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ABSTRACT During the construction of water conservancy and hydropower projects, the time series of
safety monitoring data for slope engineering is often short. When establishing a slope safety monitoring
model, it is necessary to study the modelling method under small sample conditions and closely examine
the space–time information in the monitoring data for the limited length of each measuring point. To this
end, this paper initially proposes using the Ward clustering method to spatially cluster anchor cable prestress
measuring points in different parts of a slope; then, according to the clustering results, a safety monitoring
model for slope anchor cable prestress is established for each type of measuring point based on a Bayesian
panel vector autoregressive (BPVAR) model with highly accurate small sample modelling. Finally, slope
anchor cable prestress monitoring data in China are taken as examples for verification analysis. The analysis
results show that the prestressed measuring points of the slope anchor cable for this project are divided into
four categories: excavation causes the prestress of some slope measuring points to continue to increase,
and the tension or compression of the structural plane leads to an increase or decrease in prestress. The
multiple correlation coefficients of the training set and test set data of the BPVAR model are all above 0.80,
and the prediction error of the validation set is less than that of the vector autoregressive (VAR) model,
the autoregressive moving average (ARMA) model and the long short-term memory (LSTM) model. The
measured prestress values are all within the 95% confidence interval, which provides a reference for safety
state identification in slope engineering.

INDEX TERMS Construction period, slope safety monitoring, ward clustering method, Bayesian panel
vector autoregressive (BPVAR) model, prestress of anchor cable.

I. INTRODUCTION
In recent years, with the construction of large-scale water
conservancy and hydropower projects, many high and steep
slopes with complex safety conditions have been formed after
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excavation [1]. The safety of high slopes inwater conservancy
projects is an important issue related to water conservancy
and hydropower facilities and public safety and property. The
stability of a slope is usually affected by many factors [2],
[3], including geological conditions, rainfall, groundwater
level fluctuations and seismic loads [4]. Among them, con-
struction excavation and disturbance are important reasons
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for the rapid evolution of the slope safety state during con-
struction [5]. High slopes in water conservancy projects are
mostly located in alpine canyons, where rock mass stability is
already compromised. Excavation disturbance leads to slope
stress redistribution [6], which creates a significant unloading
effect. Prestressed anchor cables are an effective reinforce-
ment method to improve the safety of high slopes [7], [8], [9].
An anchor cable is a stress-absorbing structure buried deep
underground that can greatly improve the stability of rock and
soil structures [10]. However, if the prestress of the anchor
cable is reduced to a certain limit, instability or failure can
occur [11]. Under the action of a large anchoring load, a rock
mass will deform with time, which is the main reason for the
loss of prestress. This change in prestress in an anchor cable
is related to the strength and structural characteristics of the
rock mass [12]. When the rock mass is hard and complete, the
prestress loss of the anchor cable is relatively small, while the
prestress loss of an anchor cable anchored in a weak fracture
rockmass is relatively large [13]. Therefore, monitoring slope
anchor cable prestress is important for understanding slope
safety status. After obtaining the monitoring data, interpret-
ing the data and quantitatively predicting possible outcomes
become the key challenges [14].
The time series of slope safety monitoring data during

construction is often short, and there is often a lack of environ-
mental monitoring data. A traditional statistical model with
various environmental factors as influencing factors has poor
applicability. The time series model provides a set of data
processing methods with a scientific basis, which essentially
analyses the internal structure and complex characteristics of
the data to enable prediction [15], [16]. Many researchers
have analysed the time series characteristics of slope data
through various techniques [17]. Aggarwal et al. [18] used
an autoregressive differential moving average model, gen-
eralized autoregressive conditional heteroscedasticity model
and dynamic neural network model to predict univariate
time series and compared them. Meng et al. [19] used the
H-P filtering method to decompose trend and periodic terms
from slope time series, used the model to process the trend
terms smoothly and calculate the predicted value of the
trend terms, and used the vector autoregressive model to
calculate the predicted value of the periodic terms, thus
improving the prediction effect. Lu et al. [20] decomposed
the time series by variational mode decomposition, used a
one-dimensional cubic piecewise function to train and predict
the trend term, and used a fruit fly optimization algorithm and
variational mode decomposition model to train and predict
the periodic term and random term. Their results showed
that the model can effectively improve prediction accuracy.
However, the above time series model only considered the
analysis from the time dimension. Xu et al. [21] proposed
that an organic combination and comprehensive analysis of
the time–space evolution law is an important guarantee for
the accurate prediction of slope monitoring data. Zhao et
al. [22] used an interdisciplinary method combining small

baseline subset interferometric synthetic aperture radar, deep
displacement monitoring and engineering geological surveys
to identify the deformation mechanism and spatiotemporal
characteristics of a slope. Feng et al. [23] obtained the spatial
and temporal distribution characteristics of rainfall-induced
group landslides through satellite remote sensing images,
rainfall monitoring data and artificial rainfall physical models
and explained the rainfall instability mechanism of slopes.
Based on monitoring data, Cheng et al. [24] established a
statistical regression model to analyse the temporal and spa-
tial evolution of slope deformation during the impoundment
of a reservoir bank and simulated the slope deformation
and failure process under impoundment conditions based
on regression analysis. Ge et al. [25] introduced the basic
theory of spatial econometrics and the dynamic panel data
analysis method, established a dynamic spatial panel data
model of slope displacement, and tested the spatial predic-
tion ability of the model. Thus, there is consensus for slope
safety monitoring models to combine the time evolution law
and spatial distribution characteristics of slope monitoring
data.

Compared with a traditional time series model, the panel
data model of a time series can fully exploit and utilize the
effective information of monitoring data in time and space
and has good spatial and temporal prediction effects. The
vector autoregressive (PVAR) model based on panel data is
an extension of the vector autoregressive (VAR) model from
plane to space. This model reduces the requirement of data
length in modelling and has good application prospects [26],
[27], [28]. The advantage of modelling multiple time series
(panel data) at the same time is to obtain more accurate
prediction results by collecting data rather than using only
a single sequence of data. [29] In general, the least squares
method, moment estimation method, and maximum likeli-
hood estimation method are used to estimate the parameters
of the PVAR model. Table 1 lists the estimation methods,
applicability and characteristics of several classic time series
models [30], [31], [32], [33]. Pesaran [34] noted that due
to cross-sectional heterogeneity, traditional methods are no
longer applicable to panel data. Zellner [35] and Canova and
Ciccarelli [36] applied the Bayesian estimation method to
the PVAR model. Under the assumption of prior informa-
tion, the posterior distribution of the model was obtained
by the Gibbs sampling method, and the estimated value of
the parameters was obtained. This can achieve predictive
analysis involving multiple periods in the future [37] and
has often shown good performance for time series modelling
and analysis in the case of small samples. Compared with
several traditional estimation methods of the PVAR model,
the Bayesian panel vector autoregressive (BPVAR) model
has improved mathematical properties that are suitable for
the short-term prediction analysis of panel data, and it has
the advantage of fewer model estimation parameters when
considering the spatial and temporal information of panel
data.
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TABLE 1. Comparison of classical time series models.

Because the multipoint monitoring data for a slope anchor
cable dynamometer include not only the time series infor-
mation but also the spatial information [25], the prediction
accuracy of the slope anchor cable prestress safetymonitoring
model can be improved by fully excavating and utilizing
the effective information of the short-sequence monitoring
data in time and space during the construction period. There-
fore, this paper proposes using the Ward clustering method
to perform spatial clustering analysis on prestressed moni-
toring data during the construction of the slope and using
the BPVAR model to establish a unified safety monitoring
model for each type of measuring point, which addresses
the difficulty of modelling the monitoring data of the pre-
stressed short sequence of the slope anchor cable during
the construction period. Finally, the application effect of the
prestressed safetymonitoringmodel of the slope anchor cable
proposed in this paper is verified by a slope engineering
example.

II. DESCRIPTION OF THE PROBLEM
A large number of anchor cable dynamometers are usually
arranged on the slope to observe whether the prestress of the
slope is abnormal, as shown in Fig. 1(a). Because the slope
prestress monitoring data contain both the cross-sectional
data of multiple measuring points and the time series of a
single measuring point, the slope prestress monitoring data
can be regarded as typical panel data, as shown in Fig. 1(b).
Panel data clustering analysis is a research trend in spa-
tiotemporal data mining. Its main goal is to divide objects in
space according to the basic characteristics of sample data
so that highly similar objects are placed into the same cate-
gory. The monitoring data of anchor cable prestress of slope
have typical characteristics of spatio-temporal variation. It is
expected that better prediction results can be obtained when
the spatio-temporal correlation of measuring points is consid-
ered in modeling. Therefore, the spatial clustering analysis of
prestressed measuring points can fully explore the correlation
and spatial variation characteristics of prestress. After the
clustering analysis, the prestressed measuring points of the
slope are divided into several categories, and the prestressed
measuring points in each category have highly similar varia-
tion laws of the measured values.

FIGURE 1. One-step prediction diagram of slope panel monitoring data.

Through cluster analysis, different types of prestressed
panel monitoring data can be obtained. At this time, a rea-
sonable prediction model should be established to monitor
the prestressed safety state of the slope. However, the moni-
toring data of various environmental quantities in the process
of prestress monitoring during slope construction are often
not perfect, and it is often difficult to establish traditional
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statistical models or machine learning models based on intel-
ligent algorithms. Compared with the traditional modelling
method, the time series model can predict the future pre-
stress only through the previously measured values, which
can solve key problems such as an imperfect environmental
quantity during the construction period. At the same time,
the construction period monitoring data are typically small
sample data. The Bayesian method has obvious advantages
in modelling small sample data and can address the challenge
of a small amount of data. Considering that the prestress
monitoring data contain a large amount of time and space
information, this paper uses the panel data model to predict
the prestress and quantitatively analyse the safety state of the
prestress through the model prediction results.

In summary, this paper uses the spatial clustering method
to conduct in-depth excavation of the prestressed monitor-
ing data during the slope construction period and uses the
Bayesian estimation method of the panel data model to pre-
dict and analyse the prestressed panel data, as shown in
Fig. 1(c). Through the prediction results of the panel data
model, researchers can determine whether the prestress of the
slope is within the normal range to achieve slope prestress
safety monitoring.

III. BASIC THEORIES AND METHODS
A. WARD SPATIAL CLUSTERING ANALYSIS
The application of data mining in the field of safety monitor-
ing has become increasingly widespread [38], [39]. Cluster
analysis is a typical data mining method. Common clustering
analysis methods include partition clustering and hierarchi-
cal clustering. In practical applications, the Ward cluster-
ing method is a hierarchical clustering method that offers
a relatively good classification effect [40]. Therefore, this
paper uses the Ward clustering method for spatial clustering.
According to Reference [41], a reasonable clustering method
should consider the change value, change rate and change
trend of each measuring point.

This paper mainly considers the change characteristics of
the measuring point from the following three aspects: 1)
the magnitude of the prestress measurement of measuring
point i at time t , denoted as xit ; 2) the numerical change
of measuring point i at time t , denoted as yit ; and 3) the
magnitude of the value change of measuring point i at time
t , denoted as zit . The units and orders of magnitude of the
abovementioned three kinds of variation characteristics are
inconsistent, and it is obviously unreasonable to directly add
the three to obtain the ‘‘comprehensive clustering index’’.
Therefore, it is necessary to standardize xit , yit , and zit before
calculating the comprehensive similarity index. This paper
uses the Z score method to normalize the underlying metrics.

Suppose that δit represents the change index of measure-
ment point i at time t and uses dij to represent the degree
of similarity between measurement point i and measurement
point j. Taking the square of Euclidean distance (SED) as the
similarity index and taking the prestress measurement values

of measuring point i and measuring point j at time t as an
example, the SED is

dijt (SED) = (δit − δjt )2 (1)

where δit and δjt represent the prestress measurement values
of measuring points i and j at time t , respectively.

Taking measuring point e and measuring point f as an
example, this paper defines three basic similarity indicators:
1) the absolute distance of the measuring point, denoted as
dSef (AD); 2) the incremental distance of the measuring point,
denoted as dSef (KD); and 3) the speed-up distance of the mea-
suring point, denoted as dSef (GRD). The above three similarity
indicators are shown in Formulas (2)–(4):

dSef (AD) =

T∑
t=1

(xet − xft )2 (2)

dSef (KD) =

T∑
t=1

(yet − yft )2 (3)

dSef (GRD) =

T∑
t=1

(zet − zft )2 (4)

In the formulas, xet = δet , xft = δft , yet = xet − xe,t−1, yft =

xft − xf ,t−1, zet =
yet

xe,t−1
, and zft =

yft
xf ,t−1

.
The three basic similarity indices are fused to obtain a

comprehensive similarity index, which is used to measure the
overall similarity of different measurement points. This paper
considers this the comprehensive distance between measur-
ing point e and measuring point f , abbreviated as dSef (CD),
as shown in Formula (5):

dSef (CD) = dSef (AD) + dSef (KD) + dSef (GRD) (5)

For the slope prestress monitoring data, including G peri-
ods and M measuring points, the squared deviation sum of
the Mu measuring points within the panel data classification
Hu can be obtained as:

Wtu =

Mu∑
i=1

[
(xitu − x̄tu)2 + (yitu − ȳtu)2 + (zitu − z̄tu)2

]
(6)

If it is divided into j classes, then the global total sum of
squared deviations is

W =

G∑
t=1

j∑
u=1

Wtu (7)

whereWtu represents the deviation sum of squares of themea-
sured points in period t in Hu; xitu, yitu, and zitu correspond to
the three parameters in Formulas (2)–(4); and x̄tu, ȳtu, and z̄tu
represent the parameter average value ofMumeasuring points
at time t in Hu.

The determination of the number of clusters needs to com-
prehensively consider the pedigree clustering dendrogram
and the change rule of measuring points. In practice, the final
number of clusters can be determined by the change in the
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inconsistency coefficient in the clustering process, as shown
in Formula (8):

ξi =
li1 − li2
li3

(8)

where ξi is the inconsistency coefficient of the i-th clustering;
li1 is the clustering distance during the i-th clustering; li2 is the
mean of the clustering distances during the i-th clustering; li3
is the standard deviation of the clustering distance during the
i-th clustering; and i=1, 2, · · · , n-1, where n is the number of
samples.

B. BPVAR MODEL THEORY
1) PANEL DATA UNIT ROOT TEST
To test whether the panel monitoring data of slope prestress
contain unit roots, this paper considers the following panel
autoregressive model [42]:

yi,t = ρiyi,t−1 + z′i,tγi + εi,t (9)

In the formula, i = 1, 2, · · · , n is the cross-sectional unit, t =

1, 2, · · · ,Ti is the time, z′i,tγi is the individual fixed effect,
and εi,t is the stationary disturbance term.
Since the disturbance term in Formula (9) may have auto-

correlation, Levin et al. [43] proposed the Levin–Lin–Chu
(LLC) test method, which introduces a high-order differential
lag term to perform the unit root test of panel data:

yi,t = δyi,t−1 + z′i,tγi +
∑pi

j=1
θijyi,t−j + εi,t (10)

where δ is the common autoregressive coefficient and pi is the
lag order. By introducing a sufficiently high-order differential
lag term, the disturbance term εi,t can be guaranteed to be
white noise.

The limitation of the LLC test is that it requires that the
autoregressive coefficients δ of each individual are equal,
which may be too zealous in practice. To overcome this
shortcoming, Im et al. [44] proposed the Im–Persaran–Shin
(IPS) unit root test method for panel data:

yi,t = δiyi,t−1 + z′i,tγi + εi,t (11)

In the formula, δi is the regression coefficient of measuring
point i, and εi,t obeys a normal distribution independent of
each other.

A Fisher type test is developed from the augmented
Dickey–Fuller (ADF) test. The basic idea of the ADF-Fisher
test is similar to the IPS test, where each individual is tested
separately and then the information is combined [45]. Specif-
ically, the unit root test is performed on each individual in
the panel data to obtain n test statistics and corresponding P
values. Choi [46] proposed four methods to synthesize these
P values into ‘‘Fisher type’’ statistics. In this paper, we use
the ‘‘inverse chi-squared transformation’’ in four methods:

P ≡ −2
∑n

i=1
ln pi

d
−→ χ2(2n), (Ti → ∞) (12)

In the formula: Ti is the time dimension of the measuring
point i. Since the negative sign is taken, this is a one-sided

right test, that is, the larger the statistic P, the more inclination
there is to reject the null hypothesis of ‘‘panel unit root’’.

2) THE LAG ORDER TEST OF PANEL DATA
Selecting the order of the panel data is a very important step.
Selecting an excessively high lag order will lead to overesti-
mating parameters and model overfitting problems. A low lag
order will miss the linear relationship between the monitoring
sequence and its lag terms. Therefore, scholars have proposed
information criteria to avoid overfitting problems by adding
penalty terms for model complexity. The Akaike information
criterion (AIC), Bayesian information criterion (BIC) and
Hannan–Quinn information criterion (HQIC) are typically
used to test the optimal lag order of panel data.

The AIC is a standard used to measure the goodness of
model fitting [47]. It is a weighting function of fitting accu-
racy and the number of unknown parameters. The expression
is as follows:

AIC = 2k − 2 ln(L) (13)

In the formula, k is the number of unknown parameters in the
model, and L is the likelihood function in the model.

The BIC is similar to the AIC. Both the AIC and the BIC
introduce a penalty term related to the number of model
parameters. The penalty term of the BIC is larger than that
of the AIC. Considering the number of samples, when the
number of samples is too large, it can effectively prevent the
model from being too complex due to the high accuracy of
the model. The expression of the BIC is as follows [48]:

BIC = k ln(n) − 2 ln(L) (14)

In the formula, n is the number of samples.
The HQIC is an improved method of the AIC. The HQIC

is also an evaluation criterion based on information entropy,
which is typically used to evaluate the fitting degree of
different models to data and select the optimal model. The
expression of the HQIC is as follows [49]:

HQIC = −2 ln(L) + ln(ln(n)) × k (15)

3) BAYESIAN ESTIMATION OF THE PANEL VECTOR
AUTOREGRESSIVE MODEL
The panel vector autoregressive model includes N mea-
surement points, and each measurement point includes n
endogenous variables, p lag terms and T periods. Its general
form is as follows:

yi,t =

N∑
j=1

p∑
k=1

Akij,tyj,t−k + Ci,txt + εi,t (16)

where yi,t is a n×1 vector of n endogenous variables of
measurement point i at time t; Akij,t is a n × n coefficient
matrix, which represents the response of measurement point
i to the kth lag term of measurement point j at time t; xt is a
m×1 vector of exogenous variables;Ci,t is a n×mmatrix that
associates endogenous variables with exogenous variables;

84864 VOLUME 11, 2023



L. Cheng et al.: Safety Monitoring Method for Anchor Cable Prestress During Slope Construction

and εi,t is the n×1 residual vector of measurement point i.
In this research, the panel data of the prestressed measuring
point should be used as the input model of the endogenous
variable, so the exogenous variable xt is not considered.
This is the general form of a panel vector autoregressive

model. In practice, this general form may be too complex
to yield accurate estimates. An alternative was proposed by
Zellner and Hong [51] that relies on a hierarchical prior
recognition scheme, which basically follows the approach of
Jarocinski [50]. In the simple method proposed by Zellner
and Hong [51], the only parameter estimated is β, and the
vector set is β i. Other basic parameters, such as the set of
residual covariance matrices

∑
i and the common mean and

covariance of the vector autoregressive coefficients b and
∑

b,
are assumed to be known. The complete posterior distribution
of the model can be given by:

π (β, b, 6b, 6 |y )

∝ π (y|β, 6)π (β|b, 6b)π (b)π (6b)π (6) (17)

In other words, the full posterior distribution is equal to
the product of the data likelihood function π (y|β, 6) with the
conditional prior distribution π (β|b, 6b) for β and the prior
π (6) for 6, along with the two hyperpriors π (b) and π (6b).
The specific form of the likelihood function is as follows:

π(y|β, 6) ∝

∏N

i=1

∣∣6̄i
∣∣−1/2

exp(−
1
2
(yi − X̄ iβ i)

′(6̄i)−1(yi − X̄ iβ i)) (18)

The vectors of coefficients β i follow a normal distribution,
with common mean b and common variance 6b:

β i ∼ N (b, 6b) (19)

The prior density for β is given by:

π (β|b, 6b) ∝

∏N

i=1
|6b|

−1/2

exp(−
1
2
(β i − b)′(6b)−1(β i − b)) (20)

The prior distribution for 6i is simply the classic diffuse
prior given by:

π(6i) ∝ |6i|
−(n+1)/2 (21)

The model must rely on the numerical methods provided
by the Gibbs sampler. Therefore, it is necessary to obtain
the conditional posterior distribution for each parameter. The
complete conditional distribution of β i is as follows: any term
in the product that does not involve β i can be classified as a
proportional constant:

π (β i|β−i, y, b, 6b, 6) ∝ π (y|β i, 6)π (β i|b, 6b) (22)

of which β−i is used to indicate all β coefficients minus the
β i collection. Due to conditional independence, it is possible
to draw each β i in turn by sampling from the corresponding
conditional posterior.

The conditional posterior distribution of b is as follows,
and any term not involving b is classified as a proportional
constant:

π (b|y, β, 6b, 6)

∝ exp
(

−
1
2
(b− βm)

′(N−16b)−1(b− βm)
)

(23)

in the formula, βm = N−16N
i=1β i denotes the arithmetic

mean over the β i vectors.
The conditional posterior distribution of 6b is as follows,

relegating to the normalizing constant any term not involving
6b:

π (6b|y, β, b, 6) ∝ λ
−

s̄
2−1

1 exp
(

−
v̄
2
1
λ1

)
(24)

in the formula, s̄ = h + s0 and v̄ = v0 +
N∑
i=1

{
(β i − b)′�−1

b (β i − b)
}
.

Finally, the conditional posterior distribution is obtained
for the set of residual covariance matrices 6i and relegates to
the proportionality constant any term not involving 6i:

π (6i|6−i, y, β, b, 6b)

∝ |6i|
−(T+n+1)/2 exp

(
−
1
2
tr

[
6−1
i S̃i

])
(25)

Among them, S̃i = (Y i−X iBi)′(Y i−X iBi). Due to condi-
tional independence, it is possible to draw each 6i in turn
by sampling from the corresponding conditional posterior
distribution.

IV. CONSTRUCTION METHOD FOR SLOPE ANCHOR
CABLE PRESTRESS SAFETY MONITORING MODEL
The process of the anchor cable prestress monitoring method
during slope construction based on the Ward clustering
method and BPVAR model is shown in Fig. 2.

The monitoring method of slope anchor cable prestress
based on the Ward clustering method and BPVAR model
proposed in this paper mainly involves the following steps:

(1) Data preprocessing. First, according to the layout of the
slope monitoring system, prestressed measuring points with
high reliability are selected, and the obvious abnormal values
in the monitoring data are eliminated. Then, the monitoring
data are processed into equidistant sequence data once every
7 days by the linear interpolationmethod for subsequentmod-
elling. Because the units and dimensions of the characteristic
prestress quantities xit , yit and zit are inconsistent, the Z score
method is used to standardize the three basic characteristic
prestress quantities.

(2) Calculate the three basic similarity indices (absolute
distance, incremental distance, and increasing distance) of
different measuring points according to Formulas (2)–(4),
and then calculate the corresponding comprehensive distance
index according to Formula (5). Quantitatively analyse the
similarity of spatial measurement points.

(3) Calculate the inconsistency coefficient in each clus-
tering process according to Formula (8) and judge the most
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FIGURE 2. The flow chart of the Ward clustering method and BPVAR model.

FIGURE 3. Example graph of inconsistent coefficient change in the
clustering process.

suitable number of clusters by the increment of the incon-
sistency coefficient. In the inconsistency coefficient in the
Ward clustering process shown in Fig. 3, according to the
value of the inconsistency coefficient, it can be seen that the
largest increment of the inconsistency coefficient occurs in
the penultimate second cluster and the last cluster, and it can
be judged that the penultimate second cluster has the best
effect.

(4) According to the spatial clustering results of the Ward
clustering method, panel data are established for the same
type of highly similar measuring points.

(5) According to Formulas (10)–(12), the LLC test, IPS test
and ADF-Fisher test are used to test the stability of the panel
data of each type of prestressed measuring point.

(6) According to Formulas (13)–(15), the AIC, BIC and
HQIC are used to determine the order of the model, and the
optimal lag order of the model is determined by the minimum
information criterion.

(7) The posterior distribution of the model is derived by the
Gibbs sampling method, and the fitting and prediction results
are obtained from the posterior probability distribution.

V. PROJECT EXAMPLES
A. PROJECT OVERVIEW
Awater conservancy project in China is located in the canyon
section of the upper reaches of the Han River. It is located
in Yangxian County, east of the Hanzhong Basin in south-
ern Shaanxi Province. It is the first development cascade in
the planning for the upper reaches of the Han River. The
construction task of the water conservancy project is mainly
based on water supply, taking into account power genera-
tion and improving water transport conditions. The average
annual design water supply of the water conservancy project
is 969 million m3, the normal water level of the reservoir
is 450 m, the dead water level is 440 m, the total reservoir
capacity of the reservoir is 221 million m3, and the regu-
lated reservoir capacity is 98 million m3. The dam adopts a
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FIGURE 4. Division of left bank slope for a water conservancy project in
China.

roller-compacted concrete gravity dam with a crest elevation
of 455.00 m, a maximum dam height of 63.00 m, and a dam
axis length of 349.00 m. The Han River flows into the dam
site area from west to east in the northwest of the dam site
area, and the flow direction turns to southeast. The river flows
135◦, and the river channel is relatively straight. The left bank
slope of the dam abutment is 300 m high and more than
400m long, which represents a very steep and high slope. The
slope stratum is an ancient intrusive rock mass with a single
lithology, and the main structural types are faults and fissures.
The type of groundwater is mainly bedrock fissure water. The
depth of the water level is 19.2–35.3 m, and the water level
is relatively stable. Under normal conditions, the water level
varies from 0.1 to 0.5 m. The slope trend is approximately
315◦, the inclination is approximately 225◦, the top elevation
is 695m, and the terrain slope is 37∼39◦. The slope is set with
3 m wide horse tracks every 15 m high, and the excavation
slope ratio is 1:0.3∼1:1.2. Fig. 4 shows a schematic diagram
of the left bank slope zoning of the water conservancy project.
Fig. 4 shows that the left bank slope is divided into zones
I∼IV, of which zone I is the inlet slope of the pump station,
and zones II∼IV are the left bank retaining dam section,
the powerhouse slope and the power station tailwater slope,
respectively.

The construction of the left bank slope of the water con-
servancy project began in November 2015 and has been
completed. The excavation progress and some key events
during the slope construction period are shown in Table 2.

B. MONITORING PRINCIPLE AND INSTRUMENT
ARRANGEMENT OF ANCHOR CABLE DYNAMOMETER
An anchor cable dynamometer is typically used for slopes to
observe the formation and change in prestress, and the tem-
perature can be monitored simultaneously [52]. The instal-
lation of the anchor cable dynamometer is shown in Fig. 5.
The working principle of the anchor cable dynamometer is
as follows: The anchor cable dynamometer is piled on the
anchor cable, and the axial pressure borne by the pressure

FIGURE 5. Structural diagram of a typical anchor cable dynamometer.

steel pipe of the anchor cable dynamometer will be consistent
with the axial tension borne by the anchor cable. When the
pressure-bearing steel cylinder is subjected to pressure to
produce axial deformation, the strain sensors arranged around
the steel cylinder are also deformed synchronously with the
steel cylinder. By measuring these strain sensors, the load
force borne by the steel cylinder can be calculated so that the
axial load borne by the anchor cable can be obtained.

A total of 24 anchor cable dynamometers are arranged
on the slope of the water conservancy hub. Nine anchor
cable dynamometers, numbered D08ZPR∼D13ZPR and
D15ZPR∼D17ZPR, were arranged on the slope of left
bank Area I. Three anchor cable dynamometers, numbered
D05ZPR∼D07ZPR, were arranged near the 553 m outlet
tunnel. After November 2019, due to a change in slope
design, anchor cable dynamometers D30ZPR∼D36ZPR and
D38ZPR were added. The slope engineering area is located
near the Qinling Mountains in China. Affected by multistage
tectonic activities and dike intrusion, the structure of the dam
area is developed, and the main structural types are faults and
fissures. The structural planes revealed in the process of slope
excavation are mainly grade IV∼V structural planes, and a
small number of grade III structural planes are developed.
Among them, there are 14 faults in the slope of Area I and
80 faults in the slope of Areas II∼IV. The larger faults are
fz39, F1, F2, f8, fz15 and so on. The monitoring layout
and structural plane distribution of the slope anchor cable
dynamometer are shown in Fig. 6.

C. SPATIAL CLUSTER ANALYSIS
Because the variation characteristics of slope anchor cable
prestress have two dimensions of time and space, and the
number of clusters cannot be determined in advance. There-
fore, it is more appropriate to use Ward clustering method
for spatial clustering analysis in this case. Among the above
anchor cable dynamometers, the monitoring sequences of
D02ZPR∼D10ZPR, D12ZPR, and D15ZPR∼D16ZPR last
more than 1 year, and themeasurement point data are reliable.
Therefore, the Ward clustering method is used to conduct
spatial cluster analysis on the above 12 measurement points.
The Z score standardization method is used to standard-
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TABLE 2. Excavation progress and key events during the slope construction period.

FIGURE 6. Monitoring layout and structural plane distribution of anchor
cable dynamometers for slope.

ize the prestress monitoring data of the 12 anchor cable
dynamometers. The time section is from December 2018 to
September 2020. A total of 91 data points from each anchor
cable dynamometer are used in the clustering analysis. The
standardized data fluctuation is approximately 0, with a mean
of 0 and a standard deviation of 1. After the standardization
operation, the value range of the data is further restricted,
which avoids the influence of the value range. The prestress
monitoring data of the above 12 anchor cable dynamometers
were clustered and analysed by the Ward clustering method,
and the clustering pedigree dendrogram was obtained as
shown in Fig. 7.
The inconsistency coefficient can be used to determine

the final number of classifications. In the clustering pro-
cess, if the inconsistency coefficient corresponding to a
certain clustering increases significantly compared with the
last incident, it means that the effect of this clustering is
poor [53]. The inconsistency coefficients of the above clus-
tering process are obtained by calculation, and the results
are 0, 0.7071, 0.7071, 0, 0, 0, 0.8652, 0, 0.9332, 0.6501,
and 0.9576. Considering the change in the inconsistency
coefficient between the third reciprocal cluster and the fourth

FIGURE 7. Spatial measuring point pedigree clustering tree diagram of
the anchor cable dynamometer.

reciprocal cluster, the inconsistency coefficient increases sig-
nificantly by 0.9332, indicating that the effect of the fourth
reciprocal cluster is relatively good, so it is most appro-
priate to divide the prestressed measuring points into four
categories. According to the variation in the inconsistency
coefficient and the clustering dendrogram, the prestress of
the slope anchor cable is divided into four similar regions,
as shown in Fig. 8.

To compare with the traditional clustering method, this
paper chooses the classic K-means algorithm to cluster the
above 12 prestressed measuring points. The basic concept of
the K-means clustering algorithm is to select K data as the
initial clustering centre, where K is the number of clusters
specified by the researchers [54]. The distance from the data
point to each initial clustering centre is calculated, and the
data points are assigned to the set of each initial cluster-
ing centre to form a cluster. The centre of each cluster is
updated according to each point in the cluster. The allocation
is repeated and the steps are updated until the cluster no
longer changes. K-means clustering includes the following
steps: (1) Randomly generate the initial cluster centroid.
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FIGURE 8. Ward clustering results of slope prestress measuring points.

FIGURE 9. K-means clustering results of slope prestress measuring points.

(2) Calculate the Euclidean distance from all samples to
the cluster centroid. (3) If the sample is closest to a cluster
centroid, then the sample is divided into the cluster; if the
Euclidean distance of the sample to multiple cluster centroids
is equal, it can be divided into any cluster. (4) After grouping
all samples according to Euclidean distance, the mean value
of each group is calculated and used as the new clustering
centroid. (5) Repeat steps (2)–(4). When the new cluster
centroid is equal to the original centroid, the iteration stops,
and the algorithm ends. According to the calculation results
of the K-means clustering algorithm, the prestress of the slope
anchor cable is divided into three similar regions, as shown
in Fig. 9.

The K-means clustering results show that the slope pre-
stress measuring points are divided into three categories. The
first type of measuring points are D08ZPR and D09ZPR,
the second type of measuring points are D10ZPR, D12ZPR,
D15ZPR and D16ZPR, and the third type of measuring points
are D02ZPR ∼ D07ZPR. The above research shows that
the spatial clustering results obtained by the Ward method
and K-means algorithm are different. By comparing the two
clustering results and the variation law of prestress measure-
ment, it can be seen that the Ward clustering results are more

FIGURE 10. The prestressed change curve of the anchor cable of the
type 1 measuring points.

FIGURE 11. The prestressed change curve of the anchor cable of the
type 2 measuring points.

FIGURE 12. The prestressed change curve of the anchor cable of the
type 3 measuring points.

consistent with the variation law of anchor cable prestress
measurement. Therefore, this paper divides the slope anchor
cable prestress into four categories based on the Ward clus-
tering results. The variation law of prestress at each type of
measuring point is shown in Fig. 10 ∼ Fig. 13 (the prestress
measurements in the figure have been standardized).

Type 1 measuring points are D10ZPR, D12ZPR, D15ZPR
and D16ZPR, which are located in the potential block area
formed by the structural planes fz39 and L920. As shown in
Fig. 10, after the slope anchor cable is locked, the prestress
is slightly relaxed due to the combined effects of steel strand
retraction and formation compression at the initial stage, and
then the prestress continues to increase. After September
2019, it gradually stabilized. The force of the anchor cable
continues to change and adjust with the slope deformation.
Especially since the slope blasting excavation on February
28, 2019, the growth rate of the force of each anchor cable
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FIGURE 13. The prestressed change curve of the anchor cable of the
type 4 measuring points.

has accelerated significantly. D10ZPR, D12ZPR, D15ZPR
and D16ZPR are all located in the middle and lower parts
of the block, and their measured values show increased
growth. The growth time point and change rule are consistent
with the nearby multipoint displacement meter, indicating
that the stress growth of each anchor cable is mainly caused
by the block deformation caused by blasting excavation.
The prestress of the first type of measuring points shows an
obvious continuous upwards trend, indicating that the slope
has an outwards displacement. At the same time, the opening
deformation of the structural plane in the slope also leads to
the increasing prestress of the anchor cable [55]. From the
point of view of the force of the anchor cable, the prestress
of the first type of measuring point increases relative to the
locking value, and the increment ratio is between 11% and
25%. The measured value of D16ZPR in the lower part of
the block increases the most, reaching 24.85% of the locking
value, which is also consistent with the larger deformation
increment in the lower part of the block.

Type 2 measuring points are D08ZPR and D09ZPR, which
are located at the toe of the slope in Area I on the left
bank. It can be seen in Fig. 11 that after the self-tensioning
and locking of the anchor cable dynamometer, the prestress
relaxes rapidly in a short period of time and shows an obvious
downwards trend in the early monitoring period. At the same
time, the compression deformation of the structural plane in
the slope also leads to the rapid relaxation of the anchor cable
prestress. At the end of June 2019, heavy rainfall continued
in the project area, and rainwater infiltrated and accumulated
inside the slope, which increased the sliding of the surface
rock mass, which generated an additional anchoring force
and weakened the strength of the anchor cable strand [56],
causing the prestress to continue to increase. big. By the
beginning of 2020, the creep deformation of the rock mass
causes rebound shrinkage of the anchor cable, which in turn
causes prestress loss of the anchor cable [57] and then gradu-
ally stabilizes. As of September 2020, the prestress loss rate
was within 5%, the change in the measured value was in line
with the general law of anchor cable stress, and the prestress
loss range was within the normal range, indicating that the
anchor cable stress was basically normal, and the slope was
not significantly deformed.

Type 3 measuring points are D02ZPR and D04ZPR, which
are located at 570 m elevation of the slope in Areas II∼IV of
the left bank. It can be seen in Fig. 12 that after the anchor
cable is tensioned and locked, it is affected by the retraction
of the steel strand, which leads to the rapid relaxation of the
prestress at the initial monitoring stage. After July 2018, the
prestress showed a periodic and slow upwards trend. At this
time, the rock mass of the slope was affected by external
factors such as construction disturbance, temperature change
and rainfall, which caused the prestress of the anchor cable
to fluctuate greatly [58]. As of September 2020, the prestress
loss rate was within 2%, the change in the measured value
conformed to the general law of anchor cable stress, and the
prestress loss range was within the normal range, indicating
that the anchor cable stress was basically normal, and the
slope did not significantly deform.

Type 4 measuring points are D03ZPR, D05ZPR, D06ZPR
and D07ZPR, all of which are located within the range of the
F1 fault and its influence zone. Fig. 13 shows that after the
self-tensioning and locking of the anchor cable dynamometer,
the prestress of the anchor cable relaxes rapidly and shows a
significant downwards trend in the early monitoring period.
At this time, prestress occurs due to the retraction of the
steel strand lock loss. After September 2018, the prestress
showed a long-term slow loss trend. At this time, the anchored
rock mass produced creep deformation, which caused the
anchor cable to rebound and shrink, which in turn caused
the long-term loss of the anchor cable prestress. Around
September 2019, the rock mass of the slope was affected
by the construction disturbance, and the F1 fault in the
slope body produced tension deformation. At this time, the
prestress of the anchor cable continued to increase. As of
September 2020, the prestress loss rate was within 5%, the
change in the measured value was in line with the general law
of anchor cable stress, and the prestress loss range was within
the normal range, indicating that the anchor cable stress
was basically normal, and the slope was not significantly
deformed.

D. BPVAR MODEL
1) THE STATIONARITY TEST OF PANEL DATA
If the panel data are not stable, deviations can occur in
the model estimation results. Therefore, before establishing
the BPVAR model, a unit root test should be performed
on the variables to ensure that the data are stable. The
LLC test method allows different intercepts and time trends,
heteroscedasticity and high-order series correlation and is
suitable for the panel unit root test of medium dimen-
sions (time series between 25 and 250, cross-section number
between 10 and 250). The IPS test allows the existence of
heteroscedasticity when the alternative hypothesis is estab-
lished, and the test is a Lagrange multiplier test [59]. The
ADF-Fisher test is an extended method of the ADF test,
and its test effect is better than that of the traditional test
method. Therefore, in this paper, the LLC test, IPS test and
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TABLE 3. P value of panel data unit root test.

TABLE 4. Optimal lag order test for panel data.

ADF-Fisher test are used to test the unit root of the panel
data of anchor cable prestress [60]. The original hypothesis
of the test method is nonstationary panel data [61]. The test
results are shown in Table 3. According to Table 3, the P
values corresponding to the test statistics are less than 0.1,
so the null hypothesis of ‘‘nonstationary panel data’’ can be
rejected at the significance level of 10%, and the panel data
are considered to be stationary.

2) DETERMINING THE OPTIMAL LAG ORDER
The optimal lag order of the model is selected by AIC, BIC
and HQIC criteria, and the optimal lag order is determined
according to the criterion of obtaining the minimum amount
of information. The specific results are shown in Table 4.
It can be seen in Table 4 that the optimal lag order of the
first and third types of measurement points is the first order,
and the second and fourth types of measurement points are
the second order.

3) MODEL FITTING AND PREDICTIVE ANALYSIS
In this paper, the BEAR toolbox developed by Dieppe et
al. [62] is used to estimate by PVAR technology to further
alleviate the small sample problem of slope monitoring data
during construction. According to the Bayesian approach,
model parameters are treated as random variables character-
ized by some underlying probability distribution [63]. The
method incorporates prior information on model parameters
and updates these probability distributions based on observed
data. In addition, this paper derives the model posterior dis-
tribution through the Gibbs sampling method to obtain the
model fitted value, predicted value and confidence interval.
In a previous paper, the measurement points of the slope
anchor cable dynamometer were divided into four types by
the Ward clustering method, and the same type of measure-
ment points had a highly similar prestress variation law. Since

FIGURE 14. D08ZPR measuring point model training results.

the BPVAR model allows the use of temporal and cross-
sectional dimensions, both temporal and spatial information
are considered for modelling. Therefore, this paper estab-
lishes panel data for the same type of measuring points and
obtains the fitting and prediction results through the BPVAR
model.

According to the cluster analysis results, a BPVAR model
is established for each type of measuring point, and the panel
data are composed of the prestress monitoring data of all
measuring points in the same category. The posterior distri-
bution of the model can be derived by the Gibbs sampling
method. The number of preiterations of Gibbs sampling is
2000, and the number of effective iterations is 1000. In this
paper, the panel data of the above four types of measuring
points are divided into three parts: a training set, test set and
verification set. The training set is used to fit the model and
adjust the hyperparameters. The test set is used to evaluate
the trained model and determine whether to retrain the model
or change the hyperparameters in the model according to the
model training effect. The validation set is used to evaluate the
robustness and prediction error of the model. After multiple
debugging of the training set data samples, the overall tight-
ness in the model is determined to be 0.5, the lag attenuation
parameter is 1, and the constant term is 0. The coefficient
matrix of the model can be obtained by the calculation results
of the BPVAR model. The calculation formula of the model
fitting value of the first type of measuring point to the fourth
type of measuring point is shown in Table 5.

Taking the second type of measuring points as an example,
themodel training results of D08ZPR andD09ZPR are shown
in Fig. 14 ∼ Fig. 15. The data samples of each measuring
point in the training set are 51. The multiple correlation
coefficients between the fitting value and the measured value
of the data samples of the model training set of the second
type of measuring points are 0.98 and 0.94, respectively,
indicating that the fitting effect of the data samples of the
model training set is better.

Taking the second type of measuring point as an example,
the model test results of D08ZPR and D09ZPR are shown
in Fig. 16 ∼ Fig. 17. There are 20 data samples for each
measuring point in the test set. The multiple correlation
coefficients between the predicted value and the measured
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TABLE 5. The fitting value calculation formula for BPVAR model.

FIGURE 15. D09ZPR measuring point model training results.

FIGURE 16. D08ZPR measuring point model test results.

FIGURE 17. D09ZPR measuring point model test results.

value in the data sample of the model test set are 0.84 and
0.88, respectively, indicating that the test effect of the BPVAR
model is better.

Taking the second type of measuring point as an example,
the model verification results of D08ZPR and D09ZPR are
shown in Fig. 18 ∼ Fig. 19. The data in the validation set

FIGURE 18. D08ZPR measuring point model verification results.

FIGURE 19. D09ZPR measuring point model verification results.

are used for BPVAR model prediction, and the data samples
of each measuring point are also 20. To compare with the
one-step prediction results of the BPVAR model, the tra-
ditional vector autoregressive (VAR) model, autoregressive
moving average (ARMA)model and long short-termmemory
(LSTM) model are used to predict and analyse the prestress
of D08ZPR and D09ZPR, as shown in Fig. 18 ∼ Fig. 19 (the
prediction interval of the BPVAR model in Fig. 18 ∼ Fig. 19
is the 95% confidence interval). According to the prediction
results of the BPVAR model, the one-step prediction value of
the BPVAR model is basically consistent with the measured
value, and the measured value of the prestress is within the
95% confidence interval, indicating that the BPVAR model
can fully consider the uncertainty factors of the prestress
monitoring during the construction period of the slope and
has good interval prediction ability.

4) EVALUATION OF PREDICTION ACCURACY
To comprehensively analyse the prediction accuracy of the
BPVAR model, the mean absolute error (MAE), mean abso-
lute percentage error (MAPE) and root mean square error
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TABLE 6. Model prediction accuracy evaluation.

FIGURE 20. Radar chart of the prediction error of the D08ZPR measuring
point.

FIGURE 21. Radar chart of the prediction error of the D09ZPR measuring
point.

(RMSE) of the VAR model, ARMA model, LSTM model
and BPVAR model are calculated. Based on the above three
error indicators, a reasonable evaluation is made. Taking the
second type ofmeasuring points as an example, the prediction
error indices of the above models are shown in Table 6.
In Fig. 18 ∼ Fig. 19 and Table 6, it can be seen that the
defect of the VAR model is that the model parameters are too
numerous and the prediction effect is not good [30]; although
the ARMA model can predict the trend of prestress, the
prediction accuracy decreases with the increase in the number
of predictions [31]. For the small sample data of slope anchor
cable prestress during construction, the prediction accuracy
of the LSTM model is often low [32]. Compared with the
single time series prediction results of the traditional VAR
model, ARMA model and LSTM model, the BPVAR model
integrates the spatial and temporal information of multiple
measuring points, and its prediction accuracy is improved to
varying degrees. A radar chart is drawn according to the error
index of each model in Table 6. From the radar chart of the

error index of the model, it can be seen that the MAE, MAPE
and RMSE of the BPVAR model are smaller than those of
the VAR model, the ARMA model and the LSTM model,
indicating that the prediction accuracy of the BPVAR model
is high. It can provide a reference value for the prediction and
analysis of anchor cable prestress during slope construction.

VI. CONCLUSION
In this paper, the spatial clustering algorithm is used to cluster
the prestressed measuring points of a slope, and the pre-
stressed measuring points of the slope are divided according
to the clustering results. Then, a safety monitoringmethod for
slope anchor cable prestress based on the BPVAR model is
established. Finally, this is verified by an engineering exam-
ple. The main conclusions can be drawn as follows:

(1) Compared with the classic K-means clustering method,
the Ward clustering method has a better spatial cluster-
ing effect. The Ward clustering results are more consistent
with the variation rule of prestress monitoring values. The
engineering application research shows that the prestressed
measuring points of the left bank slope of awater conservancy
project are divided into four categories, and each type of
measuring point has a highly similar change law of prestress.

(2) Due to the influence of the retraction of the steel strand
of the anchor cable dynamometer and the compression of the
stratum, the prestress is rapidly relaxed in the early stage of
monitoring. Under the influence of excavation disturbance,
the prestress of some measuring points continues to increase,
and its variation law is consistent with that of the nearby
multi-point displacement meter. The prestress increases or
decreases with the tensile or compressive deformation of
the structural plane. It can be seen from the change law of
slope prestress that the prestress loss range of most measuring
points is within the normal range, and the slope does not show
obvious deformation, which is in line with the general change
law of slope prestress.

(3) According to the training, testing and verification
results of the BPVAR model, the multiple correlation coef-
ficients between the modelling results of the training set and
the test set data and the measured values are all above 0.80,
indicating that the modelling effect of the BPVAR model is
better. The mean absolute error, mean absolute percentage
error and root mean square error of the BPVAR model are
smaller than those of the traditional VAR model, ARMA
model and LSTM model. At the same time, the measured
values of slope prestress are all within the 95% confidence
interval, which indicates that the interval prediction effect of
the BPVAR model is good and can provide a reference for
slope engineering.

In this research, the BPVAR model demonstrates better
interval prediction ability, but the hyperparameter value in
the model still has certain subjectivity, and its value standard
is to obtain the optimal prediction effect. This will be the
focus of future research to determine the most accurate model
hyperparameters in a better way.
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