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ABSTRACT Energy demand is increasing globally due to the growing human population and progressive
lifestyle. The adequate use of available energy resources, including renewable, contributes to a country’s
economic sustainability and future development. Optimization–based energy management and cost min-
imization plays a significant role in overcoming energy crises in less developed countries. In this paper,
an optimization–based dynamic energy management technique for smart grids is developed based on the
integration of available renewable resources and variable consumer demand, distinctive to underdeveloped
countries. Consumer demand is classified into fixed, flexible, and highly variable based on population
characteristics. In this work, we developed a Dynamic Multiple Knapsack DMKNS algorithm, which
automatically schedules energy provision to various users by optimally accounting for the available resources
(Grid and Renewable). The proposed method provides a low-cost solution by maintaining a constant energy
supply while preserving consumer comfort and grid stability. The simulation results with various intermittent
availability of resources using MKNS show a saving up to 50% for a variable energy demand user. The
proposedmethod is general and can also be applied to various underdeveloped regions with similar consumer
demand and statistics.

INDEX TERMS Optimization-based energy management, dynamic multiple knapsack, energy storage,
renewable energy system, smart grid.

I. INTRODUCTION
Over the last few decades, energy crisis and global warm-
ing have motivated the use and development of alterna-
tive, sustainable, and clean energy sources [1]. The use of
these resources reduces the emission of carbon monoxide
and other poisonous gases, which significantly improves the
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environment. Smart grid provides energy resource integration
and management with optimal distribution and monitoring
using two-way information exchange [2], [3]. In many under-
developed countries, the use of renewable energy sources
and their management and integration with the smart grid
is still in the early stages of its development [4]. The
lack of technology and planning in these countries causes
under-utilization and sometimes wastage of these resources,
leading to an energy crisis and excessive usage of fos-
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TABLE 1. User classification.

TABLE 2. Comparison of Traditional Grid and Smart Grid.

sil fuels. In addition, the exponential population growth in
these underdeveloped countries also significantly increases
the demand-supply gap. Recent research of forecasting con-
sumer’s electricity also predicts energy growth across dif-
ferent sectors with significant contributions coming from
renewable energy sources [5]. Contrary to the traditional
power grid, the smart grid allows demand-supply interaction
by sharing utility and consumer data, thereby providing opti-
mal cost-effective solutions [6]. A comparison of inherent
features between traditional and smart grids indicating overall
operational efficiency and optimization is given in Table 2.
Globally, the increasing energy demand and excessive use

of non-renewable sources are of serious concern for under-
developed countries [7]. The main sources of energy are
dominated by traditional power systems, which are central-
ized and mainly dependent on petroleum, natural gas, and
coal-based power plants [8]. This results in extensive use
of fossil fuels for power generation, leading to a significant
increase in CO2 emission. Renewable resources are widely
used across the world to overcome energy demand and the
use of fossil fuels. However, the intermittent nature of these
resources in the form of biomass, waste, geothermal, hydro,
solar, and wind often present integration challenges lead-
ing to severe under-utilization [9]. Consequently, this leads
to reliability issues, which affects the grid’s sustainability
and resilience. In such cases, the smart grid responds by
demand side management (DSM), which includes action
taken to plan, implement, and monitor predefined activities
that affect the consumer’s electricity utilization patterns [10].
The adopted strategy in response to consumer data by DSM
is usually a dynamic pricing pattern adapted by the smart grid
to overcome and reduce the effect of intermittent demand for
energy. Recent research suggested various pricing schemes
to serve demand-side management expectations to deliver
consumer-based cost-effective solutions [11]. The notable
pricing schemes based on usage patterns and estimations are
Real Time Pricing (RTP), Time of Use (TOU), and Critical
Peak Pricing (CPP). These pricing schemes are real-time
and based on demand response, with usually an estimated
increase of 1.2% in electricity supply at 1% GDP growth.

TABLE 3. Comparison of proposed study with existing studies.

This highlights the importance of a dynamic pricing scheme
to address the continuous growth of electricity demand. Fol-
lowing subsections elaborate on real-time pricing algorithms
and energy optimization techniques in smart grid.

The paper is divided into five Sections. Section II reviews
the literature review. Materials and methods are presented
in Section III. Results are discussed in Section IV, a brief
discussion is made in Section V and the paper is finally
concluded in Section VI.

II. LITERATURE REVIEW
Optimization techniques in energy management aim to the
analysis of available consumer and utility data to make an
informed decision, providing cost-effective solutions. Sev-
eral optimization techniques are developed over a period
of time to maximize usage of power assets with necessary
renewable resources integration [12], [13], [14], [15]. Differ-
ent techniques have already been implemented with various
advantages and limitations.

In [16] a novel energy management scheme is presented
in which an efficient model for smart home infrastructure is
developed to minimize user electricity bills, optimize energy
usage with the integration of renewable energy resources, and
maximize user comfort. Simulation results showed that elec-
tricity bill is reducedwith peak powermanagement. A genetic
algorithm was used and to validate results PSO and ASO
can also be used. In [17] a fast randomized first-randomized
first-order optimization system is offered for dynamic energy
management. An ideal forecast problem was formulated by
reducing the compeer’s costs of the allied power utility, as a
huge numeral of user’s manageable devices arena compassed
in the system. This model validated that existing energy
resources can provide benefits for the economic operation of
the power grid.

In [18] a single-leader-multiple-follower Stackelberg game
(SLMFSG) among the auctioneer and residential users.
An improved auction-based dual energy storage scheme is
modeled among a number of domestic units and share facility
controllers in a smart grid. In [19] power management and
mechanism algorithms of microgrid by energy storage are
conferred. In [20] a price-based demand response scheme
was designed and implemented. Sequences of undeviating
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estimate models for the load forecast were presented, such as
standard autoregressive (AR) and time-varying AR (TVAR).
A mutual energy storage and load scheduling with renewable
incorporation for real-time residential side energy manage-
ment using the Lyapunov optimization technique is pre-
sented [21].

Similarly, a home energy management scheme using a
genetic algorithm is presented in [22]. Particle Swarm Opti-
mization (PSO) is a cloud-built optimization method, which
is used for minimizing energy cost with the contribution of
consumer’s demand [23]. Contrary to the genetic algorithm,
the PSO technique contains personal best as well as global
best to get an overall finest solution. However, it primarily
works with load-shifting techniques, so cannot be imple-
mented without constraints. Recently, the Knapsack method
of optimization is used to solve combinatorial problems [24].
It is applied, where an economical and productive solution
to the scheduling problems is required. Experimental results
demonstrated that the Knapsack method is effective in mini-
mizing and bringing regularity to the users fluctuating energy
pattern [26]. However, the method is cost-centered and often
ignores user satisfaction. The optimization techniques alone
can have limited effect, however, an effective smart grid sys-
tem deployment needs resource integration and their optimal
utilization. The need for integration of an energy storage sys-
tem adds flexibility to the system, however, it also introduces
new challenges by adding complexity of management and
control [25].

A closed-loop pricing algorithm addressing the random
demand of customers uses the deviation in prices caused by
the variation between actual and desirable load [23]. The
algorithm gains the advantage of both open and closed-loop
schemes, however, it heavily relies on constant consumer
feedback to adjust real-time pricing response. A recent energy
management scheme based on an efficient model for smart
home infrastructure minimizes the user bill and optimizes
usage with the integration of renewable energy resources [6].
However, the scheme is primarily residential-based, with very
restricted control and management. A new concept of micro-
grid with energy storage is introduced to prioritize renewable
energy resources by providing power to the load and effi-
ciently managing battery discharging and overcharging [27].
However, excessive use of battery power and storage renders
it unfeasible for large-scale commercial use.

The energy generation in most of underdeveloped
countries predominantly uses fossil fuel, which is not
environment-friendly [29], [30]. In addition, the increase
in population in some of these countries has compelled the
energy sector to make use of alternate sources. These sources
of energy are mostly pollution-free and environment-friendly,
however, due to their intermittent nature and lack of energy
storage technologies, their efficiency is quite limited. The
installation of any adopted Energy storage system (ESS) is
usually very costly, requiring regular scheduled maintenance.
However, despite the overwhelming cost, the advantage of

a storage system in overcoming the intermittent nature of
renewable energy resources addsmuch-needed stability to the
grid. A study shows that a grid, with a storage capability of
10% to 1% of its generating capacity is considered to be more
reliable and stable [28]. In [31] a critical look at dynamic
multi-dimensional knapsack problem generation is presented.
Similarly, the dynamic programming approach to solve
real-world applications of the multi-Objective unbounded
knapsack problem is presented in [32].

III. MATERIALS AND METHODS
The algorithm is based on solving Multiple Knapsack Prob-
lem (MKP), which dynamically minimizes the piece-wise
cost function. DMKNS adds an additional constraint to the
Knapsack problem, which automatically regulates energy
consumption and cost variations. The MKP is the generaliza-
tion of a single Knapsack Problem, where more constraints
are added in the form of multiple objects to find the optimal
solution.

In this work, we have developed a Dynamic Multiple
KnapSack (DMKNS) algorithm. The major contributions in
this work are as follows:

• Developed a Dynamic Multiple KnapSack algorithm,
which automatically schedules the provision of energy
to various users by optimally accounting for the avail-
able energy resources (Grid and Renewable).

• The proposed DMKNS algorithm provides a low-cost
solution by maintaining a constant energy supply and
at the same time preserving consumer comfort and grid
stability.

• The intermittent availability of resources and energy
demand is met by introducing piece-wise pricing, which
dynamically provides a low-cost demand-specific solu-
tion.

• Simulation results of dynamic energy management
scheduling using DMKNS shows a saving up to 50%
for a variable energy demand user.

• The proposed method is general and can also be applied
to various underdeveloped regions with similar con-
sumer demand and statistics.

The next sub-sections, briefly discuss different classes of
users. Note that in DMKNS, the users are classified based
on their energy consumption, ranging from fixed to variable
demand.

A. CLASS A (FIXED DEMAND)
TheClass A consists of two users U1 and U2. They have fixed
energy demand and may have the same or different power
ratings. The energy consumption is fixed and a day-a-head
demand needs to be provided to the grid. In return, the utility
provides energy at the lowest possible rate using piece-wise
pricing.

Some of the important abbreviations used in this Section
are listed below.
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FIGURE 1. Schematic of the proposed DMKs scheme.

TABLE 4. Demand of fixed users U1,U2,Uf
3 and Uf

4.

B. CLASS B (FLEXIBLE DEMAND)
The Class B again consists of two users U3 and U4. They
are further classified according to their demand as Uf

3, U
f
4

and Uv
3, U

v
4. Note that the demand in this class is flexible,

with Uf
3 and Uf

4 showing the behavior of U3 and U4 in
fixed demand. Similarly, the Uv

3 and Uv
4 show their variable

demand behavior. The utility will provide energy at the lowest
possible rate, once responding to U3 and U4 fixed energy

demand. The utility will give an option in case of variable
energy demand to switch to fixed energy consumption to
obtain the lowest rate. However, in case the users disagree,
the energy will be provided at higher rates.

C. CLASS C (VARIABLE DEMAND)
The Class C also consists of two users Uv

5 and Uv
6. Unlike

ClassA and ClassB, these users have unpredictable and time-
varying demand. As long as the demand is less than the
supply, the utility will continue to provide energy from the
grid at a slightly higher rate due to variable demand. However,
when the demand is about to exceed the maximum capacity
of the grid, the energy supply from the grid is automatically
cut off. The energy is then provided by the renewable energy
source integrated with the storage system. In this case, it is
assumed that renewable sources attached to the battery stor-
age system have enough energy tomeet the excessive demand
of the Class C . The Schematic of the proposed scheme is
shown in Figure 1.
Figure 1 provides a visual representation of the proposed

energy management scheme with a brief representation of
multiple energy users, energy storage systems, renewable
energy systems, andmainly the control unit which is automat-
ically scheduling the overall system.Consumers are divided
into three different classes, Class A,Class B and Class C
along with multiple users. Class A has two users U1 and
U2 and their energy consumption is fixed (i.e.) the utility
has the knowledge of their energy demand day ahead. The
demand of these users can vary in magnitude but will remain
fixed in a specific time slot. The utility will provide energy
to these users at the lowest possible rate as a reward. Class
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B has two users U3 and U4 and their energy consumption is
flexible. The utility will provide energy at the lowest possible
rate, once responding to U3 and U4 fixed energy demand. The
utility will give an option in case of variable energy demand
to switch to fixed energy consumption to obtain the lowest
rate. However, in case the users disagree, the energy will be
provided at higher rates. Similarly Class C also consists of
two users Uv

5 and U
v
6. Unlike ClassA and ClassB, these users

have unpredictable and time-varying demand. As long as the
demand is less than the supply, the utility will continue to
provide energy from the grid at a slightly higher rate due
to variable demand. However, when the demand is about
to exceed the maximum capacity of the grid, the energy
supply from the grid is automatically cut off. A renewable
energy storage system is shown in Figure 1. The energy is
then provided by this renewable energy source. Similarly,
in case of unavailability of energy from renewable energy
systems, an energy storage system is integrated with the
renewable energy system. A control center is also present to
automatically schedule the variable energy demand by using
an evolutionary algorithm.

In the mathematical preliminaries, we will first define
various variables used in user scheduling in DMKs:

• The number of users is defined by ‘‘n’’ which corre-
sponds to the number of objects in DMKs.

• The time slots variable ‘‘j’’ relates to the Knapsacks,
with ‘‘m’’ as its maximumvalue. The prices of electricity
in ‘‘j’’ slots are user dependent and can be fixed and
variable.

• The total time required by any of the users to complete
its task (i.e. 24 hours) is given by T reqj .

• The cost function ‘‘Costj’’ is a piece-wise function that
shows the cost of energy consumed in a given time slot
‘‘j’’. The system total capacity is represented by Cj.

• The amount of energy consumed by any user is denoted
by Ei, which corresponds to the weight of the Knapsack.
Whereas, ‘‘i’’ accounts for the time slots of energy con-
sumed.

In order to represent the energy usage in a given time slot,
let us define a Boolean integer variable Yij as:

Yij =

{
1, Energy consumption in time slot j
0, No energy consumption in time slot j

(1)

The linear objective function for cost minimization can
now be defined as

min
n∑
i=1

Ei
m∑
j=1

YijCostj (2)

The integer variable Yij defining the energy usage is
related to the amount of total energy consumed by each user
as

m∑
j=1

Yij = T reqj (3)

Note that ‘‘m′′ defines the maximum number of time slots,
which is incremented hourly. The total energy consumption in
the proposedmethod is constrained by themaximum capacity
(Cj) of the grid and can be mathematically expressed as:

m∑
j=1

EiYi− j ≤ Cj (4)

The main focus of the DMKs algorithm is to meet the
unpredictable and time-varying demand of Class C users.
In order to accommodate these demands, let E tj be the total
energy consumed by Uv

5 and Uv
6 users, when their total

demand becomes greater than the maximum capacity (Cj).
In this case, the capacity constraints change to:

m∑
j=1

EiYi− j ≤ Cj − E tj (5)

In order to account for the excess energy generated by
renewable energy, let Erj represent the excess renewable
energy. Note that the constraint equation is further modified
to account for these changes and can be written as:

m∑
j=1

EiYi − j ≤ Cj − E tj + Erj (6)

It is observed that (6) account for the case when the Erj
exceeds the demand and is returned back to the grid to impact
the overall cost of the scheme. The parameters used in the
mathematical modeling and analysis of the proposed DMKs
scheme are summarized in Table 1.

The derivedmathematical expressions defining the scheme
along with these parameters are used in the next section for
the simulation and results.

IV. RESULTS
In this section, we present simulations and performance eval-
uation results of the proposed DMKs scheme with additional
constraints of energy consumption and average cost under
various availability conditions of energy sources and time
slots. We are using the pie-wise concept of pricing in mul-
tiple time slots. It is important to note that the need and
selection of multiple sacks are to account for variable prices
in different time slots, which adds much-needed flexibility
to a single knapsack and accommodates user comfort. The
proposed scheme is valid for large-scale integration, however,
without loss of generality, we consider only three classes with
a maximum of two users in each class.

A. DEMAND OF Class A (FIXED), B (FLEXIBLE) AND C
(VARIABLE)
The first classification in the simulation and analysis is the
simple case of energy consumption by the fixed demand
user i.e. Class A (U1 and U2). The grid provides them with
energy at the lowest possible rate due to fixed demand. The
demand data spread over the entire day, charged at a fixed
rate of$2/kW is shown in 4. Note that the fixed demand of the
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FIGURE 2. Energy fluctuation of U1 and U2 in terms of units consumed (KWh).

FIGURE 3. Energy fluctuation of Uf
3 and Uf

4 in terms of units consumed (KWh).

users follows a random demand model, where each temporal
slot is uniformly distributed from 1:00 am to 12:00 am all-
inclusive.

The energy usage of U1 and U2 giving details of random
fluctuation in consumption is shown in Figure 2.
The user data along with its consumption shows an ideal

case, where fixed demand places a predictable load on the
grid allowing low prices at rates for the users.

Next are the Class B users, which are also known as flex-
ible users Uf

3/U
v
3 and Uf

4/U
v
4. They can switch their demand

between fixed and variable. Note that the behavior of a fixed
demand user is already discussed in the preceding paragraph
in detail and also shown in Figure 3.

So without loss of generality, we will discuss variable
users behaviour only i.e. Uv

3 and Uv
4. The demand of

these users is shown in Table 5. These users have variable
energy demands throughout the day with added flexibility

to their energy usage. In this case, the utility will provide
energy comparatively at higher rates (i.e. 5/KW ) than the
fixed energy users. The data of units consumed is plotted
in Figure 4.

B. DEMAND OF Class C (VARIABLE USERS)
The next is the variable class users Uv

5 and Uv
6. Note that

the maximum energy allowed to all users in this class from
the grid is 15 kW. In case of excessive energy consumption
(> 15 kW) by the users, the same can be drawn from the
renewable energy source and energy storage system. In addi-
tion, note that the excess energy during the day is provided
by renewable sources, and the same is drawn from the storage
system at night. The demand of variable users (Uv

5 and U
v
6) is

shown in Table 6.
Energy consumption of of Uv

5 and U
v
6 is shown in Figure 5.
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FIGURE 4. Energy fluctuation of Uv
3 and Uv

4 in terms of units consumed (KWh).

FIGURE 5. Energy fluctuation of Uv
5 and Uv

6 in terms of units consumed (KWh).

Similarly, the total energy consumption of all the users is
shown in Figure 6.

The plotted results show that the majority of the variable
users have an energy requirement greater than the total capac-
ity of the grid. However, in some cases, the demand of these
users is almost double the grid capacity (i.e. 30 kw for Uv

6
).Therefore, an alternative is needed to overcome this problem
in the form of RES and EES.

C. ENERGY CONSUMPTION OF Uv
5 AND Uv

6 FROM
RENEWABLE AND ENERGY STORAGE SYSTEM
In this sub-section role of RES and ESS is briefly discussed.
As long as the demand of variable users is within range of
the maximum capacity of the grid (i.e.15 kw), the grid will
continue to provide energy at the prescribed rates. As soon

as the demand of any of the variable users is beyond the
maximum capacity of the grid, RES, and ESS will schedule
themselves to provide excess energy. A brief overview of
energy consumption of Uv

5 andU
v
6 from renewable and energy

storage systems is given in Table 7.

D. BILL CALCULATION FOR Uv
5 AND Uv

6 WITH AND
WITHOUT RES AND ESS
In the bill calculations, the DMKs consider both of these
variable users (Uv

5 and Uv
6), and demand for electricity

may exceed the maximum capacity of the grid (i.e. 15kW).
If demand exceeds the limit, then the extra energy is provided
by the RES and ESS using automated scheduling. In order
to observe the significance of RES and ESS integration,
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FIGURE 6. Total energy consumption of all users in terms of units consumed (KWh).

FIGURE 7. Comparison of bill for Uv
5 with and without RES and ESS.

a comparison of Bill for Uv
5 with and without RES and ESS

is shown in Figure 7.
The results clearly show that for twenty-four hours, the bill

for Uv
5 without using RES and ESS is US$ 34.6. However,

when RES and ESS are integrated, the bill is reduced to
US$ 22.7. Similarly, the comparison of Bill for Uv

6 with and
without RES and ESS is shown in Figure 8.
Note that over a period of twenty-four hours, the bill of

Uv
6 without RES and ESS is US$ 43.2. However, when RES

and ESS are integrated with the system, the bill reduces to
US$ 15.9. The comparison of the two users i.e. Uv

5 and Uv
6

in Figure 7 and Figure 8 respectively, clearly shows dynamic
energy management scheduling using DMKs results in pro-
viding low-cost solution even in the presence of intermittent

availability of resources and demand. In Figure 7 and Figure 8
it can be clearly observed that in a few time slots, the value of
the bill becomes negative which means that at that time user
is not consuming energy from the grid, renewable and energy
storage system rather it supplies surplus energy back to the
grid.

A comparative analysis for both criteria (with and without
RES and ESS) is illustrated in Table 8, which shows a saving
of up to 50% for a variable user. In Table 8 Bill/day (US
dollars) is presented for all the users. For U1 and U2, the cost
of electricity over a period of 24 hours is 25.5 (US dollars)
and 30.47 (US dollars) respectively. Similarly, Uf

3 and Uf
4

have 12.6 (US dollars) and 12.3 (US dollars) respectively.
In order to account for the effect of renewable energy storage
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FIGURE 8. Comparison of bill for Uv
6 with and without RES and ESS.

TABLE 5. Demand of variable users Uv
3 and Uv

4 .

and energy storage system on the unit price of electricity for
the highly variable users, it is evident from the results that
for Uv

5 (without RES and ESS) the Bill/day (US dollars) is
34.6 (US dollars), which is reduced to 22.7 (US dollars) by
the integrating of RES and ESS. Similarly for Uv

6 (without
RES and ESS) the Bill/day is reduced to 15.9 (US dollars)
from 43.2(without RES and ESS). In Table 8 Bill/day (US
dollars) is presented for all the users. For U1 and U2, the cost
of electricity over a period of 24 hours is 25.5 (US dollars)
and 30.47 (US dollars) respectively. Similarly, Uf

3 and Uf
4

have 12.6 (US dollars) and 12.3 (US dollars) respectively.
In order to account for the effect of renewable energy storage

TABLE 6. Demand of variable users Uv
5 and Uv

6 .

and energy storage system on the unit price of electricity for
the highly variable users, it is evident from the results that for
Uv
5 (without RES and ESS) the Bill/day (US dollars) is 34.6

(US dollars), which is reduced to 22.7 (US dollars) by the
integrating of RES and ESS. Similarly for Uv

6 (without RES
and ESS) the Bill/day is reduced to 15.9 (with RES and ESS)
(US dollars) from 43.2(without RES and ESS). The impact
of the decrease in per unit price of electricity is reduced to
50% by the integration of RES and ESS and managing the
available resources by optimal scheduling.

From the above table is clear that adding RES and ESS has
decreased the per unit price of electricity up to 50%.
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TABLE 7. Demand of variable users (Uv
5 and Uv

6 ) from grid,RES and ESS in
kW.

TABLE 8. Comparative analysis (with and without RES and ESS).

V. DISCUSSION
The integration of RES and ESS has a dominant effect on
the price of electricity consumed as well as the availability
of electricity during peak hours. Similarly, the comfort of
variable users is also maintained without imposing a penalty
during peak hours. Thus DMKNs proved to be an efficient
algorithm with multiple constraints.

Another consequence of using this technique is that the
grid stability will not be disturbed in case of variation in
the load on a large scale as the load will be automatically
scheduled using maximum grid capacity as well as RES
and ESS.It can be observed from the results that the per
unit price of electricity has reduced to a great extent with
the integration of RES and ESS.However, the constraints
related to ESS are not discussed in detail, especially the
capital cost and storage area for the ESS, which can be easily
managed when this algorithm is implemented on a large
commercial scale. The grid will continue to supply energy
to various users on a piece-wise pricing concept as long as

the maximum demand remains within the maximum grid
capacity.

VI. CONCLUSION
In this paper, a dynamic energy management technique
is developed based on the integration of available renew-
able resources and variable consumer demand, distinctive
to underdeveloped countries. The work classifies consumer
demand into fixed, flexible, and highly variable based on
population characteristics. The developed optimization-based
Dynamic Multiple KnapSack algorithm automatically sched-
ules the provision of energy to various users by optimally
accounting for the available energy resources. The pro-
posed method provides a low-cost solution by maintaining
a constant energy supply and at the same time preserves
consumer comfort and grid stability. The final simulation
results of dynamic energy management scheduling using the
optimization-based Dynamic Multiple KnapSack algorithm
shows a saving of up to 50% for a variable energy demand
user. The proposed approach uses a method of integration,
which is general and can also be applied to regions with
similar consumer demand and statistics.

A. LIMITATIONS AND FUTURE WORK
There are a few limitations, which may generate future ideas
and work. The optimization and practical implementation of
DMKNS algorithm may require significant initial resources
and infrastructure upgrades to support the integration of
DERs andAI-based energymanagement. Similarly, the effec-
tiveness of the system to some extent relies on weather con-
ditions and other environmental factors, which may degrade
the overall performance and affect the system’s stability and
reliability.

In future work, the following is suggested.

• The system can be further improved by integrating
advanced AI techniques, such as deep learning or rein-
forcement learning, to enhance the accuracy and effec-
tiveness of energy management.

• The system can be extended to support more complex
energy management scenarios, such as multi-household
or community-level energy management, to achieve
greater energy efficiency and cost savings.

NOMENCLATURE
Cj Total capacity of grid.
Costj Cost function.
DMKNS Dynamic Multiple Knapsack.
Ei Total Energy consumed by any user from grid.
Erj Excess renewable energy.
E tj Total energy consumption by Uv

5 and Uv
6.

EES Energy storage system.
j Time slot.
kW Kilowatt.
RES Renewable energy storage.
T reqj Total time.
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