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ABSTRACT Sailboat weather routing is a highly complex problem in terms of both the computational time
and memory. The reason for this is a large search resulting in a multitude of possible routes and a variety
of user preferences. Analysing all possible routes is only feasible for small sailing regions, low-resolution
maps, or sailboat movements on a grid. Therefore, various heuristic approaches are often applied, which can
find solutions within an acceptable time, sacrificing their optimality and accuracy. In this study, we propose
a different approach based on the parallel implementation of an exact algorithm. Specifically, we present a
Sailing Assistance Application (SAA) utilizing a deterministic approach and show how it can be parallelized
in a cloud environment to reduce its execution time. The potential of the proposed parallelization method
goes beyond the particular presented solution; it can be used to improve the performance of other weather
routing tools such as collision avoidance and related applications.

INDEX TERMS Big data, cloud computing, constraint optimization, decision support systems, graph theory,
marine navigation, parallel architecture, path planning.

I. INTRODUCTION
Route planning in maritime transport has inspired researchers
in the era when sailing ships were the only means of transport
that enabled transoceanic travel. The first recommended a
route for ocean shipping was made by Maury [1] in the
19th century. Currently, in sea shipping, a voyage plan is
mandatory in accordance with the International Convention
for the Safety of Life at Sea (SOLAS), which imposes the
requirement of planning the ship’s route before starting the
voyage [2]. The voyage-planning obligation applies to all
types of vessels, including sailing vessels. When planning a
route for sailing vessels, special attention is paid to mete-
orological conditions, particularly wind conditions, which
are the main determinants of the navigation possibilities.
Moving directly against the wind is unacceptable and even
forbidden because of the possibility of damage to sails.
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Currently, data on meteorological conditions are dissemi-
nated in a publicly available, cyclical manner, with increasing
frequency, longer forecasts, and greater resolution [3]. This
is extremely useful for a safe navigation. An increased fre-
quency of dissemination of meteorological data increases the
reliability of meteorological forecasts. Moreover, a greater
resolution of meteorological data increases the accuracy of
marine-weather forecasts. This new approach, which dissem-
inatesmeteorological data throughweather services, provides
new opportunities for decision support systems in naviga-
tion. It must be emphasized here that the digital description
of the sea area is as important as weather forecasts. The
larger the set of points describing the sea area, the greater
the accuracy of the description of this area. The increased
volume of data describing hydro-meteorological conditions
and sea area increases the possibility of ensuring safety
by systems supporting maritime navigation. However, this
means an increased amount of data is processed by the
computer, which in turn increases the computational time.
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Therefore, this paper presents a method for finding the opti-
mal route for a sailing vessel that has been implemented using
parallel programming on many cores simultaneously. The
current sequential version of the Sailing Assistance Applica-
tion (SAA) is available on a typical server [4]. The proposed
modification is oriented towards parallel programming and
cloud computing to reduce the waiting time significantly for
the result of SAA. For this reason, the application can be
used not only for route planning, but also for sailing along
the planned route. Moreover, the new sailing data update is
significantly simplified through the use of specialized cloud
services. The proposed approach uses a multithread computer
architecture available in the TASK (Tricity Academic Super-
computer and networK) Informatics Center, and TASKcloud
implemented in that Center [5].
The original SAA application is a sequential one, where

the algorithm is a sequence of steps. The algorithm takes
inputs from the user and, after some computations, produces
an output. We aim to transform sequential SAA components
into parallel ones, where data parallelism is implemented.
Data parallelism involves running the same task on different
components of data. In other words: the same computation is
done for every thread, but we feed those threads with different
parts of the data. and next the model is split among threads.
In consequence, our main task is to transform sequential SAA
code into a parallel one using an adequate parallel language
and platform. Moreover, to test to obtain solution, a cloud
environment is prepared. Our solution is based on open-
source platforms, such as OpenMP and OpenStack.

Related studies are presented in the next section. Subse-
quently, the components of the SAA are described, and a gen-
eral optimization problem is defined. Parallelization methods
are then discussed, and the cloud testing environment is char-
acterized. Finally, the simulation results are provided, and the
conclusions are formulated.

II. RELATED WORKS
The presented research problem concerns computer support
for voyage planning of sea-going ships. There are sev-
eral categories of solutions in the literature on the subject:
Autonomous Surface Vehicles (ASV), Unmanned Surface
Vehicles (USV) [6], [7], [8], [9], conventional power-driven
vessels [10], [11], [12] and sailing vessels [13], [14], [15].
They differ not only in the characteristics of the objects
used, but also in the strategy of proceeding with the imple-
mentation of the adopted tasks. Nevertheless, two main
approaches to the problem of route planning can be dis-
tinguished: deterministic and nondeterministic. Determinis-
tic methods are more time-consuming, but they are also
characterized by high repeatability of the results. The solu-
tions proposed in [13], [16], and [17] correspond to such
an approach. In general, they are based on path analysis
in a graph representing the sailing area. Non-deterministic
methods include solutions using various types of swarm or
evolutionary algorithms [18], [19]. Indeterministic methods
accentuate efficiency; however, they do so at the expense of

optimality and repeatability. Therefore, deterministic meth-
ods are still superior to the latter in terms of quality of results.
Considering the above, it is both desirable and challenging
to reduce their high computational time and computational
memory.

In the case of SAA, we were interested in adopting a
weather routing algorithm for parallel processing require-
ments. Similar objectives have been pursued by other
researchers in the field, who have also approached the
problem of parallelizing complex optimization algorithms.
These studies include deterministic and swarm algorithms
for path planning [20], [21], [22], [23], graph distance com-
putations [24] and optimization of robot motion [25], [26].
However, for weather routing of ships, sequential solutions
still dominate. In particular, no parallel approach to weather
routing of sailboats has yet been proposed. This study aimed
to fill this gap.

To achieve successful parallelization, we must use appro-
priate parallel mechanisms and platforms. Representative
examples of such solutions are Message Passing Interface
(MPI) [27] primarily oriented towards distributed processing
between the nodes of a computer system, or Open Multi-
Processing (OpenMP) [28] designed for multithreaded pro-
cessing within a single node or the OpenCL standard, which
offers a common API for program execution on systems
composed of different types of computational devices such
as multicore CPUs, GPUs, or other accelerators [29]. The
above solutions offer mechanisms that can be used to either
create parallel programs or transform sequential programs
into parallel programs.

Nowadays, the multi-core processors, based on including
more processing cores and a shared cache memory in a single
microprocessor, are gradually becoming more prominent in
the commercial market. Therefore, in this study, we focused
on multithread processing. In particular, OpenMP provides
a fork-and-join execution model, in which a program begins
execution as a main thread. This thread is sequentially exe-
cuted until a parallelization directive for a parallel region
(e.g., for a loop) is found. The main thread creates then a
team of threads and controls their operations. All the threads
execute their statements and at the end of the parallel con-
structs, all of them are synchronized. The essential advantage
of OpenMP is that an existing code can be easily parallelized
by placing OpenMP directives around time-consuming loops
which do not contain data dependencies. However, optimiz-
ing work-flow and memory access is not a trivial issue,
when using OpenMP, and such aspects as data partitioning,
functional dependencies, size of the parallel loop, etc. must
be controlled by the programmer.

Because both the application components and the used
algorithms were important, a real multithread environment
was required to test them. TASKcloud [5], [30] was chosen
for this study because it satisfies the general requirements
of cloud computing [31] and allows the use of service soft-
ware engineering paradigmatic [32]. It is built from open-
source components, such as OpenStack [33] and Docker [34]
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offering flexible solutions owing to the container mecha-
nisms. In this environment, SAA was investigated to deter-
mine the possibility of parallelization of some of its main
elements. We concentrated on all the components of the SAA
and attempted to find the solution leading to a reduction in
the required processing time. The simulations showed that the
proposed parallelization technique resulted in a nearly 80%
reduction in computational time.

Until now, there were nowork on parallelization of weather
routing for sailboats. In particular, these authors’ earlier ship
weather routing-related research was not based on paral-
lel programming. As has been argued above, the proposed
approach to the problemmakes it possible to reduce the work-
ing time of the algorithms significantly, without sacrificing
the method’s repeatability and reliability in terms of finding
optimal solutions for the considered criteria.

To find optimal route, some parallel Dijkstra algorithms
have been proposed in the literature, but the majority of them
consider input data set described by matrix and are tested
rather for small data size (hundreds of elements instead of
a million) [27]. Moreover, in our case, more complicated
optimization criteria (e.g., manoeuvres penalty) and some
dynamic parameters (e.g., weather forecasting) are consid-
ered. Additional motivation was to create a solution useful as
a real-world application.

III. THE IDEA BEHIND THE SAA
We can distinguish three components of SAA, which perform
the following functions:

1) Creating a navigation area – the point of a geographical
area (bit map)–is analysed and modelled by the points
creating the area grid with the required resolution deter-
mined with a single rectangle representing one step of
navigation. The entire matrix representing the grid area
was generated, and its navigable and non-navigable
points were identified.

2) Establishing sailing conditions – a graph model of
the grid area is created, and a set of data repre-
senting current sailing conditions is assigned to each
vertex of the graph. It is created utilizing available
ship characteristics and weather forecast data in the
GRIB2 file format. GRIB2 is a file format for the
storage and transfer of gridded meteorological data,
such as Numerical Weather Prediction model out-
put [3]. Based on the above, the time required to
sail between two neighbouring points was estimated.
Other characteristics of the sailing route were also
determined.

3) Finding route – using well-known pathfinding algo-
rithms and considering the user requirements (e.g., the
shortest sailing time, highest comfort of travel, and
acceptable level of safety), the best acceptable route
from start point S to finish point F for the considered
graph is determined. First, SAA uses a generalized
Dijkstra’s algorithm, which handles graphs of dynami-
cally changing edge weights.

FIGURE 1. Main diagram of SAA architecture.

In Fig. 1, the structure of the SAA is given, where the above
components are presented, and the required main input data
are listed.

In practice, component 1 is the appointed navigation region
limited by lines of min and max latitudes and min and max
longitudes, denoted by ϕ1, ϕm, λ1, and λn, respectively. The
total number of area points, denoted by, ptotal is as follows:

ptotal =
(ϕm − ϕ1)

(
λn − λ1

)
dlon

= mn (1)

where: m, n – numbers of horizontal and vertical curves,
respectively, ϕ1, ϕm, λ1, and λn are the minimum and max-
imum values of the geographical coordinates of the area,
dlat , dlon – vertical and horizontal distances between neigh-
bouring points, determining the degree of area resolution,
that is, g = d lat× dlon

FIGURE 2. The appointed navigation region with navigable and not
navigable points.

Taking into account the bathymetry of the area, ship sub-
mersion, and headroom under the keel, the shape of the
navigation area can be clearly specified by the navigation
points, and can be different from regular shapes, such as
rectangles or squares. A bitmap of such a region can be gen-
erated automatically, and the points of the grid are classified
(with labels of 0 or 1) as either acceptable or not acceptable
for sailing. Each route consisted only of acceptable sailing
points. To reduce the size of the grid, all rows, and columns
containing only not acceptable points can be cancelled. Then,
the real number of points in the grid that need to be taken into
consideration is less than that estimates above (see Fig. 2).
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FIGURE 3. The weather forecasting data (GRIB) for the reduced navigation
region. Mostly, on this figure, one GRIB consists of four points of grid.

Consequently, the navigation area is determined by the set
of points (see Fig. 3) representing the reduced grid:

Pij = P
(
ϕi, λj

)
(2)

where:
ϕi− latitude value, λj – longitude value
i = 1, 2, . . . ,m; j = 1, 2, . . . , n.
The up-left corner of this area corresponds to point. P11
Let us consider such a sailing area. Component 2 of SAA

enriches it with some specific data, where current sailing
conditions were assigned to each point. Pij First, the weather
conditions (temperature, wind direction, and waves’ height)
were registered and should be stored for each point based on
the GRIB file. Moreover, weather services update informa-
tion periodically, e.g., every six hours, then SAA traces it and
changes all information assigned to the grid. This implies that
theweather updates can be included several times during a sea
voyage.

Another condition under consideration is the vessel char-
acteristics essential for ship manoeuvring (available from
the VPP sailing vessel). These can also be merged with the
general sailing conditions stored in the considered grid points.

Based on the current information regarding all conditions
discussed above, the time of sailing between neighbouring
points is re-estimated. Moreover, the weather conditions can
be registered with higher area resolution than the navigation
area is done. Then for subsets of the grid points extra data
interpolation must be performed to describe the sailing con-
ditions, what is shown in Fig 3. We can see that the same
weather conditions are assigned to at most four points of the
navigation area.

To consider the possible vessel routes, the limited num-
ber of navigation directions should be determined by the
size of the considered rectangle, where the considered point
is its center (see Fig. 4). In general, if all movement
directions are considered, we require a rectangle with nine
points to show eight direction possibilities. For 16 possibili-
ties, we should consider rectangles consisting of 25 points,

FIGURE 4. The example: a sailing area with three different starting
points: P2 3, P2 6, P2 10, and three possibilities of some different
movement directions.

and for 32 possibilities, we should consider rectangles of
81 points. The number of edges in the grid depends on
the assumed number of movement directions for each grid
point. Let d denote the vertex degree, that is, the number
of edges emerging from each vertex of a grid (8, 16, 32,
etc.). It also denotes the assumed number of navigational
directions. In general, d and g were constant throughout the
optimization process. However, we can imagine a strategy
in which d and g can be changed. For example, sailing
conditions are represented more precisely for some areas of
a grid (in direct proximity to land or other constraints).

The maximal number of edges in the grid is equal to:

emax ≤ ptotal · v · d = m · n · d . (3)

V
(
Pij

)
is the set of neighbouring points Pkl corresponding to

the assumed directions. The vertices with red dots in Fig. 3
show only such directions.

Based on the registered information for each neighbour
points, we can estimate independently corresponding ves-
sel movement time between this pair of points. It depends
on such parameters as: vessel movement direction, ves-
sel’s speed, wind direction, waves’ height [35]. Besides,
we must consider vessel manoeuvres described by turning
angle because they also affect total sailing time. In conse-
quence, we must take into account three positions of the
vessel: previous (Pk−1), current (Pk ) and next one. (Pk+1)
This allows us to calculate the turning angle and to estimate
the time of vessel movement τ according to formula (4).

τ
(
Pk−1,Pk ,Pk+1

)
= | ∝k−1,k − ∝k,k+1 | · t1α

τk = | ∝k−1,k − ∝k,k+1 | · t1α, (4)

where:
∝k−1,k is course over ground from, Pk−1 to Pk
∝k,k+1 is course over ground from, Pk toPk+1
t1α is a time-equivalent penalty delay for a given course

change, expressed in seconds per degree. It directly follows
from characteristics of the vessels (for example SV Con-
rad [16]) and it is calculated when manoeuvre of the vessel is
desirable. In consequence, it increases the vessel movement
time between the neighbour points: Pk and Pk+1. Let express
briefly: τ (Pk ,Pk+1) = τ

(
Pk−1,Pk ,Pk+1

)
, τ (S,Pk+1) = 0,

τ (Pk ,F) = 0
The grid, whose points contain relevant information,

is used for determining the most acceptable sailing route
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between the given S and F points. The process is as follows.
A user of the SAA chooses the sailing region and specifies
the S and F points, as well as the starting date and time.

To calculate the optimal route (component 3), a grid model
was transformed into a graph model. We consider a weighted
graph, G = (V ,E, ω (e, τ (e))) where V is the set of vertices,
E is the set of edges, eij = (vi, vj) means that it is possible for
a ship to move from vi to, vj, eij ∈ E . Thenω is a function that
assigns to edges all weights given in advance and calculated.
Edge weights may be determined based on the sailing time
(having regards to manoeuvres – formula (4)), sailing cost,
or any other quantity that accumulates additively along a path.

FIGURE 5. Example of graph G(V,E) and a final route from point S to point
F as result of component 3 run.

In our case, V represents all navigable points of the grid,
and E contains arcs representing all the admissible movement
directions for each of the navigable points. Fig. 5 shows a
graph corresponding to the grid represented in Fig. 3. It is
worth emphasizing that the graph does not include external
non-navigable points. Each edge represents movement into
directions.

Once some weights are assigned to the graph edges,
the task of component 3 can be started. For the clarity
of the description, it is assumed that the vertices in the
graph are numbered lexicographically from the up-left corner
to the bottom right.

The optimization problem can be presented as find-
ing a sequence of graph edges between route end-
points, to minimize a given goal function. Let a route
R = (e1, e2, . . .ei, ei+1, . . .er ) be the path (sailing route) from
S to F, where for ei= (vx , vy)ϵE,ei+1= (vy, vz)ϵE,vy, vzϵV.
Fig. 5 presents the following route: ((14, 21), (21,28), (28,29),
(29,41), (41,51), (51,43), (43,44)); r = 7. In general, the
number of vertices in route R is equal to r+1, the number
of edges between them equals r.

According to the proposed model, we try to find the route
R satisfying the following criteria:∑

eϵR
ω (e, τ (e)) =

∑r

i=1
ω(ei,τ (ei))|ei ∈ R = min (5)

for all possible routes from S to F in the graph G =

(V ,E, ω (e, τ (e)). As can be seen, the problem is described
by a changeable number of decision variables – edges within

a route. Depending on the sailing conditions and ship charac-
teristics, the values of weights ω (e,τ ) assigned to all edges
can be determined for all e ∈ E , as shown in [36]. Following
this, Dijkstra’s algorithm and other methods can be used to
determine the optimal route. Assuming that the complex-
ity of a single read/write operation, single label assignment
operation and the single operation related to graph weight
calculations are all equal to O(1), the sequential time com-
plexities of the algorithms of the presented components are
as follows [37], [38]:

Component 1: O(m·n)
Component 2: O(m·n·d)
Component 3:O[(m·n·d+m·n·d·log(m·n)]=O[m·n·(1+d

log(m·n)]=O[m·n·d·log(m·n)].

IV. PARALLELIZATION METHODS AND CLOUD TESTING
ENVIRONMENT
The objective of parallelization is to minimize the time of
SAA execution, particularly if either a sailing region is too
large or a high grid resolution is applied. One possible the
approach is to replace exact algorithms with heuristic algo-
rithms. However, this may lower the quality of the obtained
results, which is not acceptable, even if such algorithms
are easier to parallelize [39]. Despite this, in this study,
we focused on the data parallelization of each component
of the SAA. To achieve this goal, we divide the set of
data into several parts and calculate each part independently.
Additionally, we turn the sequential version of the SAA into
a parallel version using OpenMP programming platform.
The functional parallelization approach used here relies on
splitting the program into subprograms (components respon-
sible for various tasks), which can be executed concurrently.
Because the computing node consists of many processing
units (cores), subprograms can be assigned to the cores and
executed in parallel. Determining the efficiency and thread
mapping depends on the type of architecture (shared mem-
ory multicore, memory hierarchy, and operating system) and
the type of application to be run (types of components,
required data, and various time dependencies). Unfortunately,
there is no single-thread mapping strategy that suits all the
possible applications. Any OpenMP program begins as a
single process called the master thread. When the master
thread reaches the parallel region, multiple threads are cre-
ated to execute the parallel codes enclosed in the parallel
region. When the threads complete the parallel region, they
synchronize and terminate, leaving only the master thread.
We initiated the OpenMP programming model with a sim-
ple program including the directive #pragmaomp parallel
[clause list]. First, it declares the variables in the list to be
shared among all threads in a team, and variables in the list
to be private to each thread in a team. Second, it uses loops,
where each iteration of the loop is assigned a different thread,
and sets the dynamic schedule for computational resource
threads. In other words, we use suchmechanisms to announce
to the compiler that the next code block should be executed
as a new task. The execution of the tasks can be instant or
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delayed according to the task schedule and availability of
the threads. This means that there is no known dependency
a priori between the task execution time and the number of
engaged threads. This can only be determined empirically.

The above approach was used separately for each com-
ponent of the SAA. To Creating a navigation area, we can
analyse some parts of the bitmap in parallel to create a grid
of sailing areas. Similarly, we can create a digraph G by
Creating a navigation area and estimating its weight values.
All calculations for the given vertices were divided between
threads.

Consider the graph in Fig. 5. For each edge of the graph,
we read the four parameters as follows:

x0– vessel movement direction
x1– vessel’s speed,
x2 – wind direction,
x3 – waves’ height.

FIGURE 6. Example of sequential (i) and parallel (ii) the considered
pseudocode.

Based on the above values, we can calculate ω(e, τ ) =

F(x0, x1, x2, x3). In practice, is a complex procedure that
has been analysed in many scientific papers [4], [16], [17].
In Fig. 6, we show the concept of parallelization for
such hypothetical calculations. To simplify the pseudocode,
we assumed that the internal loop in the sequential code is
presented as a general procedure in parallel.

The parallel pseudocode contains a special directive that
instructs the compiler to generate a code that splits the iter-
ations of the external loop among multiple threads. If the
number of threads is three, splitting can be performed as
follows:

Thread 1: the number of chosen vertices; 1; 4; 7; 10; 13;
16; 19; 22; 25; 28; 31; 34; 37; 40; 43; 46; 49; 52;

Thread 2: the number of chosen vertices: 2; 5; 8; 11; 14;
17; 20; 23; 26; 29; 32; 35; 38; 41; 44; 47; 50; 53;

Thread 3: the number of chosen vertices; 3; 6; 9; 12; 15;
18; 21; 24; 27; 30; 33; 36; 39; 42; 45; 48; 51; 54;

where the integers represent the number of vertices in a
graphG given in lexical order (see Fig 5). Below is a diagram
of the division of tasks into individual threads from T1 to T3
in the graph, where the number of all vertices is 54.

Note that in the case of data parallelism, when we consider
h disjoint data blocks, the above formula existing in the
brackets must be divided by h. In general, h≪ m·n, which
means that parallel computational complexity is on the same
level.

In the case of Component 3, the input data is representing
by weight graph G = (V ,E, ω). We can consider separate
analysis of the parts of graph G by Dijkstra algorithm, but
is not sufficient to find the optimal route. We must combine
found sub-routes into routes and then find the best route
according to the chosen criteria. Moreover, the parallel Dijk-
stra algorithm can also be used for both the whole or each
part of the graph. Firstly, the main loop can be parallelized.
As for the parallelization of nested loops, it is not so obvi-
ous because we should synchronize calculations, which is
time-consuming.

The organization of different simulations requires a suit-
able computing environment to test the proposed solutions.
Therefore, on the one hand, we use a memory multicore
architecture to speed up SAA execution; on the other hand,
we choose a cloud environment to test the proposed solution.

FIGURE 7. The simulation environment.

This environment can be described using a multilayer
model (see Fig. 7). It comprises six main layers that perform
different functions. The lowest layer is a basic computing
environment, where an operating system (Ubuntu software)
is chosen and installed on available computer hardware. The
second layer represents the cloud environment and storage
platform. It was created based on the Infrastructure as a Ser-
vice (IaaS) model available in the cloud named TASKcloud.
OpenStack [33] software was used to provide services to
create virtual machines, block storage, and network com-
ponents using an application programming interface (API).
The next two layers create a virtual environment supported
by QEMU and containers based on Docker [34]. The last
layer corresponds to the SAA application implemented in
OpenMP and is distributed as Docker containers. Container
encapsulation of SAA software allows the inclusion of all
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SAA dependencies, source code, runtime execution environ-
ment, system tools, and libraries inside containers. The upper
layer represents SAA application users who can run it sequen-
tially or in parallel. The SAA interface plays an essential role
in user-to-cloud communication.

To facilitate the implementation of the entire system
and achieve repeatability of simulations, the popular Ter-
raform [40] tool was used. Terraform-dedicated scripts were
developed to prepare the following infrastructure: virtual
machine with 24 virtual threads, 60 GB of RAM, and 240 GB
SSD. Additionally, the virtual machine attached a 100 GB
extra disk with triple replication for safe data storage. The
SAA virtual machine was attached to the Internet through
a router and was assigned a public IP for users to access it.
Terraform scripts allow a researcher to create or recreate the
simulation environment, repeatable and within a fewminutes.

The migration of SAA software to the cloud requires the
following three steps: (1) preparing the virtual infrastructure,
(2) configuring the operating systems, and (3) deploying the
SAA software itself. The proposed solution allows us to
run the SAA application for customized regional resolution,
frequency of weather forecasting data, and selected scenarios.
The required data can be collected by either dedicated scripts
or a cloud service; the latter is more convenient and can be
performed automatically. All gathered data has been stored
on cloud CEPH due to safety reasons. In addition, we com-
pared the runtimes of SAA in both traditional (sequential)
and cloud (parallel) environments for various user requests.
The parallelized SAA application has been containerized in
a single Docker container and has been run on a single
virtual machine. This approach lets us scale SAA application
horizontally and run a dedicated containerized instance per
each new route planning request.

FIGURE 8. SSA routes example. Route (R1,R2,R3) is based graph includes
(14523121, 3630780, 907695) number of vertices and (2.53E+08,
63058011, 7840569) number of edges.

V. A COMPARISON OF PARALLEL AND SEQUENTIAL
VERSIONS OF SAA
To analyse the benefits of the proposed SAA parallelization,
we performed several simulations in a prepared cloud envi-
ronment. First, we considered the Baltic region described by
different grid resolutions. Following this, we created graphs,
considered different sailing conditions, and modelled sailing
times as weights assigned to graph edges. Finally, we ran
the SAA (Fig. 8 shows some sample routes displayed in
this application) and measured the processing times of SSA

TABLE 1. Comparison of execution times for sequential (Seq) and
parallel (Prl) processing of SAA.

components for different input data, as shown in Table 1
and Fig 9.

The effect of parallelization is presented in the last column
of Table 1. The growth of this effect as a function of the num-
ber of graph-edge parameters is shown in Fig. 9. An example
of an SAA interface is shown in Fig. 8. This illustrates three
different routes along the Polish coast.

VI. DISCUSSION OF RESULTS
It can be observed that utilized parallelization is beneficial
for the first two components of SAA application. For the last
component of the SAA, the parallel approach failed to reduce
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FIGURE 9. Total execution time as a function of the number of edges in
the graph for various numbers of parallel threads.

the processing time. For this component, we obtained much
larger execution times for the parallel version of SAA than
for the sequential version. Therefore, we created a new SAA
configuration: parallel versions of two components (generat-
ing navigational area and establishing sailing conditions) and
a sequential version of the last component (finding a route),
which provides a mean effect of speed-up equal to 40.4%.

The main reason for the inefficiency of the third compo-
nent is that the applied structure of the data – the heap –
requiresmany synchronizations, thus resulting in longer com-
putations. It is worth noting that for the second SAA task
(establishing sailing conditions), the parallelized approach
is more effective if the number of possible routes between
the endpoints is higher. We also analysed the total time as a
function of the number of threads supporting the paralleliza-
tion. This relation corresponds to the speed-up of parallel
applications; speed-up is a measure that captures the relative
benefit of solving a problem in parallel. In our case, it is
defined as the ratio of the time taken to solve a problem using
the sequential algorithm to the time required to solve the same
problem in a shared-memory multicore architecture. If the
speed-up is linear regarding the number of multithread, the
assumed solution can significantly shorten the required time.
However, for many problems, such scalability is difficult to
achieve owing to synchronization and communication prob-
lems. As shown in Fig. 6, this is also true for the considered
problem. Parallelization reduces the computational time for
up to four engaged threads. Further increase in the number
of threads did not result in additional benefits. This issue will
be investigated in ongoing research on the presented solution.
Alternative parallel approaches to the final SAA task can be
considered. It must be mentioned, however, that Dijkstra’s
algorithm has not only high computational time, but also
high computational memory. It is also not scalable without
a loss in accuracy. These two features render parallelization
particularly difficult.

VII. CONCLUSION
Summing up the presented research, we can state the
following.

The original sequential application SAA was transformed
into a parallel one, where data parallelism was consid-
ered. We have uses open software to implement parallel
SAA (OpenMP) and to create a computing environment
(TASKcloud) to test created application. In consequence,
we obtain a practically oriented solution.

We improve performance of two parallel ASS components
by up to 79.1% and show that the selected number of threads
is optimal in terms of minimizing execution time. In general,
it depends on the size of navigation area, resolution, and
the number of divided part of data, which is assigned to
all threats. To find the optimal route, we use the sequential
Dijkstra algorithm. While there are some parallel Dijkstra
algorithms, the majority of them consider an input data set
described by amatrix and are tested rather for small data sizes
(hundreds of elements instead of a million). In our case, more
complex optimization criteria (e.g. penalty for manoeuvres)
and some dynamic parameters (e.g. weather forecasting) have
been applied and the parallel Dijkstra version did not fulfil our
expectations in terms of flexibility of problem modelling and
implementation. Choice of more advanced data structures,
such as Fibonacci heap, can lead to better results.

Another potential direction of research is investigating
other models of parallelism – MPI and MPI/OpenMP, espe-
cially for determining simultaneously different routes for
different ships in the same navigation region. In general,
due to its flexible, module-based structure, the parallel SAA
application is open to various changes in terms of opti-
mization and its parallel implementations. Therefore, all the
above-mentioned aspects will be explored in the ongoing
work on the proposed method.
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