calculation, we obtain
0̃ = {δ48, δ

7
8}. Then, vj∗ = l∗ and δ48 ∈ 0̃. According to

Theorem 3, DBCN (26) is not robustly stabilizable to xe under
control (28) (see Figure 3(b)).

VI. CONCLUSION
In this article, we have studied the robust stability and
robust stabilization issues of DBNs with function perturba-
tion. On one hand, we have constructed a state set to detect
whether the robust stability of DBNs remains unchanged after
function perturbation. On the other hand, we have derived
several criteria to verify whether DBCNs with function per-
turbation can still maintain robust stabilization under a given
state feedback stabilizer.

Future works contain the following contents.

1) This article only considers one-bit function perturbation
in DBNs. Future work can study multi-bit function per-
turbations in DBNs.

2) One can generalize the obtained results to robust set sta-
bilization and robust output tracking of DBCNs subject
to function perturbations.

3) Gene mutation often occurs in a stochastic manner in
practical genetic regulatory networks. Hence, we will
focus on the impact of multi-bit stochastic function per-
turbations on the behavior of DBNs.
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