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ABSTRACT For autonomous robots to gain the trust of humans and maximize their abilities in society,
they must be able to explain the reasons for their behavioral decisions. Defining explainable autonomous
robots (XAR) as robots with such explanatory capabilities, we can summarize four requirements for their
realization: 1) obtaining an interpretable decision space, 2) estimating the user’s world model, 3) extracting
important information for conveying policy in the robot, and 4) generating explanations based on explanatory
factors. So far, these four elements have been studied independently. In this study, we first implement an
explanatory algorithm that integrates these four elements. Then, we evaluate the implemented explanatory
algorithm by conducting a large-scale subject experiment. The implemented explanation algorithm is shown
to generate human-acceptable explanations; the results provide several insights and suggestions for future
research on XAR. For example, we found that a robot that can give acceptable explanations to people is
more likely to gain their trust. We also found that the questions ‘‘Why A?’’ and ‘‘Why not A?’’ should be
explained in different ways.

INDEX TERMS XAI, explainable autonomous robots, world models, human-acceptable explanation.

I. INTRODUCTION
Autonomous robots are being integrated into society at an
accelerating pace. Catering robots are being used in restau-
rants, and the introduction of service robots is being con-
sidered in various places. Autonomous robots will continue
to expand, and it may not be long before robots are treated
as partners on a par with humans. However, their inability
to explain the reasons for their decision to act limit the
scope of applications of these robots. Current autonomous
robots play a specific role in society by faithfully execut-
ing commands given by humans to ensure their reliability.
In other words, they are required primarily to behave as
per the humans’ expectations; if they behave unexpectedly,
they will be stopped in an emergency without warning.
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However, robots with advanced sensors and decision-making
algorithms can sometimes plan better behavior than humans’
expectations.Moreover, if the robot is capable of autonomous
online learning, its behavior can change from moment to
moment. However, without appropriate explanatory capa-
bilities, robots will find gaining the trust of humans and
maximizing their abilities in society difficult.

In recent years, the importance of explainability in artificial
intelligence has been widely recognized, and research on
explainable artificial intelligence (XAI) [1], [2] is expand-
ing. To endow a real robot with explainability sufficient to
explain its reasons for its own action decisions to a user,
there are research challenges common to XAI and unique
to autonomous robots. The common issue is presenting the
explanation in a form that humans can interpret. In particular,
XAI focuses on converting the basis for decisions of machine
learning models and the models themselves into interpretable
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forms. Presenting explanations in human-interpretable forms
is also an important research issue for autonomous robots.

Conversely, there are two main research issues specific to
autonomous robots. The first is the mismatch in recogniz-
ing the features that serve as decision criteria. In XAI and
explainable reinforcement learning (XRL), the input features
given to the user and the model always coincide. How-
ever, autonomous robots and users do not always agree on
the environmental model derived from the observations and
information they are aware of.1 Estimating the discrepancy
between those perceptions and generating an explanation that
considers the discrepancy’s content is necessary.

The second point is the explanation of the process leading
to the output. Most studies on XAI and XRL present the con-
tribution of each feature to the output as an explanation and
do not consider the explanation of why the feature contributes
to it. However, for autonomous robots, the process by which
each feature contributes to the output is not always obvious;
hence, explaining this process is important.

We defined explainable autonomous robots (XAR) as the
explainability of autonomous robots in [3] and proposed the
four requirements shown in Fig.1 for its realization.

Requirement 1: interpretable decision-making space
Autonomous agents need to have a decision space
in which each decision is interpretable by humans.

Requirement 2: the model of others
For autonomous agents to share plans with humans,
the first step is to estimate the user’s decision space
and planning algorithm (model of others).

Requirement 3: information needed for explanation
Extracting information (explanatory factors) is use-
ful for keeping the error between the agent’s
assumed plan and the human’s assumed plan within
a certain tolerance or reducing the user’s estimation
burden.

Requirement 4: presentation to user
The extracted explanatory factors are converted into
human-interpretable forms such as language and
visual representations.

Each of these requirements has been established as a
research issue and has been studied independently [3]. This
fact indicates that there are no previous examples of the
integration of these elements with respect to the explainability
of autonomous robots. In light of the XAR, implementing and
evaluating an algorithm that satisfies all these requirements
is essential. Investigating how such integration is accepted
by people is important for further research on individual ele-
ments in the future. Therefore, this paper aims to implement
an entire explanatory algorithm for autonomous robots that
satisfies these requirements and to evaluate the algorithm
through subject experiments to obtain suggestions on the
explainability of autonomous robots. We believe that this

1In this paper, we consider the explainability for autonomous agents that
have acquired policies through reinforcement learning.

FIGURE 1. Four requirements for XAR [3].

will provide important insights into the explainability of
autonomous robots and contribute to future research.

II. RELATED WORKS
We explain existing research on the explainability of
autonomous agents by classifying them into the four require-
ments mentioned earlier. The contributions of this paper are
then described.

A. REQUIREMENT 1: INTERPRETABLE DECISION-MAKING
SPACE
Among the studies on world models, the work of
Zhang et al. [4] is particularly relevant. They identified and
represented landmarks on the worldmodel as graphs based on
the proximity of representation features, enabling the agent to
acquire an abstracted decision space independent of the envi-
ronment autonomously. Gopalakrishnan and Kambhampati
proposed a state-space abstraction method that reduces the
number of divergence points of action strategies to increase
the predictability of the agents’ actions [5]. However, the
decision space generated by these methods is not necessarily
interpretable by humans, and the results need to be labeled,
i.e., assigned meaning, by humans. Reference [6] proposed
a method for generating explanations using autonomously
learned world models. However, this method assumes an
environment where observation information is discrete and
interpretable. It has not yet achieved the autonomous acqui-
sition of interpretable decision spaces.

B. REQUIREMENT 2: THE MODEL OF OTHERS
Clair and Matarić proposed a framework for estimating plau-
sible policies based on human actions, assuming that humans
and agents hold the same set of policies [7]. Gao et al.
proposed a framework for estimating plausible policies cur-
rently assumed by the user, considering the user’s actions
and the interaction history [8]. Huang et al. prepared several
policy estimation methods and definitions of plausibility in
inverse reinforcement learning and showed that the policies
reproduced differ even for the same information presenta-
tion depending on these differences [9]. Lage et al. also
showed that the accuracy of recovering a sequence from
a summary of a sequence of actions varies depending on
differences in human policy recovery models [10]. These
studies have proposed methods for estimating user policies
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and have emphasized the importance of modeling the humans
who receive explanations. However, no suitable method for
estimating the decision space of users has been proposed.

The authors of this paper proposed an estimation method
of the user’s model using Graph2Vec and concept activation
vector (CAV) [11]. Although some issues remain, the method
of [11] is used as the estimation method for the user’s model
in the integrated XAR system as the experiments in this study
are conducted in settings where this method can be used.

C. REQUIREMENT 3: INFORMATION NEEDED FOR
EXPLANATION
References [9] and [10] assume that humans use an inverse
reinforcement learning or imitation learning framework to
recover policies and extract those factors that yield the highest
accuracy in recovery as critical information. In [12], the
Markov decision process (MDP) is assumed, and the ‘‘best-
expected reward’’ and ‘‘worst-expected reward’’ are obtained
for a certain state when selecting an action. The significant
difference between states is extracted as a critical factor.
In [13], in addition to explanations using examples included
in the training data, the state in which the value of the action
at the next time is particularly high when the action is fixed
to the optimal action is presented as a key factor. In [14],
the authors calculated the difference between the maximum
and minimum Q-values in each state on the MDP. They
presented the elements with the most significant values as
scenes representing the agent’s characteristics. In the study
by Sequeira and Gervasio [15], states with a high frequency
of occurrence and high variance in action selection frequency
are extracted, and the scenes are summarized as video clips.
In [16], the explanation is generated by projecting the nodes
of an agent’s action decision tree with depth constraints onto
a causal graph on the input features rather than an MDP.

Sakai et al. proposed a method to identify actions that are
important for reaching a target state by approximating the
causal effect of each action on the probability of reaching the
target state [6]. Although this method can generate explana-
tions even when important factors do not appear in the action
values, it has two issues: 1) it requires random search, and
the results of the importance calculation depend on the depth
of the search, and 2) the semantics of the behavior may not
match the user.

D. REQUIREMENT 4: PRESENTATION TO USER
In [17], the set of states in which an agent chooses a par-
ticular action on the MDP is obtained. The agent’s policy
is verbalized by presenting a set of languages representing
those states. In addition, Waa et al. generated an explanation
for the question ‘‘Why did you choose a+ instead of a−?’’
by inferring the states and consequences that would result
from the action and presenting the language associated with
the states and consequences [18]. Furthermore, a framework
for generating verbal explanations directly from an agent’s
state sequence using an encoder-decoder model was proposed
in [19] and [20].

In [15], important scenes are presented as video clips to
generate human-acceptable explanations. Huber et al. applied
a saliency map, which is conventionally used to improve
the interpretability of image classification tasks, to highlight
important parts of an image representing a specific scene to
improve the interpretability of the policy [21].

These methods can present information using interfaces
such as language and images that are easy for humans
to understand. However, in interpersonal explanation, it is
desirable to transform the information to be explained and
how the explanation is presented according to the user.
Yeung et al. proposed a framework that enables the
selection of the optimal explanation presentation method
by incorporating the processes of explanation presenta-
tion and user comprehension into a reinforcement learning
framework [22].

E. CONTRIBUTIONS OF THIS PAPER
The contribution of this paper is as follows: we constructed an
entire explanation algorithm that satisfies requirements 1-4
and conducted a large-scale subject experiment. No imple-
mented algorithm satisfies requirements 1–4 so far to the best
of our knowledge. The experimental protocol follows [6], but
the number of subjects is large, and the relationship between
good and bad explanations and subjective impressions of
the agent is also investigated. We evaluated the algorithm
and obtained valuable insights for future research from these
results.

III. ALGORITHMS FOR XAR
A. OVERVIEW OF THE PROPOSED XAR
The overview of the XAR algorithm realized in this paper is
shown in Fig.2. The red dashed line in this figure illustrates
the realization of the entire XAR defined in [3]. Not all
elements are necessarily involved, and it is also possible to
generate the explanation by excluding some elements from
the overall algorithm. The blue and yellow dashed lines in
Fig.2 show the algorithm configurations without some of the
features as a comparisonmethod in the experiments described
later in this paper.

B. DETAILS OF EACH ALGORITHM
1) INTERPRETABLE DECISION-MAKING SPACE
[REQUIREMENT 1]
This paper assumes that the robot represents its actions and
the external world in a discrete state space, such as the grid
environment [23]. First, the robot learns a policy correspond-
ing to the environment in which it acts by reinforcement
learning. Then, using the data obtained in the search process
during policy learning, the relationship between actions and
state transitions in the discrete state space is represented as a
graph, which is used as the world model. Through this series
of searches and learning, we assume that the autonomous
robot satisfies requirement 1.
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FIGURE 2. Overview of the XAR algorithms used in the experiments.

However, other problems in acquiring an interpretable
world model require further discussion. For example, there
is no guarantee that the state space autonomously acquired
by the robot is comprehensible to humans. In this paper,
we consider a discrete environment called a grid world, and
the state space is consistent with human intuition, so this
is not a significant problem. Conversely, this problem is
severe when dealing with continuous spaces. It is necessary
to consider methods for constructing world models that con-
sider human interpretability, such as including language and
human feedback.

2) MODEL OF OTHERS [REQUIREMENT 2]
As mentioned earlier, existing research focused on policies
and planning algorithms. However, robots in the real world
are designed to behave as humans expect them to behave,
and their ultimate goals are shared with the user. In such
situations, questions about the results of action decisions
often stem from discrepancies in environmental awareness.
In this paper, we implement a method to estimate the user’s
world model from the robot’s world model and the questions
(queries) given by the user.

The method implemented in this paper first creates a space
with a distributed representation of graphs of its worldmodels
using Graph2Vec. Then, it estimates the CAV [24] from the
opponent’s question and estimates it by translating its world
model. For algorithm details, please refer to [11].

3) EXTRACTION OF INFORMATION NEEDED FOR
EXPLANATION [REQUIREMENT 3]
We proposed a method for identifying scenes that are impor-
tant for reaching the goal state by approximating the causal
effects of actions in each scene on the plan on the probability
of reaching the goal state [6]. This study uses probabilistic
policy and subjective observation information based on the
method of [6]. Further, we also introduce a conceptualization
of actions. These improvements improve the accuracy and
versatility of important scene extraction. The details of the
algorithm are described in the appendix.

4) EXPLANATION TO THE USER [REQUIREMENT 4]
This paper focuses on image information as the final explana-
tory interface (for details, please refer to section IV).

In addition, we investigate a simple linguistic method of
explanation in conjunction with estimating the user’s model.
Using different methods of presenting explanations according
to the user is essential in interpersonal explanation but is
outside the scope of this study.

C. METHODS OF COMPARISON IN EXPERIMENTS
The following six methods are algorithms that we evaluate in
later experiments.

1) WMIMP CONDITION: ESTIMATION OF USER’s WORLD
MODEL AND EXTRACTION OF IMPORTANT INFORMATION
(RED DASHED LINE IN FIG. 2)
The agent’s world model is compared with the user’s world
model (estimated one), and the most recent scene with a
different state transition structure is presented. However,
only important scenes are presented, and only scenes that
occur during the transition from the query state to the tar-
get state are presented. The world model obtained during
policy learning is used to understand the state transition
structure.

2) IMP CONDITION: QUERY AND EXTRACTION OF
IMPORTANT INFORMATION (BLUE DASHED LINE IN FIG. 2)
No estimation of the user’s world model is performed.
Instead, the state in which the query is given is used as a cue.
In other words, it presents the most recent important scene
among the scenes that occur during the transition from the
state in which the query is given to the target state.

3) COMPWM CONDITION: ESTIMATION OF USER’s WORLD
MODEL (YELLOW DASHED LINE IN FIG. 2 WITH IDEAL
WORLD MODEL)
The agent’s world model is compared with the user’s world
model (estimated model), and the most recent scene with
a different state transition structure is presented. How-
ever, only scenes during the transition from the state given
by the query to the target state are presented. The ideal
world model, a perfect copy of the state transitions in the
real environment, is used to understand the state transition
structure.
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FIGURE 3. Environment used in the experiments. Keys and doors are in
different positions.

4) INCOMPWM CONDITION: ESTIMATION OF USER’s
WORLD MODEL (YELLOW DASHED LINE IN FIG. 2 WITH
LEARNED WORLD MODEL)
The agent’s world model is compared with the user’s world
model (estimated model), and the most recent scene with
a different state transition structure is presented. However,
only the scenes during the transition from the state given by
the query to the target state are presented. The world model
obtained during policy learning is used to understand the state
transition structure.

5) RANDOM CONDITION: RANDOM PRESENTATION
This method presents a random scene from among the pro-
cesses during the transition from the state given the query to
the target state.

6) ALL CONDITION: ALL ACTIONS PRESENTED
The method presents all the processes during the transition
from the state given the query to the target state.

IV. EXPERIMENTS
A. TEST ENVIRONMENT
We apply the proposed method to an agent that learns its
policy using proximal policy optimization (PPO) [25] in a
simulation environment and evaluate its usefulness through
subject experiments. A partially modified grid environ-
ment [23] with multiple objects, as shown in Fig.3, is used for
the experiments. In this environment, the agent (triangle) gets
rewarded by taking a key, opening a door, and reaching a goal
in the lower right corner. The maximum value of the reward
is 1, and it decreases with the number of actions required to
reach the goal. The position of the goal is unchanged, but
the positions of the key and the door change every trial. The
agent has five actions: go straight, turn left, turn right, take the
key from the grid in front of it, and open the door. The agent
observes the absolute position of the key (x, y-coordinate),
the absolute position of the door (x, y-coordinate), its abso-
lute position (x, y-coordinates) and orientation, holding/not
holding the key, and opening/closing the door, for a total of
9 dimensions.

B. OVERVIEW OF THE EXPERIMENT
Using the grid environment shown in Fig.3, we analyze
whether the explanations generated by the implementation

algorithm are useful as interpersonal explanations. The exper-
iment was conducted online on 99 male and female subjects
aged 18 or older who agreed to participate in the exper-
iment and passed a screening to ensure the reliability of
their responses. To understand the explanations provided by
the presentation of the grid map, one must understand the
meaning of the grid map. This screening includes questions
regarding the comprehension of the grid map. The subjects
are as follows: 2 subjects aged 18–19 (0 males, 2 females),
2 subjects aged 20–29 (1 male, 1 female), 11 subjects
aged 30–39 (6 males, 5 females), 27 subjects aged 40–49
(20 males, 7 females), 27 subjects aged 50–59 (19 males,
8 females), 21 subjects aged 60–69 (19 males, 2 females),
and 9 subjects aged 70 and older (9 males, 0 females).

In this verification, all subjects will evaluate six scenar-
ios of explanation. Each scenario proceeds as follows. The
‘‘robot’’ in this experiment refers to the red agent.

(1) Each subject is given the robot’s current position, the
state of holding the key, the state of the door, and a map
of the room (Fig.4). At the same time, the robot’s next
action is also displayed.

(2) As the presented next action is not optimal given the
map, the robot is given the query ‘‘action a should be
chosen in the presented state’’ (this process is fixed, and
the subject is shown a predefined query).

(3) The robot explains based on the given query. The expla-
nation presented varies from subject to subject, and
one of the explanations generated by the six methods
described in the previous section is presented at random.

(4) Subjects answer questions that measure the quality of
the explanation.

An example of the explanation generated by the wmimp
condition (III-C1) is shown in Fig.5. In the upper part, possi-
ble state transitions in the robot’s recognition of its environ-
ment are displayed, and only the points where state changes
are allowed are shown on the grid. Only the key is shown
in the scene where the robot takes a key, and no doors or
walls are shown. Similarly, only the red agent is shown in the
scene where the robot moves straight ahead. The explanations
generated under other conditions are in the same format, dif-
fering only in the scene presented. Even-numbered scenarios
are those in which the correct other-world model (i.e., the
room map presented to the subject) can be estimated from
the query. Odd-numbered scenarios are those in which the
estimation fails. Subjects evaluate all scenarios 1 through 6,
but each scenario provides only one type of explanation. The
questions are as follows, all using the seven-point scale.

Q1 Which of the following four maps do you think is the
map of the room the robot is supposed to be in? The
correct answer is always one of these, but if you do not
know, choose ‘‘I don’t know’’.

Q2 Was the robot’s description concise (simple and free of
unnecessary information)?

Q3 Was the robot’s explanation a ‘‘good explanation’’ for
you?
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FIGURE 4. Information for each scenario. Subjects are not presented with the robot’s perception of the
environment.

Q4 Assume you have been doing surveillance work for a
long time and are familiar with the task. Every time you
ask a question, the robot offers this explanation. In this
situation, do you think the robot’s explanation is a ‘‘good
explanation’’?

Q5 Impression evaluation using the Godspeed questionnaire
method [26].

Question 1 measures the likeliness of the explanation,
i.e., whether the world model assumed by the robot is
correctly conveyed to the subject. Question 2, limited to
those who answered question 1 correctly, measures whether
the explanation is concise and free of redundant informa-
tion. Question 3 measures the overall satisfaction with the

explanation, and question 4 measures the change in the
evaluation when long-term use is assumed. The impression
evaluation in question 5 uses Godspeed [26] with a seven-
point scale. This method employs the SD method [27], which
uses adjective pairs with opposite meanings and can measure
anthropomorphism, animacy, likeability, perceived intelli-
gence, and perceived safety among people’s impressions of
the robot. Several authors pointed out that the adjective pairs
of ‘‘calm – upset’’ and ‘‘calm – surprised’’ in the ‘‘safety’’
evaluation item were reversed in terms of the adjectives used
for positive and negative evaluations [28], [29]. Therefore,
the adjectives used for positive and negative evaluations are
swapped in this verification.
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FIGURE 5. Example of the explanation presented. Images (1) to (4) are
presented in order.

Because question 1 is a categorical result in this experi-
ment, a statistical hypothesis test was conducted using the
Steel method, which is nonparametric and suitable for testing
multiple groups.

C. OVERALL ANALYSIS
The mean values for all scenarios are shown in Tab. 1. Values
in bold are the highest values, and values with a double
star (**) indicate a significant difference at the significance
level of α = 0.01 relative to the highest value.

The percentage of respondents who answered the correct
environment in question 1 was high in the wmimp, imp, and
all conditions and significantly low in the other conditions.
In particular, the values for the incompwm and random con-
ditions were similar to those obtained by selecting a random
response, indicating that many of the scenarios did not make
sense as explanations. In addition, the compwm condition
produced significantly lower average values than the top
three methods, as some scenarios could generate meaningful
explanations while others could not. From this, it can be said
that even if a complete world model can be learned, simply
presenting the differences in the state transition structure
of the world may not be sufficient as an explanation. For
example, in scenarios 5 and 6, the x-coordinates of the door
(in the direction of the horizontal axis) are different. The
important scene is not the scene where the door is opened,
but the scene where the agent moves in the x direction, and
the compwm condition could not present the location of the
door to the user. This indicates that the extraction of important
scenes is indispensable for explanation generation. In the
wmimp condition, the world model obtained during policy
learning was used. Nevertheless, in all scenarios, the expla-
nations generated were identical to those generated using a

world model that completely copied the state structure of
the real environment. This indicates that the important scene
extraction absorbed a certain degree of error in the world
model.

Question 2 was administered only to those who answered
Question 1 correctly. However, there was no correlation
between the number of scenes presented and brevity; the
evaluation value of the ‘‘random’’ condition was significantly
lower. This may be because, compared to the other expla-
nations, the correct answers for the random condition were
given without any certainty and thus were not evaluated as
presenting theminimum necessary information. Although the
‘‘all’’ condition presented significantly more scenes than the
other conditions, it is thought that certainty was evaluated,
and the explanation of the intermediate transitions was not
necessarily regarded as unnecessary information. From these
results, it can be said that whether the explanation is concise
depends not only on the number of elements presented but
also on various factors, such as whether it helped the user
understand the event. This is consistent with the findings
of loveliness, suggesting that it is essential to transform the
content of the explanation according to the user’s skill level
in the task and the ability to understand the explanation [30].

Like Question 1, Question 3 also obtained high evaluation
values in the wmimp, imp, and all conditions. Since this
experiment was conducted on a wide range of subjects, it was
expected that they would have more difficulty understanding
the experimental setup and grasping the content of the expla-
nations than the more experienced participants. However,
even among such subjects, the explanations generated in the
wmimp and imp conditions obtained as high evaluation val-
ues as those in all conditions. In other words, the explanations
generated by the proposed method obtained the same level of
evaluation as the whole-sequence explanations by presenting
significantly fewer scenes than the whole-sequence expla-
nations. In the real environment, reducing the explanation
time is important for safety management and productivity
improvement, suggesting the superiority of the explanations
generated by the proposed method.

Question 4was intended tomeasure the explanation’s qual-
ity in long-term use, and it yielded almost the same results
as question 3. However, the evaluation value may change
when the user uses the system for a long time since the user’s
proficiency in the task and the ability to read the necessary
information from the explanation are expected to improve
significantly. In particular, under all conditions, there is a
possibility that the evaluation will decrease if the efficiency
of information transfer is emphasized since much informa-
tion is unnecessary for estimating the correct map. Detailed
experiments are needed to examine changes in the evaluation
over a long period of use.

Next, we present the results of Godspeed. The reliability of
the scale scores is recognized when Cronbach’s α coefficient
exceeds 0.7. In this experiment, α = 0.84 for anthropomor-
phism, α = 0.88 for animacy, α = 0.95 for likability, α =

0.97 for perceived intelligence, and α = 0.94 for perceived
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TABLE 1. Averages of all scenarios. Values in boldface indicate the
highest value. Values with a double star (**) significantly differ
from the highest value at the significance level α = 0.01.

TABLE 2. Results of Godspeed impression evaluation. The highest values
are in bold, with a star (*) indicating a significant difference at a
significance level of α = 0.05 from the highest value. Values with a
double star (**) indicate a significant difference at a significance
level of α = 0.01 from the highest value.

TABLE 3. Correlation coefficients between each item and the rating of Q3
(goodness of explanation). Values with a double star (**) indicate that a
correlation was found at a significance level of α = 0.01 due to an
uncorrelated test.

safety, and α > 0.7 for all evaluation items. Therefore,
all groups of questions were analyzed as is. The results for
each explanation method are shown in Tab. 2. Values in bold
are the highest values; values with a star (*) indicate that
significant differences were found at a significance level of
α = 0.05 from the highest value. Values with a double
star (**) indicate that significant differences were found at
a significance level of α = 0.01 from the highest value.
As a result of the analysis, the explanation method with a
higher evaluation (the value of question 3) obtained a higher
impression evaluation in all evaluation items. In addition,
as shown in Tab.3, there was a correlation between each
evaluation item and the evaluation value of Explanation 3.
Particularly strong correlations were found for likability and
perceived intelligence. The distribution of the evaluation of
each item is shown in Figs.6 (a), (b), (c), (d), and (e). Note
that R2 represents the coefficient of determination of the
regression line.

The results of the no-correlation test by the corresponding
two-tailed t test showed a positive correlation at a signifi-
cance level of α = 0.01 between the evaluation of expla-
nation 3 and each evaluation item. This indicates that the
quality of the explanation has a significant impact on the
users’ impression of the robot. In particular, it is important
to present a good explanation of the robot’s behavior for the
user to feel a biological closeness to the robot and to place
trust in the performance of the robot itself.

D. ANALYSIS BY SCENARIO
The overall analysis suggests that the wmimp, imp, or all con-
ditions should be used for explanation generation. Therefore,
in this section, we focus on these three conditions and com-
pare the evaluation values of each scenario. The questions
to be compared are question 1 (accuracy of environmental
estimation) and question 3 (evaluation of the quality of the
explanation). The analysis results for each scenario are shown
in Tabs.4 and 5.

1) SCENARIOS 1, 2, 5, AND 6
In scenarios 1, 2, 5, and 6, the explanations generated by
the imp condition consisted only of information necessary
for environmental estimation. In contrast, the explanations
generated by the other conditions included information not
necessary for environmental estimation. The analysis results
show that the imp condition produced a relatively stable
high accuracy rate and explanation evaluation value. How-
ever, there were no significant differences in accuracy rate
and explanation evaluation. The ‘‘all’’ condition produced
many highly accurate scenarios, but the explanation eval-
uation tended to be lower than the ‘‘imp’’ condition. The
only scenario with a higher explanation evaluation value in
all conditions than in the imp condition was scenario 5.
Users were confused and requested a more detailed expla-
nation since the door was in a different environment from
scenarios 1 to 4, whereas the key was in a different loca-
tion in scenario 5. In addition, since the wmimp condition
included the ‘‘presentation of a situation in which the key
cannot be removed,’’ it is thought that the user was burdened
with accepting the explanation, resulting in many scenarios
with a low accuracy rate. From the above, it is considered
appropriate to present explanations in the imp condition when
the imp condition can generate sufficient explanations. For
tasks that users are unfamiliar with, it is also effective to
generate explanations using all conditions.

2) SCENARIO 3
In scenario 3, none of the explanations lack the information
necessary to estimate the environment. They can tell which
coordinate has the key but cannot adequately indicate that the
other coordinate does not. Under these conditions, the correct
response rate was higher for the imp and all conditions, and
the explanation evaluation value was higher for all conditions.
The wmimp condition presented ‘‘infeasible transitions,’’ but
since it was based on an incorrect estimation of the user’s
world model, it is considered to have increased unnecessary
information, resulting in lower accuracy. The explanation of
the ‘‘all’’ condition obtained a high explanation evaluation
value because the user requested a more detailed expla-
nation because the environment with two keys was used
from Scenario 3. In contrast, only one key was used in
Scenarios 1 and 2, and a high explanation evaluation value
was obtained for Scenario 5.
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FIGURE 6. Scatter plots of the rating values for the goodness of explanation and Godspeed questionnaires:
(a) anthropomorphism, (b)animacy, (c)likability, (d)perceived intelligence, and (e)perceived safety.

From the above, it can be said that, given a query that
requires correct estimation of the user’s assumed world
model, it is effective to provide an explanation in the imp
and all conditions when the user’s world model cannot be
estimated correctly.

3) SCENARIO 4
In scenario 4, only the wmimp condition presents the nec-
essary information. In other words, the wmimp condition
adequately indicates that the key is not in the user’s expected
location. However, the correct response rate was the high-
est for all conditions. This may be because some users
confused ‘‘infeasible transitions’’ presented in the wmimp

TABLE 4. Accuracy by scenario.

condition with ‘‘feasible transitions’’ and selected the wrong
map. On the other hand, the wmimp condition had the
highest explanation evaluation value. These results suggest
that the wmimp condition is the best explanation when the
world model can be correctly estimated for queries that
require correctness (negation) of the world model the user
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TABLE 5. Evaluation by scenario.

assumes. Although all conditions had the highest rate of
correct answers, it is thought that the interface, not the con-
tent of the explanation, greatly impacted the rate of correct
answers. In the next section, we will examine this hypothesis
by presenting the results of a simplified version of Scenario 4,
in which the explanatory interface is changed to language.

E. IMPRESSION EVALUATION EXPERIMENT WITH VERBAL
EXPLANATION PRESENTATION (ADDITIONAL
EXPERIMENT)
In Scenario 4, the interface is simplified, and thewmimp, imp,
and all conditions are compared again. In this verification,
the subject is presented with the same object arrangement
as in Scenario 4, the environment shown in Fig.7. In this
experiment, we consider handing a key to a user in the center
of a room.We also assume a situation in which there is no key
in key location A, located near the robot, and the robot moves
toward the direction of key location B. The subject is asked to
explain the reason for the robot’s action. The following verbal
explanation is provided for the question asking the reason for
the action and is evaluated.

wmimp condition
I am going to get the key at location B because there
is no key at location A now.

imp condition
I am going to get the key at location B.

all condition
After going straight south, I am going to pick up the
key at location B, bring the key to you, and hand it
over to you.

In the wmimp condition, the agent’s worldmodel is compared
with the user’s model (estimated model). The most recent
important scene with a different state transition structure is
presented. Thus, the Wmimp condition explains state transi-
tions that the user assumes are feasible but are not feasible
(i.e., the key cannot be obtained at location A) and state
transitions that the user assumes are not feasible but are
feasible (i.e., the key can be obtained at the location B).2

The imp condition presents the most recent important
scenes when transitioning from the query state to the target
state. Therefore, it explains taking the key at location B.
In all conditions, all the processes that pass through when
transitioning from the state where the query is given to the

2In the experimental setup, the user understands that they can get the key
at the location B. However, in this experiment, the world model in which the
key cannot be taken at location B was estimated as the user’s world model,
which also explains that the key can be taken at location B.

FIGURE 7. Environment used for additional user experiment.

target state are presented. Therefore, it explains all actions,
including those other than the key-obtaining scene.

In this experiment, each subject was presented with all
of the above explanations and asked to choose from the
following options the current situation in the key location area
for each explanation. This question corresponds to Question 1
in the previous experiment, and the percentage of subjects
who chose option 2 is the rate of correct responses.

(1) Location A has a key, but location B does not.
(2) Location A has no key, but location B does.
(3) There is a key to locations A and B.
(4) There are no keys to either location A or B.
(5) I do not understand the explanation.

Subjects were also asked to rank the explanations generated
by the three conditions according to the explanation they felt
was the best. This question corresponds to Question 3 of the
previous experiment and measures the quality of the explana-
tions. The experiment was conducted online on 24 male and
female subjects aged 18 and older: 21 subjects aged 20–29
(11 males and 10 females), 1 subject aged 30–39 (0 males and
1 female), and 2 subjects aged 50–59 (1 male and 1 female).
There was no overlap between the subjects in the previous
experiment and those in the present.

Tables 6 and 7 show the results. The wmimp condition
was the best for the correct response rate and the explanatory
evaluation value. Statistical hypothesis testing using the Steel
method revealed that t(23) = 5.16, p < 0.001 for the
wmimp and imp conditions in accuracy and t(23) = 5.43,
p < 0.001 for the wmimp and all conditions in accuracy.
A comparison of the explanatory ratings of the wmimp and
imp conditions showed that t(23) = 5.61 and p < 0.001, and
a comparison of the explanatory ratings of the wmimp and all
conditions showed that t(23) = 5.63 and p < 0.001. These
results suggest that the explanation of the wmimp condition is
the best explanation for queries that need to correct (negate)
the user’s assumed world model, if the world model can be
correctly estimated.

Presenting explanations in language rather than images
is important in promoting user acceptance of explanations.

105308 VOLUME 11, 2023



T. Sakai et al.: Implementation and Evaluation of Algorithms for Realizing Explainable Autonomous Robots

TABLE 6. Accuracy in an impression evaluation experiment using verbal
explanation presentation.

TABLE 7. Evaluation of the impression evaluation experiment using
verbal explanation presentation.

More systematic knowledge is required to identify explana-
tory factors and design interfaces that encode and present
these factors.

F. SUMMARY OF USER EXPERIMENTS
The following is a summary of the analysis results obtained
by the user experiment.

• The average accuracy rate and evaluation value for all
scenarios are high for the wmimp, imp, and all condi-
tions. Considering the practical aspect, the wmimp and
imp conditions are superior because they can provide
explanations in a short time.

• It is important to present a good description of the robot’s
behavior, so the user can feel a biological closeness to
the robot and place trust in the performance of the robot
itself.

• For the explanation ‘‘Why A?’’, generating an explana-
tion in the imp condition is effective.

• For the explanation ‘‘Why A instead of B?’’, generating
an explanation in the wmimp condition is effective.
Nevertheless, it is necessary to obtain a correct reason
about the user’s world model.

• Since the acceptability of explanations varies greatly
depending on the method of presentation, an appropriate
interface design is required.

V. DISCUSSION
A. CONSIDERATION OF DIFFERENCES IN USER MODELS
In this paper, we focused on the user’s world model, but
there are user models to consider in addition to the world
model. In particular, estimating the states and policies the user
assumes is very important from the viewpoint of explanation
generation. Even if the user and the robot share the same
world model, different states assumed by the user and the
robot will result in different behaviors. Even if the user and
the robot share the same world model and state, the different
policies will naturally result in different behaviors. Therefore,
in addition to the possibility of different world models, agents
must consider the possibility of different assumed states and
policies.

The most important aspect about this problem is that all
these possibilities must be considered simultaneously. Even
if a user provides a query in response to an action taken
by a robot, it is not easy to determine whether the query is
due to a difference in the world model, a misperception of
the robot’s situation, or because the user has a better policy.
To make this judgment, it is necessary to integrate a model
of the user’s knowledge obtained through interaction with the
user, social norms, common sense, and a vast amount of other
information.

However, we humans always execute such reasoning
unconsciously to achieve smooth communication. Consid-
ering the explainability of autonomous robots is equiva-
lent to considering the communication between robots and
humans [3]. For a robot to become an equal partner to a
human, it is essential to handle a vast amount of information
in an integrated manner and to infer the internal states of
others appropriately, and it is necessary to find a way to do so.

B. ESTIMATION OF STATE REPRESENTATION OF OTHERS
In this study, we assumed that the state representation of
the robot’s world model and the user’s state representation
are equivalent. We also realized the inference of the user’s
world model based on the robot’s state representation. In real
environments, however, the state representation of robots and
humans with different physical characteristics may differ.
Furthermore, the state representation differs for each user,
which may affect the user’s decision-making tendencies.
Therefore, it is necessary to estimate the user’s state repre-
sentation to realize a more user-friendly explanation in a real
scenario.

Although the method of estimating the state representation
is not obvious, assuming that the robot and the user observe
the same state through different feature extractors and learn
the state representation, the robot’s state representation and
the user’s state representation can be converted using some
nonlinear mapping function. Using several samples, it is
possible to obtain a mapping function from the robot’s state
representation to the user’s state representation. The same
argument can be applied not only to the state representation
of the world model but also to the state representation of
the internal state, including policy (or objective function) and
the state of the external world if such a representation exists.
This mapping function can be thought of as a kind of model
of others, and it may be possible to efficiently estimate the
behavior of others based on the robot’s knowledge.

C. LEARNING OF WORLD MODEL IN REAL ENVIRONMENT
One of the key issues in utilizing world models in real-world
environments is the setting of the range to be represented
by the world model. For example, in the case of a home
robot, the cost of maintaining world models for multi-
ple rooms increases exponentially compared to maintain-
ing a world model for a single room with different object
arrangements.
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An approach that maintains multiple partial world models
and integrates them as necessary is considered effective in
addressing this problem. In the same way that we focused on
important features whenwe extracted important scenes in this
study, there are differences in world models that are important
or unimportant for the current goal (objective function). It is
desirable to establish a method to construct a world model by
considering the significance of each partial world model in
terms of policy and integrating them.

D. DEVELOPMENT OF EXPLANATION INTERFACE
Although the proposed implementation algorithm does not
include an explanation interface, the results of user exper-
iments suggest that the acceptability of explanations varies
greatly depending not only on the content but also on the
method of presentation. Currently, explanation interfaces are
designed by humans according to the task. However, verify-
ing which interface is effective for what kind of explanation
presentation is being actively promoted is hard. To present
useful explanations to humans, it is important to system-
atically organize the findings of cognitive science and the
results of user experiments and establish a general theory of
interfaces. Establishing such a systematic theory will be an
important stepping stone for robots to autonomously deter-
mine the explanation interface in the future.

E. TEMPORAL VARIATION IN EXPLANATION EVALUATION
In evaluating the explainability of autonomous robots and
agents, including this paper, there are few examples of
long-term interactions with users. However, it is conceiv-
able that the user’s internal state certainly changes as they
receive explanations and that the user’s evaluation of the
explanations also changes over time. An explanation initially
perceived as ‘‘polite’’ may be ‘‘too time-consuming’’ or trust
in the robot may be undermined by presenting an incorrect
explanation multiple times. Investigating how impressions of
robots change through long-term interaction between robots
and users is also very important in explainability.

F. EXPLANATION AS COMMUNICATION
In addition to the issues described so far, many other research
issues must be resolved when considering explanation as
communication. One important issue is determining the
necessity of explanations. In this study, explanations were
generated based on queries provided by users, but in the real
world, users may not explicitly provide queries. In such cases,
the necessity of an explanation must be determined based on
the user’s behavior and past interaction history. Especially
in situations where the user does not continuously monitor
the robots, such as when one user operates multiple robots,
spontaneous explanation from the robot can prevent the user
from acting contrary to the user’s intention.

Another important issue is to analyze the effect of expla-
nations. Investigating the change in trust with the user when
the robot presents an explanation and the positive and nega-
tive effects when the robot generates a false explanation is

important when considering explanation strategies. These
investigations span cognitive science, and interdisciplinary
progress in the research area is desirable. Moreover, explain-
ability can be applied to ‘‘education’’ to make users under-
stand what is correct, ‘‘persuasive dialogue’’ to make users
feel as if they understand, not whether or not they are correct,
and ‘‘creativity’’ to add values to things that are not thought
of by common sense.

VI. CONCLUSION
In this study, we implemented an explanation generation
framework that meets the requirements for realizing XAR.
These robots can explain the reasons for their action deci-
sions; we verified their effectiveness through experiments on
human subjects. The experimental results suggest that the
implemented explanation framework can generate explana-
tions acceptable to humans. It was also found that how the
explanations should be generated depends on the question’s
content and the explanation’s interface. Future work includes
developing an explanation framework for more complex sit-
uations such as continuous state spaces. Further validation
through experiments using more complex tasks and actual
robots is also needed. Examining how different media affect
impressions of explanations is also expected in future work.

APPENDIX
A. EXTRACTION OF INFORMATION NEEDED FOR
EXPLANATION (REQUIREMENT 3)
The algorithm implemented in this paper extends the method
of [6] and identifies important scenes by the following
procedure.

(1) Acquisition of action concepts: Based on the robot’s
subjective observation, the policy implications of each
action in the plan are identified. This meaning of action
is defined as an action concept.

(2) Calculation of the importance of each action concept:
We extend themethod of [6] to be usedwith probabilistic
policy. Important scenes are identified by calculating the
average treatment effect on the expected reward of the
feasibility of each action concept.

The main differences between the proposed method and the
method in [6] are as follows.

• Use of probabilistic policy
The method in [6] requires a random search to identify
important scenes and the result of the importance cal-
culation changes depending on the depth of the random
search. This proposal uses a probabilistic policy instead
of a deterministic one to eliminate the random search
process and reduce the number of hyper-parameters.

• Use observations from subjective viewpoints
The method in [6] considers the causal effect of tak-
ing a specific action in a certain state on reaching
the target state. However, there is a problem that even
when the relationship between the object and the target
of the action is the same, the difference in absolute
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FIGURE 8. Schematic diagram of the action concept. Among the changes
in the observed information due to the robot’s actions, only the change in
the approach to the key is important for the policy. Therefore, we do not
focus on the change in the relative coordinate to the door or wall but only
on the change in the relative coordinate to the key to obtaining the action
concept.

coordinates causes the object to be recognized as a dif-
ferent state. The proposed method solves this problem
by using observations from a subjective viewpoint.

• Using the difference between the states of before and
after action
In the method in [6], actions are classified at the com-
mand level, and causal effects are calculated. However,
even if the actions differ at the command level, the actual
environmental effects may be the same. For example,
even if a person tries to pick up a key or open a door
in a space with no key nor door, it is equivalent to
choosing the action of ‘‘doing nothing’’. In other words,
it is an excessive classification to recognize ‘‘picking up
the key’’ and ‘‘opening the door’’ as different actions in
this situation. Therefore, the proposed method defines
the action concept using the difference between states
before and after the robot’s action.

• Focus only on policy-significant state changes
As mentioned earlier, the method in [6] considers the
causal effects of certain actions in certain states. How-
ever, the meaning of the state changes depending on the
policy. For example, when preparing to go out, a person
goes to get the key on the desk at the end of the room.
This action aims to get the key, not to go toward the desk.
Therefore, in this paper, we define the concept of action
by focusing only on the state change that is important
for the policy (in the previous example, approaching the
key).

B. ACQUISITION OF ACTION CONCEPTS
The proposed method identifies critical situations by calcu-
lating the average treatment effect of the feasibility of each
action concept on the expected reward. Therefore, it is impor-
tant to obtain appropriate action concepts. There are twoways
of thinking about action concepts: one is to focus on the
action commands (e.g., drive a certain motor, bend an arm)
as the subject, and the other is to focus on the state changes
as a result of the action. When considering interpersonal

explanation, the user and the robot generally have different
action commands as subjects, and the user is unaware of the
robot’s internal control methods. Here, action is defined by
the state change δs.

δs = st+1 − st (B.1)

The state st , st+1 is defined from the subjective viewpoint,
as in partial observation. This aims to prevent the exact
meaning of state change from being recognized as different
action concepts depending on the placement of objects.

Another important perspective when considering action
concepts is the meaning of actions regarding the policy. For
example, when considering the meaning of a route to a shop-
ping street, if the purpose is to shop at a grocery store, the
action is ‘‘going to the grocery store,’’ and if the purpose is
to shop at a fish shop, the action is ‘‘going to the fish shop’’.
If the purpose is to shop at more than one store, the action
could be ‘‘head for the shopping district’’. It is desirable to
conceptualize actions considering the meaning of the action
in terms of the policy. Therefore, we define the concept of
action by focusing only on the important characteristics of
each state as illustrated in 8 as follows.

CA(st , st+1) = (w1,w2, . . . ,wn), (B.2)

wj =


(zjt , z

j
t+1) for zjt ̸= zjt+1 and

val(zjm) > α · maxj val(z
j
m), ∃m ∈ {t, t + 1}

None for zjt = zjt+1 or

val(zjm) ≤ α · maxj val(z
j
m), ∀m ∈ {t, t + 1},

where CA(·) is an action concept, val(zjm) is a function (fea-
ture extractor) that outputs the importance of the jth feature
zjm in the state sm at time m. n represents the dimensionality
of the features, and α ∈ (0, 1) is a parameter that adjusts the
region of the important features. In the case ofwj = (zjt , z

j
t+1),

the change of the j-th feature from zjt to z
j
t+1 is included in

the action concept. When wj = None, the change of the
j-th feature is not included in the action concept, and the
change of zjt , z

j
t+1 to any value does not affect CA(st , st+1).

Using Eq.(B.2), the action concept is defined by a change in a
feature that is considered an important feature in at least one
of the states st , st+1 defined from the subjective viewpoint.
The features that do not change among the important features
are not included in the action concepts.

We use Shapley Additive exPlanations (SHAP) [31] as a
feature extractor. SHAP is a method for quantifying the con-
tribution of input features to output results using the Shapley
value of game theory. By applying kernel SHAP to the robot
policy, we identify the important features in determining
actions and use them to form action concepts. Specifically,
val(zjm) is the kernel SHAP value of the feature zjm. When
forming action concepts using image information, val(·) can
also be designed using a saliency map that visualizes which
parts of the image are focused on and which results are
output.
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FIGURE 9. Causal graphs of variables in formulations using ATE.

C. CALCULATION OF THE IMPORTANCE OF EACH ACTION
CONCEPT
An action concept is acquired for each state transition until
the target state is reached. The average treatment effect (ATE)
for the expected reward of being able to perform the action
concept is calculated. This ATE is defined as the importance I
of each action concept as in Eq.(C.3). In addition, as in the
method of [6], we define the state transition corresponding
to the action concept CAf such that the value of I (CAf , π)
exceeds a specific threshold value as an important scene.

I (CAf , π) = E[r|π, do(allow(CAf ) = 1)]

− E[r|π, do(allow(CAf ) = 0)], (C.3)

where do() is Pearl’s do operator [32], which indicates inter-
vention. allow(CAf ) takes the value 1 when an action concept
CAf can be executed and 0 when it cannot. The causal graph
in this formulation is shown in Fig.9. Env is a variable repre-
senting the dynamics of the environment, and π , s, and r are
the agent’s policy, the state sequence it goes through, and the
reward it acquires, respectively.

D. SIMULATION EXPERIMENT: COMPARISON OF
IMPORTANCE CALCULATION RESULTS
We compare the importance obtained by the proposedmethod
with that of the method in [6]. The initial state is shown
in Fig.3. In this experiment, we use partial observations of
7 × 7 squares in front of the agent, as shown in Fig.10. The
key holding/not holding is expressed in the coordinates of the
agent’s position, and the state of the door opening/closing is
also expressed in the observation information. The hyperpa-
rameter in Eq.(B.2) is α = 0.8.
First, an example of the behavioral concepts obtained by

the proposed method is shown in Fig.10. If the agent and
the key are drawn overlapping, the agent holds the key.
In the scenes of acquiring the key (Step 2) and opening the
door (Step 7), the action concept is focused on the object’s
coordinates. In the actions toward the goal coordinates
(Steps 12 and 13), the action concept is focused only on the
change in coordinates relative to the goal.

Next, the importance of each step is shown in Fig.11.
Compared to the conventional method, the proposed method
shows a significant difference in the importance of the steps

FIGURE 10. Acquired action concepts. The state change of the grid
surrounded by a red frame represents the action concept.

FIGURE 11. The importance of each step is as follows: step 2 is the scene
of taking the key, steps 7 to 9 are the scenes of opening the door and
passing through it, and step 13 is the scene of reaching the goal.

near the key, door, and goal, which must be passed through,
and the importance of the other steps. In particular, the
key-obtaining step (Step 2) is not highly important in the
conventional method because there are multiple possible
directions to obtain the key. Still, it has very high importance
in the proposed method.

These results suggest that the proposed method forms an
action concept focusing on state changes important in acquir-
ing rewards. It can calculate importance more accurately than
the method in [6].
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