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ABSTRACT As cellular networks evolve towards the 6th generation, machine learning is seen as a key
enabling technology to improve the capabilities of the network. Machine learning provides a methodology
for predictive systems, which, in turn, can make networks become proactive. This proactive behavior of
the network can be leveraged to sustain, for example, a specific quality of service requirement. With
predictive quality of service, a wide variety of new use cases, both safety- and entertainment-related, are
emerging, especially in the automotive sector. Therefore, in this work, we consider maximum throughput
prediction enhancing, for example, streaming or highdefinition mapping applications. We discuss the entire
machine learning workflow highlighting less regarded aspects such as the detailed sampling procedures,
the in-depth analysis of the dataset characteristics, the effects of splits in the provided results, and the
data availability. Reliable machine learning models need to face a lot of challenges during their lifecycle.
We highlight how confidence can be built on machine learning technologies by better understanding the
underlying characteristics of the collected data. We discuss feature engineering and the effects of different
splits for the training processes, showcasing that random splits might overestimate performance by more
than twofold. Moreover, we investigate diverse sets of input features, where network information proved
to be most effective, cutting the error by half. Part of our contribution is the validation of multiple machine
learningmodels within diverse scenarios.We also use explainable AI to show that machine learning can learn
underlying principles of wireless networks without being explicitly programmed. Our data is collected from
a deployed network that was under full control of the measurement team and covered different vehicular
scenarios and radio environments.

INDEX TERMS Intelligent transportation systems, machine learning, quality of service, throughput
prediction, vehicular communication, wireless networks.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chan Hwang See.

I. INTRODUCTION
Machine learning (ML) has a strong potential to over-
come challenges arising in vehicular communication and
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networking, as presented in [1] and [2]. Examples of such
challenges are resource allocation [3], [4] and quality of
service (QoS) prediction [5]. The QoS prediction, in turn,
is an enabler for a variety of use cases in the domain
of vehicular communication, such as autonomous driving,
platooning, cooperative maneuvering, tele-operated driving,
and smart navigation. Some of these are presented in [6]
and [7]. Predictions can not only enhance the existing use
cases and support new ones, but also be a stepping stone for
a network to become proactive. Such predictions can be an
integral part of a network that proactively reacts to sustain, for
example, a specific key performance indicator (KPI) target,
like the maximum achievable throughput under high network
load.

In this work, we focus on the prediction of QoS as
a way of looking into the typical workflow for building
and applying machine learning (ML) algorithms. We start
with data acquisition, moving on to data analysis and
statistical characterization of the data, proceeding to feature
engineering and different split strategies, and concluding
by testing the performance of the model. Predicting QoS
is a relatively complex task since it depends on several
time-varying factors. It is especially complex in the case of
vehicular communication where the radio conditions might
change very drastically in a short amount of time [8].
Capturing datasets that reveal the complex inter-

dependencies between network operations, radio environ-
ment and terminal behavior is a challenging task in itself.
The captured data might often lack the required quality for
ML-based prediction, rendering it inappropriate. There are
multiple factors that can reduce the quality of a collected
dataset for training ML models, with a few examples being
dataset imbalance, coverage of radio regions with bounded
dynamics or limited network states gathered. Moreover,
acquiring different types of data for a prediction task comes
with varying acquisition costs that are typically not discussed
extensively. From the theoretical perspective of statistical
learning, a training dataset should often be independent
and identically distributed (i.i.d.) and drawn from the same
probability distribution as the test dataset [9], [10]. Radio
terminals frequently experience drastic shifts in the data
distribution [11] that usually degrade the performance of ML
models [12].

Meaningful comparisons between prior art proposals,
though desirable, can be hard. There are multiple reasons
for this, for example, the pre-processing steps are not
well reported, or the used performance metrics differ.
Additionally, literature in the area of applying ML for
wireless communications often reports the performance of
themodels without giving an in-depth analysis of the dataset’s
underlying characteristics. This raises the question of how
robust such models are to changes in different environments,
where the dataset’s statistical properties might be different.

Our results emerge from the data analysis of a dedicated
measurement campaign with the goal of capturing several
characteristics of the radio environment and enabling an

in-depth discussion of ML workflows. The code for this
analysis is based on customary functions from usual Python
libraries for scientific computing (e.g., numpy, pandas, scikit-
learn. . . ). Our contributions include the following:
• We study the prediction of maximum throughput
prediction enhancing, for example, streaming or
high-definition mapping applications.

• We discuss the entire machine learning workflow high-
lighting less regarded, but important aspects, such as
the detailed sampling procedures, the in-depth analysis
of the dataset characteristics, and the effects of splits
on performance. For example, we test against the data
stationarity assumption and discuss methods to handle
those for commercial networks. Many proposals in the
literature avoid discussing such theoretical violations
that many ML models require.

• We put the characteristics of wireless environments in
the foreground explaining what might hinder and benefit
the adoption of ML approaches for new-generation
wireless networks.

• We further showcase why the lack of this type of
information, missing often from the literature, can
generate overconfidence in proposed ML solutions.

• We investigate the effects of diverse sets of input features
specifically those that are not typically available in the
prior art.

• We showcase that consumer devices and low sampling
speeds can be enablers for the adoption of ML in
commercial networks.

• We also use explainable AI to demonstrate that machine
learning can learn underlying principles of wireless
networks without being explicitly programmed.

• Our data is collected from a deployed network that
avoids limitations of theoretical studies or simulation-
based results.

The remaining of the paper is structured as follows: Section II
presents related work in the area of predictive quality of
service (pQoS), and the measurement campaign is described
in Section III. In Section IV, we discuss various radio
environment properties in relation to ML workflows, such as
vehicle speed and stationarity. We continue the analysis on
ML workflows in Section V with a careful look into train/test
data splitting and feature engineering. In SectionVI, we apply
a set of ML algorithms to predict the maximum achievable
throughput for diverse prediction models, communication
directions, feature sets, splitting strategies, and prediction
horizons. In SectionVII we look at the topic of explainable AI
(XAI) [13] showcasing what the models have learned in the
absence of explicitly programmed rule sets. Finally, we draw
conclusions in Section VIII.

II. RELATED WORK
The application of ML for QoS prediction in vehicular
networks has drawn attention recently. In the following,
we present an overview of related works. Measurement
campaigns that focus on the feasibility of teleoperated driving

92460 VOLUME 11, 2023



A. Palaios et al.: ML for QoS Prediction in Vehicular Communication: Challenges and Solution Approaches

(ToD) are described in [14] and [15]. The authors of [14] also
include a sensitivity analysis in their work and examine the
impact of factors such as speed and distance to a serving
cell. When applying gathered data from measurements to
QoS prediction in the current literature, a sampling interval
in the order of seconds is often used (e.g., [16], [17]). This
does not reflect the fast-changing wireless channel associated
with high-mobility vehicular communication scenarios [18],
and there is an open question as to which degree sampling
schemes need to be adjusted based on the vehicle speed. Some
works already have compared measurement applications
running on slow-sampling consumer equipment (CE) with
dedicated measurement equipment (DME) analysis [19], [20]
and propagation model tuning [21]. As vehicular communi-
cation is characterized by high mobility of the terminal, it is
an open question whether CE’s low-cost transceiver chains
might render collected data unsuitable for applying ML.

Moreover, it is known that the radio environment has
dynamics that can drastically change its statistical properties
over a distance of a few meters [22], [23]. Such changes
in statistical properties of the data stream, where the ML
model needs to reformulate its decision boundaries, are being
discussed in the literature as concept drift [24], [25], [26].
Detection and analysis of concept drift using state-of-the-art
algorithms have been explained in [27]. Extensive research
is conducted on the management of concept drift, some of
which are: using an ensemble learning approach [28], concept
drift-aware federated averaging [29], or model updating
mechanisms [30].

In [31] and [32] the authors present a measurement
campaign and evaluate several ML models regarding their
performance for downlink (DL) throughput prediction. One
limitation is that the authors measure in a public network
and thus cannot consider features such as the cell load.
The authors of [33] consider the movement of the user and
build a two-staged ML model to predict the transmission
control protocol (TCP) throughput. In the first step, the
movement pattern is identified. Based on this, a long short-
term memory (LSTM), trained with corresponding data,
is selected for the throughput prediction. Some preliminary
results for uplink (UL) and DL throughput prediction using
Random Forest and employing the dataset used for this paper
are presented in [34]. QoS prediction in a 5G non-standalone
network is examined in [35]. Besides throughput, ML is also
used to predict latency [5], [36], [37] and handovers [38].
Recently, several datasets intended for ML-based studies
have been made publicly available [39], [40] that typically do
not provide cell-related information. Moreover, those works
focus on introducing the datasets instead of applying ML
methods.

An inherent limitation of ML algorithms, especially as
they get more complex, is that their decision-making is
difficult to understand, rendering them into black boxes.
Recently, the field of explainable AI (XAI) [13] has gained
traction, to ensure ML models perform as desired, not
only in test environments but also in target applications.

FIGURE 1. The map of the areas where the measurements took place. The
A9 highway is highlighted in red, while the rural and side street areas are
marked in green (not all rural streets are plotted to reduce clutter). The
blue area is the suburban city of Feucht.

With XAI, models can be judged in the context of human
domain knowledge, e.g. by investigating the learned feature
importance.

We extend prior art by providing detailed insights into
the aspects mentioned above. Our dedicated measurement
campaign, on a fully controlled private network, allowed
us to perform a deep analysis and enable an in-depth
discussion. We could control which devices could connect to
the network, we could adjust the total network interference,
and generate diverse traffic dynamics. We consider different
radio environments, device types, sampling frequencies,
measurement scenarios, and prediction horizons. We present
the complete workflow towards building a pQoS model,
predicting the maximum achievable throughput. We discuss
several design decisions, such as the train-test split, various
feature groups, and different models, and show the influence
on the achieved performance. In the end, we discuss the issue
of trustworthiness.

III. MEASUREMENT CAMPAIGN
Within the project AI4Mobile, an extensive measurement
campaign was performed in the 5G-ConnectedMobility test
field.1 In total, more than 3000 km were driven by four

1https://www.ericsson.com/en/cases/2020/5g-connectedmobility
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vehicles for one week to perform measurements from the
long term evolution (LTE) network. A detailed description
of the measurement campaign is available in [41]. Since
we had control over the network infrastructure, we were
able to measure and collect data from all parts of the
network. We were also able to define custom scenarios and
set parameters accordingly. Subsequently, we briefly describe
the setup and highlight some scenarios.

A. MEASUREMENT SETUP
During the measurement campaign, four vehicles were
equipped with several user equipments (UEs). In each
vehicle, an identical DME was used for measurements with
high granularity. The DME is a Linux-based PC including
a cellular modem connected to a 2 × 2 MIMO car antenna,
which is placed on the roof of the respective car. Additionally,
a global positioning system (GPS) receiver was placed on the
roof and connected to the DME, providing accurate location
and time synchronization via a pulse per second (PPS) signal.
To capture the data from the cellular modem, we used the
application MobileInsight [42].

Each vehicle was also equipped with several CE phones
as pure data generators and measurement devices with a
low sampling frequency for a comparison to the DME’s
measurements. The CE uses the application G-Net Track
Pro [43] to capture radio measurements via the Android API.
All devices used the application Iperf [44] to exchange data
with a local server connected to the network. In addition to
the UEs (CE and DME), we also collected data from the
base stations and the core network, which were also time-
synchronized. An overview of all captured data is given in
Table 1.
The network is deployed in the south of Germany, close

to Nuremberg. It consists of 10 frequency-division duplex
(FDD)-LTE cells with 10MHz of bandwidth at a carrier
frequency of 700MHz, with typical radio tower panel
antennas (horizontal half-power beam width of 65◦). Since it
is a test network, our devices were the only devices connected
to the network. In Fig. 1, the area of the test field is shown,
including the position of the distinct cells. While the cells
were positioned to provide excellent connectivity along the
highway and in the suburban city of Feucht, part of the rural
area next to the highway was also covered, which allowed us
to capture several radio environments.

B. THE CONDUCTED STUDIES
The purpose of the measurements was to thoroughly examine
numerous parameters through a variety of real-time scenarios
in our captured dataset. This involved analyzing different
driving patterns at different speeds, stationary measurements,
recording different radio environments, and generating varied
data traffic to create contrasting load scenarios. Furthermore,
we utilized various protocols and generated traffic in both the
UL and DL to the server and to other vehicles. Additional
information on the parameters captured in the measurement
campaign can be found in [41].

FIGURE 2. Simplified view of the used measurement methodology. All
clocks are synchronized and all generated data is marked accordingly and
captured at separate entities. Figure adapted from [41].

C. DATA PREPROCESSING
For this study, only user datagram protocol (UDP) measure-
ments from the dataset were considered since the protocol
properties of TCP and UDP differ. Therefore the E2E
throughput could not be limited by the transport layer.
We used the data, where the devices were requesting
maximum throughput.

Moreover, we filtered out stationary measurements, i.e.,
when vehicles were parked for some time. The stationary
measurements contain similar radio properties for the major-
ity of the samples, which could result in overly optimistic
prediction results.

IV. PROPERTIES OF THE RADIO ENVIRONMENT
In this section, we study properties of the radio environment
that might influence ML algorithms. Radio environments
have very diverse characteristics that depend on multiple
factors. Some of these factors are environment-based, for
example, radio propagation can be drastically different in a
rural area and in a crowded city center [45], as the type and
density of buildings influence the radio propagation. Another
factor is, for example, the specific network deployment (e.g.
antenna heights, frequency layers and the number of cells in
an area). All these factors contribute to very unique properties
in the collected data as UEs move. We first discuss the
data collection procedures and how these might affect the
quality of the collected dataset. We continue looking at
the statistical properties of the radio environment. As many
ML algorithms rely on multiple statistical assumptions [46],
we try to highlight some of those, as they might need to be
better understood by the research community that applies ML
on wireless networks.

A. SAMPLING THE RADIO ENVIRONMENT
High sampling intervals of the radio environment come at a
cost, either in terms of acquiringmore capable hardware, or in
terms of higher power consumption or in terms of signaling,
as more data need to be transferred. We specifically study the
effects of different sampling intervals on the characteristics
of the collected dataset. We also study the effects of the
vehicular speed in the characteristics of the collected dataset
to see if higher velocities call for faster sampling intervals,
for sustaining specific quality characteristics in the collected
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TABLE 1. Overview of captured data from all network nodes.

dataset. We focus on LTE signal values for the analysis, i.e.,
reference signal received power (RSRP) and received signal
strength indicator (RSSI), since these are most affected by the
vehicle’s speed and influence the target throughput, in turn,
as we show in Section VI and in Section VII
To quantify the sensitivity of the collected measurements

on these two parameters, we need to introduce the resampling
error (RE) at the k-th time instance as

RE(k) = xo(k)− xrs(k) , 0 ≤ k < K , (1)

where xo(k) represents the original signal of length K at a
sampling interval of 10ms for the DME and 1 s for the CE.
The corresponding resampled value for a lower sampling
interval is xrs(k). To determine xrs(k), the following procedure
is applied: first, the original dataset is downsampled by
averaging to a target rate to obtain xds

(
k ′

)
:

xds
(
k ′

)
=

1
M

M−1∑
m=0

xo
(
m+ k ′M

)
, 0 ≤ k ′ < K/M , (2)

where M accounts for the downsampling ratio for a certain
pair of original and target sampling interval, e.g., M =

10 for a target rate of 10 s when considering the CE’s original
sampling interval of 1 s. Secondly, the downsampled dataset
are then upsampled by the forward filling method, which can
be expressed byM -integer division on the original index k:

xrs (k) = xds (⌊k/M⌋) = xds

(
k − (k mod M )

M

)
. (3)

Finally, Equations (1), (2) and (3) can be combined into

RE(k) =
1
M

M−1∑
m=0

xo (k)− xo (m+ k − (k mod M )) . (4)

For each sample at the k-th time instance, the vehicle
speed v(k) is also known, which allows to explore the relation
between the mobility of the terminal and the resulting RE.
Therefore, the speed range from 0 to 140 km/h is split in
intervals of 5 km/h. For each interval with a lower speed
boundary v′, the mean absolute resampling error REv′ is

calculated according to Eq. (5).

REv′ =
1
K

∑
v′≤v(k)<v′+5 km/h

|RE(k)| (5)

The results are shown for RSRP and RSSI and measure-
ments from the DME and CE in Fig. 3. The shaded areas
indicate the central half of the distribution of the errors.

Focusing on the effect of different sampling intervals for
a DME dataset (Figs. 3a and 3b), one can see that the
RE increases with a larger sampling interval as expected.
Interestingly, this increase seems to be below 2 dB for a
sampling interval of 1 s and between 2 and 3 dB for a
sampling interval of 10 s, which might still be acceptable for
certain ML applications.

The mobility of the terminal seems to have some effect
on the quality of the collected dataset. When the terminal is
stationary, the RE is close to 0. Both RSRP and RSSI are
characterized by a steep rise of the error once the terminal
starts to move at an approximate speed of 10 km/h. Above
that speed, the error remains stable. Of particular interest
is a sampling interval of 1 s, as it shows approximately the
error introduced by employing a CE instead of a DME, which
collects data at a sampling interval of 10ms. Themean RE for
RSRP and RSSI are well below 2 dB, which suggests that also
CE samples may enable an accurate QoS prediction. Only
the sampling interval of 10 s shows larger variations across
different speeds. Here we notice that the variance of the error
is drastically increased for the lower sampling interval.

We also executed the same experiments with a dataset from
the less granular CE.We received similar results for the DME
dataset as shown in Fig. 3c and 3d, i.e., a rise of the error in the
beginning, followed by a saturation of the RE. We empathize
that a direct comparison of the resulting RE between the two
different devices should be avoided, as the original sampling
intervals are larger and thus the number of samples that are
considered for each downsampling interval is smaller. This,
combined with the simpler transceiver chain of the CE, is a
potential explanation for why these results are less smooth.

The results indicate that the vehicle speed does not have a
noticeable impact on the absolute error for different sampling
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FIGURE 3. Relation between speed and mean absolute error (MAE) for different sampling intervals (shaded areas indicate the interquartile range).

intervals, except for vehicles moving at very low speeds. The
observed effects can possibly be attributed to the Doppler
effect. However, no channel measurements were carried out
during the measurement campaign and thus the causes cannot
be conclusively assessed on the basis of our data set. The
relatively constant error for slow sampling at different speeds
can further simplify the sampling procedures without the
need to introduce adaptive sampling schemes. Also, lower
sampling speeds can still provide useful input to ML models
as the reconstruction error remains low. This type of result
is necessary for optimizing data collection procedures for
future ML applications. In the following sections, we use
downsampled data from the DMEwith a sampling interval of
1s that also enables a comparison with the CE. The resulting
dataset sizes for DL and UL are 18846 and 19535 samples,
respectively.

B. DATA STATIONARITY
Many theoretical results in ML literature are based on the
assumption that the available dataset is i.i.d. [9], [10], [12].
This assumption can be violated in several ways, for instance,
if i) samples are correlated in time (i.e., they are not
independent), or ii) the underlying time series is non-
stationary (i.e., not identically distributed).

There are both parametric and non-parametric hypothesis
tests available in the literature to study time stationarity.
Parametric tests are often more powerful, but one needs to
assure that the assumptions they require (i.e., a specific well-
known underlying distribution) are met by the tested data.
As such, we have opted to use the parametric augmented
Dickey–Fuller (ADF) test [47], which searches a unit root
in the tested time series as its null hypothesis, while the
alternative hypothesis is stationarity. In other words, a low
p-value (for our analysis we have considered p < 0.05)
indicates strong evidence for stationarity in the data. As a
parametric test, ADF requires a suitable choice of the
maximum lag of the assumed autoregressive model. Since the
lag order is unknown for our data, we estimate it according to
the Akaike information criterion (AIC) [47].
We have run the ADF test for all physical layer (PHY)

features from all measurements (c.f. Table 1, first row) in an
accumulated manner. That is, for every analyzed time series
of size T , we construct T sub-series each one consisting of
all samples from 0 to t ∈ {0, 1, . . . ,T − 1}. We then run the

ADF test against every sub-series and concatenate the output
p-values into a vector of size T . Fig. 4 shows the resulting
accumulated ADF test as a color code on top of some time
series.

The expected behavior is that the accumulated ADF test
tends to p≪ 0.05 as the size of the evaluated time sub-series
increases. The number of samples needed for this depends on
some statistics, such as the variance (c.f. Fig. 4a & 4b), but it
rarely exceeds 15 minutes for our data.

This time stationarity assumption is violated for mea-
surements with an appreciable scenario shift, e.g., those
where vehicles remain idle for some time and drive away
afterward (Fig. 4c). This shows that stationarity cannot
always be assumed, even though it might hold true for some
datasets under a long-enough measurement time. For the
measurement scenarios, we opted for a duration of 40 to
60 minutes while driving to alleviate the problem of non-
stationarities.

In summary, we acknowledge the presence of non-stationary
portions in our data and its possible negative impact on the
performance of ML algorithms.

C. RADIO ENVIRONMENT CORRELATIONS
Additionally, we look at an important characteristic of the
radio environment, which is the correlation in time and
space [48], [49]. In Fig. 5, we show an example of the
autocorrelation function of the signal-to-interference-plus-
noise ratio (SINR) for three distinct radio environments.
We see that the radio environment tends to be highly
correlated in time for all three distinct radio environments.
Some higher correlations are noted for the rural environment,
with the highway having the weakest of the three. This is
probably explained by the faster movement of the vehicles.

In [50], the authors discuss that if correlations are not
handled properly, there is a higher risk of reporting overly
optimistic results. The reason is that the ML model does
not learn the underlying relations between input and output
clearly, and instead learns the existing dependencies of a
dataset, which in our case, are the reported correlations.

V. MACHINE LEARNING FOR WIRELESS NETWORKS
In this section, we discuss important aspects that the ML
engineer needs to understand before applying ML to radio
data. We discuss the notion of concept drift, different
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FIGURE 4. Stationarity analysis of the data using the ADF test.

strategies for splitting the data into training and test datasets,
and feature engineering.

A. CONCEPT DRIFT
In this section, we introduce the idea of concept drift
as a tool that can mitigate some of the effects of non-
stationarity. ML models traditionally need a formal and
precise definition of the problem to represent the decision
boundaries. However, non-stationarity in datasets implies
that the decision boundaries, i.e., concepts, have a higher
likelihood to be relearned to accommodate variations in the
underlying data distributions [51], [52]. This re-learning or
concept drifts must be detected to ensure that the ML models
remain accurate. Given that a sample instance x belongs to a

FIGURE 5. Autocorrelation of the SINR for excerpts of different DL
measurement runs.

Algorithm 1 Page-Hinkley Test
Input: A labeled dataset x1, x2, · · · , xT

Magnitude threshold δ

Detection threshold λ
x̄T ← 1/T

∑T
t=1 xt

UT ←
∑T

t=1(xt − x̄T − δ)
mT ← mint=1,··· ,T (Ut )
PHT ← UT − mT
if PHT > λ then

2← True
else

2← False
Output: Drift alarm 2

class ω (x ∈ ω), the Bayes posterior probability is:

P(ω | x) =
P(ω)P(x | ω)

P(x)
(6)

This indicates that the drift may occur when:
(i) Class definition P(ω | x) changes while P(x) remains

the same, i.e., real concept drift.
(ii) Virtual drift: Input distribution P(x) changes while

P(ω | x) remains the same, i.e., virtual concept drift.
(iii) Prior probability of class P(ω) changes while P(x | ω)

remains the same.
However, sometimes the class boundaries may change due
to hidden contexts. This drift occurs due to ‘insufficient,
unknown, or observable features in a dataset’ [53]. We aim
to test how often such hidden contexts appear in real-time
scenarios such as the automotive domain, where the envi-
ronments change dynamically at a rapid pace. To this end,
we employ the Page-Hinkley (PH) test (see Algorithm 1) to
detect statistical changes in the input data stream, i.e., detect
drift in data [54], [55].

The PH estimator needs a labeled dataset, a magnitude
threshold (δ), and a detection threshold (λ) as inputs. The
magnitude threshold defines the degree to which noise is
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TABLE 2. Detected drifts in test data streams for a model trained on the
suburban region.

permitted in the dataset. For each subsequent timestep t,
a single data entry is fed to the PH estimator and a cumulative
error UT is calculated. The estimator raises an alarm if
the cumulative error UT increases beyond the minimum
cumulative error mT determined by detection threshold λ.
Since Algorithm 1 only returns a boolean value, we build

T subseries identical to the ADF test and run the PH test
against all of them. In that way, we can provide an example
of detecting drifts in the input dataset as the vehicle is
moving through different environments. For that example,
an underlying ML model has been trained on the dataset of
the suburban region. The PH estimator’s magnitude threshold
δ is set to twice the standard deviation, 2σ of the training
dataset. The dataset captured by DME 3 from Vehicle 3 in the
measurement campaign is used to test for drifts. The estimator
reacts to the statistical changes in the input data and raises an
alarm when a drift is detected (see Table 2). The number of
detected drifts on the highway is higher by a factor of 3.3 than
that of the suburban region.

To verify the time and position of these drifts, an example
from the dataset, where the vehicle moves through different
regions is taken (see Fig. 6). Two distinct regions, i.e.,
suburban and highway are chosen for training the PH
estimator. Furthermore, the drifts are detected for different
magnitude thresholds of 1σ and 2σ for the two training
datasets. A change in the radio environment, when trained
on the suburban dataset (see Fig. 6a), can be detected when
the two different thresholds are applied. We also got similar
results when we trained for highway environments and
the UE was moving between suburban, rural, and highway
environments (see Fig. 6b).
The different types of concept drifts are expected to

deteriorate ML performance. Detecting these drifts and
dealing with them as early as possible will result in a resilient
and accurate ML model. One way to handle the drifts is
to include all the possible scenarios in the training dataset
that a ML model might face during its life cycle. As this
might be hard, and even unrealistic in many cases, another
approach is online training, which may be based on concept
drift detection [56], [57]. Hernangómez et al. [58] provide
some preliminary results on this dataset using said approach.

B. TRAIN/TEST SPLIT AND EVALUATION OF ML
ALGORITHMS
This section provides more details on splitting strategies, and
it explains how different techniques can provide different
insights. If not used properly, the splitting technique might

FIGURE 6. Detecting data drifts in distinct radio environments.

FIGURE 7. Visualization of different split strategies.

give skewed results, and we hope to explain some of their
fundamental strengths and weaknesses in the following.

The train/test splits included in this study are random split,
split by time, split by measurement run, and split by fold.
Fig. 7 provides the reader with a graphical explanation of the
different splitting strategies. Subsequently, we describe the
four strategies.
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1) RANDOM SPLIT
Each dataset sample has a nonzero probability of being added
to the training respectively test set. This often leads to two
consecutive samples from the same device being added to the
training and test set. These samples, as discussed above, share
similarities, explained by their correlation structure. In the
coming sections, we use a split where 70% of the data are in
the training dataset and 30% in the testing dataset. Note that
this split strategy assumes samples to be i.i.d., an assumption
we have shown to be violated in the radio environment.

2) SPLIT BY TIME
The dataset is split into two same-size parts based on the time
domain. The first part of each measurement run (independent
of the device) is added to the training set, and the second
to the test set. As one measurement run consisted of driving
the highway segment in two directions, this represents adding
one direction of travel to the training, and the second to the
test set. Hence, the training and test sets contain very similar
radio environments but are uncorrelated in time.

3) SPLIT BY MEASUREMENT RUN
Ameasurement run (independent of the device) is considered
part of either the training or the test set. The assignment
and balancing of training and test set can be challenging,
as the train and test datasets need to contain similar
characteristics. This splitting scheme is best used when
the model’s generalization performance is the main focus.
It is difficult to capture all dynamics (i.e., the parameter
permutations described in Section III) in both training and
test set. Bad performance on the test set results from the
fact that the complexity and dynamics of the region are not
reflected by any subset of the measurement runs. In our
dataset, we ended up with a split where about 70% of the
data are in the training dataset, and 30% in the test dataset to
ensure that training contains most of the dynamics found in
the test dataset.

4) SPLIT BY FOLDS
The last proposed splitting method aims to combine the split
by time and random splitting. We divide the time domain
into ten subsets of equal length for each measurement run
and device. This approach promises a realistic prediction
performance evaluation, as it negates many of the problems
of random splitting, and combines advantages of the time
splitting, where the models learn characteristics from the
time-varying radio environment. Here, we assigned 70% of
the data to the training and 30% to the test dataset.

To investigate deeper the effects of the different split-
ting strategies, we refer to principal component analysis
(PCA) [9], an orthogonal linear transformation transforming
a dataset (e.g., the training or test set) to a new basis
such that the dataset’s greatest variance lies in the first
principal components. Therefore, it can be considered as
a dimensionality reduction method and considering only a

subset of the original components, e.g., the first two for
visualization purposes. We note that PCA captures only the
second-order statistics and that there are alternative methods
for visualization, such as t-SNE. Fig. 8 shows the differences
between the training and test sets for the four splits using
PCA. The random split’s train and test datasets have very
similar distributions (cf. Fig. 8a). The reason is that the test set
does not contain unseen propagation, data traffic, and driving
scheme scenarios. Because time-series data from the radio
environment seems highly correlated, the training and test
datasets include many similar points.

Therefore, although this seems to be the splitting scheme
most used in the literature, there is a risk that reported
performance is higher than for a deployed system. This
should not discourage the use of random sampling. However,
the data engineer needs to understand the inherent limitations
of this splitting technique and be careful when reporting
results.

The split by time alleviates to some extent the sample
correlation, as consecutive samples belong to the same
set (training or test). Moreover, the varying propagation
environment, due to the changing direction of travel, and
differences in speed, result in distributions that are less similar
than for the random split (cf. Fig. 8b). Some regions, e.g.,
around the value five for the second principal component,
are only present in the test set. The PCA can be considered
a first test on how detailed collection procedures should
be and highlights how time-varying components influence
differences between the training and test sets. The split by
time adds some limitations on the measurement duration
as for balanced train and test sets more data than, e.g., for
random split is required.

The split by measurement run is more appropriate to test
model performance under varying and unseen parameters in
the measurement procedure, the devices’ behavior, and the
network. In Fig. 8c, it becomes clear that all these parameters
have a substantial effect on the two datasets. Perhaps this is
a good way to study the generalization performance of ML
models, as a training dataset will never comprise all potential
parameter permutations. TheMLmodelmakes predictions on
samples that can be considered different, e.g., using our PCA
evaluation.

We consider the split by folds the best splitting strategy for
our dataset as it provides enough variation for ML models
to be tested on unseen data while alleviating some of the
disadvantages of the other splitting strategies.

C. FEATURE ACQUISITION AND AVAILABILITY ANALYSIS
We group different types of features based on the type
and the measurement capability of a device into distinct
feature groups, see Table 3. The table defines a name
for the feature group, a corresponding abbreviation that is
used throughout the rest of the paper, and the parameters
(features) that the feature group inherits. The feature group
PHY includes features describing the radio environment,
while channel conditions (CHAN) contains related features
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FIGURE 8. Visualization of the first two principal components for different train/test splits. The distribution of the test and train dataset varies a lot
depending on the split strategy.

describing the channel. Feature group base station data (BS)
contains parameters that are aggregated per cell.

Vehicle information such as position, speed, and distance
to the serving cell is included in the feature group vehicle
information (VEH). Finally, the feature group radio environ-
ment map (REM) contains statistical information of PHY
features and throughput in form of a radio environment map.

Since the features are captured from several different
network nodes, as previously shown in Table 1, it is not
realistic to assume that all features are readily available at a
specific entity such as a vehicle or one of the network nodes.
Data acquisition is associated with a cost function that is not
constant for different sets of features. Also, confidentiality
and privacy concerns could hinder the accessibility to
specific features. This should be taken into account for
ML models for wireless networks, instead of assuming full
data availability, at least without discussing their acquisition
costs.

Subsequently, we further categorized the previously
defined feature groups into different access scenarios.
We define these according to possible scenarios in which
different sets of feature groups can be collected from
exemplary entities. The defined access scenarios can be found
in Table 4. The table defines a name for each access scenario,

a corresponding abbreviation that is used throughout the rest
of the paper, the feature groups which can be accessed, and
an exemplary entity corresponding to the access scenario.

The first access scenario is modem access (MD) and refers
to features available at the modem, such as parameters from
feature group PHY, which can often be easily accessed,
e.g., via an API. extended modem access (EMD) refers to
access to more modem data provided, e.g., by specialized
software. Both MD and EMD correspond to data available at
a UE, while modem and network access (MDNET), extended
modem and network access (EMDNET), and modem,
statistics and network access (REMNET) are available for
a network operator with varying acquisition costs (in terms
of computing and signaling). For example, PHY features
are reported by the UE to the network during measurement
reports, but these are usually sent after specific events are
triggered. On the other hand, features from the CHAN
group are reported regularly if the UE receives DL traffic.
Since the dataset is based on vehicular measurements,
we also introduce access scenarios vehicle and network
access (DEVNET) and full device access (DEV) which
include VEH features in addition to other feature groups.
For comparison, we also include a full access (FULL) access
scenario, which has access to all feature groups.
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TABLE 3. Overview of feature groups and their parameters.

TABLE 4. Overview of network and device access scenarios and corresponding feature groups.

The aim of this paper is not to define specific acquisition
costs associated with the different access scenarios, but to
acknowledge the potential trade-off between data acquisition
costs and ML performance and compare the performance in
the next section. Additionally, we would like to highlight
two aspects in particular: First, there are data acquisition
costs, which vary depending on the different feature groups.
Second, ML models need to be tested under different
assumptions on data availability including concerns of data
governance and ownership.

D. ML MODELS FOR QoS PREDICTION
We briefly introduce different MLmodels, that are relevant to
the prediction task. These include linear regression, ensemble
methods, and neural networks. In terms of completeness,
we also add a statistical model that serves as a baseline. The
model hyperparameters were tuned using [60] with 5-fold
cross-validation. The split by folds was used to split the
dataset into a train and validation set. We used the mean
absolute error (MAE) as the cost function.

1) REM OF THE THROUGHPUT
After building a REMof the DL/UL throughput, the predicted
value is the interpolated throughput value for the current UE
position. This method serves as a statistical baseline.

2) LINEAR REGRESSION (LR)
Linear regression is a relatively simple statistical model
where a dependent variable is explained by multiple inde-
pendent variables multiplied by coefficients defining their

weights. In a ML task, the weights of these coefficients are
learned.

3) RANDOM FOREST (RF)
A random forest is an ensemble method based on decision
trees. The trees are built independently and in a regression
task, the mean of the individual trees is the prediction result.
Our random forest (RF) is composed of 793 parallel trees with
a maximum depth of 19.

4) GRADIENT-BOOSTED DECISION TREE (GB)
Gradient boosting is also an ensemble method based on
decision trees. Here, the trees are built sequentially, mini-
mizing the loss function with each new tree. The weighted
mean according to the trees’ prediction performance is
the prediction result. Our gradient-boosted decision tree
(GB) ensemble is composed of 715 sequential trees with a
maximum depth of 10.

5) MULTILAYER PERCEPTRON (MLP)
An multilayer perceptron (MLP) is a feedforward neural
network that stacks together multiple layers of neurons in a
sequential architecture. It is a deep learning (DL) model that
has been successfully applied to regression problems with
labeled tabular datasets. Our MLP consists of four hidden
layers 256, 128, 64, and 32 neurons each and rectified linear
unit (ReLU) activation functions. It is trained with an Adam
optimizer, with a learning rate of 0.001, and a batch size
of 16. The parameters of the neural network are initialized
randomly. For regularization, we use early stopping with the
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criterion that training ends when the error does not decrease
for eight epochs on a validation dataset.

VI. THROUGHPUT PREDICTION
In this section, we discuss the throughput prediction task
based onML. The prediction task we picked is to estimate the
achieved maximum throughput under a high network load.
The high network load conditions mean that the end users
have to share the network resources.

We start by investigating the performance of different
ML models and continue by looking at the performance
when different data access scenarios apply. We then compare
the influence of the split strategies on the training and test
datasets. We continue looking at the effects of sampling on
the prediction task. Subsequently, we give an example of how
much concept drift can deteriorate performance.We conclude
by showing that CE can play an important role in ML-related
tasks.

For all the provided results we report multiple metrics [61],
as this allows a more flexible evaluation of the prediction
performance for diverse use cases and when applicable we
discuss the limitations of specific metrics.

A. MODEL PERFORMANCE
In Tables 5 and 6, we compare different models on standard
regression metrics for the DL and UL direction, respectively.
We assume to use all the information available for the
prediction (i.e., FULL), consider all environments jointly, and
refer to split by folds. Moreover, we relied on all available
data samples for performance evaluation.

In each table, we highlight the best-performing model
per metric in bold. For the DL direction (Table 5) the GB
outperforms the other models for all metrics. RF consistently
shows slightly lower performance than GB. For the mean
absolute percentage error (MAPE), the MLP is on par with
GB, but it shows worse performance than GB and RF for
most other metrics. Considering the two simpler models,
linear regression (LR) outperforms the REM interpolation for
most metrics, underlining that the use of context information,
which is included in the input features, is crucial for the
prediction task. Moreover, as the feature space is not linear,
the LR performance is poor.

The UL direction (Table 6) mainly corresponds to
the performance observations in the DL prediction task.
We observe that the absolute gap betweenGB andRF narrows
for MAE, median absolute error (MedAE), and root mean
square error (RMSE) (due to lower UL data rates), with RF
showing similar performance as GB for the R2 score. The
UL throughput range (up to 23 Mbps) is smaller than the
DL throughput range (up to 70 Mbps), which is reflected in
the prediction performance. While the average MAE in UL is
significantly smaller than the averageMAE in DL, theMAPE
of the DL is comparably lower than in UL.

As there is a trade-off between maximum performance
and acquisition cost, we found that performance metrics,
such as MAE, converges at around 5000 training samples.

TABLE 5. Performance comparison of different regression models in DL
direction.

TABLE 6. Performance comparison of different regression models in UL
direction.

Adding further samples only leads to minor increases in
prediction accuracy. However, we note that this result is
specific to our dataset and may not generalize to other
datasets because the minimum required dataset size depends
on a multitude of factors. Such factors are the environment
dynamics, the network dynamics, and the specific use case
(i.e. required accuracy). Nevertheless, this result shows that
the performance return degrades with an increasing number
of samples and measurement campaigns should be planned
carefully as there is space for optimizing the data acquisition
expenditures.

In summary, GB proved to be the best-performing model
considering both data traffic directions and all metrics. At the
same time, the interested reader should note that there are a
plethora of ML algorithms that can be applied and provide
good performance. The ML engineer can always pick one
based on criteria like the model’s complexity and the degrees
of explainability. As the ensemble methods based on decision
trees offer a good degree of explainability and robustness
against outliers, we pick GB for the following sections.

B. ACCESS SCENARIOS & FEATURE GROUPS
We continue by looking at a different set of input features
and how much these affect the achieved performance. In the
literature, input features are very often considered quite alike
in terms of acquisition costs. In a real network, there is a
cost associated with collecting data from different nodes and
end-users. We compare the different prediction performances
for the previously defined access scenarios, from Section V,
in Tables 7 and 8 for DL and UL direction, respectively.

In both DL and UL, the performance of different access
scenarios is very similar, with the only difference that,
in general, for DL the MAPE is significantly lower compared
to UL, and the MAE, MedAE, and RMSE are higher for
DL due to the larger value range. The worst-performing
access scenario in both cases is MD, where only the feature
group PHY is used. Prediction for EMD, modem access
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TABLE 7. Performance comparison of different access scenarios with
access to different feature groups in DL using the split by folds.

TABLE 8. Performance comparison of different access scenarios with
access to different feature groups in UL using the split by folds.

and statistics (MDREM), and DEV performs slightly better
but not by a large margin. This probably indicates that
additional channel or statistical/historical information might
be beneficial but does not add much useful information
in addition to physical layer parameters, which can be
obtained easily. The prediction with only UE features
(MD/EMD) achieves the worst performance across all
presented metrics and access scenarios. However, adding
BS features, demonstrated in access scenarios MDNET,
EMDNET, REMNET and DEVNET, significantly improves
the prediction performance, resulting in a halved prediction
error for DL. The same holds true for UL direction except
for the MAPE, which is still significantly lower by around
20− 30 percentage points. Also, the R2 score for both DL
and UL is increased to approximately 0.9 once BS features
are added.

The best prediction performance is achieved when access
to all features is provided, which is emphasized by the bold
rows for access scenario FULL. As mentioned in the previous
section, we introduced this for comparison only, as access
to all features is often not realistic or associated with high
acquisition costs. However, we see that the performance of
FULL is improved by only a small margin compared to the
access scenarios including feature group BS - even compared
to MDNET, which contains only simple feature group PHY
in addition to feature group BS. Thus, MDNET might be a
feasible candidate if one tries to find a good trade-off between
better performance and lower data acquisition costs.

TABLE 9. Performance of GB for different splits for DL.

C. SPLIT STRATEGIES
As discussed in Section V there are different approaches for
splitting the dataset into train and test sets.

We present results for using different splitting strategies
for the DL direction in Table 9. According to all analyzed
metrics, the random split, as described above, yields the best
prediction results.

The performance would likely decrease drastically during
deployment, compared to other splits, when the model is
presented with new data with a different correlation structure.

In our case, the performance of the random split is
56% better compared to the split by folds. However, the
performance of the random split is likely overly optimistic
due to the temporal correlations between samples [50].
Hence, ML models trained with the random split strategy
might perform worse on new uncorrelated data that appears
in real deployments.

As reasoned earlier, performance results obtained with
the split by folds are more likely to be more robust to
other deployment scenarios. The split by folds achieves the
second-best results for most metrics.

On the other hand, the performance of the splits by time
and split by measurement perform worse, which supports the
hypothesis that there is rather a change in the statistics over
time. This change can be attributed to the radio environment,
as there are different numbers and types of vehicles around
during the data collection process.

The results above highlight the need for picking a single
or a multitude of splitting results for assessing the ML
performance for a specific use case. Failure to have a clear
splitting strategy might lead to a false estimation of the
performance during the deployment phase.

In Fig. 9, we show the predicted values against the
measured ones. The DL throughput was predicted with the
GB model, utilizing the features contained in the FULL
access type and using the split by folds.

In the figure, we also include two histograms for both axes.
As multiple devices were competing for higher throughput,
the total capacity of the network was typically split between
multiple users making the highest throughput measurements
a rarity. That well explains the skewed nature of the
distribution. The interested reader should note that the mean
type of metrics used in this section, MAE and MAPE, are
heavily influenced by the long distribution tails. Therefore we
have introduced median-based metrics, such as the MedAE,
that are less influenced by a few large outliers.
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FIGURE 9. Visualization of the predicted throughput over the given
throughput.

TABLE 10. Performance of GB for different downsampling periods for DL.

D. SAMPLING INTERVALS
As discussed in Sections IV and V, the radio environment has
a correlation structure that renders consecutive measurements
quite alike. That means that slower sampling intervals might
be used to reduce overhead, such as battery consumption and
signaling. To showcase that, we compare in Table 10 results
for slower sampling intervals than the GB results in Table 5.
We see that a 50 percent slower sampling interval (2 s) brings
a negligible drop in the performance of an ML model. Even
sampling procedures that are 75 percent slower than the initial
sampling (4 s) might be used and still, performance could
be more than adequate for some use cases, with the biggest
change being that the MAE increases by 20%. We also
noticed that the reduction in the sampling intervals made
PHY features less relevant and increased the importance of
the REM features. The correlation structure of the radio
environment can be further exploited to optimize sampling
procedures while keeping the ML model’s performance
within the requirements of a use case. A deeper understanding
of the correlation structure of the radio environment can
drastically benefit the sampling procedures [45] supporting
more efficient ML workflows.

FIGURE 10. Rolling window response variable.

TABLE 11. Performance of GB model trained on suburban environment
and tested on highway environment.

E. PREDICTION HORIZON
We continue by changing the prediction problem slightly.
Instead of predicting the achievable instantaneous through-
put, we predict the throughput in sevaral seconds defined
by the prediction horizon. This is shown in Fig. 10, for
different access scenarios. We see that the access scenario
EMD provides poor performance, similar to the previous
subsections. The biggest improvement in the prediction
error occurs when we include the MDNET access group,
which includes the network information. The access scenario
performance DEVNET provides marginal improvements,
with the prediction performance dropping slower for longer
prediction horizons. Best performance is achieved for access
scenario FULL, although after a prediction horizon of
12 seconds, there is no real gain, of any extra-added features,
as it performs as well as the DEVNET access scenario.

F. CONCEPT DRIFT AND ML
As was discussed in Section IV, there are concept shifts
occurring frequently in the radio environment. Here, we pro-
vide some examples of the degradation of the performance
for cases that ML faces concept drifts. Our example is shown
in Table 11, where we trained a model on the suburban
environment and afterward assumed that it was deployed on
a vehicle traveling across a highway environment. We have
seen already in Section IV that while driving from a suburban
environment onto a highway, a large number of concept drifts
is detected. The performance of the ML algorithm drops
drastically, to the level of a statistical baseline as shown from
the R2.

G. CONSUMER GRADE DEVICES
The presented results were calculated using data captured
by DMEs. As DME is relatively expensive and comes
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TABLE 12. Performance comparison of different devices in UL and DL
with MDNET features.

with increased processing and measurement set-up effort,
we compare it in this section to data from CE. Since CE is
significantly more accessible in price and set-up, the question
arises to which degree the dataset differs from the DME
dataset, and, more specifically, whether a CE dataset can be
sufficient for the use case of throughput prediction.

For this comparison, we use data only from the vehicles
that were equipped both with a CE and a DME (Vehicles
3 and 4) since this creates datasets of roughly the same size
and diversity. Moreover, only feature groups PHY and BS
were considered, (i.e., access scenario MDNET), to match
the more limited feature set availability of the CE. Table 12
presents a comparison of prediction results between the
CE and the corresponding DME. Both in UL and DL, the
different metrics display similar performance.

The R2 scores of the CE is slightly better than the
DME’s. The DME has higher sensitivity and we have seen
larger number of outliers at the higher throughput ranges.
Such outliers negatively influence the DME’s performance.
Overall, our findings show that CE can be part of a data
collection procedure. More expensive devices might bring
some small benefits but with diminishing returns.

VII. INTERPRETABILITY AND EXPLAINABILITY OF THE
MODELS
In this section, we use Shapley additive explanations
(SHAP) [62] and accumulated local effects (ALE) [63] for
explaining how the input features affect the prediction of the
ML model.

A. SHAPLEY ADDITIVE EXPLANATIONS
SHAP is a framework to explain individual predictions.
We use the model-agnostic variant of SHAP as described
in [62]. Fig. 11 presents the SHAP values of the five most
important features, in DL and UL respectively. The x-axis
depicts the SHAP value that describes the impact of the input
feature on the prediction. The y-axis depicts the input feature
names, and the color represents the numeric input feature
value.

The cell load feature has both inUL andDL a strong impact
on the prediction. A higher cell load value leads to a lower
value on the prediction and vice versa. On the other hand, the
radio-based features (RSRP, reference signal received quality
(RSRQ) and SINR) seem to have the opposite tendency.
A higher radio value leads to a higher value on the prediction
and vice versa.

FIGURE 11. Feature importance in DL and UL of the five most important
features in term of SHAP values.

FIGURE 12. ALE values for UL RSRP.

B. ACCUMULATED LOCAL EFFECTS
We then continue using ALE for discovering the global
effects of input features.

Fig. 12 depicts ALE values for RSRP in UL throughput
prediction. The x-axis depicts the RSRP value, the y-axis the
effect on the prediction, where a higher input feature value
leads to a higher value of the prediction.

We note that in the ALE plot seems that there are four
regions affecting the prediction differently as these are
depicted in the figure. We added orange dotted lines at
the perceived border of each region. The first one is with
the lowest captured RSRP values. The UE needs to get
at least some minimum RSRP before it can transmit data.
The second region shows some linear characteristics. Higher
RSRP values seem to contribute to a higher throughput
significantly in this range, which demonstrates that the
RSRP is contributing strongly to the prediction variable (UL
throughput). The third region shows some slight saturation
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in the linear trend, meaning that higher RSRP values do
not contribute considerably more to a higher throughput
prediction. The last region looks saturated. This probably
means that either higher RSRP values do not provide any
benefits for higher rates, or other factors like the cell load play
a more important role on the prediction variable. We note that
the ML model has discovered these regions from the input
features, without being explicitly programmed, which is also
close to the operating principles of the cellular networks.

The interested reader should note that the absolute numbers
of the regions depend to a large extent on the characteristics of
the network deployment that include for example the dynamic
range of the receivers and the network states captured. Similar
type of learnings have been shown in a previous paper [64],
which was based on data from an operator in Asia. This
increases the confidence that ML is able to learn about
wireless environment characteristics on diverse networks and
deployments.

VIII. CONCLUSION
Based on a dedicated measurement campaign, we have pre-
sented insights into building reliable ML models for pQoS.
Our results go beyond UE data by including network and
vehicular information measurements, covering a large range
of scenarios. Our measurements reveal many challenges ML
models will face in real deployments.

Our first contribution discussed methods for improving
sampling for the radio environment. Its correlation structure
allows improved sampling procedures that reduce energy
consumption and signaling for sharing collected data.
The vehicle speeds do not seem to impact the statistics
and characteristics of the collected data strongly, further
simplifying the sampling procedures. We have also tested
the data stationarity assumption, a precondition for many
ML models and other theoretical approaches. Even though
stationarity often holds true, especially for datasets captured
over a longer duration, it should not be expected liberally.
We have provided multiple examples where this assumption
is violated, by focusing mostly on the aspect of concept drifts
as vehicles move between radio environments. As concept
drifts degrade ML performance, a reactive ML method might
be needed for retraining the ML models as required, once
drifts are detected. Another option is having larger datasets
that cover multiple scenarios, like in our testbed, reducing the
number of concept drifts that an ML model will face when
deployed. A combination of the two methods might be the
most feasible way forward.

We were able to predict the maximum achievable through-
put under high load scenarios, where multiple users compete
for maximum throughput in the network, with an MAE of
2.46 and 1.08 Mbps for down- and uplink. In particular, our
findings show that the effects of data processing, different
validation datasets, and sets of input features can have a
very strong overall effect on the ML model performance.
For that reason, simply comparing numbers from literature
can be misleading. We have seen that gradient-boosted

decision tree (GB) models outperform neural networks while
keeping a balance between complexity and explainability.
At the same time, our results clearly show that low-cost
consumer-grade devices can be part of ML processes. Their
performance falls close to more expensive transceiver chains,
further facilitating data collection procedures from end-user’s
terminals.

Moreover, we emphasized the topics of interpretability
and explainability, showing that the tested ML models were
able to capture the underlying principles without being
explicitly programmed. It is interesting to note that the cell
load was discovered as the most important feature for both
communication directions, showcasing the importance of
network features for such prediction tasks.

Our results indicate that more thorough testing of ML
models is needed as complexities coming from the radio
environment, the end users, and the effects of the network
can considerably affect prediction performance, which might
not always be precisely captured by any collected dataset.
That can result in high performance variations of MLmodels,
when deployed, that have never seen such effects in their
training sets.

One can also draw several other conclusions and lessons
from this data and its analysis, for the wireless research
community and ML engineers alike. First, reporting only
the ML performance of models on a specific dataset might
provide overly optimistic results. Second, the data collection
procedures, the handling, and processing of the data, as well
as the way of reporting results, are all equally important in
the long chain of ML workflows. Third, results coming from
simplified analytical assumptions and simulations should
be used with caution. Our results indicate that real-world-
captured intricacies might hinder the further performance of
ML models than hitherto understood.

Although some of these results could be regarded as
intuitive, they have not been properly emphasized or taken
into account in the literature, with only a few exceptions.
Especially when it comes to applying ML in wireless
networks, there has been a tendency to rate the usefulness
of ML models based on their performance on some testing
datasets. Our results clearly show that this can often be
misleading, and more conservative estimates might need to
be used. Moreover, the relevant acquisition costs of data are
rarely discussed, and we believe that such aspects need to be
part of future discussions and proposals. We hope that this
publication serves as a starting point in that direction.

We believe that ML-based predictions do not only have the
potential to improve specific use cases but also serve as an
important enabler for a more proactive network. We made
more datasets [65], [66] available to the research community
that are based on similar collection principles as the ones
we described. In the future, we plan to integrate the lessons
learned towards methods that can innately handle some of
the dynamics we noticed in the radio environment, such as
non-stationarities and concept drifts. Moreover, we would
like to extend our work toward other KPI metrics, such as
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latency and the number of dropped packets. Finally, wewould
like to integrate issues of data governance since, in this study,
we did not consider the acquisition cost of the different
features in detail.
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