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ABSTRACT A phase unwrapping method based on spatial and channel attention network is proposed to
retrieve true phases from interferograms with various levels of noise. First, we propose a network that is
suitable for unwrapping wrapped phase images. This network utilizes Deeplabv3+ as the backbone, adopts
a serial-parallel atrous spatial pyramid poolingmodule, implementsmulti-scale skip connections between the
encoder-decoder models, and fuses a convolutional block attention module. Second, datasets with different
noise levels are used to train the network employing an existing noise level evaluation system, and the
trained networks effectively handle the phase unwrapping for interferograms. Finally, the interferograms
are unwrapped by the networks with the same noise level as the interferograms. The experimental results of
phase unwrapping for interferograms fully verify the performance of this method.

INDEX TERMS Deep learning, noise evaluation, phase unwrapping, spatial and channel attention network.

I. INTRODUCTION
Phase Unwrapping (PU) technique has been widely used in
holographic interferometry, interferometric synthetic aper-
ture radar (INSAR), surface topography measurement, and
nuclear magnetic resonance imaging [1], [2], [3], [4], [5], [6].
The measured phases (the so-called wrapped phases)
obtained from the interferometric technique are wrapped
into the range of [−π , π ), and the PU process recovers
the true phases by adding an integer multiple of 2π to the
wrapped pixels [7]. Traditional PU methods are roughly
divided into path-following methods [8], [9], [10], [11],
[12], [13], minimum-norm methods [14], [15], [16], [17],
[18], and nonlinear filtering methods [19], [20], [21], [22],
[23], [24]. Path-followingmethods include the quality-guided
method [9], branch-cut method [10], and minimum cost flow
methods [11], [12], and these methods can prevent errors
from spreading among the entire image by setting appro-
priate integration paths. However, it is easy to result in the
error propagation phenomenon along integration the paths
in regions with low signal-to-noise ratio (SNR). In addition,
the above methods are frequently time-consuming because
of the time costs of finding an appropriate path. Minimum-
normmethods include the unweighted least squares [14], [16]
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and weighted least squares [17] methods. Different from
path-following methods, the unweighted and weighted least
squares methods obtain the unwrapped results by establishing
a suitable cost function forminimizing the difference between
the phase gradients of the unwrapped phases and those of
the wrapped phases. In addition, these methods demon-
strate strong robustness and higher efficiency compared with
the path-following methods in PU for interferograms with
less noise. However, the dynamic range of the phase from
interferograms with high phase dynamic deviation, may be
reduced by these methods, which results in a loss of phase
details. Nonlinear filtering methods include Kalman filter
methods [19], [20], [21] and particle filter methods [22],
[23]. These methods unwrap wrapped phase images by con-
structing a recursive estimation procedure under the Bayesian
framework. Compared to the other two groups of methods,
nonlinear filtering methods achieve stronger noise suppres-
sion and higher accuracy in PU for interferograms, but with
higher time costs. In summary, above traditional methods
can achieve popular solutions in many examples. However,
for some applications that require high real-time, such as
INSAR and nuclear magnetic resonance imaging, thesemeth-
ods still appear to be time-consuming to a great extent.
Therefore, how to efficiently obtain true unwrapped phase
from the wrapped phase is still an issue that needs to be
solved. Deep learning (DL) techniques, which demonstrate
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powerful feature representation and feature learning abili-
ties, have gradually been applied to PU for interferograms,
and several DL-based PU algorithms [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36] have also been
proposed recently. Spoorthi et al. [25] transformed PU for
interferograms into a semantic segmentation problem for
wrapped fringe patterns by employing PhaseNet to predict the
wrap-counts of wrapped pixels and obtained the unwrapped
result after a postprocessing operation. Zhang et al. [26]
and Zhang et al. [27] proposed robust PU procedures by
exploiting SegNet and DeepLabv3 + to perform seman-
tic segmentation for wrapped fringe patterns, respectively.
Spoorthi et al. [28] proposed the approach referred to as the
PhaseNet 2.0 by introducing a new loss function and dense
blocks for the network to enhance the ability of resisting
phase noise and class imbalance. In [29], the phase consis-
tency delivered by the network is enhanced by introducing the
coherence maps of interferograms as an input feature of the
network. In [25], [26], [27], [28], and [29], inaccurate clas-
sification is prone to occur, resulting in an error of 2π inte-
ger multiples, when there is severe noise in interferograms.
Accordingly, these methods sometimes need to be combined
with various post-processing operations to remove the error
of 2π integer multiples caused by the inaccurate classi-
fication, which increases technical complexity. Hence, the
one-step PU techniques [30], [31], [32], [33] have proposed
to obtain the unwrapped phase of wrapped pixels instead of
its wrap-counts through constructing a direct mapping rela-
tionship between the wrapped phase and its true unwrapped
phase using the network, and performing one-step PU on
wrapped phase images without additional post-processing
operations. Wang et al. [30] and Tian et al. [31] designed the
one-step PU networks using classical UNET and UNET3+
as skeletons, respectively, to recover the true phase from
noisy interferograms. Zhou et al. [32] proposed a conditional
generative adversarial network called PU-GAN to execute
one-step PU calculations, trying to accurately retrieve the
unwrapped phase from INSAR interferograms. Meanwhile,
some scholars combine deep learning with traditional algo-
rithms to improve the robustness of the PU algorithms.
BCNet [33] was combined with branch-cut approaches to
improve the PU accuracy. Zhou et al. [34] employed PGNet
to predict the phase gradient of pixels in different directions,
and then the unwrapped results obtained via L1-norm were
shown to be better than those of conventional PU methods.
Gao et al. [35] combined D-LinkNet with the UKF proce-
dure to enhance the robustness of PU for interferograms.
In addition, Vitale et al. [36] proposed the DL-based inter-
ferogram denoising approach to eliminate undesired phase
noise presented in interferograms, without loss of phase
details, through defining a suitable cost loss for the multi-
objective network, which is beneficial for both reducing the
difficulty of subsequent phase unwrapping procedures and
obtaining the unwrapped phase of interferograms accurately.
The above techniques have demonstrated popular results in

some examples of PU for interferograms, and the advantage
of efficiency in PU for interferograms are also demonstrated
fully, compared with traditional methods. However, how to
design a more effective and robust network architectures,
build a fully representative data set for the networks, and
design optimal cost functions for the networks to improve the
robustness of the PU algorithms is still an issue that needs to
be solved. This article focuses on robust network architecture
design, attempting to construct a robust PU network, provid-
ing an effective solution for solving the PU problem under the
framework of deep learning theory and technology, which is
also conducive to promoting the further development of the
DL-based PU technologies.

Thus, we proposed a PU method based on a spa-
tial and channel attention network (SCAPU) to retrieve
the true unwrapped phase from noisy interferograms with
varying levels of noise. First, we construct a network suit-
able for unwrapping the wrapped phase images. This net-
work utilizes Deeplabv3+ [29] as the backbone, adopts
a serial-parallel atrous spatial pyramid pooling module
(SPASPPM) [37], implements multi-scale skip connections
between the encoder-decoder module, and fuses convo-
lutional block attention module (CBAM) [38]. Here, the
SPASPPM can obtain a larger receptive field while enhancing
the correlation between feature maps with different convo-
lution rates [39], the multi-scale skip connections promote
fusion of the detailed phase information and fringe semantic
information, and the CBAM can effectively extract semantic
information in both the channel and spatial dimensions to
improve the PU accuracy. Second, datasets with different
noise levels are used to train the network using a previously
proposed noise level evaluation system [31], and the trained
network can effectively handle the PU for interferograms.
Finally, the interferograms are unwrapped using the trained
network with the same noise level as the interferograms.

II. PROPOSED METHOD
A. SCAPU NETWORK
The SCAPU network is shown in Fig. 1. As shown, the
proposed network is based on the encoder-decoder module
and utilizes Deeplabv3 + [27] as the backbone. The SCAPU
network utilizes the SPASPPM, includes multi-scale skip
connections between the encoder-decoder module, and fuses
the CBAM (marked in the red dashed box in Fig.1).

1) ∗ENCODER
The encoder module comprises a DCNN and the SPASPPM.
Here, the DCNN is the modified aligned Xception net-
work [27], and its structure is shown in Fig. 2, including
the input, middle and output flows. The image input to the
DCNN refers to wrapped phase images with a resolution of
256 × 256. In the input layer of the DCNN, three low-level
feature maps with the resolutions of 64 × 64, 32 × 32, and
16 × 16, are extracted. These low-level feature maps can
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FIGURE 1. Architecture of the proposed SCAPU network.

provide abundant phase information for the feature maps out-
put by the encodermodule. The SPASPPM fuses featuremaps
with different scales, and utilizes a ‘‘1 × 1Convolution+BN
(Batch-normalization) + RELU (Rectified Linear Unit)’’
operation to adjust the channel number of the output feature
maps with a resolution of 16 × 16, with high semantic infor-
mation (HSI).

2) ∗DECODER
In the decoder module, the channel number of three low-level
feature maps with different scales, output by the DCNN,
is adjusted by the ‘‘1 × 1Convolution+BN+RELU’’ oper-
ation, and the 64-channel feature maps with the resolu-
tions of 64 × 64, 32 × 32, and 16 × 16 are obtained,
respectively. Here, the feature maps with the resolutions
of 32 × 32 and 16 × 16 are increased to a resolution
of 64 × 64 by performing upsampling and a convolution
operation, and then the CBAMswere separately applied to the
two sets of feature maps whose resolution has been increased
to 64 × 64. The fusion of multi-scale features and the
application of CBAM facilitate the extraction of multi-scale
feature information in the encoder module, thereby enhanc-
ing the representation ability of features. Especially, the
multi-scale skip connections between the encoder-decoder

module are used to promote fusion of the detailed phase
information and semantic information from the feature maps
with different resolutions. Then, three 64-channel feature
maps with a resolution of 64× 64 are obtained. These feature
maps are referred to as the DCNN feature maps. In addi-
tion, the ‘‘Upsample by 4+1 × 1convolution’’ operation
(i.e., a 4 × 4 bilinear interpolation upsampling convolution
operation) is implemented on the HSI output by the encoder
module. Subsequently, 128-channel feature maps with
64 × 64 resolution, are obtained and concatenated with
the DCNN feature maps. After that, 128-channel feature
maps with 256 × 256 resolution are obtained by performing
a 4 × 4 bilinear interpolation upsampling convolution
operation on the concatenated feature maps. Finally,
two depth separable convolution layers and a ‘‘1 × 1
Convolution+BN+RELU’’ operation unit are employed
to process the feature maps with a resolution of 256 ×

256 to obtain the unwrapped phase of the wrapped phase
image.

3) ∗SPASPPM
The SPASPPM [37] in Fig. 1 includes five branches, i.e.,
a 1 × 1 convolutional kernel, three 3 × 3 convolutional
kernels with a sampling rate of each factor (5, 11, and 7), and
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FIGURE 2. Schematic diagram of the Xception network.

FIGURE 3. Schematic diagram of the CBAM.

an average pooling layer. Note that these five branches adopt
a parallel structure. The branches of the 3 × 3 convolutional
kernels adopt a serial connection method, and their inputs are
composed of the high-level features generated by the DCNN
and the output features of the former convolution models.
Finally, the output features of each branch are fused to acquire
the final feature mapwhile enhancing the correlation between
feature maps with different convolution rates. The SPASPPM
can not only acquire a larger receptive field, but also enhance
the correlation between feature maps with different convolu-
tion rates, which is conducive to capturing more multi-scale
information and enhancing the ability of feature representa-
tion, thus avoiding the loss of phase information as much
as possible while enhancing the ability to extract feature
information from interferograms.

4) ∗CBAM
Fig. 3 shows the CBAM [38], which comprises a spatial
attention module (SAM) and a channel attention module
(CAM). Here, SAM and CAM aggregate phase information
and dimension information by performing average pooling
and maximum pooling operations on the spatial and channel
axis, respectively. The CBAM can obtain the weight of each
feature channel automatically by learning, and it can achieve

good results by training the model such that the feature maps
with more important information have higher weight, and
those with less important information have lower weight. The
CBAM can effectively extract the semantic information in
both the channel and spatial dimensions, which is conducive
to acquire more valuable feature representation from feature
maps for improving the PU accuracy while the network
parameters are not significantly increased.More details about
the CBAM can be found in [38].

B. NETWORK DATASET
Implementation of the proposed SCAPU network is divided
into training and prediction stages, as shown in Fig. 4, where
Fig. 4(a) shows the training for the networks and Fig. 4(b)
shows PU for the interferograms employing the trained
networks.

FIGURE 4. Schematic diagram of the SCAPU process: (a) training the
SCAPU network; (b) PU for interferograms using the trained networks.

In this study, four groups of training sets with different
levels of noise were constructed and used to train the net-
work suitable for unwrapping interferograms with different
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FIGURE 5. Simulated interferograms: (a–d) represented the true phases of mountainous terrain, four cones, simulated
mountains, and four pyramids, (e–h) represented the corresponding wrapped phases in (a) –(d).

FIGURE 6. Results acquired by applying the different PU method to unwrap Fig. 5(e). From-left-to-right, each
column represented the unwrapped phase, the PUE, and the PUE histogram, respectively; From-top-to-bottom,
each row represented the solutions for the QGPU, ILS, UNETPU and SCAPU methods, respectively.

noise levels, consequently, four trained networks including
the trained network1, trained network2, trained network3,
and trained network4, suitable for different noise levels of

the interferograms, were achieved, as shown in Fig. 4(b).
Note that detailed information about the noise level eval-
uation approach of the interferograms, and the approaches
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FIGURE 7. Results acquired by applying the different PU method to unwrap Fig. 5(f). From-left-to-right, each
column represented the unwrapped phase, the PUE, and the PUE histogram, respectively; From-top-to-bottom,
each row represented the solutions for the QGPU, ILS, UNETPU and SCAPU methods, respectively.

of constructing datasets and training network were reported
in [31].

The dataset of each group with different noise levels
contains 31,000 sets of data, which were generated in the
following three ways: (1) The dataset of 3000 sets was
constructed referring to the dataset generation method in
the literature [27]. (2) The dataset of 4000 sets was con-
structed referring to the dataset generation method in the
literature [30]. (3) The dataset of 24,000 sets of InSAR phase
data [31] was generated by converting the digital elevation
maps of Datong City, Shanxi Province, Huangshan City,
Anhui Province, and Jinhua City, Zhejiang Province in China
into the phase. The image size in this dataset is 256 × 256,
and the phase range of the label image was defined in 0–60
radians. The network was trained based on the Keras2.4.3 DL
framework. In addition, the network was trained using a
personal computer with an Inter XeonW-2245 3.9GHz CPU,
128GB RAM, and an NVIDIA GeForce RTX 3080 graphics
processing unit. The network was trained with the adaptive

moment estimation optimizer (i.e., the Adam optimizer) and
the mean square error (MSE) loss function. Here, the initial
learning rate was 0.001, the number of training epochs was
set to 200, the minimum training batch was eight, and the
time for the trained model to reach convergence was about
approximately 60 hours.

III. EXPERIMENT AND ANALYSIS
A. SIMULATED DATA EXPERIMENTS
To show the performance of the SCAPU network, we com-
pared to the quality-guided PU (QGPU) method [9], the
iterative least squares (ILS) method [14] and the representa-
tive UNETPU [30] method by unwrapping the four different
types of simulated interferograms shown in Fig. 5. Here,
Figs. 5(a)–5(d) showed the true phases of the mountainous
terrain, four cones, simulated mountains and four pyramids
with a resolution of 256 × 256, respectively. The wrapped
phases corresponding to the true phases of Figs. 5(a)–5(d),
were shown in Figs. 5(e)–5(h), whose SNR values were
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FIGURE 8. Results acquired by applying the different PU method to unwrap Fig. 5(g). From-left-to-right, each
column represented the unwrapped phase, the PUE, and the PUE histogram, respectively; From-top-to-bottom,
each row represented the solutions for the QGPU, ILS, UNETPU and SCAPU methods, respectively.

4.94 dB, 1.42 dB, -1.07 dB and -1.07 dB, respectively, and
the corresponding noise levels [31] were 1, 2, 3 and 3,
respectively.

The unwrapped results for the wrapped phases in
Figs. 5(e)–5(h) acquired by applying the QGPU, ILS,
UNETPU and SCAPU methods were shown in Figs. 6–9,
respectively. Here, each column in Figs. 6–9 showed the
unwrapped phase, the PU errors (PUE) and the corresponding
the PUE histogram (i.e., the histogram of the PUE) deliv-
ered by the above four methods, respectively. Due to the
high SNR of the interferograms shown in Figs. 5(e) -5(f),
both the QGPU and ILS methods achieved good unwrapped
results from these interferograms, as shown in the first two
rows of Figs. 6-7, respectively, where the dynamic range of
the PUE delivered by the QGPU method are small, and its
errors are mainly distributed in the interval of [6, -5] and
[7, -6], respectively, while the dynamic range of the PUE
delivered by the ILS method are also small, and its errors
are mainly distributed in the interval of [3, -4] and [5, -5],

respectively. In the case of low SNR of interferograms (such
as Figs. 5(g) –5(h)), the errors caused by the QGPU method
spread among the entire image in the unwrapping process,
which resulted in very inconsistent unwrapped phases and
large errors, as shown in the first row of Figs. 8-9. The
unwrapped phases acquired by applying the ILS method to
unwrap Figs. 5(g)–5(h), were roughly continuous, however,
like the QGPU method, the errors delivered by this method
were also large, as shown in the second row of Figs. 8-9. The
solutions delivered by the UNETPU and SCAPU methods
were showed in the third and fourth rows of Figs. 6-9, as can
be seen from Figs. 8-9 that compared to the ILS and QGPU
methods, these two methods obtained better unwrapped
results and the phase errors were smaller, even when the
interferograms were severely noisy. The-root-means-square
errors (RMSE) of these methods for unwrapping the interfer-
ograms with different SNR values were reported in TABLE 1.
Here, the RMSE values represent the median value of
the errors computed over 30 simulation runs. The average
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FIGURE 9. Results acquired by applying the different PU method to unwrap Fig. 5(h).
From-left-to-right, each column represented the unwrapped phase, the PUE, and the PUE
histogram, respectively; From-top-to-bottom, each row represented the solutions for the QGPU,
ILS, UNETPU and SCAPU methods, respectively.

FIGURE 10. Synthetic interferograms derived from DEM: (a–c) represented respectively the DEMs
of three regions in Hunan, in China, (d–f) represented respectively the true unwrapped phases
corresponding to (a) –(c), (g–i) represented respectively noisy wrapped phases corresponding
to (d)–(f).
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FIGURE 11. Results acquired by applying the different PU method to unwrap Fig. 10(g) . From-left-to-right, each
column represented the unwrapped phase, the rewrapped phase, the PUE, and the PUE histogram, respectively;
From-top-to-bottom, each row represented the solutions for the QGPU, ILS, UNETPU and SCAPU methods,
respectively.

TABLE 1. Comparison of the RMSE values under different noise levels.

times required to unwrap the interferograms shown in
Figs. 5(e)–5(h) using the PU methods were shown in
TABLE 2. As can be further seen from TABLE 1 that the
SCAPU method not only provided better accuracy than the

QGPU and ILS methods, but also the errors delivered by
this method were obviously less than those of the UNETPU
method. Note that the time costs of the SCAPU andUNETPU
method were less than those of the other two methods.
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FIGURE 12. Results acquired by applying the different PU method to unwrap Fig. 10(h) . From-left-to-right, each
column represented the unwrapped phase, the rewrapped phase, the PUE, and the PUE histogram, respectively;
From-top-to-bottom, each row represented the solutions for the QGPU, ILS, UNETPU and SCAPU methods,
respectively.

TABLE 2. Runtime time of the PU methods (s).

In summary, the proposed SCAPU method demonstrated
strong robustness compared to the QGPU, ILS and UNETPU
methods, and obvious efficiency advantages compared to the
QGPU and ILS methods. Here, the QGPU and ILS methods
were worked with MATLAB R2016b, and the SCAPU and
UNETPU methods were performed on Python 3.8.

B. SYNTHETIC DATA EXPERIMENTS OVER SRTM DEM
Figs. 10(a)-10(c) showed respectively the digital elevation
maps (DEMs) of three regions in Hunan, in China, derived
from the SRTM DEM, and were marked as SRTM-DEM1,
SRTM-DEM2, SRTM-DEM3, respectively (to for the

TABLE 3. SRTM parameter.

convenience of subsequent description). Figs. 10(d)-10(f)
denoted true unwrapped phases corresponding to three DEMs
shown in Figs. 10(a)-10(c), generated according to the SRTM
parameters listed in Table. 3. Figs. 10(g)-10(i) denoted noisy
wrapped phase images corresponding to the true phases
shown in Figs. 10(d)-10(f), whose SNR values were 4.94 dB,
1.42 dB and -1.07 dB, respectively, and the corresponding
noise levels were 1, 2 and 3, respectively.

To further show the performance of the SCAPU net-
work, the QGPU, ILS, UNETPU and SCAPU methods were
used to the wrapped phases shown in Figs. 10(g)–10(i).
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FIGURE 13. Results acquired by applying the different PU method to unwrap Fig. 10(i) . From-left-to-right, each
column represented the unwrapped phase, the rewrapped phase, the PUE, and the PUE histogram, respectively;
From-top-to-bottom, each row represented the solutions for the QGPU, ILS, UNETPU and SCAPU methods,
respectively.

FIGURE 14. Measured interferograms: (a) part of interferogram over Bam, Iran; (b) part of interferogram over
Yunnan, and (c) Rahul interferogram

Figs. 11-13 showed the unwrapped results acquired by these
method.

Each column in Figs. 11–13 showed the unwrapped phase,
the PUE and the corresponding PUE histogram delivered
by different methods, respectively. In addition, the RMSE
of these methods for unwrapping the interferograms with

different SNR values were reported in TABLE 4. From
Figs. 11-13 and TABLE 4, the following can be seen: (1) the
dynamic range of the PUE delivered by the UNETPU and
SCAPU methods was far less than that of the QGPU method
in all cases; (2) not only was the dynamic range of the PUE
delivered by the UNETPU and SCAPU method less than that
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FIGURE 15. Results acquired by applying the different PU method to unwrap Fig. 14(a) .
The left and right columns represented the unwrapped and rewrapped phases,
respectively; From-top-to-bottom, each row represented the solutions for the QGPU,
ILS, UNETPU and SCAPU methods, respectively.

of the ILSmethod in all cases, but also compared with the ILS
method, most of the errors delivered by these two methods
were distributed around 0, therefore, it can be expected that
the RMSE of these two methods is much smaller than that
of the ILS method; (3) the errors delivered by the SCAPU
method were not only less than those of the QGPU and ILS
methods, but also less than those of the UNETPU method in
all cases.

C. MEASURED DATA EXPERIMENTS
Fig. 14 showed the measured interferograms used to
further test the performance of the SCAPU method.
Fig. 14(a) denoted the wrapped phase image derived from

an interferogram over Bam, Iran [31], Fig. 14(b) denoted the
wrapped phase image from an interferogram over Yunnan,
Yangbi County, Yunnan Province, China (acquired by the
Sentinel-1A satellite at 21:48 on May 21, 2021), and
Fig. 14(c) denoted the Rahul interferogram [40].
The noise levels of the interferograms shown

Figs. 14(a)–14(c), were 1, 2, 3, respectively. The unwrapped
results acquired by applying the QGPU, ILS, UNETPU
and proposed SCAPU methods were shown in Figs. 15–17,
respectively, where the left columns of Figs. 15–17 and
their corresponding right columns showed the unwrapped
phases and the corresponding rewrapped phases acquired by
applying the compared methods, respectively. As shown in
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FIGURE 16. Results acquired by applying the different PU method to unwrap Fig. 14(b) .
The left and right columns represented the unwrapped and rewrapped phases,
respectively; From-top-to-bottom, each row represented the solutions for the QGPU,
ILS, UNETPU and SCAPU methods, respectively.

TABLE 4. Comparison of the RMSE values under different noise levels.

the left column of Fig. 17, a lot of phase inconsistencies
appeared in the unwrapped phase acquired by applying the

QGPU method for the Rahul interferogram. In addition, the
unwrapped phases acquired by applying the ILS method in
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FIGURE 17. Results acquired by applying the different PU method to unwrap Fig. 14(c) .
The left and right columns represented the unwrapped and rewrapped phases,
respectively; From-top-to-bottom, each row represented the solutions for the QGPU, ILS,
UNETPU and SCAPU methods, respectively.

the left columns of Figs. 15-17 were relatively continuous;
however, clearly inconsistent fringe with the measured inter-
ferogram shown in Fig. 14(c), appeared in the rewrapped
phase in the right column of the second row of Fig. 17, which
indicated that the unwrapped results of Fig. 14(c) acquired
by applying this method were unreliable. The unwrapped
results acquired by applying the UNETPU and proposed
SCAPU methods were shown in the third and fourth rows
in Figs. 15–17, respectively, where the left columns of the
third and fourth rows of Figs. 15–17 and their correspond-
ing right columns showed the unwrapped phases and the
corresponding rewrapped phases acquired by applying these
two methods, respectively. As shown in the left column
of the third row of Figs. 15-17, like the ILS method, the

unwrapped phases delivered by the UNETPU method is
roughly continuous; however, it can also be seen from the
right column of the third row of Fig. 17 that the fringes of the
UNETPU rewrapped phases marked in the red dashed box are
clearly inconsistent with those of the measured interferogram
shown in Fig. 14(c), which showed that the unwrapped phases
corresponding to the marked area of the rewrapped phases,
delivered by this method may not be reliable. Compared
to QGPU, ILS UNETPU methods, the unwrapped phases
acquired by applying the SCAPU method were continuously
smooth, and the rewrapped phases were consistent with
the interferograms shown in Figs. 14(a)–14(c), while with
very less residual noise. These results demonstrated that
the SCAPU method can effectively suppress phase noise
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and obtain better unwrapped results from noisy measured
interferograms.

IV. CONCLUSION
In this paper, we have proposed the SCAPU method to carry
out PU operations on wrapped phase images using a DL
network to construct a mapping relationship between the
wrapped phase and its corresponding unwrapped phase, and
the trained network was used to unwrap the interferograms
with different noise levels. The SCAPU method was evalu-
ated experimentally, and the experimental data obtained on
both simulated and measured interferograms showed that
the SCAPU method was effective in PU for interferograms.
Compared to two traditional methods (i.e., the QGPU and ILS
methods) and the UNETPU method, the proposed SCAPU
method obtained more robust results, however with lower
time costs than the QGPU and ILS methods.
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