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ABSTRACT With the nature-powered quantum revolution gaining momentum, Quantum Computation and
Quantum Information are all set to transform the landscape of all areas of science and technology. Quantum
Cryptography is one such field which has witnessed tremendous progress in theory as well as in its practical
implementation. Quantum Key Distribution is one of its integral parts and it necessarily requires the usage of
an information reconciliation protocol to correct the errors present in the key bits transmitted via the physical
system involved. Cascade is one such protocol which enjoys popularity among such system developers
due to its simplicity and high error-correction efficiency. In this work, we identify, improve, interpret, and
implement key optimizations from a practical viewpoint and give an algorithmic implementation of the
Cascade protocol which would serve to increase its overall efficiency without changing its foundational
structure. We also dig deep into the math and physical interpretation behind the values and expressions of
key parameters and quantities of Cascade, which effectively make use of the cascade of errors unearthed by
it so as to not only ensure an exponentially decreasing probability of any errors in the key bits with the passes
of Cascade but also ensure that only the minimum possible information is leaked to a potential eavesdropper.
Finally, we also give a visual walk-through of Cascade in action and support it with explanations at every
step. By doing so, we aim to equip researchers and developers with an insight driven error correction tool
which is sure to be useful in practice.

INDEX TERMS Cascade protocol, error correction, information reconciliation, quantum communication,
quantum cryptography, quantum key distribution (QKD).

I. INTRODUCTION AND RELATED WORK
At the most fundamental level, the magical Nature runs on the
mysterious yet mind-blowing laws of quantum mechanics.
Harnessing this power of Nature by thinking naturally about
computation and information processing has led to the birth
of an entirely rich, new paradigm: QuantumComputation and
Quantum Information (QCQI), which has started to unlock
exciting new possibilities in all spheres of science and tech-
nology such as in cryptography, system simulation, drug
discovery, healthcare, finance, renewable energy, artificial
intelligence, etc. [1]

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

Thoughmany of the applications of QCQI in the aforemen-
tioned areas are in a nascent stage, Quantum Cryptography
is one of its sub-fields that has not only seen numerous
advances in theory but has also seen them being successfully
implemented in practice [2], [3], [4], [5]. In general, the
research in cryptography revolves around developing tech-
niques or protocols so as to ensure secure communication
or computation between two or more parties in the presence
of any adversary. Obviously, transmission of secure mes-
sages inevitably requires encryption and/or decryption keys.
The hitherto ubiquitous classicalmethods of key distribution
based on public key cryptography, such as the DH [6] and
RSA [7] protocols, can be easily broken by Shor’s quantum
algorithm for factoring [8], thus, posing a huge security risk
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worldwide! Further, if we turn to private key cryptography
instead, a major disadvantage of the classical protocols con-
cerned is that any eavesdropper (Eve), the adversary, can
easily listen in to the secret key being transmitted, say,
between the sender (Alice) and the receiver (Bob) without
any risk of being detected by either of them. Quantum Key
Distribution (QKD) resolves these problems by exploiting the
quantummechanical principle that the measurement of a sys-
tem, in general, disturbs the state of the system. Consequently,
via eavesdropping, Eve cannot possibly gain any amount of
information about the secret key being transmitted fromAlice
to Bob without measuring it in some way or the other. While
doing so, Eve would undeniably introduce some alterations in
the key, which can then be easily detected by Alice and Bob.
The QKD protocol can thus be aborted by Alice and Bob if
these alterations exceed a set threshold and they can start all
over again. Clearly, the security of QKD is guaranteed by the
principles of quantum mechanics and thus, it remains risk-
free given the validity of the fundamental laws of Nature [9]!
The distribution of the secret key bits between Alice and

Bob is inevitably prone to error even in the absence of
any eavesdropping, since no physical communication system
can possibly be completely error-free. Consequently, it is
extremely important for Alice and Bob to reconcile the cor-
related information possessed by them in the form of their
sifted key strings and thereby, correct errors in them so as to
obtain as similar a key as possible. This is accomplished by
means of an information reconciliation, essentially, an error-
correction protocol [1]. We emphasized on the word ‘sifted’
because Alice and Bob sift through the bits of their respective
key strings and only retain those bits in which Bob’s state
measurement basis coincides with Alice’s state preparation
basis; otherwise, even in an ideal, error-free setting, the
raw bit values possessed by Alice and Bob can possibly be
different.

The Cascade protocol, which was proposed by Brassard
and Salvail in their seminal paper in 1993 [10], is the most
widely used protocol for error correction in QKD systems
worldwide. Despite the high time overhead associated with
its usage and in spite of the fact that numerous other error cor-
rection protocols have since been proposed [11], [12], [13],
in practice, none of them have become as popular as the
original Cascade protocol. This is quite likely due to its
simplicity and ease in implementation coupled with the fact
that it has a high level of error correction efficiency [17].
Although many new optimizations to the Cascade protocol

have subsequently been proposed, only a few of those propo-
sitions optimize the Cascade protocol and/or alter its choice
of parameters without modifying the protocol’s foundational
structure [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [27]. Only such studies have been considered by us for
the purpose of comparison.

A previous study [17] has analysed numerous such opti-
mizations and has put forth some new sets of optimizations
which have been shown by computer simulations to be

outperforming the original Cascade protocol. However,
a major problem associated with their proposed optimizations
is that they significantly increase the number of interactions
taking place between Alice and Bob over a classical channel
so as to achieve a better efficiency than the original version
of Cascade. This follows from the fact that the number of
passes in their optimized versions of Cascade (14 - 16) is
extremely high as compared to that in the original version
(only 4). In fact, even those sets of optimizations (numbered
as 3 and 4 in their study) which have been proposed by
them for a comparatively (as compared to the other sets
of optimizations proposed by them) reduced time overhead
(referred to by them as a communication cost) involve about
30 more channel uses (on an average) than the original ver-
sion of Cascade (This can be clearly seen in Fig. 9 of their
study). In actuality, this average number of extra channel
uses is at least 60 (=2 × 30) since their definition of the
number of channel uses is, inter alia, based on information
leakage whereas in reality, irrespective of whether 2 bits of
information exchanged between Alice and Bob amount to an
information leakage of 1 bit or not, 2 bits of information are
physically exchanged via the classical channel, and hence, the
channel has been used twice in actuality. Considering the fact
that Cascade is already highly interactive, these significantly
high extra number of interactions in their proposed optimiza-
tions can prove to be a severe bottleneck in achieving high key
generation rates in practical QKD systems. Thus, it is unde-
sirable to use these and other more recent sets of proposed
optimizations that involve a large number of passes of the
protocol [22], [23] in practice. The authors of [17] have also
published a follow up study [18] wherein, inter alia, they have
proposed to store the (previously erroneous) bits corrected at
every step of the protocol and use their parities, if possible,
to compute the parities of new blocks. The same optimization
has also been suggested in [19]. Moreover, another study has
also proposed a very similar optimization involving prefix
parity lists [20]. Building up on this, a recent study [21]
proposed an optimization termed as ‘Block Parity Inference’
which involves the storage of all the blocks and subblocks
formed during the passes of the Cascade protocol so as to
compute the parity of a new block, if possible, by only using
previously computed parities or linear combinations thereof.
However, as is evident, all these aforementioned optimiza-
tions impose a significantly high storage and computation
overhead as compared to the original Cascade protocol and
hence, slow down the error correction process in practice.
Therefore, it’s not recommended to use them in practical
implementations of Cascade and we do not include them in
our implementation of Cascade.

Additionally, we found out that, inter alia, Optimization 3
of the previously mentioned study [17] sets the value of the
initial block size (k1) in Cascade to ≈ 1/Q (here, Q =
Quantum Bit Error Rate (QBER) which is the average prob-
ability of error in the value of a transmitted qubit.) which is
different from the one in the original version of Cascade, i.e.,
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k1 ≈ 0.73/Q [10], [24] (the reason for this originally pro-
posed value shall be justified in detail later on in this paper).
Quite interestingly, we found out that this study quotes this
to be in line with what has been suggested in [16], a study
in which it has been stated that the mathematical basis of
k1 ≈ 0.73/Q is not yet clear and future work could examine
the same. Further on, a common lack of understanding of
an upper bound on the information leaked (in terms of the
parity bits) in or up to a particular pass of the Cascade
protocol is evident in many of these studies which have
either stated the same vaguely by not specifying an exact
expression for the number of blocks for which a non-zero
number of parities would be exchanged in the first place in
Cascade [16], [17], [25] (In fact, [16] has again set this aside
for future work.) or have considered optimizing an expression
for information leakage which is incorrect since it does not
take into account the backtracking feature of Cascade – the
most important attribute of Cascade that lends it its enhanced
error correction ability [22], [23].

It is quite easy to reason that the above lack in under-
standing is mostly owed to the fact that the original Cascade
paper [10] presents these (and other) expressions, and choices
for a certain set of parameter values without any detailed
explanations. Effectively, the originally proposed Cascade
protocol has been rendered as a black box. This fact is also
directly echoed by some studies concerning the Cascade
protocol which have either effectively quoted the probabilis-
tic analysis/proof (behind assigning only a particular set of
values to certain parameters for an exponential reduction in
the error probability with the passes of the protocol) verbatim
by presenting it with veryminor changes [14] or have labelled
it as having no theoretical basis at all [22]. To the best of
our knowledge, till now, only 1 study [16] is available in
the literature which has elaborated (to some extent) on the
original proof and pointed out a mistake in it. However, as we
show later, this analysis/proof [16] is incomplete, still not
completely rigorous, has errors in certain expressions and
makes certain adhoc assumptions.

All of this led to the formulation of the two-fold objec-
tive of our paper, fulfilling which, here, we not only give
a practically useful, optimized algorithmic implementation
of Cascade (which doesn’t exceed and rather, reduces the
number of interactions involved in it without changing its
foundational structure.) but also at the same time, extensively
clarify the mathematics behind the original protocol and its
working mechanism with in-depth physical interpretations
and step-by-step illustrations.

II. THE CASCADE PROTOCOL: INTERPRETATION
AND IMPLEMENTATION
Cascade [10] is a protocol for information reconciliation,
essentially, error correction over a shared public channel,
which interactively reconciles the errors between the sifted
key strings P and Q possessed by Alice and Bob (respec-
tively) so that they are ultimately able to obtain a shared key
string S [1] (In practice, the protocol results in Bob’s sifted

key string being modified to a new key string R such that
R ≈ P).

Let the lengths of the sifted binary key strings possessed
by Alice and Bob be N . Then, P = P0P1 . . .PN−1 and Q =
Q0Q1 . . .QN−1 such that P,Q ∈ AN where A is the binary
alphabet {0, 1}.
Cascade is an iterative protocol involving several passes,

the total number of which, is fixed before its start. It operates
on blocks of the sifted key strings. Let ki denote the block
size in the ith pass of the protocol. In the 1st pass, Alice
and Bob choose a particular value of k1 (depending on the
error probability p [= QBER]) and partition their key strings
into blocks of length k1 bits. The l th block in the 1st pass
will consist of the bits whose indices lie in the following set:
K 1
l = {m | (l − 1)ki ≤ m < min(lk,N )}.
Alice then sends the parities of all her blocks (The sum

modulo 2 of the bits in a block is the parity of a block) to Bob.
Algorithm 1 gives an optimized (explained towards the end of
this section) algorithmic implementation of how to compute
the parity(/parities) of a set(/sets) of indices corresponding to
the key bits in a block(/blocks).

Algorithm 1 Parity
global N

Function parity(Zint , key_index_lists):
Nl ← |key_index_lists|
parity_list← [0]× Nl
for i← 0 to Nl − 1 do

for j← 0 to |key_index_lists[i]| − 1 do
key_index_lists[i][j]← N− 1− key_index_lists[i][j]

end
for k ∈ key_index_lists[i] do

parity_list[i]← parity_list[i] ∧ ((Zint >> k) & 1)
end

end
if |parity_list| = 1 then

return parity_list[0]
return parity_list

Aprimitive namedBINARY is then used by Bob in order to
find and hence, correct exactly 1 error in each of those blocks
whose parity differs from that of Alice’s corresponding block.
The BINARY primitive essentially involves an interactive
binary search which is to be performed by Alice and Bob so
that Bob can find exactly 1 error in his bit string. It proceeds
in the following way (see Algorithm 2 for an algorithmic
implementation):
• Alice sends the parity of the 1st half of the bit string
to Bob.

• Bob determines whether there is a parity mismatch (with
regards to the corresponding halves in Alice’s bit string)
in the 1st half or the 2nd half of the string by comparing
the parity sent by Alice with the corresponding parity
computed by him. Only the half where the parity mis-
match has occurred is considered for further iterations.

• These 2 steps are repeatedly applied to the half identified
by Bob in the previous step so as to eventually find an
error.
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Algorithm 2 BINARY
global N,Pint ,Qint , net_block_index_lists

Function binary(block_index_list, pass_num):
beg← 0
end← N− 1
while beg < end do

mid←
⌊
beg+end

2

⌋
check_list_1← block_index_list[beg . . .mid]
check_list_2← block_index_list[mid+ 1 . . . end]
Bob sends check_list_1 to Alice
Alice computes Alice_parity← parity(Pint ,
check_list_1)

Alice sends Alice_parity to Bob
Bob_parity← parity(Qint , check_list_1)
if Bob_parity ̸= Alice_parity then

end← mid
Append check_list_2 to
net_block_index_lists[pass_num]

else
beg← mid+ 1
Append check_list_1 to
net_block_index_lists[pass_num]

end
end
bit_flip_index← block_index_list[beg]
return bit_flip_index

FIGURE 1. Bit strings and the corresponding index list used in Fig. 2 [Error
locations are indicated by the colour vermillion; PA and PB denote the
parity of Alice’s and Bob’s bit strings respectively].

As an example of the BINARY algorithm in action, a dia-
grammatic representation of the steps involved in the same is
given in Fig. 2. The bit strings (blocks) initially possessed
by Alice and Bob are shown in Fig. 1(a) and Fig. 1(b)
respectively. As is evident from Fig. 1(c), the bits located at
the indices 2, 4 and 7 in Bob’s bit string are in error. Since
PA ̸= PB (see Fig. 1)), Bob can find exactly 1 error in his bit
string via BINARY. As is clear from Fig. 2, application of the
BINARY algorithm clearly enables Bob to find the error at
index 7 in his bit string via successive comparisons of the
parity of the 1st half of his bit string with that of Alice at
every step. Note that the errors at indices 2 and 4 could not
be detected by BINARY since they together led to a parity
match of the corresponding bit string halves in the 1st step of
BINARY.

FIGURE 2. Illustration of the steps of the BINARY algorithm as applied to
Fig. 1(c) [Error locations are indicated by the colour vermillion; PA and PB
denote the parity of Alice’s and Bob’s bit string halves respectively; Parity
mismatches between corresponding bit string halves are indicated by
green ticks while parity matches are indicated by red crosses].

From the aforementioned example, it is also clear that a
parity mismatch between Alice’s and Bob’s corresponding
blocks can only occur when Bob’s block has an odd number
of errors. Consequently, in such a case, Bob’s block would be
said to possess an odd error parity. On the other hand, parities
of Alice’s and Bob’s corresponding blocks would be the same
when either Bob’s block has no errors at all or when it has an
even number of errors. Consequently, in such a case, Bob’s
block would be said to possess an even error parity. Thus,
after using BINARY on all the blocks with an odd error parity
in the 1st pass of Cascade, all of Bob’s blocks would have an
even error parity.

For each subsequent pass i (where i > 1) of Cascade,
Alice and Bob randomly shuffle the bits of their key strings
P and Q so that the set of bits that form a block is different
from the corresponding set in the previous pass. Doing so
clearly opens up the possibility of Bob being able to detect
and correct errors which were hidden in the previous pass(es).
In order to affect this random shuffling of bits, Alice and
Bob both agree on a choice of random permutation function
fi : [0, . . . ,N−1]→ [1, . . . , ⌈Nki ⌉] (Note that key indexation
is from 0 to N − 1 while block indexation is from 1 to ⌈Nki ⌉
for the ith pass here). Accordingly, the bits of the key whose
indices lie in the following set: K i

l = {m | fi(m) = l} form the
l th block in the ith pass.

84712 VOLUME 11, 2023



A. Choudhary, A. Wasan: Cracking the Curious Case of the Cascade Protocol

Akin to the procedure followed in the beginning of the 1st

pass, in the ith pass (where i > 1), post the shuffling of the
bits, Alice sends the parities of all her blocks to Bob. Using
BINARY, Bob then finds and corrects exactly one error in
each of those blocks which had an odd error parity. However,
it’s evident that any error that gets corrected in a pass i (where
i > 1) was hidden (and was hence, not corrected) in the
previous pass(es). Accordingly, backtracking and correcting
such an error (found in a block in such a pass) in all those
blocks formed during the previous pass(es) which contain
that error, can possibly unearth an odd number of errors
(in each of those blocks) which were hidden during the previ-
ous pass(es). Bob can hence, return to operate on those blocks
and can possibly find and correct exactly one more error in
each of those blocks using BINARY. Naturally, a new error
found in a block formed during the pass i − 1 (where i ≥ 1)
possibly unearths yet another set of odd number of errors in
blocks formed during passes 1 to i which contain that error.
Consequently, this process of moving back and forth to find
and correct errors, which essentially unearths a chain of new
errors, sets up a cascading effect. This unique feature resulted
in this protocol being named as Cascade.

Thus, it is evident that Bob needs to maintain a set O of
such blocks and constantly update this set, i.e., add or remove
blocks from this set while ensuring that all the blocks inO are
unique (i.e., duplicate instances of a block must not be added
to O), for each and every pass i (where i > 1). Clearly, it’s
computationally efficient for Bob to operate on the blocks in
O in the increasing order of their lengths (i.e,. the smallest
block is chosen every time to operate on). We emphasized
on the word ‘possibly’ in the previous paragraph since, the
usage of BINARY on the blocks in O comes with a caveat
(This had been ignored by the authors who had originally
proposed the Cascade protocol [10]). Note that it’s very well
possible for an even number of errors ϵ1, ϵ2, . . . , ϵn found in
blocks K i

a,K
i
b . . . ,K i

n (for some even value of n ≤ N ) in pass
i (where i > 1) to correspond to the same block K j

m formed
during pass j. In such a case, if such a block turns out to be the
smallest block, then it must not be operated on by Bob since
the block effectively has an even error parity considering that
an even number of errors present in it have been corrected
in the ith pass. Consequently, Bob must necessarily recheck
the error parity of the blocks in O before using BINARY
on them. For Bob, a naive way of doing this would be to
ask Alice to resend the parity of the block and compare it
with the recomputed (by him) parity of the block. However,
this is clearly not desirable since this would significantly
contribute to an increase in the time overhead of the pro-
tocol resulting from the already required numerous parity
exchanges taking place between Alice and Bob during the
protocol.

A recent study [22] suggested the usage of flag bits as a
means to deal with the aforementioned issue. According to
their method, flag bits are added to all the blocks formed
during the Cascade protocol with their values being set to zero

initially. A flag bit equal to 0 indicates the presence of an even
number of errors while that equal to 1 indicates the presence
of an odd number of errors. Before backtracking to correct
errors in previously formed blocks in pass i (where i > 1),
they check for the presence of an error m in blocks in O and
flip the flag bit of a block if an error is found. In this manner,
only blocks with flag bits= 1 are finally considered for error
correction. However, this method clearly imposes an addi-
tional storage overhead corresponding to additional flag bits
since a lot of blocks are generated during Cascade. Moreover,
addition of flag bits is unnecessary for blocks which already
have an even error parity; the parities of only those blocks
which are present in O need to be computed. Accordingly,
here, we present a more computationally efficient solution by
making use of only a single variable (‘parity_check’) which
serves as a parity checker only for those blocks which are
present in O. ‘parity_check’ is initialised to 0 and is incre-
mented by 1 for such a given block whenever a previously
corrected error (corrected up until then in the ith pass (where
i > 1) only) is found in it. Clearly, an odd value of ‘par-
ity_check’ indicates an odd error parity while an even value
of the same is indicative of an even error parity. Consequently,
only blocks with an odd value of ‘parity_check’ are operated
upon by Bob using BINARY.

The aforementioned process continues until O is empty,
i.e., O = φ for each pass i (where i > 1) so as to finally
render all the blocks from passes 1 to � (the total number of
passes of Cascade) with an even error parity. Hence, a number
of passes (�) of Cascade are able to correct a majority of
errors present in Bob’s sifted key string Q and ultimately
render it with a small, even number of errors (possibly
even zero).

An algorithmic implementation of Cascade is given in
Algorithm 3 (unless otherwise specified, all the computations
mentioned in the given algorithm are performed by Bob).
Note that in the given algorithm, at a given point of time,
Bob only stores the blocks which have an even error parity
(with the pass number in which they were originally formed
as their key) in the dictionary ‘net_block_index_lists’. Blocks
which have an odd error parity at a given point of time are
operated upon by Bob using BINARY and only the even
error parity halves which are successively generated during
BINARY are retained. Consequently, later on, only these
smaller (as compared to the original big block) blocks need
to be dealt with by Bob. Clearly, this would not only lead
to higher computational efficiency but would also lead to
a significantly lesser number of interactions between Alice
and Bob which would consequently speed up the protocol
by decreasing its time overhead. A previous study [15] had
also suggested a similar optimization (the same optimization
was also used in [17] under the name ‘Subblock Reuse’),
however, their proposition was to constantly store the big
blocks and the 2 blocks generated at every step of BINARY
and then delete the block being divided further in its next
step and add the 2 blocks being generated from it instead.
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We do away with all these redundant deletions and sub-
sequent additions in our proposed optimization by directly
storing only the even error parity blocks generated during
BINARY in ‘net_block_index_lists’ and in turn, offering a
significant speed up over their proposition.

Further, in Algorithm 3, only Bob partitions his sifted key
string into blocks at the start of each pass and shuffles its
bits at the start of each pass i (where i > 1) and then sends
(to Alice) the indices of the bits of the key string over which
Alice must compute the parities. This optimization reduces
Alice’s (the server) computational burden as compared to
that imposed on Bob (a client). In a Client-Server QKD
network, wherein the server operates as a centralized system
servingmultiple clients simultaneously while each client only
communicates directly with the server, such an optimization
can approximately balance out the total computational load
between the server and the clients leading to a higher compu-
tational efficiency of the QKD network [26].
Apart from all the aforementioned optimizations, a signif-

icant speedup in computation can further be gained by Alice
and Bob if they convert their sifted key stringsP andQ to their
corresponding integer (i.e., decimal [Base 10]) equivalents:
Pint and Qint , at the start of the Cascade protocol and use
bitwise operators (Right-shift: ≫, XOR: ∧ and AND: &)
whenever any operations are to be performed on their respec-
tive blocks. After Cascade ends, Bob can (if required) simply
convert his integer key to the desired binary bit string R
(Alice already has P which is unaffected by Cascade, so,
no such conversion is required to be performed by her).
This optimization also serves to reduce the storage overhead
involved (storing 2 integers evidently eats up a lesser amount
of memory than storing 2 lists containing 0s and 1s.) and
has been implemented in Algorithms 1, 2 and 3 given here
(Note that most programming languages don’t directly rec-
ognize or support performing operations on numbers starting
with 0 (as is often the case with binary numbers). Con-
sequently, long lists of 0s and 1s must be used so as to
allow any operations to be performed on the corresponding
binary numbers. Alternatively, external libraries which allow
for the storage and manipulations of binary numbers can
be used. However, doing so, evidently decreases the over-
all efficiency by increasing the memory and computation
overhead).

The entire aforementioned discussion also brings to light
the fact that Cascade is a highly interactive protocol owing
to the numerous exchanges of parities between Alice and
Bob over a shared public channel. The high time overhead
of this protocol can significantly limit the net key genera-
tion rate if a public channel with high latency is used by
Alice and Bob. Consequently, it’s practical to parallelize
Cascade and thereby, process blocks and parities in paral-
lel using pipelining and multi-threading (some amount of
parallel processing on similar lines has been implemented
in [27]) so as to significantly reduce the time overhead
involved.

III. VALUES AND EXPRESSIONS OF KEY PARAMETERS
AND QUANTITIES OF CASCADE: A PROBABILISTIC
APPROACH
In the previous section, in Algorithm 3, we indicated that the
values of ki (∀ i) are determined in a manner that depends
upon the value of p, i.e., ki = f (p) (∀ i). As has already
been discussed earlier, parameter optimizations in previous
studies [15], [17], [18], [22], [23] have only implied the
requirement of a significantly high increase in the number
of passes to get better results than Cascade. Moreover, the
suggested parameter optimizations have only been backed
by some numerical simulations and not by theory and have
also been based on certain assumptions observed via a limited
number of simulations [14], [17] which may not always hold
true in practice. This renders them incapable for generali-
sation. Moreover, as observed earlier (see Section I), these
optimizations, have in part, been motivated by a lack of
understanding of the values of the parameters proposed in the
original paper on the Cascade protocol [10]. Therefore, we go
ahead with the parameter values proposed originally in [10]
and now, show/prove in detail how they, in general, i.e., with-
out any such restrictive assumptions, lead to an exponentially
decreasing error probability (in Bob’s key, when compared
to that of Alice’s) with the passes of Cascade. We also
derive an upper bound on the information leaked (in terms of
parity bits) to an eavesdropper, with the passes of Cascade.
The only practical assumption we make, is that the QKD
protocol involves the usage of a binary symmetric channel
(BSC(p)) which transmits a string of bits while independently
exposing each of the bits to noise with a constant probability
p [= QBER].
In the probabilistic analysis that follows, we use standard

mathematical notation and a number of new symbols whose
meanings are explained as and when they appear in the anal-
ysis. For better clarity, however, we provide a consolidated
list of all these symbols and their corresponding meanings
in Table 1.
We begin with determining δi(j), the probability that 2j

errors remain in the l th block formed during the 1st pass (K 1
l )

after pass i ≥ 1.
Let’s examine the case of i = 1. If Y1 is a random variable

denoting the number of bit errors inK 1
l before the start of pass

i = 1, then, it’s clear that Y1 follows a Binomial Distribution
with k1 trials and p as the probability of success for each and
every trial, i.e., Y1 ∼ B(k1, p).

Now, there can be two cases when 2j errors will remain in
K 1
l after the 1st pass:
• K 1

l has 2j errors before the start of pass i = 1: In this
case, since K 1

l will have an even error parity, it will be
left untouched and no interactive binary search will be
performed on it. Consequently, all these 2j errors will
remain in K 1

l after pass i = 1.
• K 1

l has 2j+1 errors before the start of pass i = 1: In this
case, since K 1

l will have an odd error parity, Alice and
Bob will perform an interactive binary search and Bob
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Algorithm 3 The Cascade Protocol
Input: P,Q, p, �, random_shuffle()

global N,Pint ,Qint , net_block_index_lists
N← |Q|
Pint , Qint ← int(P, 2), int(Q, 2)
key_index_list←− [0 . . .N− 1]
net_block_index_lists← { }
for i← 1 to � do

if i > 1 then
key_index_list←− random_shuffle(key_index_list)

end
k← f(p)
block_index_lists← [ ]
net_block_index_lists[i]← [ ]
for l ← 1 to

⌈
N
k

⌉
do

Append key_index_list[(l − 1)k . . .min(lk,N)− 1] to block_index_lists
end
Bob sends block_index_lists to Alice
Alice computes Alice_parity_list← parity(Pint , block_index_lists)
Alice sends Alice_parity_list to Bob
Bob_parity_list← parity(Qint , block_index_lists)
odd_error_parity_block_index_list← arg(Alice_parity_list ̸= Bob_parity_list)
for j ∈

([
0 . . .

⌈
N
k

⌉
− 1

]
\ odd_error_parity_block_index_list

)
do

Append block_index_lists[j] to net_block_index_lists[i]
end
net_index_list_for_bit_flip , complete_index_list_for_bit_flip← [ ], [ ]
for j ∈ odd_error_parity_block_index_list do

bit_flip_index← binary(block_index_lists[j], i)
Qint ← Qint∧ int(‘0′ × bit_flip_index+ ‘1′ + ‘0′ × (N − bit_flip_index− 1), 2)
Append bit_flip_index to net_index_list_for_bit_flip and complete_index_list_for_bit_flip

end
if i > 1 then

net_check_block_index_lists← [ ]
for bit_flip_index ∈ net_index_list_for_bit_flip do

for m← i− 1 to 1 do
if bit_flip_index ∈ sub_list for some sub_list ∈ net_block_index_lists[m] then

if sub_list /∈ net_check_block_index_lists then
Append sub_list to net_check_block_index_lists

end
end

end
end
while net_check_block_index_lists ̸= ∅ do

check_block_index_list← minlength(net_check_block_index_lists)
check_block_pass_num← Key which =̂ check_block_index_list in net_block_index_lists
Remove check_block_index_list from net_check_block_index_lists
parity_check← 0
if error_index ∈ check_block_index_list for some error_index ∈ complete_index_list_for_bit_flip then

parity_check← parity_check+ 1
end
if parity_check mod 2 ̸= 0 then

Remove check_block_index_list from net_block_index_lists[check_block_pass_num]
new_bit_flip_index←binary(check_block_index_list, check_block_pass_num)
Qint ← Qint∧ int(‘0′ × new_bit_flip_index+ ‘1′ + ‘0′ × (N − new_bit_flip_index− 1), 2)
Append new_bit_flip_index to complete_index_list_for_bit_flip
check_block_new_additions← [ ]
for m← i to 1 do

if m ̸= check_block_pass_num then
if new_bit_flip_index ∈ sub_list for some sub_list ∈ net_block_index_lists[m] then

Append sub_list to check_block_new_additions
end

end
end
if check_block_new_additions ̸= ∅ then

for new_add ∈ check_block_new_additions do
if new_add /∈ net_check_block_index_lists then

Append new_add to net_check_block_index_lists
end

end
end

end
end

end
end
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TABLE 1. Frequently used notation.

will be able to correct exactly 1 bit error in K 1
l at the end

of the 1st pass. Consequently, 2j errors will again remain
in K 1

l after pass i = 1.

Thus,

δ1(j) = P(Y1 = 2j)+ P(Y1 = 2j+ 1). (1)

Now, let Ei be the expected number of errors in K 1
l at the

end of the ith pass. Clearly, for i = 1, we have that:

E1 =
⌊
k1
2 ⌋∑
j=0

2jδ1(j).

Note that the upper limit of the summation is ⌊ k12 ⌋ since 2j
can at maximum be equal to k1 in a block K 1

l of k1 bits.
Since the contribution from j = 0 to E1 is 0,

E1 =
⌊
k1
2 ⌋∑
j=1

2jδ1(j). (2)

Using (1),

E1 =
⌊
k1
2 ⌋∑
j=1

2j(P(Y1 = 2j)+ P(Y1 = 2j+ 1)).

Since Y1 ∼ B(k1, p),

P(Y1 = j) = k1Cjpj(1− p)k1−j.

Consequently, we have that:

E1 =
⌊
k1
2 ⌋∑
j=1

2jk1C2jp2j(1− p)k1−2j

+

⌊
k1
2 ⌋∑
j=1

2jk1C2j+1p2j+1(1− p)k1−2j−1.

H⇒ E1 =
⌊
k1
2 ⌋∑
j=1

2jk1C2jp2j(1− p)k1−2j

+

⌊
k1
2 ⌋∑
j=1

(2j+ 1)k1C2j+1p2j+1(1− p)k1−2j−1

+
k1C1p1(1− p)k1−1

−

⌊
k1
2 ⌋∑
j=1

k1C2j+1p2j+1(1− p)k1−2j−1

−
k1C1p1(1− p)k1−1.

H⇒ E1 =
2⌊ k12 ⌋∑
2j=0
2j+=2

2jk1C2jp2j(1− p)k1−2j

+

2⌊ k12 ⌋∑
2j=0
2j+=2

(2j+ 1)k1C2j+1p2j+1(1− p)k1−2j−1

−

2⌊ k12 ⌋∑
2j=0
2j+=2

k1C2j+1p2j+1(1− p)k1−2j−1. (3)

Clearly, the 1st 2 terms in (3) cover all the values of Y1 from
0 to k1. Consequently, we have that:

2⌊ k12 ⌋∑
2j=0
2j+=2

2jk1C2jp2j(1− p)k1−2j

+

2⌊ k12 ⌋∑
2j=0
2j+=2

(2j+ 1)k1C2j+1p2j+1(1− p)k1−2j−1

=

k1∑
j=0

jP(Y1 = j)

= E(Y1)

= k1p. (4)

Further, the 3rd term in (3) is clearly the sum of odd terms
in the binomial expansion of ((1− p)+ p)k1 .
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Consequently, since:

((1− p)+ p)k1 =
k1∑
j=0

k1Cj(1− p)k1−jpj

and

((1− p)− p)k1 =
k1∑
j=0

k1Cj(1− p)k1−j(−1)jpj,

we have that:

((1− p)+ p)k1 − ((1− p)− p)k1

=

k1∑
j=0

k1Cj[1− (−1)j]pj(1− p)k1−j

= 2
∑
j odd

k1Cjpj(1− p)k1−j.

Consequently,∑
j odd

k1Cjpj(1− p)k1−j =
((1− p)+ p)k1 − ((1− p)− p)k1

2

=
(1)k1 − (1− 2p)k1

2

=
1− (1− 2p)k1

2
.

Thus,

2⌊ k12 ⌋∑
2j=0
2j+=2

k1C2j+1p2j+1(1− p)k1−2j−1 ≡
∑
j odd

k1Cjpj(1− p)k1−j

=
1− (1− 2p)k1

2
. (5)

Putting (4) and (5) into (3) yields:

E1 = k1p−
1− (1− 2p)k1

2
. (6)

Now, considering that the permutation functions fi for
i > 1 are chosen randomly from the set {f | f : [0, . . . ,
(N − 1)] → [1, . . . , ⌈Nki ⌉]}, for N → ∞, it’s possible to
determine a lower bound on the probability γi of correcting
at least 2 errors at pass i > 1 in a blockK 1

l which still contains
errors after the completion of the pass i− 1.
We have that:

γi = P

(
correcting ≥ 2 errors in K 1

l at pass i > 1

K 1
l contains errors at the end of pass i− 1

)
.

Given that K 1
l does contain some errors at the end of pass

i− 1, the minimum possible number of errors in K 1
l can only

be 2 since only an even number of errors can possibly remain
in a block after a pass. Consequently,

γi = 1− P

(
not correcting any errors in K 1

l at pass i > 1

K 1
l contains errors at the end of pass i− 1

)
.

An upper bound for P
(

not correcting any errors in K1
l at pass i> 1

K1
l contains errors at the end of pass i−1

)
can be found out by considering the following 2 cases corre-
sponding to probabilities which can possibly be equal to it:

• Case 1: P
(
E1
F1

)
where,
E1 = ϵ1 and ϵ2 are both present in K i

l and ∴, K i
l

possesses an even error parity at pass i > 1
and,
F1 = ∃ (among other possible errors) errors ϵ1 and ϵ2
in K 1

l at the end of pass i− 1.

• Case 2: P
(
E2
F2

)
where,
E1 = ϵ1 is present in K i

l and ϵ2 is present in K i
m and

both K i
l and K

i
m possess an even error parity at pass

i > 1
and,
F1 = ∃ (among other possible errors) errors ϵ1 and ϵ2
in K 1

l at the end of pass i− 1.

Clearly, the Case 2 probability is greater as compared to the
Case 1 probability, since ϵ1 and ϵ2 have a larger probability
of belonging to different blocks in pass i > 1 rather than the
same block due to shuffling of the indices of the bits of the
sifted key at the start of pass i > 1. Consequently, it’s possible
to say that:

P

(
not correcting any errors in K 1

l at pass i > 1

K 1
l contains errors at the end of pass i− 1

)

≤ P
(
E2
F2

)
.

Hence, we have that:

γi ≥ 1− P
(
E2
F2

)
.

Now, we can consider a possible case (Case A) of equiva-
lence for P

(
E2
F2

)
:

P (Case 2)

= P

(
∃ exactly 1 more error apart from ϵ1 in K i

l

∃ ϵ1 in K i
l

)

× P
(
∃ exactly 1 more error apart from ϵ2 in K i

m

∃ ϵ2 in K i
m

)
.

Since blocks are treated in the same manner, the 2 con-
ditional probabilities on the R.H.S. of the aforementioned
expression would be equal. Therefore,

P
(
E2
F2

)
=

[
P

(
∃ exactly 1 more error apart from ϵ1 in K i

l

∃ ϵ1 in K i
l

)]2
.
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Apart from case A, there is another possibility (Case B) of
equivalence for P

(
E2
F2

)
:

P
(
E2
F2

)
=

[
P

(
∃ at least 1 more error apart from ϵ1 in K i

l

∃ ϵ1 in K i
l

)]2
.

Clearly,

P

(
∃ at least 1 more error apart from ϵ1 in K i

l

∃ ϵ1 in K i
l

)

≥ P

(
∃ exactly 1 more error apart from ϵ1 in K i

l

∃ ϵ1 in K i
l

)
.

Hence,P
(
E2
F2

)
can be upper bounded usingP (Case B) and

we get that:

γi

≥ 1−

[
P

(
∃ at least 1 more error apart from ϵ1 in K i

l

∃ ϵ1 in K i
l

)]2

= 1−

[
1− P

(
∃ zero more errors apart from ϵ1 in K i

l

∃ ϵ1 in K i
l

)]2
= 1−

[
1− P

(
∃ exactly 1 error in K i

l

)]2
.

Now, Ei−1 is the expected number of errors inK 1
l after pass

i− 1 (where i > 1) and ⌈ Nk1 ⌉ is the total number of blocks in
the 1st pass. Hence, ⌈ Nk1 ⌉Ei−1 is the expected total number of
errors in the entire key after pass i− 1.

Consequently,

P
(
∃ exactly 1 error in K i

l

)
= P

(
∃

(⌈
N
k1

⌉
Ei−1 − 1

)
errors outside K i

l

)
.

Now, ki bits of the sifted key lie in the block K i
l . Hence,

N − ki bits of the sifted key lie outside the block K i
l .

Consequently,

P
(
∃ 1 error outside K i

l

)
=
N − ki
N

.

Since (by assumption) the probabilities of the occurrence
of errors in a block are independent of one another and that
these probabilities have a constant value for all the errors,
we get that:

P
(
∃

(⌈
N
k1

⌉
Ei−1 − 1

)
errors outside K i

l

)
=

(
N − ki
N

)⌈ Nk1 ⌉Ei−1−1
.

Since we are considering the case when N →∞,⌈
N
k1

⌉
Ei−1 − 1 ≈

N
k1
Ei−1 − 1 ≈

N
k1
Ei−1.

Hence,

γi ≥ 1−

[
1−

(
N − ki
N

) N
k1
Ei−1

]2

= 1−

[
1−

(
1−

ki
N

) N
k1
Ei−1

]2
. (7)

In order to simplify the R.H.S. of the above expression
further since N → ∞ here, let’s consider the evaluation of
the following limit:

lim
N→∞

(
1−

ki
N

) N
k1
Ei−1

.

To do this, let’s start by considering the following form of
the above limit:

lim
y→∞

(
1−

x
y

)ay
.

Using the Binomial Theorem, we know that:(
1−

x
y

)ay
=

ay∑
k=0

ayCk (1)ay−k (−1)k
(
x
y

)k
.

Consequently,(
1−

x
y

)ay
= 1−ay

(
x
y

)
+

(
ay(ay− 1)

2

)(
x
y

)2

+ . . . + (−1)ay
(
x
y

)ay
.

In the limiting case when y→∞, we thus, get that:

lim
y→∞

(
1−

x
y

)ay
= 1−ax +

a2x2

2!
+ · · · =

∞∑
n=0

(−1)n(ax)n

n!

= e−ax .

Hence,

lim
N→∞

(
1−

ki
N

) N
k1
Ei−1
= e−

kiEi−1
k1 . (8)

Consequently, for N →∞, putting (8) in (7) yields:

γi ⪆ 1−
[
1− e−

kiEi−1
k1

]2
. (9)

We now wish to bound δi(j) using γi for i > 1.
In order to do this, let’s consider a random variable Xi

which denotes the number of errors remaining inK 1
l after pass

i > 1. Consequently,

δi(j) = P((Xi−1 = 2j) ∩ (Xi = 2j))

+ P((Xi−1 − Xi > 0) ∩ (Xi = 2j)).

This is because 2j errors can remain in K 1
l after pass i > 1

when eitherK 1
l had 2j or> 2j number of errors in the previous

pass.
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Now,

P((Xi−1 − Xi > 0) ∩ (Xi = 2j))

= P(Xi = 2j)× P
(
Xi−1 > Xi
Xi = 2j

)
= P(Xi = 2j)× P(Xi−1 > 2j).

Since P(Xi = 2j) ∈ [0, 1],

P(Xi = 2j)× P(Xi−1 > 2j) ≤ P(Xi−1 > 2j).

Consequently,

δi(j) ≤ P((Xi−1 = 2j) ∩ (Xi = 2j))+ P(Xi−1 > 2j)

= P((Xi = 2j) ∩ (Xi−1 = 2j))+ P(Xi−1 > 2j)

= P(Xi−1 = 2j)× P
(

Xi = 2j
Xi−1 = 2j

)
+ P(Xi−1 > 2j).

By definition, we have that:

P(Xi−1 = 2j) = δi−1(j),

P
(

Xi = 2j
Xi−1 = 2j

)
= 1− γi,

and

P(Xi−1 > 2j) =
⌊
k1
2 ⌋∑

l=j+1

δi−1(j).

Thus,

δi(j) ≤
⌊
k1
2 ⌋∑

l=j+1

δi−1(l)+ δi−1(j)(1− γi). (10)

Now, consider that k1 is chosen such that:

⌊
k1
2 ⌋∑

l=j+1

δ1(l) ≤
1
4
δ1(j), (11)

and let ki = 2ki−1 for i > 1. Accordingly, we have that:

ki = 2i−1k1. (12)

Now, putting (9) in (10) gives:

δi(j) ≤
⌊
k1
2 ⌋∑

l=j+1

δi−1(l)+ δi−1(j)
(
1− e−

kiEi−1
k1

)2

.

Using (12), the above expression simplifies to:

δi(j) ≤
⌊
k1
2 ⌋∑

l=j+1

δi−1(l)+ δi−1(j)
(
1− e−2

i−1Ei−1
)2

. (13)

In addition to satisfying (11), let’s consider that the choice
of k1 is such that it satisfies the following inequality:

E1 ≤ −
ln( 12 )

2
. (14)

Let’s now analyse the case when i = 2 and start with (9).
Thus, using (12), we get that:

γ2 ⪆ 1−
[
1− e−2E1

]2
.

Using (14),

γ2 ⪆ 1−
[
1− eln(

1
2 )
]2
=

3
4
. (15)

When i = 2, (10) becomes:

δ2(j) ≤
⌊
k1
2 ⌋∑

l=j+1

δ1(l)+ δ1(j)(1− γ2).

Using (11),

δ2(j) ≤
1
4
δ1(j)+ δ1(j)(1− γ2) =

(
5
4
− γ2

)
δ1(j).

Using (15),

δ2(j) ≤
(
5
4
−

3
4

)
δ1(j)

H⇒ δ2(j) ≤
δ1(j)
2

. (16)

By definition,

E2 =
⌊
k1
2 ⌋∑
j=1

2jδ2(j).

Using (16),

E2 ≤
(
1
2

) ⌊ k12 ⌋∑
j=1

2jδ1(j).

Using (2),

E2 ≤
E1
2

. (17)

Similarly, we can also analyse the case when i = 3 by
starting with (9) and using (12). We get that:

γ3 ⪆ 1−
[
1− e−4E2

]2
.

Using (17),

γ3 ⪆ 1−
[
1− e−

4E1
2

]2
= 1−

[
1− e−2E1

]2
.

Using (14),

γ3 ⪆ 1−
[
1− eln(

1
2 )
]2
=

3
4
. (18)

When i = 3, (10) becomes:

δ3(j) ≤
⌊
k1
2 ⌋∑

l=j+1

δ2(l)+ δ2(j)(1− γ3).
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Using (16),

δ3(j) ≤
1
2

 ⌊
k1
2 ⌋∑

l=j+1

δ1(l)+ δ1(j)(1− γ3)

 .

Using (11),

δ3(j) ≤
1
2

(
1
4
δ1(j)+ δ1(j)(1− γ3)

)
=

1
2

(
5
4
− γ3

)
δ1(j)

Using (18),

δ3(j) ≤
1
2

(
5
4
−

3
4

)
δ1(j)

H⇒ δ3(j) ≤
δ1(j)
4

. (19)

By definition,

E3 =
⌊
k1
2 ⌋∑
j=1

2jδ3(j).

Using (19),

E3 ≤
(
1
4

) ⌊ k12 ⌋∑
j=1

2jδ1(j).

Using (2),

E3 ≤
E1
4

. (20)

One can easily extend this analysis ∀ i > 3 as well and find
that the following results will hold true ∀ i > 1:

γi ⪆
3
4
. (21)

δi(j) ≤
δ1(j)
2i−1

. (22)

Ei ≤
E1
2i−1

. (23)

From (22) and (23), it’s quite clear that the probability
that a block K 1

l has ≥ 1 errors decreases exponentially with
respect to the number of passes when the choice of k1 is such
that it satisfies (11) and (14) and ki = 2ki−1 for i > 1.
It’s also possible to derive an upper bound on the amount

of information [I (ω)] leaked after ω passes per block of
length k1, i.e., per block K 1

l (with all the ki values chosen
as discussed above) by the Cascade protocol to a potential
eavesdropper in terms of the number of parity bits.

In accordance with the aforementioned notations, it’s
expected that:

I (ω) ≤ 1+
⌊
k1
2 ⌋∑
j=0

P(Y1 = 2j+ 1)⌈log2 k1⌉ +
ω∑
l=2

El⌈log2 k1⌉

+
1
2

(
ω∑
l=2

El

)
. (24)

The reasons for the inclusion of the 4 terms in the R.H.S of
the above expression are as follows:
• 1: Because 1 parity value corresponding to the parity of
the entire block K 1

l is necessarily exchanged between

Alice and Bob before the start of the Cascade protocol
in order to ascertain whether K 1

l has an odd error parity
or not.

•

∑⌊ k12 ⌋
j=0 P(Y1 = 2j + 1)⌈log2 k1⌉: It must be noted that

whenever (to start with) block K 1
l has an odd number of

errors, Alice and Bob will perform an interactive binary
search so as to find and hence, correct exactly 1 error in
K 1
l . This interactive binary search entails the exchange

of ⌈log2 k1⌉ bits between Alice and Bob. Consequently,
in order to compute the expected number of parity bits
that can possibly be leaked, we multiply the probability
that the block K 1

l has an odd number of errors before
the start of the pass i = 1 [= P(Y1 = 2j + 1)] with
the number of parity bits that are leaked when an odd
number of errors are present in K 1

l before the start of the
pass i = 1 [= ⌈log2 k1⌉] and sum the resultant product
over all the possible values of the odd number of errors
that can be present in K 1

l .
•

∑ω
l=2 El⌈log2 k1⌉: Assuming that all the expected num-

ber of errors still present in K 1
l (after the 1st pass) till

the ωth pass are corrected by Alice and Bob in ω passes
(this is clearly an upper bound on the number of errors
corrected in ω passes (in part; the other part of the bound
is covered in the 4th term)), ⌈log2 k1⌉ parity bits will
be exchanged between Alice and Bob corresponding to
interactive binary searches performed on K 1

l for each of
the errors. Consequently,

∑ω
l=2 El⌈log2 k1⌉ will be the

total number of leaked parity bits in passes 2, . . . , ω.
•

1
2

(∑ω
l=2 El

)
: In line with the above mentioned assump-

tion, apart from ⌈log2 k1⌉ parity bits exchanged between
Alice and Bob corresponding to interactive binary
searches performed on K 1

l for each of the errors, parity
bits corresponding to the recomputed parity of the entire
block K 1

l in passes 2, . . . , ω will also be exchanged
between Alice and Bob in order to ascertain whether/not
K 1
l has an odd error parity. This will clearly be done for

half the expected number of errors that are corrected in
a given pass ∀ passes 2, . . . , ω since errors are corrected
two by two in K 1

l in the passes wherein i > 1.
We now proceed on with the simplification of the expres-

sion for I (ω) presented in (24).
As shown earlier, since Y1 ∼ B(k1, p),

P(Y1 = 2j+ 1) = k1C2j+1p2j+1(1− p)k1−2j−1.

Using (5),

⌊
k1
2 ⌋∑
j=0

P(Y1 = 2j+ 1) =
⌊
k1
2 ⌋∑
j=0

k1C2j+1p2j+1(1− p)k1−2j−1

=

2⌊ k12 ⌋∑
2j=0
2j+=2

k1C2j+1p2j+1(1− p)k1−2j−1

=
1− (1− 2p)k1

2
. (25)
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By definition,

Ei =
⌊
k1
2 ⌋∑
j=1

2jδi(j).

Using (22),

Ei ≤
⌊
k1
2 ⌋∑
j=1

2j
(

δ1(j)
2i−1

)
. (26)

Putting (25) and (26) in (24) yields:

I (ω) ≤ 1+
1− (1− 2p)k1

2
⌈log2 k1⌉

+ 2
ω∑
l=2

⌊
k1
2 ⌋∑
j=1

jδ1(j)
2l−1
⌈log2 k1⌉

+
1
2

2
ω∑
l=2

⌊
k1
2 ⌋∑
j=1

jδ1(j)
2l−1

 . (27)

Let’s now derive an upper bound for the 4th term in the
above inequality:

1
2

2
ω∑
l=2

⌊
k1
2 ⌋∑
j=1

jδ1(j)
2l−1

 = ω∑
l=2

1
2l−1

⌊
k1
2 ⌋∑
j=1

jδ1(j)

=

ω∑
l=2

1
2l−1

(
E1
2

)
.

Using (6),

1
2

2
ω∑
l=2

⌊
k1
2 ⌋∑
j=1

jδ1(j)
2l−1

=1
2

ω∑
l=2

1
2l−1

(
k1p−

1−(1−2p)k1

2

)
.

Clearly, (1− 2p)k1 ≤ 1.
Consequently,

1
2

2
ω∑
l=2

⌊
k1
2 ⌋∑
j=1

jδ1(j)
2l−1

 ≤ 1
2

ω∑
l=2

1
2l−1

(
k1p−

�
��
1
2
+

�
��
1
2

)

=
1
2

ω∑
l=2

k1p
2l−1

.

Now, it was already specified in the beginning that we
choose k1 in a manner that depends on p. Let’s analyse this a
bit more closely.

Consider that p = e
100 . This means that on average,

we have e errors per 100 bits of the sifted key. Further, this
implies that a block of 100

e (= 1
p ) bits will contain 1 error on

average. Thus, k1 = 1
p seems to be a good choice of k1 since

all the errors in the key can possibly get corrected faster
considering that more number of blocks would have an odd
error parity to start with itself. This was the value of k1 that

had been used in [16] and [17]. However, since k1 must nec-
essarily satisfy constraints (11) and (14), in practice, k1 turns
out to be< 1

p (as we show later on). Consequently, in general,
we wouldn’t require k1 > 1

p at all and hence, we can consider
that k1 ≤ 1

p .
Hence, we have that:

1
2

2
ω∑
l=2

⌊
k1
2 ⌋∑
j=1

jδ1(j)
2l−1

 ≤ 1
2

ω∑
l=2

(
1

�p

)
�p

2l−1

=
1
2

ω∑
l=2

1
2l−1

≤
1
2

∞∑
l=1

1
2l−1

=
1
2

[
1+

1
2
+

1
4
+ . . .

]

=
1
2

 1(
1− 1

2

)


= 1. (28)

Putting (28) in (27) yields:

I (ω) ≤ 1+
1− (1− 2p)k1

2
⌈log2 k1⌉

+ 2
ω∑
l=2

⌊
k1
2 ⌋∑
j=1

jδ1(j)
2l−1
⌈log2 k1⌉ + 1.

H⇒ I (ω) ≤ 2+
1− (1− 2p)k1

2
⌈log2 k1⌉

+ 2
ω∑
l=2

⌊
k1
2 ⌋∑
j=1

jδ1(j)
2l−1
⌈log2 k1⌉. (29)

Since the number of blocks of length k1 = ⌈ Nk1 ⌉, the total
amount of information [Inet (ω)] leaked after ω passes is:

H⇒ Inet (ω) =
⌈
N
k1

⌉
I (ω).

Consequently,

H⇒ Inet (ω) ≤
⌈
N
k1

⌉(
2+

1− (1− 2p)k1

2
⌈log2 k1⌉

)

+

⌈
N
k1

⌉2
ω∑
l=2

⌊
k1
2 ⌋∑
j=1

jδ1(j)
2l−1
⌈log2 k1⌉

 .

(30)

Now, while we do wish to choose the values of ki such that
they lead to an exponentially decreasing error probability δi(j)
with respect to the number of passes of Cascade, we also want
to minimize, as much as possible, the amount of information
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FIGURE 3. Alice’s sifted key string.

FIGURE 4. Bob’s sifted key string.

FIGURE 5. Blocks, their corresponding block numbers and error parities at the start of Pass 1 of the cascade
protocol [Undetected error locations are indicated by the colour yellow].

[Inet (ω)] being leaked to a potential eavesdropper, say, Eve.
This is because a larger of number of parity bits leaked to Eve
makes it more easier for her to construct the key being shared
by only Alice and Bob.

From (30), it’s evident that, for a fixed value of p,
as k1 increases, Inet (ω) decreases.

Consequently, we choose the largest value of k1 that sat-
isfies (11) and (14) and set ki = 2ki−1 (∀ i > 1). This
thus, helps us in achieving a dual objective: an exponentially
decreasing error probability with the passes of Cascade (since
k1 satisfies (11) and (14) and ki = 2ki−1 (∀ i > 1)) and only
the minimum possible information being leaked to a potential
eavesdropper (largest k1 implies least Inet (ω)).

On the basis of some empirical tests, the original authors of
Cascade [10] recommended 4 passes of the protocol in total
(� = 4), i.e., ω = 4, for obtaining a negligible amount of
error in the final key strings being possessed by Alice and
Bob. Table 2 shows the values of k1 and I (ω) forω = 4 and for
p ∈ {0.01, 0.03, 0.05, 0.075, 0.10, 0.125, 0.15} which have
been obtained by following the procedure outlined in the
previous paragraph and by setting ω = 4 in (29) respectively.
For p ∈ {0.01, 0.05, 0.10, 0.15}, it can be easily seen that the
values of k1 are exactly equal to, and the values of I (4) are
approximately equal to their corresponding values in Table 1
of [10]. It also seems reasonable to say that k1 ≈ 0.73/p,
as was stated in [24].
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FIGURE 6. Detection and correction of errors using BINARY in Pass 1 of the cascade protocol [Undetected error locations are indicated by the
colour yellow].

TABLE 2. Values of important parameters related to the cascade protocol.

IV. DEVIATIONS FROM RELATED PROBABILISTIC
ANALYSES
While our probabilistic analysis of the Cascade protocol
builds up on the one given originally in [10] and follows some

expressions and notations given in [10] and [16], it differs
from them in that it extensively clarifies the math and is
backed by physical interpretation at every step of the analysis.
Certain aspects concerning the flow (order) of the analysis,
etc. in which it differs from the analyses/proofs given in [10]
and [16] are quite important to note and we now begin to
enumerate them.

Notwithstanding certain major errors such as stating that

Ei =
∑⌊ ki2 ⌋

j=1 2jδ1(j), E1 ≤ 2iEi and ki =
k1
2i−1

(instead of

the correct expressions: Ei =
∑⌊ k12 ⌋

j=1 2jδi(j), E1 ≥ 2i−1Ei
and ki = 2i−1k1) in [16], its author most importantly claims

VOLUME 11, 2023 84723



A. Choudhary, A. Wasan: Cracking the Curious Case of the Cascade Protocol

FIGURE 7. ’net_block_index_lists’ dictionary at the end of Pass 1 of the cascade protocol [Undetected error locations are
indicated by the colour yellow].

FIGURE 8. Blocks, their corresponding block numbers and error parities at the start of Pass 2 of the cascade protocol [Undetected error locations
are indicated by the colour yellow].

that the inequality
∑⌊ k12 ⌋

l=j+1 δi(l) ≤ 1
4δi(j) has been mistakenly

assumed to be a necessary requirement for only i = 1 in [10].
According to the author, it’s only when it is assumed to be
true ∀ i > 1 as well that it can be correctly said that there
will be an exponential reduction in δi(j) (∀ i) with the passes
of Cascade. The author further states that it’s not possible to
set up an induction to prove that the said inequality holds
true ∀ i > 1 given that it does hold true for i = 1 since
the expression involved is not a strict equality. Additionally,
in [16], the inequalityEi ≤

Ei−1
2 is presented as an assumption

to arrive at the required result while this was not assumed and
rather stated to follow from previouslymentioned expressions
and relevant calculations in [10]. The author argues that for
p = 1 (for instance), every bit in every block of Bob’s sifted
key would be erroneous and consequently, any given block
would always possess an even error parity leading to no error
being corrected at all. In such a case, Ei = Ei−1 ∀ i > 1.

While we do agree with the author of [16] that it’s not
possible to set up an induction by just using the inequality

∑⌊ k12 ⌋
l=j+1 δ1(l) ≤ 1

4δ1(j), we have systematically shown how

to arrive at the desired results, namely, δi(j) ≤
δ1(j)
2i−1

and Ei ≤
E1
2i−1

starting with just the said inequality and the condition

E1 ≤ −
ln( 12 )
2 .

We have deviated from the original proof [10] as well while
doing so. While it’s true that it’s impossible to arrive at the

inequality δi(j) ≤ 1
4δi−1(j) + δi−1(j)

(
1− e−2

i−1Ei−1
)2

by

only assuming
∑⌊ k12 ⌋

l=j+1 δ1(l) ≤ 1
4δ1(j) to be true, clearly,

it’s unnecessary to even prove that this inequality holds true.
In our proof, we have successfully shown that δi(j) ≤

δ1(j)
2i−1

and

Ei ≤
E1
2i−1

which are stronger upper bounds than δi−1(j)
2 and

Ei−1
2 (respectively) and which clearly reveal the exponential

nature of the reduction in the error probability in Cascade.

As far as the invalidity of Ei ≤
Ei−1
2 or, Ei ≤

E1
2i−1

for
p = 1 is concerned, we point out that p = 1 is clearly,
a pathological case, since Alice and Bob would abort the
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FIGURE 9. Detection and correction of errors using BINARY in Stage 1 of Pass 2 of the cascade protocol [Undetected error
locations are indicated by the colour yellow].

QKD protocol midway before even starting the Cascade pro-
tocol considering that the number of bit errors detected by
them (in that half of the sifted keywhich is used for estimating
the Quantum Bit Error Rate (QBER) [= p]) would clearly
exceed any given reliable threshold on the QBER. Further,
in any given case, as has already been mentioned in [10],
Cascade is an optimal reconciliation protocol only as long as
p ≤ 0.15. Thus, only those values of p which are less than
0.15 are relevant to the discussion at hand.

Our probabilistic analysis thus, overcomes all the short-
comings of the analyses/proofs given in [10] and [16].
Further, we have also extensively discussed the math and
physical interpretation behind the expressions for E1 and the
upper bound on I (ω) given in [10] which was not at all
touched upon in [16] and to the best of our knowledge, has
not been explained in detail in any related study available in
the literature till now.

V. CASCADE IN ACTION
In this section, we give an example to illustrate how
the Cascade protocol (Algorithm 3) works in practice by
detailing the steps involved in the error correction of the
sifted key string possessed by Bob. The step-by-step results
shown in this example were obtained by an actual simu-
lation of the Cascade protocol using Algorithm 3 written
in Python 3.9. The notation used in this section follows
from Table 1.
For the purpose of this example, we consider the QKD

system’s QBER to be 7.5%. Further, as shown in Fig. 3(a)
and Fig. 4(a), we consider that both Alice and Bob initially
possess sifted key strings with a length of 100 bits each.
As can be discerned from Fig. 3 and Fig. 4, Bob’s sifted key
string differs from that of Alice’s in 10 bits. The bits located
at the indices 2, 7, 11, 19, 24, 49, 51, 67, 72 and 99 in Bob’s
sifted key string are erroneous.
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FIGURE 10. ’net_block_index_lists’ dictionary after the completion of Stage 1 of Pass 2 of the cascade protocol [Undetected error
locations are indicated by the colour yellow; error locations that have just been detected and corrected are indicated by the colour
green].

Note that we have also explicitly shown the integer equiv-
alents of Alice’s and Bob’s sifted key strings in Fig. 3(b)
and Fig. 4(b) respectively since Cascade (as per Algorithm 3)
operates on them rather than the long bit strings directly while
performing error correction (see Section II for the reasons
pertaining to the same).

Let us now proceed to apply the Cascade protocol. Since
p = 0.075 and we know that k1 =

⌊
0.73
p

⌋
(see Section III),

k1 =
⌊

0.73
0.075

⌋
= 9. Accordingly, the block size for the 1st

pass is 9. Since Algorithm 3 operates on the indices of the
key strings (as already discussed in Section II), all the indices
from 0 to 99 are divided into as many blocks of size 9 as is

possible. As is shown in Fig. 5, we thus obtain 11 blocks with
a size = 9 and 1 block with a size = 1.
Moving on, since BINARY only operates on blocks

with an odd error parity, i.e., those having a parity mis-
match with the corresponding blocks possessed by Alice,
as is clear from Fig. 5, Bob only operates on blocks 2,
8, 9 and 12 using BINARY. Accordingly, as is shown in
Fig. 6, Bob is able to identify the errors at indices 11, 67,
72 and 99 and successfully correct them by flipping the
corresponding bits.

The contents of the dictionary ‘net_block_index_lists’ (see
Algorithm 3), i.e., the even error parity blocks at the end of
pass 1 are shown in Fig. 7.
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FIGURE 11. Detection and correction of errors using BINARY in Stage 2 of Pass 2 of the cascade protocol [Undetected error locations are
indicated by the colour yellow; error locations that have just been detected and corrected are indicated by the colour green].

As is evident from Fig. 7, the errors located at the indices 2,
7, 19, 24, 49 and 51 in Bob’s sifted key string are still left to be
detected and corrected. None of these errors could be detected
in the 1st pass of Cascade since their pairwise presence in the
corresponding blocks rendered the blocks with an even error
parity.

As stated earlier, from the 2nd pass onwards, random shuf-
fling of the indices of the key string is carried out so that
some of these errors may possibly be detected (and hence,
corrected). Accordingly, the protocol now proceeds with the
shuffling of the indices in the 2nd pass. Subsequently, since
k2 = 2k1 = 2× 9 = 18, the shuffled net index list is divided
into as many blocks of size 18 as is possible. As is shown in
Fig. 8, we thus obtain 5 blocks with a size = 18 and 1 block
with a size = 10.

Now, as is clear from Fig. 8, Bob only operates on (odd
error parity) blocks 1 and 3 using BINARY. Accordingly, as is
shown in Fig. 9, Bob is then able to identify the errors at
indices 2 and 51 and successfully correct them by flipping
the corresponding bits.

The contents of the dictionary ‘net_block_index_lists’, i.e.,
the even error parity blocks (generated in passes 1 and 2
respectively) until now, i.e., till the end of the 1st stage of the
2nd pass, are shown in Fig. 10.
Now, moving on to the 2nd stage of the 2nd pass, we find

that the error locations, indices 2 and 51, that have just been
detected and corrected, were also present in blocks 1 and 5
formed during the 1st pass. This can be clearly seen in Fig. 10

wherein the said indices in the aforementioned blocks have
been highlighted in green. Accordingly, Bob can then back-
track to these blocks one after the other (in the ascending
order of their lengths) and subsequently, use BINARY so as
to find and correct errors which were hidden in the 1st pass
of Cascade. However, as indicated earlier in Section II, a new
error found in the 1st block (to which Bob backtracks) can
possibly unearth an odd number of errors in the blocks formed
in the 1st stage of the 2nd pass. Bobwill hence bemoving back
and forth to possibly find and correct errors using BINARY.
However, the important thing to note is that only those such
blocks which have an odd error parity need to be operated on
using BINARY and hence, the value of the parity checker (the
variable ‘parity_check’ in Algorithm 3) needs to be checked
before deciding on whether or not to operate on such a block.

In this particular instance, both the 1st and the 5th blocks
formed during the 1st pass have equal lengths/sizes (= 9).
For breaking this tie and hence, figuring out the block to
which Bob must backtrack 1st, the blocks are arranged in the
ascending order of their pass numbers and block numbers.
The block with the smallest pass number and the smallest
block number is considered as the 1st candidate for backtrack-
ing. Accordingly, Bob 1st operates on the 1st block formed
during the 1st pass and hence, we find that since the value
of ‘parity_check’ (=1) is odd, the block has an odd error
parity. Bob can hence, operate on the block using BINARY
so as to find and correct exactly 1 error. As is shown in
Fig. 11, Bob is then able to find and correct the error at
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FIGURE 12. ’net_block_index_lists’ dictionary at the end of Pass 2 of the cascade protocol [Undetected error locations are indicated
by the colour yellow].

FIGURE 13. Blocks, their corresponding block numbers and error parities at the start of Pass 3 of the cascade protocol [undetected error
locations are indicated by the colour yellow].

index 7 in his key. Now, this error location, index 7, was also
present in the 2nd block formed during the 1st stage of the
2nd pass. Accordingly, this block also becomes a candidate
for consideration for error detection and correction using
BINARY. Now, since the 5th block formed during the 1st pass
(length = 9) is smaller than the 2nd block formed during the
1st stage of the 2nd pass (length = 18), it becomes the next

block to which Bob must backtrack. As shown in Fig. 11(b),
since the value of ‘parity_check’ (= 1) is again odd, this block
also has an odd error parity and hence, Bob is able to find and
correct the error at index 49 in his key using BINARY. Now,
this error location, index 49, was also present in the 2nd block
formed during the 1st stage of the 2nd pass. Note that this
block clearly coincides with the block identified earlier, i.e.,
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FIGURE 14. Detection and correction of errors using BINARY in Stage 1 of Pass 3 of the cascade protocol [undetected error locations are
indicated by the colour yellow].

the block which contained the index 7. Accordingly, to avoid
duplication, only 1 instance of this block is to be examined
now. It is evident that this block has an even error parity
now considering that the errors at both the indices 7 and
49 have been successfully detected and corrected now. It is
therefore futile to use BINARY on this block. Bob is able to
discern this by examining the value of ‘parity_check’ which
is equal to 2 for this block (see Fig. 11(c)) and is hence, even.
Operating on this block using BINARY is hence ruled out.
It is worth noting that this case brings out the usefulness of
‘parity_check’. Had ‘parity_check’ not been there (as was
the case in the original algorithm given in [10]), Bob would
have ended up performing 1 step of the BINARY algorithm
in vain and having unnecessarily communicated with Alice.
Moreover, both Alice and Bob would have unnecessarily
computed the relevant parities.

Clearly, no further backtracking is to be done now since no
other errors have been detected. Consequently, all the blocks
have been rendered with an even error parity. The contents
of the dictionary ‘net_block_index_lists’ after the completion
of the 2nd stage of the 2nd pass, i.e., at the end of pass 2, are
shown in Fig. 12.
Moving on to the 3rd pass, post the shuffling of the indices

and the subsequent division of the net index list into blocks

of size k3 = 2k2 = 2 × 18 = 36, Bob obtains 2 blocks with
a size = 36 and 1 block with a size = 28 (see Fig. 13).
Now, as is clear from Fig. 13, Bob only operates on (odd

error parity) blocks 2 and 3 using BINARY. Accordingly, as is
shown in Fig. 14, Bob is then able to identify the errors at
indices 19 and 24 and successfully correct them by flipping
the corresponding bits.

The contents of the dictionary ‘net_block_index_lists’, i.e.,
the even error parity blocks formed until now, i.e., till the end
of the 1st stage of the 3rd pass, are shown in Fig. 15.
Now, moving on to the 2nd stage of the 3rd pass, we find

that the error locations, indices 19 and 24, that have just
been separately detected and corrected, were present together
in block 4 of the 1st pass and block 1 of the 2nd pass (see
Fig. 15(a) and Fig. 15(b)). Since they are present together in
both the 2 blocks, the value of ‘parity_check’ = 2 for both the
blocks and hence, these blocks are not to be operated on by
Bob using BINARY (see Fig. 16).

Clearly, no further backtracking is to be done and
all the blocks formed until now have been rendered
with an even error parity. The contents of the dictionary
‘net_block_index_lists’ after the completion of the 2nd stage
of the 3rd pass, i.e., at the end of pass 3, are thus, the same as
those after the completion of the 1st stage of the 3rd pass and
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FIGURE 15. ’net_block_index_lists’ dictionary after the completion of Stage 1 of Pass 3 of the cascade protocol [Error locations that have just
been detected and corrected are indicated by the colour green].

can be seen in Fig. 15 again (only the green colour doesn’t
hold any significance now and can be considered as blue).

Now, moving on to the 4th (and final) pass, post the shuf-
fling of the indices and the subsequent division of the net
index list into blocks of size k4 = 2k3 = 2 × 36 = 72,
Bob obtains 1 block with a size = 72 and 1 block with a
size = 28 (see Fig. 17).

As shown in Fig. 17, both these blocks have an even
error parity and hence, BINARY is not to be used on them.

This marks the end of the 4th pass of Cascade and the end of
the Cascade protocol.

In this particular example, all the errors present in Bob’s
sifted key string were successfully detected and corrected
by the Cascade protocol. This can be easily verified by
the fact that the integer equivalent of Bob’s sifted key
string after correcting the last error present at index 24 (see
Fig. 14(b)) matches with that of Alice’s sifted key string
(see Fig. 3(a)).
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FIGURE 16. Stage 2 of Pass 3 of the cascade protocol [Error locations that have just been detected and
corrected are indicated by the colour green].

FIGURE 17. Blocks, their corresponding block numbers and error parities at the start of Pass 4 of the cascade protocol.

FIGURE 18. 4 Practically useful optimizations to the cascade protocol.

It is worth mentioning that in only this particular case,
all the errors present in Bob’s sifted key string got detected
and corrected in 3 passes. In general, for a given sifted key
string possessed by Bob, the number of errors that may get
finally corrected, and the number of passes in which they
may get detected and corrected, depend upon the net effect

of 3 major factors: the location of the errors in Bob’s sifted
key string, the value of the QBER, and the random shuffling
at the start of every pass (from the 2nd pass onwards). If, for
instance, there are 10 errors in Bob’s sifted key string and all
of them are present in 10 different blocks at the start of the
1st pass itself, then all those errors would get corrected in the
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1st pass of the Cascade protocol. This is because each of those
10 blocks would have an odd error parity. On the other hand,
if the QBER is varied, it may be possible for a larger(/lesser)
number of blocks to be rendered with an odd error parity to
start with and consequently, the Cascade protocol might be
completed in a lesser(/larger) number of passes. Similarly, the
result of the random shuffling also influences the process of
error correction. Random shuffling might possibly result in
a larger/lesser number of blocks with an odd error parity and
this might lead to faster/slower error correction. Furthermore,
in general, the way in which random shuffling influences the
process of error correction is highly complex considering that
even a larger number of even error parity blocks generated
by it in one pass could possibly facilitate better backtracking
and faster error correction in the subsequent passes. All in all,
however, it can said with a high probability that with the pre-
viously mentioned choice of parameters (see Section III), the
Cascade protocol does guarantee an exponentially decreasing
error probability with the number of passes.

Returning back to the example in focus in this section,
it can be clearly discerned from the various steps accompa-
nied with illustrations that the Cascade protocol is simplistic
yet effective. It is this very feature of Cascade that has ren-
dered it as one of the most popular information reconciliation
protocols in QKD. In fact, the world’s first QKD network, the
United States’ Defense Advanced Research Projects Agency
(DARPA) Quantum Network, successfully used the Cas-
cade protocol for performing error correction and their team
termed it as the ‘best-known error correction protocol for
QKD’ owing to its high adaptability and efficiency [28].
Switzerland’s SwissQuantum QKD Network also used the
Cascade protocol and their team was able to obtain stable
secret key generation rates (the number of 256-bit keys gen-
erated per day) for over a period of more than one and a
half years [29]. A recent demonstration of QKD over a long
distance of 421 km has also successfully utilised the Cascade
protocol to obtain significantly high secret key generation
rates [3]. The latest in the line of users of the Cascade protocol
is a very high speed integrated QKD system which has been
able to attain secret key generation rates in the kbps range
over a distance of 151.5 km [30]. All these practical applica-
tions of Cascade clearly reveal that it has and continues to be
a protocol of choice for error correction as a part of any given
QKD protocol in QKD systems worldwide.

VI. CONCLUSION
In this study, we have thus explained the Cascade protocol in
detail, backing theory with in-depth physical interpretation
at every step. We have also provided an algorithmic imple-
mentation of the Cascade protocol with practically useful
optimizations. Fig. 18 summarizes the 4 key optimizations
proposed by us (in the circles) together with their corre-
sponding advantages (in the arrows corresponding to the
circles). Furthermore, we have extensively clarified the math
behind the choice of parameter values for ensuring both: an
exponential reduction in the error probability with the passes

of Cascade and the minimum possible information leakage
to a potential eavesdropper. Finally, we have also shown the
results of a practical implementation of Cascade by providing
step-by-step illustrations of Cascade in action.

This study is sure to prove useful while developing
optimized QKD systems for obtaining high computational
efficiency in the information reconciliation stage with the
Cascade protocol. At the same time, the in-depth physical
interpretation and math behind the protocol coupled with
the diagrammatic representation of Cascade in action is sure
to guide academicians and people working in the industry
while understanding the Cascade protocol and optimizations
thereof from a practical viewpoint. To the best of our knowl-
edge, this is the first such study on the Cascade protocol
which delivers the need of the hour by providing insight
driven intellect.

Future work includes a complexity analysis of our
algorithm along with a timing control and synchronization
enabled simulation of the Cascade protocol with reliable and
accurate models of quantum hardware. This would enable
us to affect a comprehensive computational efficiency cum
communication latency analysis of the protocol by determin-
ing the hardware and software requirements and reconciled
key generation rates. This can prove to be highly useful to
the quantum communication community as it can serve as
a testbed before Cascade is deployed in large and complex
QKD network configurations.
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