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ABSTRACT Next-generation intelligent transportation systems aim to achieve many cooperative perception
and cooperative driving functions that require considerable computational resources. Offloading such tasks
via mobile edge computing is considered part of the solution; this approach is currently being studied
within the scope of 5G networks and beyond. In the automotive context, such edge systems could be
roadside units (RSUs), which can easily be overloaded at peak times. Vehicular microcloud approaches have
been proposed to overcome such problems by sharing the computational resources of nearby cars. In this
study, we propose an offloading system architecture to enable such offloading in a vehicular microcloud
interconnected by a 5G core network. We model the system as a queueing model to derive closed-form
solutions for selected performance metrics. Based on our insights, we propose the triple-check offloading
algorithm (TCOA) to obtain both the best offloading ratio of the vehicular microcloud to the entire offloading
system and the optimal maximum number of the remaining vehicle instances in the vehicular microcloud.
Our simulation results show that the proposed TCOA achieves better system performance than four other
offloading schemes in terms of cost, response time, service rate, and cost response-time production service
rate division (CRPSD).

INDEX TERMS Instance leaving, dynamic scaling, vehicular microcloud, RSU offloading, 5G networks.

I. INTRODUCTION
In recent years, there has been an increasing number of
vehicle-related applications, such as collision avoidance,
that require considerable computational resources and low
latency [1]. Because of the lack of computing resources in
available vehicles, the calculations required for such applica-
tions cannot be completed in a short time. Thus, computing
resources are one of the main limitations of vehicle-related
applications. One popular solution is to offload the calculat-
ing tasks to a roadside unit (RSU) [2] deployed at the edge of a
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cellular network. The RSU can complete tasks independently
or deliver them directly to a local edge server [3].
However, the performance of RSUs may degrade when

they are used by many vehicles simultaneously [4]. One
potential solution is to offload the calculating tasks to a
remote server through an infrastructure network, such as a 5th
generation (5G) core network with a 5G base station (gNB).
The vehicular microcloud [5] has potential as a remote server
because parked vehicles in a vehicular microcloud typically
do not use their resources.

Compared with simply offloading to an RSU, further
offloading to a remote vehicular microcloud could serve
a greater number of users, thereby improving system
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scalability. Unfortunately, benefits always entail overhead,
i.e., the task response time may increase because of the
distance between the users and the vehicular microcloud, and
the cost may increase due to the use of the infrastructure
network and the fee for parked vehicles. From the viewpoint
of system operators, balancing the benefits and the overhead
is essential.

In addition to the above trade-off between the benefits
and overhead, we consider the scenario in which vehicles
leave the microcloud. Because vehicles may be driven away
by their owners, the parked vehicles in the vehicular micro-
cloud may leave while they are processing a task. However,
in the current studies and articles, no queueing models are
used to formulate such a system directly. Thus, design-
ing a dynamically scaling mechanism for vehicle instances
is a significant challenge faced by vehicular microcloud
operators.

In this study, we go beyond our earlier work in [6] and
propose a system architecture formulated with a queueing
model for this problem. Vehicle instances in our scheme
can leave the system with no considerable effect because
we retain some idle vehicle instances. In addition to per-
forming mathematical analysis, we also use Network Sim-
ulator 2 (ns-2) to cross-validate the correctness of the
closed-form metrics derived by our proposed queueing
model. Additionally, we propose the triple-check offload-
ing algorithm (TCOA) to obtain the offloading ratio of the
remote vehicular microcloud and the maximum number of
the remaining vehicle instances by observing the system per-
formance. Finally, because the proposed TCOA is designed
based on an objective function, operators can customize the
weighting between cost and performance according to their
needs.

The main contributions of this paper are as follows:
• Challenge: If we model the case in which any number
of vehicle instances can leave the system at any time,
the complexity of the mathematical model will be high.
Existingmodels use approximation, so the results are not
accurate.
Solution: We propose a new model for the offload-
ing system, in which any number of the vehicle
instances can leave the system at any time. At the
same time, the model still enables highly accurate
system performance through a simple calculation.
Furthermore, additional started vehicle instances are
retained to reduce the impact of vehicles that leave the
microcloud.

• Challenge:What are the best values for both the offload-
ing ratio and the maximum number of remaining vehicle
instances? Solution: We propose TCOA to analyze the
best offloading ratio of the vehicular microcloud to the
entire system and retain the optimal number of vehicle
instances in the vehicular microcloud to balance the
cost-effectiveness.

• Challenge: Many potential issues are new and have not
been previously studied.

Solution: We discuss many potential issues of this
system and provide answers according to our current
research results.

Thus far, the novelty of this study can be concluded:
• To our best knowledge, we propose the first model
that adapts to the scenario in which vehicles may leave
the vehicular microcloud, by taking the leaving fea-
ture into consideration in the initial design. In contrast,
most previous studies assume the leaving/broken rate is
low and that there is only one leaving instance at any
time, which decreases the model complexity, however,
not close to actual cases. Some studies have proposed
high-complexity models with several leaving instances.

• Moreover, the proposed model achieves both high accu-
racy and low model complexity (short calculation time)
by designing an instance set-up threshold. In contrast,
previous models of the instance leaving/broken issue
either require a long calculation time (high model
complexity) to increase accuracy or make assumptions
(which decrease the accuracy) to derive closed-form
performance metrics.

• Additionally, the proposed retention-based model
takes the benefits out of the instance-leaving fea-
tures. The proposed algorithm finds the system’s
most effective operating configurations (best retained
instance maximum and offloading rate) through detailed
analyses.

For operators, offloading the computational tasks required
by such vehicle-related applications from customers to
the RSU and vehicular microcloud, through the proposed
queueing model, they can immediately obtain each sys-
tem metric by using the closed-form solution to develop
their scheme/algorithm without actually deploying such
large-scale experiments that take significant time and cost.
Additionally, operators can use the proposed algorithm to
obtain the optimal offloading configurations, including the
offloading ratio β and the maximum number of remain-
ing instances N in such an offloading system with the
instance-leaving feature.

The rest of this paper is organized as follows. In Sec. II,
we introduce the background. In Sec. III, we detail the
proposed offloading system, the queueing model, and the
proposed TCOA. The performance evaluation and experi-
mental results are shown in Sec. IV. In Sec. V, we discuss the
potential issues of the proposed system. Finally, we review
related work in Sec. VI and summarize the paper in Sec. VII.

II. BACKGROUND
The background for this paper comprises three parts: RSU,
5G core network, and vehicular microcloud.

1) Roadside Unit (RSU): An RSU is a unit beside the
road that plays an important role in many vehicle-
related applications. RSUs communicate with nearby
vehicles and provide versatile services, such as cal-
culating tasks [2], locating vehicles [7], transmitting
information [8] or safety-related messages [9], and

84986 VOLUME 11, 2023



B.-J. Qiu et al.: TCOA for Roadside Units and Vehicular Microclouds in 5G Networks and Beyond

FIGURE 1. Proposed offloading system architecture.

downloading data [10]. To support these applica-
tions, an RSU should be able to compute complex
calculations or directly connect to an edge server.

2) 5th Generation (5G) Core Network: The 5G core net-
work provides a service-based architecture (SBA) that
separates network functions into a data plane and a
control plane [11]. In the data plane, operators can
deploy network functions close to the users to reduce
latency. In addition, a 5G core network provides ultra-
reliable low-latency communication (URLLC) that
enables the use of networks with low latency and high
reliability [12].

3) Vehicular Microcloud: A vehicular microcloud com-
prises vehicles, and other users can use the computing
resources provided by the microcloud. In this paper,
we focus on vehicles that are usually parked and
unlikely to use their CPU resources [13], [14], [15].
Additionally, this approach improves the resource uti-
lization of parked vehicles, which may obtain rewards
(for example, monetary rewards). The scale of a vehicu-
lar microcloud is dynamic because parked vehiclesmay
leave the microcloud; therefore, the computing ability
of a vehicular microcloud is dynamic and depends on
the number of vehicles used.

III. PROPOSED OFFLOADING SYSTEM
The proposed offloading system architecture is illustrated in
Fig. 1, and the notations are listed in Table 1. In the figure,
a car may offload tasks to an RSU/edge server to reduce
the task load of the car. In our proposed system, a car can
also offload tasks to a vehicular microcloud in addition to
an RSU. Here we refer to the car as user equipment (UE).
We assume the task arrival rate follows a Poisson distribu-
tion with mean λ. When an RSU is overloaded, offloading
tasks to the vehicular microcloud can increase the system
service rate; however, offloading too many tasks to the micro-
cloud will result in high costs for the parked vehicles in the
microcloud.

We propose the TCOA to determine the offloading ratio β

and the maximum number of remaining vehicle instances N .
Fig. 2 shows the flow of our proposed system model, which
consists of the following parts:

FIGURE 2. Input-process-output (IPO) model.

• Input Parameters: The required operating information
includes the traffic, system capacities, instance abilities,
system scale, instance leaving rate, instance set up rate,
and weight factors.

• System Modeling: Based on the input parameters,
we derive a mathematical model to provide a systematic
method for system designers or service providers to tune
and test different parameters without running simula-
tions or actual deployment. This can save significant
time and cost.

• Performance Metrics: To assess the performances of the
system, the closed forms of the metrics, including cost,
response time, and service rate are used. Then, an inte-
gratedmetric, cost response-time production service rate
division (CRPSD), is used to determine whether the
result is outstanding according to the preferences of
operators.

• TCOA:We propose TCOA according to the best interests
of the system. TCOA searches for the best offloading
ratio and the appropriatemaximumnumber of remaining
vehicle instances according to the CRPSD.

• Outputs: Based on TCOA, both the optimal offloading
ratio and the maximum number of remaining vehicle
instances are derived to balance the cost, response time,
and service rate over the entire system.

As shown in Fig. 2, the complete procedure includes eight
steps. First, step (a) describes the system behavior with
the input parameters using the proposed queueing model.
Fig. 2 also indicates that the system modeling is discussed
in Sec. III-C. Second, steps (b)–(d) calculate each metric
for the RSU and the vehicular microcloud to obtain the
CRPSD. Third, in step (e), TCOA finds the best offloading
ratio and the appropriate maximum number of remaining
vehicle instances by checking three local minima. The details
of each process in Performance Metrics are discussed in
Secs. III-A, III-B, and III-D, respectively. Fourth, in steps
(f)–(g), TCOA gradient descent is used to return the best
offloading rate with the appropriate maximum number of
remaining vehicle instances returned from the TCOA binary
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TABLE 1. List of notations.

search. Finally, step (h) obtains the global minimum and pro-
vides the optimal offloading ratio and the optimal maximum
number of remaining vehicle instances. The details of each
process in TCOA are discussed in Secs. III-E, III-F, and III-
G, respectively.

A. ROADSIDE UNIT (RSU)
In real scenarios, there may be many RSUs. In our analysis,
without loss of generality, we consider that there is only one
RSU (only one edge server, if any), and its calculation time
per task follows an exponential distribution with mean 1/µr .
The RSU always consumes resources because it does not turn
off even when there are no tasks. If there are too many tasks,
the RSU will buffer some of the tasks in the queue, ignoring
the remaining tasks because of overloading. We will discuss
the cases of multiple RSUs in Sec. V-D.

B. VEHICULAR MICROCLOUD
We assume that the vehicular microcloud consists of k vehi-
cles parked in a parking lot. Each vehicle leaves the vehicular
microcloud after parking, following an exponential distribu-
tion with a mean of 1/γ . Once a vehicle leaves the vehicular

FIGURE 3. State transition diagram in vehicular microcloud
(k = 4, Kv = 4, N = 2).

microcloud, another parked vehicle joins the vehicular micro-
cloud. The calculation time per task follows an exponential
distribution with a mean of 1/µv for each vehicle instance.
If there are too many tasks, the vehicular microcloud buffers
some of the tasks in the queue and ignores the remaining
tasks.

To reduce the impact of vehicles leaving the microcloud,
we design dynamic scaling rules for the vehicular micro-
cloud. As shown in Fig. 3, assuming there are i vehicle
instances and j tasks in the queue, only if the offloading sys-
tem fills the buffer with tasks does the microcloud manager
use the nonrunning vehicle instances to reduce the response
time. We assume that the setup time follows an exponential
distribution with mean 1/α, and a vehicle instance in the setup
state cannot process tasks but consumes resources. If the task
buffer is not full, the vehicle instances in the setup state are
turned off to save cost. In contrast, if the number of tasks is
less than the number of vehicle instances that have started,
and the difference in number between them is greater than the
threshold N , the microcloud manager immediately turns off
a running vehicle instance to save resources. In other words,
we retain at most N additional started vehicle instances in the
system without calculating tasks to reduce the impact caused
by a vehicle leaving the microcloud. When a vehicle leaves
during a calculating process, the remaining part of the task is
returned to the top of the task buffer for completion by one
of the additional started vehicle instances. In contrast, if there
are no additional started vehicle instances, the remaining task
will wait at the top of the task buffer, and this increases the
response time in the queue. For more design details, please
refer to Sec. V.

C. MODEL DERIVATION
To evaluate the system performance, we consider three met-
rics: the average cost of the RSU and vehicular microcloud,
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FIGURE 4. Parameter study of the entire system.

the average response time in the queues per task, and the
average number of tasks served. The system performance is
defined as (1)

P =
Cω1 ×Wω2

q

Sω3
. (1)

The definition of each notation is shown in Table 1.
The optimization goal of this paper is to make the offload-

ing system perform with a cheaper cost, lower response time,
and higher service scale. However, these aforementioned
metrics belong to a trade-off, where a significant improve-
ment in one metric may worsen other metrics, which is the
primary constraint of this study. Therefore, we first define the
objective function P to make a balance/fairness between these
metrics to a certain degree, and second, operators can control
the weight factors to reflect their preferences on this balance.

In this paper, we refer to P as cost response-time pro-
duction service rate division (CRPSD): a smaller CRPSD
indicates better system performance, such as lower cost,
shorter response time, or a great number of serviced tasks.
Before calculating the CRPSD, we normalize the three sys-
tem metrics to a range from 0 to 1. Operators can alter the
weight factors in (1) according to their own requirements.
For example, if the operators consider the cost to be twice as
important as the response time, they can set the weight of the
cost ω1 to twice the weight of the response time ω2. In this

study, we set all weights to 1 by default. For more weight
factor settings, please refer to Sec. V-B.

The system metrics are a combination of the local metrics
and remote metrics, which are defined in (2), (3), and (4).

C = Cr + Cv (2)

Wq =
Sr ×Wqr + Sv ×Wqv

S
(3)

S = Sr + Sv (4)

The system uses the remote offloading ratio to offload tasks to
the vehicular microcloud, and it offloads the remaining tasks
to the RSU, as defined in (5) and (6).

λv = λ × β (5)

λr = λ − λv = λ × (1 − β) (6)

Using Equations (1) to (6), we describe the system perfor-
mance with local and remote metrics. Then, we discuss the
forms of these metrics to determine the CRPSD. Because the
RSU (or the edge server, if any) is required to calculate tasks
formany vehicles in typical scenarios, its calculating ability is
pr times greater than that of a vehicle instance; the resource
consumption of an RSU may also be pr times greater than
that of a vehicle instance. However, the vehicular microcloud
involves an additional fee and increases the cost of the vehicle
instance by a factor of ov. The microcloud operator can set
both pr and ov according to the use case, and we assume
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pr = 100, ov = 2 in this paper. Therefore, the cost ratio
between an RSU and a vehicle instance is pr/ov = 50. We set
both the average service rate µv and the average cost cv for
each vehicle instance to 1 as a baseline.

In this paper, the cost of tasks increases to ov times because
of the fee if the tasks are offloaded to a vehicular microcloud.
Additionally, because the networks in 5G and beyond are
URLLC, and the offloading tasks do not break down or cause
damage to the vehicular microcloud if the number of tasks is
less than the capacity Kv, we treat the transmitting/offloading
cost as a constant ov instead of a variable of the remote
offloading ratio β.

The RSU can be described as anM/M/1/K queueingmodel.
Thus, we have the following equations:

Cr = cr × 1 =
cv × pr
ov

= 50 (7)

Sr = min(λr , µr ) = min(λr , µv × pr ) = min(λr , pr ) (8)

Wqr =
Lq
λeff

(9)

In Equation (9), λeff denotes the effective arrival rate with-
out blocking due to a full task buffer. The expected value
of the task number in the queue is denoted by Lq. For the
derivation of the M/M/1/K response time in the queue, please
refer to Appendix A.

In this study, we chose an M/M/1/K model among several
queueing models to describe the RSU for two reasons. One
reason is that in IP networks, anM/M/1 model is enough for a
single server system in most cases [16], [17], [18], [19]. The
other reason is that our simulation matches the mathematical
results, which means using an M/M/1-based model such as
an M/M/1/K model is appropriate in this study.

The vehicularmicrocloud can be described by the proposed
queueing model. To obtain the value of each metric, the
probabilities π of each state are essential. We define πi,j as
the state probability with i vehicle instances and j tasks in the
queue, where I is the maximum of i and J is the maximum
of j. For the derivation of the state probabilities, please refer
to Appendix B.

After all state probability values are obtained, the metrics
of the vehicular microcloud can be defined as follows: (10),
(11), and (12).

Cv = cv(
∑

(i,j)∈Sspace

πi,ji+
k∑
i=0

πi,Kv min(k − i,Kv − i))

(10)

Sv =

∑
(i,j)∈Sspace

πi,jmin(i, j) (11)

Wqv =

∑
(i,j)∈Sspace πi,jj

λv(1 −
∑k

i=0 πi,Kv )
−

1
µv

(12)

Notably, the notation Sspace represents the set of all vehic-
ular microcloud states. The closed forms of the three local
and remote metrics are obtained from Equations (7) to (12).

Therefore, the system performance metrics defined in
Equations (1)–(4) can be derived.

D. OBSERVATION AND ANALYSIS
We calculate the system performance metrics defined in
(1)–(4) and then use Network Simulator 2 (ns-2) [20] version
2.35 to implement and run the simulation of the proposed
offloading system. All the simulations in this paper use the
following default values: Kr = 200, Kv = 250, k = 150, and
α = 0.02.

The plots in Fig. 4 show the impacts of the offloading
task ratio on the vehicular microcloud β in terms of each
metric with different arrival rates λ. Temporarily, we set the
maximum number of remaining vehicle instances to N =

k/2 = 75 and γ = α/20 = 0.001 by default. In Fig. 4a,
the cost increases as the value of β rises because an increasing
number of vehicle instances are set up to handle the incoming
tasks.

In Fig. 4b, the response time in the queues Wq increases
initially because the RSU is overloaded and offloads a few
tasks to the vehicular microcloud. The subsequent decreases
are caused by additional vehicle instances being available to
handle the tasks. The relief of the overloaded RSU causes
Wq to decrease drastically, but the low resource utilization
of the RSU ultimately increases Wq. Furthermore, the global
minimum decreases as the arrival rate increases because the
capacity of the vehicular microcloud Kv remains constant as
an increasing number of vehicle instances are set up to service
the tasks. When the vehicular microcloud is not overloaded,
a higher arrival rate reduces the response time in the remote
system queueWqv.

In Fig. 4c, the service rate increases because tasks are
appropriately distributed to both the RSU and the vehicular
microcloud. In Fig. 4d, the best remote offloading ratio may
be located at the local minimum found by a search from
the middle value of β because of the effects of the high
service rate. Moreover, it may be located at the local mini-
mum found by a search from β = 0, as the arrival rate is
small enough to be handled by the RSU, as well as in some
particular situations, in which the RSU can perform calcu-
lations rapidly without consuming a considerable amount of
resources. In contrast, it may be located at the local minimum
found by a search from β = 1 for the same reason. Therefore,
the global minimum may be located at the local minimum
found in a search from β = 0, β = 1, or the middle
value of β, where the global maximum of the service rate is
located.

The plots in Fig. 5 show the impact of the maximum
number of remaining vehicle instances N on each metric
when several leaving rates γ are used. As the values N and γ

do not impact the RSU, we set β = 1 to focus on the effects
on the vehicular microcloud. Because the number of vehicle
instances in the vehicular microcloud is k = 150, we set the
arrival rate λ to 100 to assess the proposed dynamic scaling
rules.
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FIGURE 5. Parameter study of the vehicular microcloud.

In Fig. 5a, the cost increases because more started vehicle
instances remain in the system. Furthermore, the increase
becomes more intense as the leaving rate γ decreases. When
the tendency of a vehicle to leave decreases, the vehicle
instance has a longer parking time during which it remains
in the vehicular microcloud. Both of these trends can also be
observed for the other metrics.

In Figs. 5b and 5c, the response time in the queue decreases
and the system service rate increases, respectively. The rea-
sons for this are the same as those explained in the previous
paragraph.

In Fig. 5d, the decreasing trend intensifies initially, then
slows, and finally becomes horizontal. The decrease part
shows the benefits of retaining additional started vehicle
instances, and the horizontal part shows that when N exceeds
a certain threshold, further increases in N do not improve
the performance because the frequency of setting up vehicle
instances cannot be further decreased. This observation does
not mean that a larger N is necessarily good. Suppose the
task arrival rate λ does not follow a Poisson distribution,
such as the case with burst traffic. In this case, a larger
N will cause many additional started vehicle instances to
remain and consume resources. Although burst traffic may
not occur frequently,N should be chosen carefully to improve
the system performance while remaining as small as possible.

Some brief conclusions can be drawn thus far:
• The best offloading ratio β may be located at the local
minimum found in a search from β = 0, β = 1, or the
middle value of β, where the global maximum of the
service rate is located.

• N should be chosen carefully to improve the
performances while remaining as small as possible.

E. TRIPLE-CHECK OFFLOADING ALGORITHM (TCOA)
According to the observations in Sec. III-D, we propose
TCOA, based on the value of CRPSD to make the fairness
between system metrics to a certain degree, to obtain both
the best task offloading ratio β and an appropriate number
of remaining vehicle instances N . In TCOA, gradient descent
and binary search methods are used to determine the search
results. In what follows, these algorithms are introduced, and
a performance evaluation is presented.

As shown in Algorithm 1, according to the three possible
local minima feature summarized in Sec. III-D with Fig. 4d,
TCOA checks the three local minima found in a search from
β = 0.0, β = 1.0, and themiddle value of β, where the global
maximum of the service rate is located, and then identifies the
global minimum. A simple method can be used to determine
the median value of β. We assign the RSU as many tasks
as possible and offload the rest to the vehicular microcloud.
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Algorithm 1 Triple-Check Offloading Algorithm
(TCOA)
Input: P, λ, µr
Output: βTCOA,NTCOA
initial βmiddle to (λ − µr )/λ
set (βv,Nv) by TCOAGD(−1, 1.0, 0.04,P)
set (βm,Nm) by TCOAGD(1, βmiddle, 0.02,P)
set (βr ,Nr ) by TCOAGD(1, 0.0, 0.01,P)
if P(βv) smallest then

set βTCOA to βv
set NTCOA to Nv

else if P(βr ) smallest then
set βTCOA to βr
set NTCOA to Nr

else
set βTCOA to βm
set NTCOA to Nm

end

Then, we define the current β as the required middle value
and denote it as βmiddle. Note that when starting from βmiddle,
TCOA must search over a larger β range to check the other
choices with a high service rate, if any, because the RSU is
overloaded and cannot handle any more tasks.

We use the function TCOA gradient descent to determine
the local minimum. In the TCOA gradient descent, we set
the search steps to 0.04, 0.02, and 0.01 as default values for
each search. In each search step of a local minimum of the
offloading ratio β, according to the strictly downward trend
feature summarized in Sec. III-D with Fig. 5d, we use the
function TCOA binary search to find the optimal remaining
instance maximum N . With the current offloading ratio β,
we can obtain the CRPSD in the current search point through
the closed-form solution. The last part of TCOA compares the
CRPSD metric with each search result and returns both the β

and N values of the best result as the final answer.
In terms of time complexity, the optimization problem

generates two parameters as the results, the offloading ratio β

and the maximum number of remaining instances N . There-
fore, assuming the granularity of the set of β is divided into
m choices, and there are k vehicle instances in a vehicular
microcloud, the time complexity of the optimization problem
is O(mk). In contrast, through observations, the proposed
TCOA accurately uses the gradient descent three times (time
complexity is generally O(logm)) according to the three
possible local minimum feature and a binary search (time
complexity is generally O(log k)) according to the strictly
downward feature to reduce the time complexity of the
optimization problem, which is the purpose and reason to
propose TCOA. However, in the three-time gradient descent,
one may be far from the starting point and a local minimum
because there are only two local minima, basically. Therefore,
in the worst case, it may search a relatively large range,

Algorithm 2 TCOA Gradient Descent (TCOAGD)
Input: Sign, βinit , Step, P
Output: βTCOAGD ,NTCOAGD
initial βcurrent to βinit , Pprevious to doublemax
initial Flagrun to True, Flagborder to False
while Flagrun do

set Ncurrent by TCOABS (βcurrent ,P, 0, k)
if P(βcurrent ,Ncurrent ) worse Pprevious then

inverse Sign
reduce Step

set Pprevious by P(βcurrent ,Ncurrent )
if Step smaller Stepmin then

update βcurrent by Stepmin with Sign
set Ncurrent by TCOABS (βcurrent ,P, 0, k)
set Flagrun to False

else
update βcurrent by Step with Sign

if βcurrent larger 1.0 then
set βcurrent to 1.0
if Flagborder then

inverse Sign
reduce Step

else
set Flagborder to True

else if βcurrent smaller 0.0 then
set βcurrent to 0.0
if Flagborder then

inverse Sign
reduce Step

else
set Flagborder to True

else
set Flagborder to False

set βTCOAGD to βcurrent
set NTCOAGD to Ncurrent
end

which increases the time complexity to O(m) for itself and
O(m log k) for TCOA.

F. TCOA GRADIENT DESCENT
The TCOA gradient descent shown in Algorithm 2 is used
to determine the local minimum for the TCOA. To obtain
the best N value with the current β, we use a binary search
method TCOAbinary search andwe select 0 to k as the search
range. In this study, we set the minimum search step Stepmin
to 0.01 and reduce the search step by a factor of 2 by default.
This algorithm repeats the following instructions in sequence:

• Use TCOA binary search to search for the best N with
the current β.

• If the current search feedback is worse than the previous
feedback, change the search direction and reduce the
search step.

84992 VOLUME 11, 2023



B.-J. Qiu et al.: TCOA for Roadside Units and Vehicular Microclouds in 5G Networks and Beyond

Algorithm 3 TCOA Binary Search (TCOABS )
Input: β, P, Nmin, Nmax
Output: NTCOABS
if horizontal then

set NTCOABS to Nmin
else if Nmin adjacent Nmax then

set NTCOABS to Nmax
else

set Nmiddle by Averageup(Nmin,Nmax)
if P(β,Nmiddle) equal P(β,Nmax) then

recur TCOABS (β,P,Nmin,Nmiddle)
else

recur TCOABS (β,P,Nmiddle,Nmax)

end

• Record the search result for comparison with future
results.

• If the search step is smaller than the minimum step,
search using theminimum step, use TCOAbinary search
to obtain the best N , and return the current search result
to TCOA. Otherwise, move a step.

• If the current β value is greater than 1.0, set β = 1.0.
If the next β value is still greater than 1.0, change the
search direction and reduce the search step.

• If the current β value is smaller than 0.0, set β = 0.0.
If the next β value is still smaller than 0.0, change the
search direction and reduce the search step.

G. TCOA BINARY SEARCH
The TCOA binary search shown in Algorithm 3 is used to
determine the appropriate value for the maximum number
of remaining vehicle instances (N ) for the TCOA gradient
descent.When the trend in terms of the CRPSD decreases and
then becomes horizontal with increasing N , this algorithm
recursively finds the smallest value ofN in the horizontal part.
The following steps are performed each time:

• IfN in the given range is horizontal, return the minimum
of the given range Nmin.

• If Nmin and Nmax of the given range of N are adjacent,
return the maximum Nmax .

• Average Nmin and Nmax to obtain the middle value
Nmiddle, and carry Nmiddle if it is not an integer.

• If themiddle valueNmiddle is equal to themaximumNmax
in terms of the CRPSD metric with the input offloading
ratio β, repeat the TCOA binary search with Nmin and
Nmiddle as the new range for N . Otherwise, repeat the
TCOA binary search with the new rangeNmiddle toNmax .

IV. EVALUATION AND COMPARISON
To the best of our knowledge, no other studies have pro-
posed a model that can accommodate, without assumptions,
any number of instances that leave the system at any time.
In other words, to date, the features and requirements of
vehicularmicroclouds have not beenmet, except in this paper.

Therefore, we compare the proposed TCOA with four base-
line schemes: Local, Remote sensitive, Remote nonsensitive,
and Intuitive.
The Local scheme offloads all the tasks to the RSU,

whereas the Remote sensitive scheme offloads all the tasks
to the vehicular microcloud and retains no additional started
vehicle instances (N = 0), so it is expected to be sensitive to
departing vehicle instances. In contrast, the Remote nonsensi-
tive scheme offloads all tasks to the vehicular microcloud but
retains as many started vehicle instances as possible (N = k),
so it is expected to be less sensitive to departing vehicle
instances. The Intuitive scheme uses an intuitive method,
whereby it allows the local arrival rate λr to be equal to the
RSU service rate (µr ) and offloads the remaining tasks to
the vehicular microcloud to prevent the RSU from becoming
overloaded, thereby serving users to the greatest possible
extent. Finally, the Intuitive scheme sets the maximum num-
ber of remaining vehicle instances to k/2 = 75 by default.
The simulation results are depicted in Fig. 6 and Fig. 7.
Fig. 6 shows the impacts of each offloading scheme for

several task arrival rates λ. We set the leaving rate for each
vehicle instance to 0.001 by default. In Fig. 6a, the results
of the Local scheme are constant because it uses only the
RSU. Therefore, the cost is cr = 50. In contrast, both Remote
schemes have higher costs because they do not use the RSU
and thus use more vehicle instances to handle the tasks.
The Intuitive scheme performs slightly better than the TCOA
because it requires the RSU to perform more tasks, and thus
it requires fewer vehicle instances.
In Fig. 6b, the Local scheme has the longest response

time in the queue because the task buffer of the RSU is
full and the RSU is overloaded. In contrast, the response
time of both Remote schemes decreases with an increase
in the number of tasks. In the vehicular microcloud, more
tasks lead to setting up more vehicle instances and to con-
suming the fixed-size task buffer within a shorter time. For
the same reason, the trend of the Intuitive scheme increases
initially because of the low task arrival rate to the vehicular
microcloud λv. Although the trend of the proposed TCOA is
similar to that of the Intuitive scheme, it performsmuch better
becausemore vehicle instances are used. Thus, the RSU is not
overloaded.

In Fig. 6c, the Local scheme performs the worst because
the RSU can handle at most 100 tasks, on average, according
to the service rate µr . Both Remote schemes have the same
limitation that the vehicular microcloud can handle at most
150 tasks, on average, according to the total service capacity
of the service rate of the vehicle instances (k×µv). Compared
with the proposed TCOA, the Intuitive scheme has a slight
advantage because the proposed TCOA may ignore some
tasks instead of asking the RSU to finish them to avoid
overloading the RSU.

In Fig. 6d, the Local scheme performs better than the
Intuitive scheme when the task arrival rate λ is less than
or equal to 175, whereas the former shows worse perfor-
mance when λ is greater than or equal to 200. Therefore, the
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FIGURE 6. Impact of offloading schemes with diverse arrival rates.

vehicular microcloud performs more efficiently with a higher
task arrival rate. In contrast, although both Remote schemes
also show a downward trend, they perform worse because of
the zero usage rate of the RSU. In addition, similar behavior is
caused by the high instance leaving rate. Finally, the proposed
TCOA performs the best because a good balance between
metrics is achieved.

The plots in Fig. 7 show the impacts of each offloading
scheme with different instance leaving rates γ . We set the
task arrival rate to k = 150 by default. In Fig. 7a, the Local
scheme has the lowest cost because no additional fees are
paid to the vehicular microcloud. The cost of the proposed
TCOA is slightly higher than that of the Intuitive scheme
because of the greater number of started vehicle instances.
Furthermore, regarding the Remote schemes, the nonsensitive
scheme consumes slightly more resources than the sensitive
scheme because of the low leaving rate. When the instance
leaving rate is low, the additional started vehicle instances
remain for a longer period of time, resulting in higher costs.
However, the cost difference is small because the former
retains additional instances, whereas the latter sets up vehicle
instances more frequently.

In Fig. 7b, the Local scheme shows a long response time in
the queue because the RSU is overloaded. The other schemes
have lower response times with smaller instance leaving rates
because the vehicular microcloud is more stable and has a
longer parking time to handle tasks. In Fig. 7c, the Intuitive
scheme and the proposed TCOAhave almost the same service
rate, regardless of the value of the instance leaving rate,

because the RSU handles many tasks, and the burden on
the vehicular microcloud is not heavy. In contrast, the two
Remote schemes ask the vehicular microcloud to handle all
tasks, where the number of tasks is similar to the number
of all vehicle instances (k). It is difficult to ask all vehicle
instances to handle tasks because some may leave and some
require time to set up. This challenge is overcome when the
vehicle instance leaving rate decreases, thereby increasing the
maximum number of tasks calculated on average.

In Fig. 7d, all the schemes, except for the Local scheme,
perform better with a lower instance leaving rate, and this
trend is affected mainly by the response time metric. The
proposed TCOA shows the best performance. Even in a harsh
environment, such as a high instance leaving rate, within a
reasonable range, the TCOA can improve the system perfor-
mance by finding the best task offloading ratio β and the
proper maximum number of remaining vehicle instances N .

According to the above evaluations, the reasons the pro-
posed TCOA always performs the best in terms of the CRPSD
metric can be summarized as follows:

• The proposed TCOA tends to ignore excess tasks to
avoid overloading the RSU.

• The proposed TCOA sometimes offloads more tasks to
the vehicular microcloud to reduce the response time in
the queueWq.

V. DISCUSSION
Our proposed system has some potential issues, which we
separate into the candidate to turn off, weight factor setting,
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FIGURE 7. Impact of offloading schemes with diverse leaving rates.

RSU cost ratio, many-to-many offloading, non-cooperative
selfish scenario, result correctness, and the vehicle setup
threshold. In this section, we discuss these issues.

A. CANDIDATE TO TURN OFF
In Sec. III, if the number of tasks is less than the number
of started vehicle instances by threshold N , a started vehicle
instance is turned off immediately to save resources. In this
situation, which vehicle instance should be turned off is an
interesting question. According to the queueing model, if we
do not want to affect the leaving rate, we should turn off
vehicle instances in a balanced manner among the various
parking times. To serve this requirement, the vehicle instance
with the shortest living time in the vehicular microcloud is
a prospective candidate. In addition to the instance with the
shortest living time in the vehicular microcloud, the instance
with the longest living time should be considered. In addition,
there are many possible candidates, such as the closest and
furthest instance from the end of the parking time (leaving).
As shown in Fig. 8, different candidates show the same
performance with an appropriate N , such as 30. Therefore,
the candidate does not matter for the proposed offloading
architecture and TCOA.

B. WEIGHT FACTOR SETTING
In Sec. III, we set all weights to 1 by default and stated that the
operators could modify them according to their preferences.
This section shows what happens if some weights are not 1.
We list three settings as examples and observe the differences

in terms of metrics. As shown in Table 2, Setting 1 is the
baseline, in which ω1, ω2, and ω3 are all 1s and the other
parameters are set as described in Sec III-D with the arrival
rate λ = 250. In contrast, Setting 2 considers the cost,
so ω1 is increased to 2. Furthermore, in addition to the cost,
Setting 3 considers the response time in the queues, so ω2 is
also increased to 2.

In Fig. 9, the global minimum of Setting 2 is β = 0 because
the lowest cost is incurred, as no vehicle instances are run-
ning. On the other hand, although the global minimum of
Setting 3 is still in the middle, its value of β increases by
0.01 compared with the baseline (Setting 1). The reason for
this is that compared to the other metrics, the weight of the
service rate is smaller, which has less impact on CRPSD;
moreover, the global maximum of the service rate is β = 0.6,
whereas the global minimum of the response time is β =

0.68. In Table 2, Setting 2 has a lower cost compared with
the baseline, whereas its performance is worse in terms of the
other metrics. Additionally, Setting 3 performs better in terms
of response time Wq, whereas it is slightly worse in terms of
service rate S and cost C .
Thus far, we can draw a brief conclusion: the setting of

the weight factors affects the CRPSD, thus further impacting
the β obtained by the proposed TCOA. Therefore, operators
need to set the weight factors carefully, and the suggested
value is 1 if there is no preference. Although the weight
factors genuinely affect the CRPSD, the proposed TCOA
can correctly derive both the best offloading ratio β and the
optimal maximum number of remaining vehicle instances
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TABLE 2. Weight settings and impacts.

FIGURE 8. Impact of the turned-off candidate with various remaining
maxima.

FIGURE 9. Impact of weight factor settings with various offloading ratios.

N according to the CRPSD, regardless of the weight factor
settings.

C. RSU COST RATIO
As indicated in Equation (7) in Sec. III-C, the cost of an RSU
cr is defined by three variables, including a multiple of the
RSU power Pr , multiple of vehicle instance overhead ov, and
cost of a vehicle instance cv, which is set to 1 as a baseline.
To observe the effects of cr (the cost ratio between an RSU
and a vehicle instance), we manipulated ov instead of Pr to
avoid affecting the computational ability of the RSU. The
results are presented in Fig. 10. When cr is low, the optimal
offloading ratio β is decreased to zero because the RSU is
highly cost-efficient. In contrast, with a higher cr , all values
increase, especially for a lower offloading ratio β. Thus far,
we know that the value of cr affects the offloading system;
however, no matter what the value cr is, the proposed TCOA
can always determine the optimal results for the offloading
system.

D. MANY-TO-MANY OFFLOADING
In Sec. III, we analyze only the one-to-one offloading sce-
nario, which has one RSU and one vehicular microcloud.

FIGURE 10. Impact of RSU cost ratios with various offloading ratios.

How to offload tasks among several RSUs and vehicular
microclouds is the next challenge. By observation, we note
that the RSU may become overloaded when it handles too
many tasks, and the threshold is approximately 90 percent of
its service rate. On the other hand, the vehicular microcloud
prefers to take on many tasks to reduce the response time in
the queue. The overload threshold still exists, and it is deter-
mined by the instance leaving rate. Temporarily, we assume
that the overload threshold is also approximately 90 percent;
then, a simple offloading policy can be determined as follows.

• If the usage rate of the RSU is less than 90 percent, ask
the RSU to manage all tasks.

• If the usage rate of the RSU is close to 90 percent, offload
the remaining tasks to the vehicular microcloud.

• Choose the vehicular microcloud with the largest scale
k .

• Offload tasks to the chosen vehicular microcloud.
• If the usage rate of the chosen vehicular microcloud is
close to 90 percent, offload the remaining tasks to the
next chosen vehicular microcloud.

• If a task is ignored because a task buffer is full, offload
the task to the previous or the next chosen vehicular
microcloud.

By means of the above offloading policy, several vehicular
microclouds can cooperate with each other so that tasks are
not ignored because of a full buffer.

E. NON-COOPERATIVE SELFISH SCENARIO
The non-cooperative scenario is closer to the actual condi-
tions for operating such an offloading system. In the non-
cooperative scenario, we have two solutions to motivate all
the nodes (cars, edge servers, and vehicular microclouds) to
join the operation of the offloading system and further follow
the offloading algorithm.

One solution is that operators use incentive mechanisms
with rewards [21], [22]. For example, at the beginning of
each time slot, the operator asks all possible edge servers
and vehicular microclouds (computational nodes) to obtain
their prices of computational resources; according to the
total amount of computational requirements from the cars
(customers), the operator selects the cheaper computational
nodes to serve the customers.
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The other solution is that operators perform as a trade-
matching platform, which presents the prices of computa-
tional resources. Specifically, computational nodes register
the prices of the computational resources to the operator,
and the operator displays all reported prices; customers select
the offloading destination by themselves when they need the
offloading services. Furthermore, according to the game the-
ory, the operator can add an additional fee to the price of each
computational node to influence the customers’ offloading
decisions.

F. RESULT CORRECTNESS
After the calculation, the vehicle instance returns the result.
However, users may worry about whether the calculated
answer is correct. Thus, a simple quality-of-service (QoS)
policy is required. To ensure a high QoS level, the vehicu-
lar microcloud distributes the same task to several vehicle
instances and compares whether the calculated results are
similar before returning the result to the user. In this way,
we can guarantee the quality of the calculation to a large
extent.

G. VEHICLE SETUP THRESHOLD
In Sec. III, the dynamic scaling rules set up vehicle instances
only when the task buffer is full. This design can substan-
tially reduce the complexity of the queueing model. If the
vehicle setup threshold is smaller than Kv, the probability of
each state cannot easily be derived in sequence because the
transitions are complicated.

In this situation, a matrix analysis method is required.
However, assumptions and approximations rather than accu-
rate values are involved in the calculation, which gives rise to
the results of the closed-form solution being different from
the simulation results. In addition, the high computational
complexity increases the time required for the calculation
because the calculation scale is considerable. For example,
if the value of k is 150, the size of the matrix is 150× 150 =

22500 elements.
Furthermore, because the Denman-Beavers iterative

algorithm [23] must be used to solve a quadratic matrix,
which contains negative elements, the accuracy of the result
depends on the number of iterations of the calculation. There-
fore, the time required for the calculation is further extended,
whereas the obtained result is only an approximation.

A conclusion can thus be drawn: a good design for
the dynamic scaling rules of a vehicular microcloud
should comprehensively consider the system performance,
the calculation accuracy, and the time required for the
calculation.

VI. RELATED WORK
There are three main categories of related research, namely,
edge traffic offloading [2], [24], [25], [26], [27], [28], [29],
dynamic scaling systems [30], [31], [32], [33], [34], and
server breakage and repair [35], [36], [37], [38], [39].

A. EDGE TRAFFIC OFFLOADING
Guo et al. [24] proposed an algorithm based on deadlines to
determine whether to offload and then deliver tasks to an edge
server or to the cloud according to the cost involved. Li [25]
focused on the offloading decision and wireless scheduling
for an edge server and many mobile devices. Zhan et al. [2]
used deep learning to determine when and how to schedule
offloading tasks to RSUs along a road. Xu et al. [26] used
vehicle-to-vehicle communications to offload data traffic to
other vehicles by WiFi to deliver data traffic to the Inter-
net. Dai et al. [27] focused on a relay scheme to determine
when to offload, and which vehicle cloudlets to offload
to. Zhou et al. [28] formulated the offloading and service
caching problem in an edge computing-based smart grid
as a mix-integer non-linear program (MINLP) to minimize
the system cost. Specifically, they decomposed the opti-
mization problem and proposed gradient descent and game
theory-based algorithms for resource allocation and com-
puting strategies. Zhou et al. [29] focused on the offloading
problem in a three-tier mobile-cloud-edge scenario and used
a deep reinforcement learning-based mechanism to opti-
mize the offloading, service-caching, and resource-allocating
strategies. Specifically, they formulated the optimization
problem as an MINLP and proposed an asynchronous
advantage actor-critic-based (3AC-based) algorithm as a
solution.

In this study, we focus on determining the offloading ratio
to remote vehicular microclouds using a queueing model and
the proposed algorithm. Additionally, rather than focusing
on a method for offloading traffic to RSUs, we enable tasks
to be directly offloaded to a vehicular microcloud through
the gNBs and the 5G core network. Moreover, because the
vehicle instances in a vehicular microcloud may leave with-
out expectations, the proposed queueing model presents this
unique behavior and has different features from the other
cloud-based clusters.

B. DYNAMIC SCALING SYSTEM
Song et al. [30] proposed a hybrid algorithm to decide
when and how many instances should be reserved to
improve resource utilization and reduce the service cost
in geo-distributed clouds. Ma et al. [31] provided a fast
approximation algorithm for static request admissions
and an online algorithm for dynamic request admissions
to cost-efficiently enable virtualized network functions
(VNFs). Phung-Duc et al. [32] proposed an algorithm to
address the budget-performance trade-off for cloud systems.
Rahman et al. [33] proposed a negotiation game-based ser-
vice chain autoscaling method that considered computa-
tion, memory, and network bandwidth resources for VNFs.
Guo et al. [34] proposed a shadow routing-based approach
by packing virtual machines onto physical machines in the
cloud.

In this study, we consider the scenario of vehicles leav-
ing the microcloud to design a dynamic scaling method.
Furthermore, our proposed algorithm determines both the
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value of the offloading ratio to the vehicular microcloud and
the maximum number of remaining vehicle instances.

C. SERVER BREAKAGE AND REPAIR
Gao et al. [35] analyzed an M/G/1 model with two types
of server breakdown assumptions: if the server is idle,
it needs some time to be repaired after the breakdown; oth-
erwise, it can be repaired immediately without any delay.
Chakka et al. [36] used the joint-state approach to model
the performance of a multi-node system with breakdowns
and repairs. Schwefe et al. [37] considered a cluster system
having multiple nodes with a high-variance repair duration,
where each server provides a degraded service when a fault
occurs, and they represented it as an M/MMPP/1 model.
Li et al. [38] proposed a scheduling algorithm for cloud
workflow execution to guarantee the deadline constraint and
resource utilization with several kinds of resource failures.
Alam et al. [39] first presented a multi-server queueing sys-
tem with a mode in which one server is broken, and they then
extended it to include more than one server breakdown.

In this study, we did not focus on how to repair broken
servers. Instead, our proposed queueing model permits any
number of instances to leave the system at any time, without
assumptions or heavy computation.

VII. CONCLUSION
This study proposes an offloading system architecture com-
prising an RSU, 5G core network, and vehicular microcloud.
We design dynamic scaling rules for vehicle instances and
propose, without making assumptions, a queueing model
in which any number of instances can leave at any time.
To evaluate the system performance, we conduct exten-
sive simulations to cross-validate our closed-form solutions.
In addition, we propose TCOA to optimize the offloading
ratios and remaining vehicle instances. The simulation results
demonstrate that TCOA exhibits the best system performance
of the five schemes. In the future, we intend to further inves-
tigate this scenario by considering more factors, such as the
mobility of vehicles, the effects of 5G core network slices,
and the other issues mentioned in the discussion section.

APPENDIX A
DERIVATION OF THE M/M/1/K RESPONSE TIME
IN THE QUEUE
The response time in the queue for the M/M/1/K model
(RSU) is derived in this section. To achieve this goal, the state
probabilities of this system when there are different numbers
of tasks in the queue must be derived first.

A. STATE PROBABILITY ANALYSIS
We define pn as the state probability with n tasks in the queue,
and the range of n is from zero toKr because of the task buffer
limitation.

According to the balance equations of the state transitions:

p0 × λr = p1 × µr

p1 × (λr + µr ) = p0 × λr + p2 × µr

Leading to

p1 = p0 ×
λr

µr

p2 = p0 ×
λ2
r

µ2
r

By mathematical induction, we derive

pn = p0 ×
λnr
µn
r

(13)

Thus far, all state probabilities pn are defined. Next,
we obtain the value of each state probability pn by means of
Equation (14), which is shown below.

Kr∑
n=0

pn = 1 (14)

B. RESPONSE TIME IN THE QUEUE
After obtaining the state probabilities, we derive the response
time in the queue by following Little’s law:

Wqr =
Lq
λeff

(15)

In Equation (15), λeff denotes the effective arrival rate when
there is no blocking due to a full task buffer, and the expected
value of the task number in the queue is denoted as Lq.

λeff = λr × (1 − pK ) (16)

In Equation (16), pK denotes the blocking probability, which
is equal to the probability of a full task buffer.

pK =
pKr∑Kr
n=0 pn

Leading to

pK =


1

Kr + 1
, if φ = 1

(1 − φ) × φKr

1 − φKr+1 , otherwise
(17)

In Equation (17), φ denotes the traffic intensity.

φ =
λr

µr
(18)

Thus far, we have obtained the value of λeff . In addition,
we need the value of Lq, which is equal to the number of tasks
in the system except for the serving task.

Lq = L − (1 − p0)

L =

Kr∑
n=0

n× pn

Leading to

Lq =


Kr × (Kr − 1)
2 × (Kr + 1)

, if φ = 1

φ

1 − φ
−

φ × (Kr × φKr + 1)
1 − φKr+1 , otherwise

(19)
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Using Equations (15) to (19), we derive the response time in
queue (Wqr ) for the M/M/1/K model (RSU).

APPENDIX B
DERIVATION OF STEADY-STATE PROBABILITY
The state probabilities of the vehicular microcloud are
derived in this section. We define πi,j as the state probability
with i vehicle instances and j tasks in the queue, where I
is the maximum of i and J is the maximum of j. The state
probabilities can be derived in order based on the range of i,
as follows:

Assume πI ,J is already known.

C. FOR I = I

πI ,j × (Iγ + min(i, j) × µv + λv)

= πI ,j−1 × λv + πI ,j+1 × min(i, j+ 1) × µv (20)

πI ,I−N × (Iγ + min(i, j) × µv + λv)

= πI ,I−N+1 × min(i, j+ 1) × µv (21)

Assume πI ,j = πI ,j+1 × a(I )j ,
leading to

a(I )I−N =
min(I , I − N + 1) × µv

Iγ + min(I , I − N ) × µv + λv
(22)

a(I )j =
min(I , j+ 1) × µv

Iγ + min(I , j) × µv + λv − a(I )j−1 × λv
(23)

To derive the state probabilities with i in the next range,
πI−1,J must be obtained.

πI−1,J × α

= (
J∑

j=I−N

πI ,j × Iγ ) + πI ,I−N × min(I , I − N ) × µv

πI−1,J

=
(
∑J

j=I−N πI ,j × Iγ ) + πI ,I−N × min(I , I − N ) × µv

(min(I , J ) − (I − 1)) × α

(24)

Thus far, the state probabilities πi,j are defined within range
i = I , and the state probability πI−1,J is also known.

D. FOR I > I > N

πi,j × (Iγ + min(i, j) × µv + λ)

= πi,j−1 × λv + πi,j+1 × min(i, j+ 1) × µv

+ πi+1,j × (i+ 1) × γ (25)

πi,i−N × (Iγ + min(i, i− N ) × µv + λv)

= πi,i−N+1 × µv + πi+1,i−N+1

× min(i+ 1, i− N + 1) × µv (26)

Assume πi,j = πi,j+1 × a(i)j + b(i)j ,
leading to

a(i)i−N =
min(i, i− N + 1) × µv

iγ + min(i, i− N ) × µv + λv
(27)

b(i)i−N =
πi+1,i−N+1 × min(i+ 1, i− N + 1) × µv

iγ + min(i, i− N ) × µv + λv
(28)

a(i)j =
min(i, j+ 1) × µv

iγ + min(i, j) × µv + λv − a(i)j−1 × λv
(29)

b(i)j =
b(i)j−1 × λv + πi+1,j × (i+ 1)γ

iγ + min(i, j) × µv + λv − a(i)j−1 × λv
(30)

To derive the state probabilities with i in the next range,πi−1,J
must be obtained.

πi−1,J × min(J − i+ 1, I − i+ 1) × α

= (
J∑

j=i−N

πi,j × iγ ) + πi,i−N × min(i, i− N ) × µv

πi−1,J

=
(
∑J

j=i−N πi,j × iγ ) + πi,i−N × min(i, i− N ) × µv

min(J − i+ 1, I − i+ 1) × α

(31)

Thus far, the state probabilities πi,j are defined within range
i > N , and the state probability πN ,J is also known.

E. FOR I = N

πN ,j × (iγ + min(N , j) × µv + λv) = πN ,j−1 × λv

+ πN ,i+1 × min(N , j+ 1) × µv + πN+1,j × (N + 1) × γ

(32)

πN ,0 × (Nγ + λv) = (πN ,1 + πN+1,1) × µv (33)

Assume πN ,j = πN .j+1 × a(N )
j + b(N )

j , leading to

a(N )
0 =

µv

Nγ + λv
(34)

b(N )
0 =

πN+1,1 × µv

Nγ + λv
(35)

a(N )
j =

min(N , j+ 1) × µv

Nγ + min(N , j) × µv + λv − a(N )
j−1 × λv

(36)

b(N )
j =

b(N )
j−1 × λv + πN+1,j × (N + 1)γ

Nγ + min(N , j) × µv + λv − a(N )
j−1 × λv

(37)

To derive the state probabilities with i in the next range,
πN−1,J (N ≥ 1) must be obtained.

πN−1,J × min(J − N + 1, I − N + 1) × α=

J∑
j=0

πN ,j × Nγ

πN−1,J =

∑J
j=0 πN ,j×Nγ

min(J − N + 1, I − N + 1) × α
(38)

Thus far, the state probabilities πi,j are defined within range
i ≥ N , and the state probability πN−1,J (N ≥ 1) is also
known.
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F. FOR N > I > 0

πi,j × (iγ + min(i, j) × µv + λv) = πi,j−1 × λv

+ πi,j+1 × min(i, j+ 1) × µv + πi+1,j × (i+ 1)γ (39)

πi,0 × (iγ + λv) = πi,1 × µv + πi+1,0 × (i+ 1)γ (40)

Assume πi,j = πi,j+1 × a(i)j + b(i)j , leading to

a(i)0 =
µv

iγ + λv
(41)

b(i)0 =
πi+1,0 × (i+ 1)γ

iγ + λv
(42)

a(i)j =
min(i, j+ 1) × µv

iγ + min(i, j) × µv + λv − a(i)j−1 × λv
(43)

b(i)j =
b(i)j−1 × λv + πi+1,j × (i+ 1)γ

iγ + min(i, j) × µv + λv − a(i)j−1 × λv
(44)

To derive the state probabilities with i in the next range,πi−1,J
must be obtained.

πi−1,J × min(J − i+ 1, I − i+ 1) × α =

J∑
j=0

πi,j × iγ

πi−1,J =

∑J
j=0 πi,j × iγ

min(J − i+ 1, I − i+ 1) × α
(45)

Thus far, the state probabilities πi,j are defined within range
i > 0, and the state probability π0,J is also known.

G. FOR I = 0

π0,j × λv = π0,j−1 × λv + π1,j × γ (46)

π0,0 × λv = π1,0 × γ (47)

Assume π0,j = π0,j−1 × a(0)j + b(0)j , leading to

a(0)0 = 0

b(0)0 =
π1,0 × γ

λv
(48)

a(0)j = 0

b(0)j =
b(0)j−1 × λv + π1,j × γ

λv
(49)

Thus far, all the state probabilities πi,j are defined. If N =

0, because all values of i are already included in the range
I ≥ i ≥ N , the remaining part in the range N > i ≥ 0 is
unreasonable and should be ignored. In contrast, if N = I ,
all values of i are already included in the range N ≥ i ≥ 0;
thus, the other part in the range I ≥ i > N is unreasonable and
should be ignored.We can then obtain the values of each state
probability πi,j by means of Equation (50), which is shown
below. ∑

(i,j)∈Sspace

πi,j = 1 (50)

The notation Sspace denotes the set of all vehicular microcloud
states.
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